stat: make add lat percentile functions inline
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18#include "oslib/asprintf.h"
19
20#ifdef WIN32
21#define LOG_MSEC_SLACK 2
22#else
23#define LOG_MSEC_SLACK 1
24#endif
25
26struct fio_sem *stat_sem;
27
28void clear_rusage_stat(struct thread_data *td)
29{
30 struct thread_stat *ts = &td->ts;
31
32 fio_getrusage(&td->ru_start);
33 ts->usr_time = ts->sys_time = 0;
34 ts->ctx = 0;
35 ts->minf = ts->majf = 0;
36}
37
38void update_rusage_stat(struct thread_data *td)
39{
40 struct thread_stat *ts = &td->ts;
41
42 fio_getrusage(&td->ru_end);
43 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44 &td->ru_end.ru_utime);
45 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46 &td->ru_end.ru_stime);
47 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53}
54
55/*
56 * Given a latency, return the index of the corresponding bucket in
57 * the structure tracking percentiles.
58 *
59 * (1) find the group (and error bits) that the value (latency)
60 * belongs to by looking at its MSB. (2) find the bucket number in the
61 * group by looking at the index bits.
62 *
63 */
64static unsigned int plat_val_to_idx(unsigned long long val)
65{
66 unsigned int msb, error_bits, base, offset, idx;
67
68 /* Find MSB starting from bit 0 */
69 if (val == 0)
70 msb = 0;
71 else
72 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74 /*
75 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76 * all bits of the sample as index
77 */
78 if (msb <= FIO_IO_U_PLAT_BITS)
79 return val;
80
81 /* Compute the number of error bits to discard*/
82 error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84 /* Compute the number of buckets before the group */
85 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87 /*
88 * Discard the error bits and apply the mask to find the
89 * index for the buckets in the group
90 */
91 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93 /* Make sure the index does not exceed (array size - 1) */
94 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97 return idx;
98}
99
100/*
101 * Convert the given index of the bucket array to the value
102 * represented by the bucket
103 */
104static unsigned long long plat_idx_to_val(unsigned int idx)
105{
106 unsigned int error_bits;
107 unsigned long long k, base;
108
109 assert(idx < FIO_IO_U_PLAT_NR);
110
111 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112 * all bits of the sample as index */
113 if (idx < (FIO_IO_U_PLAT_VAL << 1))
114 return idx;
115
116 /* Find the group and compute the minimum value of that group */
117 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120 /* Find its bucket number of the group */
121 k = idx % FIO_IO_U_PLAT_VAL;
122
123 /* Return the mean of the range of the bucket */
124 return base + ((k + 0.5) * (1 << error_bits));
125}
126
127static int double_cmp(const void *a, const void *b)
128{
129 const fio_fp64_t fa = *(const fio_fp64_t *) a;
130 const fio_fp64_t fb = *(const fio_fp64_t *) b;
131 int cmp = 0;
132
133 if (fa.u.f > fb.u.f)
134 cmp = 1;
135 else if (fa.u.f < fb.u.f)
136 cmp = -1;
137
138 return cmp;
139}
140
141unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142 fio_fp64_t *plist, unsigned long long **output,
143 unsigned long long *maxv, unsigned long long *minv)
144{
145 unsigned long long sum = 0;
146 unsigned int len, i, j = 0;
147 unsigned long long *ovals = NULL;
148 bool is_last;
149
150 *minv = -1ULL;
151 *maxv = 0;
152
153 len = 0;
154 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155 len++;
156
157 if (!len)
158 return 0;
159
160 /*
161 * Sort the percentile list. Note that it may already be sorted if
162 * we are using the default values, but since it's a short list this
163 * isn't a worry. Also note that this does not work for NaN values.
164 */
165 if (len > 1)
166 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168 ovals = malloc(len * sizeof(*ovals));
169 if (!ovals)
170 return 0;
171
172 /*
173 * Calculate bucket values, note down max and min values
174 */
175 is_last = false;
176 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177 sum += io_u_plat[i];
178 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179 assert(plist[j].u.f <= 100.0);
180
181 ovals[j] = plat_idx_to_val(i);
182 if (ovals[j] < *minv)
183 *minv = ovals[j];
184 if (ovals[j] > *maxv)
185 *maxv = ovals[j];
186
187 is_last = (j == len - 1) != 0;
188 if (is_last)
189 break;
190
191 j++;
192 }
193 }
194
195 if (!is_last)
196 log_err("fio: error calculating latency percentiles\n");
197
198 *output = ovals;
199 return len;
200}
201
202/*
203 * Find and display the p-th percentile of clat
204 */
205static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206 fio_fp64_t *plist, unsigned int precision,
207 const char *pre, struct buf_output *out)
208{
209 unsigned int divisor, len, i, j = 0;
210 unsigned long long minv, maxv;
211 unsigned long long *ovals;
212 int per_line, scale_down, time_width;
213 bool is_last;
214 char fmt[32];
215
216 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217 if (!len || !ovals)
218 return;
219
220 /*
221 * We default to nsecs, but if the value range is such that we
222 * should scale down to usecs or msecs, do that.
223 */
224 if (minv > 2000000 && maxv > 99999999ULL) {
225 scale_down = 2;
226 divisor = 1000000;
227 log_buf(out, " %s percentiles (msec):\n |", pre);
228 } else if (minv > 2000 && maxv > 99999) {
229 scale_down = 1;
230 divisor = 1000;
231 log_buf(out, " %s percentiles (usec):\n |", pre);
232 } else {
233 scale_down = 0;
234 divisor = 1;
235 log_buf(out, " %s percentiles (nsec):\n |", pre);
236 }
237
238
239 time_width = max(5, (int) (log10(maxv / divisor) + 1));
240 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241 precision, time_width);
242 /* fmt will be something like " %5.2fth=[%4llu]%c" */
243 per_line = (80 - 7) / (precision + 10 + time_width);
244
245 for (j = 0; j < len; j++) {
246 /* for formatting */
247 if (j != 0 && (j % per_line) == 0)
248 log_buf(out, " |");
249
250 /* end of the list */
251 is_last = (j == len - 1) != 0;
252
253 for (i = 0; i < scale_down; i++)
254 ovals[j] = (ovals[j] + 999) / 1000;
255
256 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258 if (is_last)
259 break;
260
261 if ((j % per_line) == per_line - 1) /* for formatting */
262 log_buf(out, "\n");
263 }
264
265 free(ovals);
266}
267
268bool calc_lat(struct io_stat *is, unsigned long long *min,
269 unsigned long long *max, double *mean, double *dev)
270{
271 double n = (double) is->samples;
272
273 if (n == 0)
274 return false;
275
276 *min = is->min_val;
277 *max = is->max_val;
278 *mean = is->mean.u.f;
279
280 if (n > 1.0)
281 *dev = sqrt(is->S.u.f / (n - 1.0));
282 else
283 *dev = 0;
284
285 return true;
286}
287
288void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out)
289{
290 char *io, *agg, *min, *max;
291 char *ioalt, *aggalt, *minalt, *maxalt;
292 uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0, min_run = -1, max_run = 0;
293 int i;
294 const int i2p = is_power_of_2(rs->kb_base);
295
296 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
297 if (!rs->max_run[i])
298 continue;
299 io_mix += rs->iobytes[i];
300 agg_mix += rs->agg[i];
301 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
302 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
303 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
304 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
305 }
306 io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
307 ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
308 agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
309 aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
310 min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
311 minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
312 max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
313 maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
314 log_buf(out, " MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
315 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
316 (unsigned long long) min_run,
317 (unsigned long long) max_run);
318 free(io);
319 free(agg);
320 free(min);
321 free(max);
322 free(ioalt);
323 free(aggalt);
324 free(minalt);
325 free(maxalt);
326}
327
328void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
329{
330 char *io, *agg, *min, *max;
331 char *ioalt, *aggalt, *minalt, *maxalt;
332 const char *str[] = { " READ", " WRITE" , " TRIM"};
333 int i;
334
335 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
336
337 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
338 const int i2p = is_power_of_2(rs->kb_base);
339
340 if (!rs->max_run[i])
341 continue;
342
343 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
344 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
345 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
346 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
347 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
348 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
349 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
350 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
351 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
352 (rs->unified_rw_rep == UNIFIED_MIXED) ? " MIXED" : str[i],
353 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
354 (unsigned long long) rs->min_run[i],
355 (unsigned long long) rs->max_run[i]);
356
357 free(io);
358 free(agg);
359 free(min);
360 free(max);
361 free(ioalt);
362 free(aggalt);
363 free(minalt);
364 free(maxalt);
365 }
366
367 /* Need to aggregate statisitics to show mixed values */
368 if (rs->unified_rw_rep == UNIFIED_BOTH)
369 show_mixed_group_stats(rs, out);
370}
371
372void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
373{
374 int i;
375
376 /*
377 * Do depth distribution calculations
378 */
379 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
380 if (total) {
381 io_u_dist[i] = (double) map[i] / (double) total;
382 io_u_dist[i] *= 100.0;
383 if (io_u_dist[i] < 0.1 && map[i])
384 io_u_dist[i] = 0.1;
385 } else
386 io_u_dist[i] = 0.0;
387 }
388}
389
390static void stat_calc_lat(struct thread_stat *ts, double *dst,
391 uint64_t *src, int nr)
392{
393 unsigned long total = ddir_rw_sum(ts->total_io_u);
394 int i;
395
396 /*
397 * Do latency distribution calculations
398 */
399 for (i = 0; i < nr; i++) {
400 if (total) {
401 dst[i] = (double) src[i] / (double) total;
402 dst[i] *= 100.0;
403 if (dst[i] < 0.01 && src[i])
404 dst[i] = 0.01;
405 } else
406 dst[i] = 0.0;
407 }
408}
409
410/*
411 * To keep the terse format unaltered, add all of the ns latency
412 * buckets to the first us latency bucket
413 */
414static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
415{
416 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
417 int i;
418
419 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
420
421 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
422 ntotal += ts->io_u_lat_n[i];
423
424 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
425}
426
427void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
428{
429 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
430}
431
432void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
433{
434 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
435}
436
437void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
438{
439 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
440}
441
442static void display_lat(const char *name, unsigned long long min,
443 unsigned long long max, double mean, double dev,
444 struct buf_output *out)
445{
446 const char *base = "(nsec)";
447 char *minp, *maxp;
448
449 if (nsec_to_msec(&min, &max, &mean, &dev))
450 base = "(msec)";
451 else if (nsec_to_usec(&min, &max, &mean, &dev))
452 base = "(usec)";
453
454 minp = num2str(min, 6, 1, 0, N2S_NONE);
455 maxp = num2str(max, 6, 1, 0, N2S_NONE);
456
457 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
458 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
459
460 free(minp);
461 free(maxp);
462}
463
464static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
465{
466 double p_of_agg = 100.0;
467 if (rs && rs->agg[ddir] > 1024) {
468 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
469
470 if (p_of_agg > 100.0)
471 p_of_agg = 100.0;
472 }
473 return p_of_agg;
474}
475
476static void show_mixed_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
477 struct buf_output *out)
478{
479 unsigned long runt;
480 unsigned long long min, max, bw, iops;
481 double mean, dev;
482 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
483 struct thread_stat *ts_lcl;
484
485 int i2p;
486 int ddir = 0;
487
488 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
489 ts_lcl = malloc(sizeof(struct thread_stat));
490 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
491 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
492 init_thread_stat_min_vals(ts_lcl);
493
494 sum_thread_stats(ts_lcl, ts, 1);
495
496 assert(ddir_rw(ddir));
497
498 if (!ts_lcl->runtime[ddir])
499 return;
500
501 i2p = is_power_of_2(rs->kb_base);
502 runt = ts_lcl->runtime[ddir];
503
504 bw = (1000 * ts_lcl->io_bytes[ddir]) / runt;
505 io_p = num2str(ts_lcl->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
506 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
507 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
508
509 iops = (1000 * ts_lcl->total_io_u[ddir]) / runt;
510 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
511
512 log_buf(out, " mixed: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
513 iops_p, bw_p, bw_p_alt, io_p,
514 (unsigned long long) ts_lcl->runtime[ddir],
515 post_st ? : "");
516
517 free(post_st);
518 free(io_p);
519 free(bw_p);
520 free(bw_p_alt);
521 free(iops_p);
522
523 if (calc_lat(&ts_lcl->slat_stat[ddir], &min, &max, &mean, &dev))
524 display_lat("slat", min, max, mean, dev, out);
525 if (calc_lat(&ts_lcl->clat_stat[ddir], &min, &max, &mean, &dev))
526 display_lat("clat", min, max, mean, dev, out);
527 if (calc_lat(&ts_lcl->lat_stat[ddir], &min, &max, &mean, &dev))
528 display_lat(" lat", min, max, mean, dev, out);
529 if (calc_lat(&ts_lcl->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
530 display_lat(ts_lcl->lat_percentiles ? "high prio_lat" : "high prio_clat",
531 min, max, mean, dev, out);
532 if (calc_lat(&ts_lcl->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
533 display_lat(ts_lcl->lat_percentiles ? "low prio_lat" : "low prio_clat",
534 min, max, mean, dev, out);
535 }
536
537 if (ts->slat_percentiles && ts_lcl->slat_stat[ddir].samples > 0)
538 show_clat_percentiles(ts_lcl->io_u_plat[FIO_SLAT][ddir],
539 ts_lcl->slat_stat[ddir].samples,
540 ts->percentile_list,
541 ts->percentile_precision, "slat", out);
542 if (ts->clat_percentiles && ts_lcl->clat_stat[ddir].samples > 0)
543 show_clat_percentiles(ts_lcl->io_u_plat[FIO_CLAT][ddir],
544 ts_lcl->clat_stat[ddir].samples,
545 ts->percentile_list,
546 ts->percentile_precision, "clat", out);
547 if (ts->lat_percentiles && ts_lcl->lat_stat[ddir].samples > 0)
548 show_clat_percentiles(ts_lcl->io_u_plat[FIO_LAT][ddir],
549 ts_lcl->lat_stat[ddir].samples,
550 ts->percentile_list,
551 ts->percentile_precision, "lat", out);
552
553 if (ts->clat_percentiles || ts->lat_percentiles) {
554 const char *name = ts->lat_percentiles ? "lat" : "clat";
555 char prio_name[32];
556 uint64_t samples;
557
558 if (ts->lat_percentiles)
559 samples = ts_lcl->lat_stat[ddir].samples;
560 else
561 samples = ts_lcl->clat_stat[ddir].samples;
562
563 /* Only print this if some high and low priority stats were collected */
564 if (ts_lcl->clat_high_prio_stat[ddir].samples > 0 &&
565 ts_lcl->clat_low_prio_stat[ddir].samples > 0)
566 {
567 sprintf(prio_name, "high prio (%.2f%%) %s",
568 100. * (double) ts_lcl->clat_high_prio_stat[ddir].samples / (double) samples,
569 name);
570 show_clat_percentiles(ts_lcl->io_u_plat_high_prio[ddir],
571 ts_lcl->clat_high_prio_stat[ddir].samples,
572 ts->percentile_list,
573 ts->percentile_precision, prio_name, out);
574
575 sprintf(prio_name, "low prio (%.2f%%) %s",
576 100. * (double) ts_lcl->clat_low_prio_stat[ddir].samples / (double) samples,
577 name);
578 show_clat_percentiles(ts_lcl->io_u_plat_low_prio[ddir],
579 ts_lcl->clat_low_prio_stat[ddir].samples,
580 ts->percentile_list,
581 ts->percentile_precision, prio_name, out);
582 }
583 }
584
585 if (calc_lat(&ts_lcl->bw_stat[ddir], &min, &max, &mean, &dev)) {
586 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
587 const char *bw_str;
588
589 if ((rs->unit_base == 1) && i2p)
590 bw_str = "Kibit";
591 else if (rs->unit_base == 1)
592 bw_str = "kbit";
593 else if (i2p)
594 bw_str = "KiB";
595 else
596 bw_str = "kB";
597
598 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
599
600 if (rs->unit_base == 1) {
601 min *= 8.0;
602 max *= 8.0;
603 mean *= 8.0;
604 dev *= 8.0;
605 }
606
607 if (mean > fkb_base * fkb_base) {
608 min /= fkb_base;
609 max /= fkb_base;
610 mean /= fkb_base;
611 dev /= fkb_base;
612 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
613 }
614
615 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
616 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
617 bw_str, min, max, p_of_agg, mean, dev,
618 (&ts_lcl->bw_stat[ddir])->samples);
619 }
620 if (calc_lat(&ts_lcl->iops_stat[ddir], &min, &max, &mean, &dev)) {
621 log_buf(out, " iops : min=%5llu, max=%5llu, "
622 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
623 min, max, mean, dev, (&ts_lcl->iops_stat[ddir])->samples);
624 }
625
626 free(ts_lcl);
627}
628
629static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
630 int ddir, struct buf_output *out)
631{
632 unsigned long runt;
633 unsigned long long min, max, bw, iops;
634 double mean, dev;
635 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
636 int i2p;
637
638 if (ddir_sync(ddir)) {
639 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
640 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
641 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
642 show_clat_percentiles(ts->io_u_sync_plat,
643 ts->sync_stat.samples,
644 ts->percentile_list,
645 ts->percentile_precision,
646 io_ddir_name(ddir), out);
647 }
648 return;
649 }
650
651 assert(ddir_rw(ddir));
652
653 if (!ts->runtime[ddir])
654 return;
655
656 i2p = is_power_of_2(rs->kb_base);
657 runt = ts->runtime[ddir];
658
659 bw = (1000 * ts->io_bytes[ddir]) / runt;
660 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
661 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
662 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
663
664 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
665 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
666 if (ddir == DDIR_WRITE)
667 post_st = zbd_write_status(ts);
668 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
669 uint64_t total;
670 double hit;
671
672 total = ts->cachehit + ts->cachemiss;
673 hit = (double) ts->cachehit / (double) total;
674 hit *= 100.0;
675 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
676 post_st = NULL;
677 }
678
679 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
680 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
681 iops_p, bw_p, bw_p_alt, io_p,
682 (unsigned long long) ts->runtime[ddir],
683 post_st ? : "");
684
685 free(post_st);
686 free(io_p);
687 free(bw_p);
688 free(bw_p_alt);
689 free(iops_p);
690
691 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
692 display_lat("slat", min, max, mean, dev, out);
693 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
694 display_lat("clat", min, max, mean, dev, out);
695 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
696 display_lat(" lat", min, max, mean, dev, out);
697 if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
698 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
699 min, max, mean, dev, out);
700 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
701 display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
702 min, max, mean, dev, out);
703 }
704
705 if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
706 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
707 ts->slat_stat[ddir].samples,
708 ts->percentile_list,
709 ts->percentile_precision, "slat", out);
710 if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
711 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
712 ts->clat_stat[ddir].samples,
713 ts->percentile_list,
714 ts->percentile_precision, "clat", out);
715 if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
716 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
717 ts->lat_stat[ddir].samples,
718 ts->percentile_list,
719 ts->percentile_precision, "lat", out);
720
721 if (ts->clat_percentiles || ts->lat_percentiles) {
722 const char *name = ts->lat_percentiles ? "lat" : "clat";
723 char prio_name[32];
724 uint64_t samples;
725
726 if (ts->lat_percentiles)
727 samples = ts->lat_stat[ddir].samples;
728 else
729 samples = ts->clat_stat[ddir].samples;
730
731 /* Only print this if some high and low priority stats were collected */
732 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
733 ts->clat_low_prio_stat[ddir].samples > 0)
734 {
735 sprintf(prio_name, "high prio (%.2f%%) %s",
736 100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
737 name);
738 show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
739 ts->clat_high_prio_stat[ddir].samples,
740 ts->percentile_list,
741 ts->percentile_precision, prio_name, out);
742
743 sprintf(prio_name, "low prio (%.2f%%) %s",
744 100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
745 name);
746 show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
747 ts->clat_low_prio_stat[ddir].samples,
748 ts->percentile_list,
749 ts->percentile_precision, prio_name, out);
750 }
751 }
752
753 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
754 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
755 const char *bw_str;
756
757 if ((rs->unit_base == 1) && i2p)
758 bw_str = "Kibit";
759 else if (rs->unit_base == 1)
760 bw_str = "kbit";
761 else if (i2p)
762 bw_str = "KiB";
763 else
764 bw_str = "kB";
765
766 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
767
768 if (rs->unit_base == 1) {
769 min *= 8.0;
770 max *= 8.0;
771 mean *= 8.0;
772 dev *= 8.0;
773 }
774
775 if (mean > fkb_base * fkb_base) {
776 min /= fkb_base;
777 max /= fkb_base;
778 mean /= fkb_base;
779 dev /= fkb_base;
780 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
781 }
782
783 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
784 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
785 bw_str, min, max, p_of_agg, mean, dev,
786 (&ts->bw_stat[ddir])->samples);
787 }
788 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
789 log_buf(out, " iops : min=%5llu, max=%5llu, "
790 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
791 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
792 }
793}
794
795static bool show_lat(double *io_u_lat, int nr, const char **ranges,
796 const char *msg, struct buf_output *out)
797{
798 bool new_line = true, shown = false;
799 int i, line = 0;
800
801 for (i = 0; i < nr; i++) {
802 if (io_u_lat[i] <= 0.0)
803 continue;
804 shown = true;
805 if (new_line) {
806 if (line)
807 log_buf(out, "\n");
808 log_buf(out, " lat (%s) : ", msg);
809 new_line = false;
810 line = 0;
811 }
812 if (line)
813 log_buf(out, ", ");
814 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
815 line++;
816 if (line == 5)
817 new_line = true;
818 }
819
820 if (shown)
821 log_buf(out, "\n");
822
823 return true;
824}
825
826static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
827{
828 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
829 "250=", "500=", "750=", "1000=", };
830
831 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
832}
833
834static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
835{
836 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
837 "250=", "500=", "750=", "1000=", };
838
839 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
840}
841
842static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
843{
844 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
845 "250=", "500=", "750=", "1000=", "2000=",
846 ">=2000=", };
847
848 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
849}
850
851static void show_latencies(struct thread_stat *ts, struct buf_output *out)
852{
853 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
854 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
855 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
856
857 stat_calc_lat_n(ts, io_u_lat_n);
858 stat_calc_lat_u(ts, io_u_lat_u);
859 stat_calc_lat_m(ts, io_u_lat_m);
860
861 show_lat_n(io_u_lat_n, out);
862 show_lat_u(io_u_lat_u, out);
863 show_lat_m(io_u_lat_m, out);
864}
865
866static int block_state_category(int block_state)
867{
868 switch (block_state) {
869 case BLOCK_STATE_UNINIT:
870 return 0;
871 case BLOCK_STATE_TRIMMED:
872 case BLOCK_STATE_WRITTEN:
873 return 1;
874 case BLOCK_STATE_WRITE_FAILURE:
875 case BLOCK_STATE_TRIM_FAILURE:
876 return 2;
877 default:
878 /* Silence compile warning on some BSDs and have a return */
879 assert(0);
880 return -1;
881 }
882}
883
884static int compare_block_infos(const void *bs1, const void *bs2)
885{
886 uint64_t block1 = *(uint64_t *)bs1;
887 uint64_t block2 = *(uint64_t *)bs2;
888 int state1 = BLOCK_INFO_STATE(block1);
889 int state2 = BLOCK_INFO_STATE(block2);
890 int bscat1 = block_state_category(state1);
891 int bscat2 = block_state_category(state2);
892 int cycles1 = BLOCK_INFO_TRIMS(block1);
893 int cycles2 = BLOCK_INFO_TRIMS(block2);
894
895 if (bscat1 < bscat2)
896 return -1;
897 if (bscat1 > bscat2)
898 return 1;
899
900 if (cycles1 < cycles2)
901 return -1;
902 if (cycles1 > cycles2)
903 return 1;
904
905 if (state1 < state2)
906 return -1;
907 if (state1 > state2)
908 return 1;
909
910 assert(block1 == block2);
911 return 0;
912}
913
914static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
915 fio_fp64_t *plist, unsigned int **percentiles,
916 unsigned int *types)
917{
918 int len = 0;
919 int i, nr_uninit;
920
921 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
922
923 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
924 len++;
925
926 if (!len)
927 return 0;
928
929 /*
930 * Sort the percentile list. Note that it may already be sorted if
931 * we are using the default values, but since it's a short list this
932 * isn't a worry. Also note that this does not work for NaN values.
933 */
934 if (len > 1)
935 qsort(plist, len, sizeof(plist[0]), double_cmp);
936
937 /* Start only after the uninit entries end */
938 for (nr_uninit = 0;
939 nr_uninit < nr_block_infos
940 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
941 nr_uninit ++)
942 ;
943
944 if (nr_uninit == nr_block_infos)
945 return 0;
946
947 *percentiles = calloc(len, sizeof(**percentiles));
948
949 for (i = 0; i < len; i++) {
950 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
951 + nr_uninit;
952 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
953 }
954
955 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
956 for (i = 0; i < nr_block_infos; i++)
957 types[BLOCK_INFO_STATE(block_infos[i])]++;
958
959 return len;
960}
961
962static const char *block_state_names[] = {
963 [BLOCK_STATE_UNINIT] = "unwritten",
964 [BLOCK_STATE_TRIMMED] = "trimmed",
965 [BLOCK_STATE_WRITTEN] = "written",
966 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
967 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
968};
969
970static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
971 fio_fp64_t *plist, struct buf_output *out)
972{
973 int len, pos, i;
974 unsigned int *percentiles = NULL;
975 unsigned int block_state_counts[BLOCK_STATE_COUNT];
976
977 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
978 &percentiles, block_state_counts);
979
980 log_buf(out, " block lifetime percentiles :\n |");
981 pos = 0;
982 for (i = 0; i < len; i++) {
983 uint32_t block_info = percentiles[i];
984#define LINE_LENGTH 75
985 char str[LINE_LENGTH];
986 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
987 plist[i].u.f, block_info,
988 i == len - 1 ? '\n' : ',');
989 assert(strln < LINE_LENGTH);
990 if (pos + strln > LINE_LENGTH) {
991 pos = 0;
992 log_buf(out, "\n |");
993 }
994 log_buf(out, "%s", str);
995 pos += strln;
996#undef LINE_LENGTH
997 }
998 if (percentiles)
999 free(percentiles);
1000
1001 log_buf(out, " states :");
1002 for (i = 0; i < BLOCK_STATE_COUNT; i++)
1003 log_buf(out, " %s=%u%c",
1004 block_state_names[i], block_state_counts[i],
1005 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
1006}
1007
1008static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
1009{
1010 char *p1, *p1alt, *p2;
1011 unsigned long long bw_mean, iops_mean;
1012 const int i2p = is_power_of_2(ts->kb_base);
1013
1014 if (!ts->ss_dur)
1015 return;
1016
1017 bw_mean = steadystate_bw_mean(ts);
1018 iops_mean = steadystate_iops_mean(ts);
1019
1020 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
1021 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
1022 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
1023
1024 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
1025 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
1026 p1, p1alt, p2,
1027 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1028 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
1029 ts->ss_criterion.u.f,
1030 ts->ss_state & FIO_SS_PCT ? "%" : "");
1031
1032 free(p1);
1033 free(p1alt);
1034 free(p2);
1035}
1036
1037static void show_agg_stats(struct disk_util_agg *agg, int terse,
1038 struct buf_output *out)
1039{
1040 if (!agg->slavecount)
1041 return;
1042
1043 if (!terse) {
1044 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
1045 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
1046 "aggrutil=%3.2f%%",
1047 (unsigned long long) agg->ios[0] / agg->slavecount,
1048 (unsigned long long) agg->ios[1] / agg->slavecount,
1049 (unsigned long long) agg->merges[0] / agg->slavecount,
1050 (unsigned long long) agg->merges[1] / agg->slavecount,
1051 (unsigned long long) agg->ticks[0] / agg->slavecount,
1052 (unsigned long long) agg->ticks[1] / agg->slavecount,
1053 (unsigned long long) agg->time_in_queue / agg->slavecount,
1054 agg->max_util.u.f);
1055 } else {
1056 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1057 (unsigned long long) agg->ios[0] / agg->slavecount,
1058 (unsigned long long) agg->ios[1] / agg->slavecount,
1059 (unsigned long long) agg->merges[0] / agg->slavecount,
1060 (unsigned long long) agg->merges[1] / agg->slavecount,
1061 (unsigned long long) agg->ticks[0] / agg->slavecount,
1062 (unsigned long long) agg->ticks[1] / agg->slavecount,
1063 (unsigned long long) agg->time_in_queue / agg->slavecount,
1064 agg->max_util.u.f);
1065 }
1066}
1067
1068static void aggregate_slaves_stats(struct disk_util *masterdu)
1069{
1070 struct disk_util_agg *agg = &masterdu->agg;
1071 struct disk_util_stat *dus;
1072 struct flist_head *entry;
1073 struct disk_util *slavedu;
1074 double util;
1075
1076 flist_for_each(entry, &masterdu->slaves) {
1077 slavedu = flist_entry(entry, struct disk_util, slavelist);
1078 dus = &slavedu->dus;
1079 agg->ios[0] += dus->s.ios[0];
1080 agg->ios[1] += dus->s.ios[1];
1081 agg->merges[0] += dus->s.merges[0];
1082 agg->merges[1] += dus->s.merges[1];
1083 agg->sectors[0] += dus->s.sectors[0];
1084 agg->sectors[1] += dus->s.sectors[1];
1085 agg->ticks[0] += dus->s.ticks[0];
1086 agg->ticks[1] += dus->s.ticks[1];
1087 agg->time_in_queue += dus->s.time_in_queue;
1088 agg->slavecount++;
1089
1090 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1091 /* System utilization is the utilization of the
1092 * component with the highest utilization.
1093 */
1094 if (util > agg->max_util.u.f)
1095 agg->max_util.u.f = util;
1096
1097 }
1098
1099 if (agg->max_util.u.f > 100.0)
1100 agg->max_util.u.f = 100.0;
1101}
1102
1103void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1104 int terse, struct buf_output *out)
1105{
1106 double util = 0;
1107
1108 if (dus->s.msec)
1109 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1110 if (util > 100.0)
1111 util = 100.0;
1112
1113 if (!terse) {
1114 if (agg->slavecount)
1115 log_buf(out, " ");
1116
1117 log_buf(out, " %s: ios=%llu/%llu, merge=%llu/%llu, "
1118 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1119 dus->name,
1120 (unsigned long long) dus->s.ios[0],
1121 (unsigned long long) dus->s.ios[1],
1122 (unsigned long long) dus->s.merges[0],
1123 (unsigned long long) dus->s.merges[1],
1124 (unsigned long long) dus->s.ticks[0],
1125 (unsigned long long) dus->s.ticks[1],
1126 (unsigned long long) dus->s.time_in_queue,
1127 util);
1128 } else {
1129 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1130 dus->name,
1131 (unsigned long long) dus->s.ios[0],
1132 (unsigned long long) dus->s.ios[1],
1133 (unsigned long long) dus->s.merges[0],
1134 (unsigned long long) dus->s.merges[1],
1135 (unsigned long long) dus->s.ticks[0],
1136 (unsigned long long) dus->s.ticks[1],
1137 (unsigned long long) dus->s.time_in_queue,
1138 util);
1139 }
1140
1141 /*
1142 * If the device has slaves, aggregate the stats for
1143 * those slave devices also.
1144 */
1145 show_agg_stats(agg, terse, out);
1146
1147 if (!terse)
1148 log_buf(out, "\n");
1149}
1150
1151void json_array_add_disk_util(struct disk_util_stat *dus,
1152 struct disk_util_agg *agg, struct json_array *array)
1153{
1154 struct json_object *obj;
1155 double util = 0;
1156
1157 if (dus->s.msec)
1158 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1159 if (util > 100.0)
1160 util = 100.0;
1161
1162 obj = json_create_object();
1163 json_array_add_value_object(array, obj);
1164
1165 json_object_add_value_string(obj, "name", (const char *)dus->name);
1166 json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1167 json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1168 json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1169 json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1170 json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1171 json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1172 json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1173 json_object_add_value_float(obj, "util", util);
1174
1175 /*
1176 * If the device has slaves, aggregate the stats for
1177 * those slave devices also.
1178 */
1179 if (!agg->slavecount)
1180 return;
1181 json_object_add_value_int(obj, "aggr_read_ios",
1182 agg->ios[0] / agg->slavecount);
1183 json_object_add_value_int(obj, "aggr_write_ios",
1184 agg->ios[1] / agg->slavecount);
1185 json_object_add_value_int(obj, "aggr_read_merges",
1186 agg->merges[0] / agg->slavecount);
1187 json_object_add_value_int(obj, "aggr_write_merge",
1188 agg->merges[1] / agg->slavecount);
1189 json_object_add_value_int(obj, "aggr_read_ticks",
1190 agg->ticks[0] / agg->slavecount);
1191 json_object_add_value_int(obj, "aggr_write_ticks",
1192 agg->ticks[1] / agg->slavecount);
1193 json_object_add_value_int(obj, "aggr_in_queue",
1194 agg->time_in_queue / agg->slavecount);
1195 json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1196}
1197
1198static void json_object_add_disk_utils(struct json_object *obj,
1199 struct flist_head *head)
1200{
1201 struct json_array *array = json_create_array();
1202 struct flist_head *entry;
1203 struct disk_util *du;
1204
1205 json_object_add_value_array(obj, "disk_util", array);
1206
1207 flist_for_each(entry, head) {
1208 du = flist_entry(entry, struct disk_util, list);
1209
1210 aggregate_slaves_stats(du);
1211 json_array_add_disk_util(&du->dus, &du->agg, array);
1212 }
1213}
1214
1215void show_disk_util(int terse, struct json_object *parent,
1216 struct buf_output *out)
1217{
1218 struct flist_head *entry;
1219 struct disk_util *du;
1220 bool do_json;
1221
1222 if (!is_running_backend())
1223 return;
1224
1225 if (flist_empty(&disk_list)) {
1226 return;
1227 }
1228
1229 if ((output_format & FIO_OUTPUT_JSON) && parent)
1230 do_json = true;
1231 else
1232 do_json = false;
1233
1234 if (!terse && !do_json)
1235 log_buf(out, "\nDisk stats (read/write):\n");
1236
1237 if (do_json)
1238 json_object_add_disk_utils(parent, &disk_list);
1239 else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1240 flist_for_each(entry, &disk_list) {
1241 du = flist_entry(entry, struct disk_util, list);
1242
1243 aggregate_slaves_stats(du);
1244 print_disk_util(&du->dus, &du->agg, terse, out);
1245 }
1246 }
1247}
1248
1249static void show_thread_status_normal(struct thread_stat *ts,
1250 struct group_run_stats *rs,
1251 struct buf_output *out)
1252{
1253 double usr_cpu, sys_cpu;
1254 unsigned long runtime;
1255 double io_u_dist[FIO_IO_U_MAP_NR];
1256 time_t time_p;
1257 char time_buf[32];
1258
1259 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1260 return;
1261
1262 memset(time_buf, 0, sizeof(time_buf));
1263
1264 time(&time_p);
1265 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1266
1267 if (!ts->error) {
1268 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1269 ts->name, ts->groupid, ts->members,
1270 ts->error, (int) ts->pid, time_buf);
1271 } else {
1272 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1273 ts->name, ts->groupid, ts->members,
1274 ts->error, ts->verror, (int) ts->pid,
1275 time_buf);
1276 }
1277
1278 if (strlen(ts->description))
1279 log_buf(out, " Description : [%s]\n", ts->description);
1280
1281 for_each_rw_ddir(ddir) {
1282 if (ts->io_bytes[ddir])
1283 show_ddir_status(rs, ts, ddir, out);
1284 }
1285
1286 if (ts->unified_rw_rep == UNIFIED_BOTH)
1287 show_mixed_ddir_status(rs, ts, out);
1288
1289 show_latencies(ts, out);
1290
1291 if (ts->sync_stat.samples)
1292 show_ddir_status(rs, ts, DDIR_SYNC, out);
1293
1294 runtime = ts->total_run_time;
1295 if (runtime) {
1296 double runt = (double) runtime;
1297
1298 usr_cpu = (double) ts->usr_time * 100 / runt;
1299 sys_cpu = (double) ts->sys_time * 100 / runt;
1300 } else {
1301 usr_cpu = 0;
1302 sys_cpu = 0;
1303 }
1304
1305 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1306 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1307 (unsigned long long) ts->ctx,
1308 (unsigned long long) ts->majf,
1309 (unsigned long long) ts->minf);
1310
1311 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1312 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1313 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1314 io_u_dist[1], io_u_dist[2],
1315 io_u_dist[3], io_u_dist[4],
1316 io_u_dist[5], io_u_dist[6]);
1317
1318 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1319 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1320 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1321 io_u_dist[1], io_u_dist[2],
1322 io_u_dist[3], io_u_dist[4],
1323 io_u_dist[5], io_u_dist[6]);
1324 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1325 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1326 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1327 io_u_dist[1], io_u_dist[2],
1328 io_u_dist[3], io_u_dist[4],
1329 io_u_dist[5], io_u_dist[6]);
1330 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
1331 " short=%llu,%llu,%llu,0"
1332 " dropped=%llu,%llu,%llu,0\n",
1333 (unsigned long long) ts->total_io_u[0],
1334 (unsigned long long) ts->total_io_u[1],
1335 (unsigned long long) ts->total_io_u[2],
1336 (unsigned long long) ts->total_io_u[3],
1337 (unsigned long long) ts->short_io_u[0],
1338 (unsigned long long) ts->short_io_u[1],
1339 (unsigned long long) ts->short_io_u[2],
1340 (unsigned long long) ts->drop_io_u[0],
1341 (unsigned long long) ts->drop_io_u[1],
1342 (unsigned long long) ts->drop_io_u[2]);
1343 if (ts->continue_on_error) {
1344 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
1345 (unsigned long long)ts->total_err_count,
1346 ts->first_error,
1347 strerror(ts->first_error));
1348 }
1349 if (ts->latency_depth) {
1350 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1351 (unsigned long long)ts->latency_target,
1352 (unsigned long long)ts->latency_window,
1353 ts->latency_percentile.u.f,
1354 ts->latency_depth);
1355 }
1356
1357 if (ts->nr_block_infos)
1358 show_block_infos(ts->nr_block_infos, ts->block_infos,
1359 ts->percentile_list, out);
1360
1361 if (ts->ss_dur)
1362 show_ss_normal(ts, out);
1363}
1364
1365static void show_ddir_status_terse(struct thread_stat *ts,
1366 struct group_run_stats *rs, int ddir,
1367 int ver, struct buf_output *out)
1368{
1369 unsigned long long min, max, minv, maxv, bw, iops;
1370 unsigned long long *ovals = NULL;
1371 double mean, dev;
1372 unsigned int len;
1373 int i, bw_stat;
1374
1375 assert(ddir_rw(ddir));
1376
1377 iops = bw = 0;
1378 if (ts->runtime[ddir]) {
1379 uint64_t runt = ts->runtime[ddir];
1380
1381 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1382 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1383 }
1384
1385 log_buf(out, ";%llu;%llu;%llu;%llu",
1386 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1387 (unsigned long long) ts->runtime[ddir]);
1388
1389 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1390 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1391 else
1392 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1393
1394 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1395 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1396 else
1397 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1398
1399 if (ts->lat_percentiles)
1400 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1401 ts->lat_stat[ddir].samples,
1402 ts->percentile_list, &ovals, &maxv,
1403 &minv);
1404 else if (ts->clat_percentiles)
1405 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1406 ts->clat_stat[ddir].samples,
1407 ts->percentile_list, &ovals, &maxv,
1408 &minv);
1409 else
1410 len = 0;
1411
1412 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1413 if (i >= len) {
1414 log_buf(out, ";0%%=0");
1415 continue;
1416 }
1417 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1418 }
1419
1420 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1421 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1422 else
1423 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1424
1425 free(ovals);
1426
1427 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1428 if (bw_stat) {
1429 double p_of_agg = 100.0;
1430
1431 if (rs->agg[ddir]) {
1432 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1433 if (p_of_agg > 100.0)
1434 p_of_agg = 100.0;
1435 }
1436
1437 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1438 } else
1439 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1440
1441 if (ver == 5) {
1442 if (bw_stat)
1443 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1444 else
1445 log_buf(out, ";%lu", 0UL);
1446
1447 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1448 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1449 mean, dev, (&ts->iops_stat[ddir])->samples);
1450 else
1451 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1452 }
1453}
1454
1455static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1456 struct group_run_stats *rs,
1457 int ver, struct buf_output *out)
1458{
1459 struct thread_stat *ts_lcl;
1460
1461 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
1462 ts_lcl = malloc(sizeof(struct thread_stat));
1463 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1464 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
1465 init_thread_stat_min_vals(ts_lcl);
1466 ts_lcl->lat_percentiles = ts->lat_percentiles;
1467 ts_lcl->clat_percentiles = ts->clat_percentiles;
1468 ts_lcl->slat_percentiles = ts->slat_percentiles;
1469 ts_lcl->percentile_precision = ts->percentile_precision;
1470 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1471
1472 sum_thread_stats(ts_lcl, ts, 1);
1473
1474 /* add the aggregated stats to json parent */
1475 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1476 free(ts_lcl);
1477}
1478
1479static struct json_object *add_ddir_lat_json(struct thread_stat *ts, uint32_t percentiles,
1480 struct io_stat *lat_stat, uint64_t *io_u_plat)
1481{
1482 char buf[120];
1483 double mean, dev;
1484 unsigned int i, len;
1485 struct json_object *lat_object, *percentile_object, *clat_bins_object;
1486 unsigned long long min, max, maxv, minv, *ovals = NULL;
1487
1488 if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1489 min = max = 0;
1490 mean = dev = 0.0;
1491 }
1492 lat_object = json_create_object();
1493 json_object_add_value_int(lat_object, "min", min);
1494 json_object_add_value_int(lat_object, "max", max);
1495 json_object_add_value_float(lat_object, "mean", mean);
1496 json_object_add_value_float(lat_object, "stddev", dev);
1497 json_object_add_value_int(lat_object, "N", lat_stat->samples);
1498
1499 if (percentiles && lat_stat->samples) {
1500 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1501 ts->percentile_list, &ovals, &maxv, &minv);
1502
1503 if (len > FIO_IO_U_LIST_MAX_LEN)
1504 len = FIO_IO_U_LIST_MAX_LEN;
1505
1506 percentile_object = json_create_object();
1507 json_object_add_value_object(lat_object, "percentile", percentile_object);
1508 for (i = 0; i < len; i++) {
1509 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1510 json_object_add_value_int(percentile_object, buf, ovals[i]);
1511 }
1512 free(ovals);
1513
1514 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1515 clat_bins_object = json_create_object();
1516 json_object_add_value_object(lat_object, "bins", clat_bins_object);
1517
1518 for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1519 if (io_u_plat[i]) {
1520 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1521 json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1522 }
1523 }
1524 }
1525
1526 return lat_object;
1527}
1528
1529static void add_ddir_status_json(struct thread_stat *ts,
1530 struct group_run_stats *rs, int ddir, struct json_object *parent)
1531{
1532 unsigned long long min, max;
1533 unsigned long long bw_bytes, bw;
1534 double mean, dev, iops;
1535 struct json_object *dir_object, *tmp_object;
1536 double p_of_agg = 100.0;
1537
1538 assert(ddir_rw(ddir) || ddir_sync(ddir));
1539
1540 if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1541 return;
1542
1543 dir_object = json_create_object();
1544 json_object_add_value_object(parent,
1545 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1546
1547 if (ddir_rw(ddir)) {
1548 bw_bytes = 0;
1549 bw = 0;
1550 iops = 0.0;
1551 if (ts->runtime[ddir]) {
1552 uint64_t runt = ts->runtime[ddir];
1553
1554 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1555 bw = bw_bytes / 1024; /* KiB/s */
1556 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1557 }
1558
1559 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1560 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1561 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1562 json_object_add_value_int(dir_object, "bw", bw);
1563 json_object_add_value_float(dir_object, "iops", iops);
1564 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1565 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1566 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1567 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1568
1569 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1570 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1571 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1572
1573 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1574 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1575 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1576
1577 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1578 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1579 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1580 } else {
1581 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1582 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1583 &ts->sync_stat, ts->io_u_sync_plat);
1584 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1585 }
1586
1587 if (!ddir_rw(ddir))
1588 return;
1589
1590 /* Only print PRIO latencies if some high priority samples were gathered */
1591 if (ts->clat_high_prio_stat[ddir].samples > 0) {
1592 const char *high, *low;
1593
1594 if (ts->lat_percentiles) {
1595 high = "lat_high_prio";
1596 low = "lat_low_prio";
1597 } else {
1598 high = "clat_high_prio";
1599 low = "clat_low_prio";
1600 }
1601
1602 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1603 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1604 json_object_add_value_object(dir_object, high, tmp_object);
1605
1606 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1607 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1608 json_object_add_value_object(dir_object, low, tmp_object);
1609 }
1610
1611 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1612 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1613 } else {
1614 min = max = 0;
1615 p_of_agg = mean = dev = 0.0;
1616 }
1617
1618 json_object_add_value_int(dir_object, "bw_min", min);
1619 json_object_add_value_int(dir_object, "bw_max", max);
1620 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1621 json_object_add_value_float(dir_object, "bw_mean", mean);
1622 json_object_add_value_float(dir_object, "bw_dev", dev);
1623 json_object_add_value_int(dir_object, "bw_samples",
1624 (&ts->bw_stat[ddir])->samples);
1625
1626 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1627 min = max = 0;
1628 mean = dev = 0.0;
1629 }
1630 json_object_add_value_int(dir_object, "iops_min", min);
1631 json_object_add_value_int(dir_object, "iops_max", max);
1632 json_object_add_value_float(dir_object, "iops_mean", mean);
1633 json_object_add_value_float(dir_object, "iops_stddev", dev);
1634 json_object_add_value_int(dir_object, "iops_samples",
1635 (&ts->iops_stat[ddir])->samples);
1636
1637 if (ts->cachehit + ts->cachemiss) {
1638 uint64_t total;
1639 double hit;
1640
1641 total = ts->cachehit + ts->cachemiss;
1642 hit = (double) ts->cachehit / (double) total;
1643 hit *= 100.0;
1644 json_object_add_value_float(dir_object, "cachehit", hit);
1645 }
1646}
1647
1648static void add_mixed_ddir_status_json(struct thread_stat *ts,
1649 struct group_run_stats *rs, struct json_object *parent)
1650{
1651 struct thread_stat *ts_lcl;
1652
1653 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
1654 ts_lcl = malloc(sizeof(struct thread_stat));
1655 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1656 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
1657 init_thread_stat_min_vals(ts_lcl);
1658 ts_lcl->lat_percentiles = ts->lat_percentiles;
1659 ts_lcl->clat_percentiles = ts->clat_percentiles;
1660 ts_lcl->slat_percentiles = ts->slat_percentiles;
1661 ts_lcl->percentile_precision = ts->percentile_precision;
1662 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1663
1664 sum_thread_stats(ts_lcl, ts, 1);
1665
1666 /* add the aggregated stats to json parent */
1667 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1668 free(ts_lcl);
1669}
1670
1671static void show_thread_status_terse_all(struct thread_stat *ts,
1672 struct group_run_stats *rs, int ver,
1673 struct buf_output *out)
1674{
1675 double io_u_dist[FIO_IO_U_MAP_NR];
1676 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1677 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1678 double usr_cpu, sys_cpu;
1679 int i;
1680
1681 /* General Info */
1682 if (ver == 2)
1683 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1684 else
1685 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1686 ts->name, ts->groupid, ts->error);
1687
1688 /* Log Read Status, or mixed if unified_rw_rep = 1 */
1689 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1690 if (ts->unified_rw_rep != UNIFIED_MIXED) {
1691 /* Log Write Status */
1692 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1693 /* Log Trim Status */
1694 if (ver == 2 || ver == 4 || ver == 5)
1695 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1696 }
1697 if (ts->unified_rw_rep == UNIFIED_BOTH)
1698 show_mixed_ddir_status_terse(ts, rs, ver, out);
1699 /* CPU Usage */
1700 if (ts->total_run_time) {
1701 double runt = (double) ts->total_run_time;
1702
1703 usr_cpu = (double) ts->usr_time * 100 / runt;
1704 sys_cpu = (double) ts->sys_time * 100 / runt;
1705 } else {
1706 usr_cpu = 0;
1707 sys_cpu = 0;
1708 }
1709
1710 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1711 (unsigned long long) ts->ctx,
1712 (unsigned long long) ts->majf,
1713 (unsigned long long) ts->minf);
1714
1715 /* Calc % distribution of IO depths, usecond, msecond latency */
1716 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1717 stat_calc_lat_nu(ts, io_u_lat_u);
1718 stat_calc_lat_m(ts, io_u_lat_m);
1719
1720 /* Only show fixed 7 I/O depth levels*/
1721 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1722 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1723 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1724
1725 /* Microsecond latency */
1726 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1727 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1728 /* Millisecond latency */
1729 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1730 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1731
1732 /* disk util stats, if any */
1733 if (ver >= 3 && is_running_backend())
1734 show_disk_util(1, NULL, out);
1735
1736 /* Additional output if continue_on_error set - default off*/
1737 if (ts->continue_on_error)
1738 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1739
1740 /* Additional output if description is set */
1741 if (strlen(ts->description)) {
1742 if (ver == 2)
1743 log_buf(out, "\n");
1744 log_buf(out, ";%s", ts->description);
1745 }
1746
1747 log_buf(out, "\n");
1748}
1749
1750static void json_add_job_opts(struct json_object *root, const char *name,
1751 struct flist_head *opt_list)
1752{
1753 struct json_object *dir_object;
1754 struct flist_head *entry;
1755 struct print_option *p;
1756
1757 if (flist_empty(opt_list))
1758 return;
1759
1760 dir_object = json_create_object();
1761 json_object_add_value_object(root, name, dir_object);
1762
1763 flist_for_each(entry, opt_list) {
1764 p = flist_entry(entry, struct print_option, list);
1765 json_object_add_value_string(dir_object, p->name, p->value);
1766 }
1767}
1768
1769static struct json_object *show_thread_status_json(struct thread_stat *ts,
1770 struct group_run_stats *rs,
1771 struct flist_head *opt_list)
1772{
1773 struct json_object *root, *tmp;
1774 struct jobs_eta *je;
1775 double io_u_dist[FIO_IO_U_MAP_NR];
1776 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1777 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1778 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1779 double usr_cpu, sys_cpu;
1780 int i;
1781 size_t size;
1782
1783 root = json_create_object();
1784 json_object_add_value_string(root, "jobname", ts->name);
1785 json_object_add_value_int(root, "groupid", ts->groupid);
1786 json_object_add_value_int(root, "error", ts->error);
1787
1788 /* ETA Info */
1789 je = get_jobs_eta(true, &size);
1790 if (je) {
1791 json_object_add_value_int(root, "eta", je->eta_sec);
1792 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1793 }
1794
1795 if (opt_list)
1796 json_add_job_opts(root, "job options", opt_list);
1797
1798 add_ddir_status_json(ts, rs, DDIR_READ, root);
1799 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1800 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1801 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1802
1803 if (ts->unified_rw_rep == UNIFIED_BOTH)
1804 add_mixed_ddir_status_json(ts, rs, root);
1805
1806 /* CPU Usage */
1807 if (ts->total_run_time) {
1808 double runt = (double) ts->total_run_time;
1809
1810 usr_cpu = (double) ts->usr_time * 100 / runt;
1811 sys_cpu = (double) ts->sys_time * 100 / runt;
1812 } else {
1813 usr_cpu = 0;
1814 sys_cpu = 0;
1815 }
1816 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1817 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1818 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1819 json_object_add_value_int(root, "ctx", ts->ctx);
1820 json_object_add_value_int(root, "majf", ts->majf);
1821 json_object_add_value_int(root, "minf", ts->minf);
1822
1823 /* Calc % distribution of IO depths */
1824 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1825 tmp = json_create_object();
1826 json_object_add_value_object(root, "iodepth_level", tmp);
1827 /* Only show fixed 7 I/O depth levels*/
1828 for (i = 0; i < 7; i++) {
1829 char name[20];
1830 if (i < 6)
1831 snprintf(name, 20, "%d", 1 << i);
1832 else
1833 snprintf(name, 20, ">=%d", 1 << i);
1834 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1835 }
1836
1837 /* Calc % distribution of submit IO depths */
1838 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1839 tmp = json_create_object();
1840 json_object_add_value_object(root, "iodepth_submit", tmp);
1841 /* Only show fixed 7 I/O depth levels*/
1842 for (i = 0; i < 7; i++) {
1843 char name[20];
1844 if (i == 0)
1845 snprintf(name, 20, "0");
1846 else if (i < 6)
1847 snprintf(name, 20, "%d", 1 << (i+1));
1848 else
1849 snprintf(name, 20, ">=%d", 1 << i);
1850 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1851 }
1852
1853 /* Calc % distribution of completion IO depths */
1854 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1855 tmp = json_create_object();
1856 json_object_add_value_object(root, "iodepth_complete", tmp);
1857 /* Only show fixed 7 I/O depth levels*/
1858 for (i = 0; i < 7; i++) {
1859 char name[20];
1860 if (i == 0)
1861 snprintf(name, 20, "0");
1862 else if (i < 6)
1863 snprintf(name, 20, "%d", 1 << (i+1));
1864 else
1865 snprintf(name, 20, ">=%d", 1 << i);
1866 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1867 }
1868
1869 /* Calc % distribution of nsecond, usecond, msecond latency */
1870 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1871 stat_calc_lat_n(ts, io_u_lat_n);
1872 stat_calc_lat_u(ts, io_u_lat_u);
1873 stat_calc_lat_m(ts, io_u_lat_m);
1874
1875 /* Nanosecond latency */
1876 tmp = json_create_object();
1877 json_object_add_value_object(root, "latency_ns", tmp);
1878 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1879 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1880 "250", "500", "750", "1000", };
1881 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1882 }
1883 /* Microsecond latency */
1884 tmp = json_create_object();
1885 json_object_add_value_object(root, "latency_us", tmp);
1886 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1887 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1888 "250", "500", "750", "1000", };
1889 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1890 }
1891 /* Millisecond latency */
1892 tmp = json_create_object();
1893 json_object_add_value_object(root, "latency_ms", tmp);
1894 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1895 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1896 "250", "500", "750", "1000", "2000",
1897 ">=2000", };
1898 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1899 }
1900
1901 /* Additional output if continue_on_error set - default off*/
1902 if (ts->continue_on_error) {
1903 json_object_add_value_int(root, "total_err", ts->total_err_count);
1904 json_object_add_value_int(root, "first_error", ts->first_error);
1905 }
1906
1907 if (ts->latency_depth) {
1908 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1909 json_object_add_value_int(root, "latency_target", ts->latency_target);
1910 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1911 json_object_add_value_int(root, "latency_window", ts->latency_window);
1912 }
1913
1914 /* Additional output if description is set */
1915 if (strlen(ts->description))
1916 json_object_add_value_string(root, "desc", ts->description);
1917
1918 if (ts->nr_block_infos) {
1919 /* Block error histogram and types */
1920 int len;
1921 unsigned int *percentiles = NULL;
1922 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1923
1924 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1925 ts->percentile_list,
1926 &percentiles, block_state_counts);
1927
1928 if (len) {
1929 struct json_object *block, *percentile_object, *states;
1930 int state;
1931 block = json_create_object();
1932 json_object_add_value_object(root, "block", block);
1933
1934 percentile_object = json_create_object();
1935 json_object_add_value_object(block, "percentiles",
1936 percentile_object);
1937 for (i = 0; i < len; i++) {
1938 char buf[20];
1939 snprintf(buf, sizeof(buf), "%f",
1940 ts->percentile_list[i].u.f);
1941 json_object_add_value_int(percentile_object,
1942 buf,
1943 percentiles[i]);
1944 }
1945
1946 states = json_create_object();
1947 json_object_add_value_object(block, "states", states);
1948 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1949 json_object_add_value_int(states,
1950 block_state_names[state],
1951 block_state_counts[state]);
1952 }
1953 free(percentiles);
1954 }
1955 }
1956
1957 if (ts->ss_dur) {
1958 struct json_object *data;
1959 struct json_array *iops, *bw;
1960 int j, k, l;
1961 char ss_buf[64];
1962
1963 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1964 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1965 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1966 (float) ts->ss_limit.u.f,
1967 ts->ss_state & FIO_SS_PCT ? "%" : "");
1968
1969 tmp = json_create_object();
1970 json_object_add_value_object(root, "steadystate", tmp);
1971 json_object_add_value_string(tmp, "ss", ss_buf);
1972 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1973 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1974
1975 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1976 ts->ss_state & FIO_SS_PCT ? "%" : "");
1977 json_object_add_value_string(tmp, "criterion", ss_buf);
1978 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1979 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1980
1981 data = json_create_object();
1982 json_object_add_value_object(tmp, "data", data);
1983 bw = json_create_array();
1984 iops = json_create_array();
1985
1986 /*
1987 ** if ss was attained or the buffer is not full,
1988 ** ss->head points to the first element in the list.
1989 ** otherwise it actually points to the second element
1990 ** in the list
1991 */
1992 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1993 j = ts->ss_head;
1994 else
1995 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1996 for (l = 0; l < ts->ss_dur; l++) {
1997 k = (j + l) % ts->ss_dur;
1998 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1999 json_array_add_value_int(iops, ts->ss_iops_data[k]);
2000 }
2001 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
2002 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
2003 json_object_add_value_array(data, "iops", iops);
2004 json_object_add_value_array(data, "bw", bw);
2005 }
2006
2007 return root;
2008}
2009
2010static void show_thread_status_terse(struct thread_stat *ts,
2011 struct group_run_stats *rs,
2012 struct buf_output *out)
2013{
2014 if (terse_version >= 2 && terse_version <= 5)
2015 show_thread_status_terse_all(ts, rs, terse_version, out);
2016 else
2017 log_err("fio: bad terse version!? %d\n", terse_version);
2018}
2019
2020struct json_object *show_thread_status(struct thread_stat *ts,
2021 struct group_run_stats *rs,
2022 struct flist_head *opt_list,
2023 struct buf_output *out)
2024{
2025 struct json_object *ret = NULL;
2026
2027 if (output_format & FIO_OUTPUT_TERSE)
2028 show_thread_status_terse(ts, rs, out);
2029 if (output_format & FIO_OUTPUT_JSON)
2030 ret = show_thread_status_json(ts, rs, opt_list);
2031 if (output_format & FIO_OUTPUT_NORMAL)
2032 show_thread_status_normal(ts, rs, out);
2033
2034 return ret;
2035}
2036
2037static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
2038{
2039 double mean, S;
2040
2041 dst->min_val = min(dst->min_val, src->min_val);
2042 dst->max_val = max(dst->max_val, src->max_val);
2043
2044 /*
2045 * Compute new mean and S after the merge
2046 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
2047 * #Parallel_algorithm>
2048 */
2049 if (first) {
2050 mean = src->mean.u.f;
2051 S = src->S.u.f;
2052 } else {
2053 double delta = src->mean.u.f - dst->mean.u.f;
2054
2055 mean = ((src->mean.u.f * src->samples) +
2056 (dst->mean.u.f * dst->samples)) /
2057 (dst->samples + src->samples);
2058
2059 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
2060 (dst->samples * src->samples) /
2061 (dst->samples + src->samples);
2062 }
2063
2064 dst->samples += src->samples;
2065 dst->mean.u.f = mean;
2066 dst->S.u.f = S;
2067
2068}
2069
2070/*
2071 * We sum two kinds of stats - one that is time based, in which case we
2072 * apply the proper summing technique, and then one that is iops/bw
2073 * numbers. For group_reporting, we should just add those up, not make
2074 * them the mean of everything.
2075 */
2076static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
2077 bool pure_sum)
2078{
2079 if (src->samples == 0)
2080 return;
2081
2082 if (!pure_sum) {
2083 __sum_stat(dst, src, first);
2084 return;
2085 }
2086
2087 if (first) {
2088 dst->min_val = src->min_val;
2089 dst->max_val = src->max_val;
2090 dst->samples = src->samples;
2091 dst->mean.u.f = src->mean.u.f;
2092 dst->S.u.f = src->S.u.f;
2093 } else {
2094 dst->min_val += src->min_val;
2095 dst->max_val += src->max_val;
2096 dst->samples += src->samples;
2097 dst->mean.u.f += src->mean.u.f;
2098 dst->S.u.f += src->S.u.f;
2099 }
2100}
2101
2102void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2103{
2104 int i;
2105
2106 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2107 if (dst->max_run[i] < src->max_run[i])
2108 dst->max_run[i] = src->max_run[i];
2109 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2110 dst->min_run[i] = src->min_run[i];
2111 if (dst->max_bw[i] < src->max_bw[i])
2112 dst->max_bw[i] = src->max_bw[i];
2113 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2114 dst->min_bw[i] = src->min_bw[i];
2115
2116 dst->iobytes[i] += src->iobytes[i];
2117 dst->agg[i] += src->agg[i];
2118 }
2119
2120 if (!dst->kb_base)
2121 dst->kb_base = src->kb_base;
2122 if (!dst->unit_base)
2123 dst->unit_base = src->unit_base;
2124 if (!dst->sig_figs)
2125 dst->sig_figs = src->sig_figs;
2126}
2127
2128void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
2129 bool first)
2130{
2131 int k, l, m;
2132
2133 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2134 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2135 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
2136 sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
2137 sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
2138 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
2139 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
2140 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
2141 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
2142
2143 dst->io_bytes[l] += src->io_bytes[l];
2144
2145 if (dst->runtime[l] < src->runtime[l])
2146 dst->runtime[l] = src->runtime[l];
2147 } else {
2148 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
2149 sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
2150 sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
2151 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
2152 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
2153 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
2154 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
2155
2156 dst->io_bytes[0] += src->io_bytes[l];
2157
2158 if (dst->runtime[0] < src->runtime[l])
2159 dst->runtime[0] = src->runtime[l];
2160
2161 /*
2162 * We're summing to the same destination, so override
2163 * 'first' after the first iteration of the loop
2164 */
2165 first = false;
2166 }
2167 }
2168
2169 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
2170 dst->usr_time += src->usr_time;
2171 dst->sys_time += src->sys_time;
2172 dst->ctx += src->ctx;
2173 dst->majf += src->majf;
2174 dst->minf += src->minf;
2175
2176 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2177 dst->io_u_map[k] += src->io_u_map[k];
2178 dst->io_u_submit[k] += src->io_u_submit[k];
2179 dst->io_u_complete[k] += src->io_u_complete[k];
2180 }
2181
2182 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2183 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2184 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2185 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2186 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2187 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2188
2189 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2190 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2191 dst->total_io_u[k] += src->total_io_u[k];
2192 dst->short_io_u[k] += src->short_io_u[k];
2193 dst->drop_io_u[k] += src->drop_io_u[k];
2194 } else {
2195 dst->total_io_u[0] += src->total_io_u[k];
2196 dst->short_io_u[0] += src->short_io_u[k];
2197 dst->drop_io_u[0] += src->drop_io_u[k];
2198 }
2199 }
2200
2201 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2202
2203 for (k = 0; k < FIO_LAT_CNT; k++)
2204 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2205 for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2206 if (!(dst->unified_rw_rep == UNIFIED_MIXED))
2207 dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2208 else
2209 dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2210
2211 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2212 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2213
2214 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2215 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2216 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2217 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2218 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2219 } else {
2220 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2221 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2222 }
2223
2224 }
2225 }
2226
2227 dst->total_run_time += src->total_run_time;
2228 dst->total_submit += src->total_submit;
2229 dst->total_complete += src->total_complete;
2230 dst->nr_zone_resets += src->nr_zone_resets;
2231 dst->cachehit += src->cachehit;
2232 dst->cachemiss += src->cachemiss;
2233}
2234
2235void init_group_run_stat(struct group_run_stats *gs)
2236{
2237 int i;
2238 memset(gs, 0, sizeof(*gs));
2239
2240 for (i = 0; i < DDIR_RWDIR_CNT; i++)
2241 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2242}
2243
2244void init_thread_stat_min_vals(struct thread_stat *ts)
2245{
2246 int i;
2247
2248 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2249 ts->clat_stat[i].min_val = ULONG_MAX;
2250 ts->slat_stat[i].min_val = ULONG_MAX;
2251 ts->lat_stat[i].min_val = ULONG_MAX;
2252 ts->bw_stat[i].min_val = ULONG_MAX;
2253 ts->iops_stat[i].min_val = ULONG_MAX;
2254 ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2255 ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2256 }
2257 ts->sync_stat.min_val = ULONG_MAX;
2258}
2259
2260void init_thread_stat(struct thread_stat *ts)
2261{
2262 memset(ts, 0, sizeof(*ts));
2263
2264 init_thread_stat_min_vals(ts);
2265 ts->groupid = -1;
2266}
2267
2268void __show_run_stats(void)
2269{
2270 struct group_run_stats *runstats, *rs;
2271 struct thread_data *td;
2272 struct thread_stat *threadstats, *ts;
2273 int i, j, k, nr_ts, last_ts, idx;
2274 bool kb_base_warned = false;
2275 bool unit_base_warned = false;
2276 struct json_object *root = NULL;
2277 struct json_array *array = NULL;
2278 struct buf_output output[FIO_OUTPUT_NR];
2279 struct flist_head **opt_lists;
2280
2281 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2282
2283 for (i = 0; i < groupid + 1; i++)
2284 init_group_run_stat(&runstats[i]);
2285
2286 /*
2287 * find out how many threads stats we need. if group reporting isn't
2288 * enabled, it's one-per-td.
2289 */
2290 nr_ts = 0;
2291 last_ts = -1;
2292 for_each_td(td, i) {
2293 if (!td->o.group_reporting) {
2294 nr_ts++;
2295 continue;
2296 }
2297 if (last_ts == td->groupid)
2298 continue;
2299 if (!td->o.stats)
2300 continue;
2301
2302 last_ts = td->groupid;
2303 nr_ts++;
2304 }
2305
2306 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2307 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2308
2309 for (i = 0; i < nr_ts; i++) {
2310 init_thread_stat(&threadstats[i]);
2311 opt_lists[i] = NULL;
2312 }
2313
2314 j = 0;
2315 last_ts = -1;
2316 idx = 0;
2317 for_each_td(td, i) {
2318 if (!td->o.stats)
2319 continue;
2320 if (idx && (!td->o.group_reporting ||
2321 (td->o.group_reporting && last_ts != td->groupid))) {
2322 idx = 0;
2323 j++;
2324 }
2325
2326 last_ts = td->groupid;
2327
2328 ts = &threadstats[j];
2329
2330 ts->clat_percentiles = td->o.clat_percentiles;
2331 ts->lat_percentiles = td->o.lat_percentiles;
2332 ts->slat_percentiles = td->o.slat_percentiles;
2333 ts->percentile_precision = td->o.percentile_precision;
2334 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2335 opt_lists[j] = &td->opt_list;
2336
2337 idx++;
2338 ts->members++;
2339
2340 if (ts->groupid == -1) {
2341 /*
2342 * These are per-group shared already
2343 */
2344 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2345 if (td->o.description)
2346 snprintf(ts->description,
2347 sizeof(ts->description), "%s",
2348 td->o.description);
2349 else
2350 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2351
2352 /*
2353 * If multiple entries in this group, this is
2354 * the first member.
2355 */
2356 ts->thread_number = td->thread_number;
2357 ts->groupid = td->groupid;
2358
2359 /*
2360 * first pid in group, not very useful...
2361 */
2362 ts->pid = td->pid;
2363
2364 ts->kb_base = td->o.kb_base;
2365 ts->unit_base = td->o.unit_base;
2366 ts->sig_figs = td->o.sig_figs;
2367 ts->unified_rw_rep = td->o.unified_rw_rep;
2368 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2369 log_info("fio: kb_base differs for jobs in group, using"
2370 " %u as the base\n", ts->kb_base);
2371 kb_base_warned = true;
2372 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2373 log_info("fio: unit_base differs for jobs in group, using"
2374 " %u as the base\n", ts->unit_base);
2375 unit_base_warned = true;
2376 }
2377
2378 ts->continue_on_error = td->o.continue_on_error;
2379 ts->total_err_count += td->total_err_count;
2380 ts->first_error = td->first_error;
2381 if (!ts->error) {
2382 if (!td->error && td->o.continue_on_error &&
2383 td->first_error) {
2384 ts->error = td->first_error;
2385 snprintf(ts->verror, sizeof(ts->verror), "%s",
2386 td->verror);
2387 } else if (td->error) {
2388 ts->error = td->error;
2389 snprintf(ts->verror, sizeof(ts->verror), "%s",
2390 td->verror);
2391 }
2392 }
2393
2394 ts->latency_depth = td->latency_qd;
2395 ts->latency_target = td->o.latency_target;
2396 ts->latency_percentile = td->o.latency_percentile;
2397 ts->latency_window = td->o.latency_window;
2398
2399 ts->nr_block_infos = td->ts.nr_block_infos;
2400 for (k = 0; k < ts->nr_block_infos; k++)
2401 ts->block_infos[k] = td->ts.block_infos[k];
2402
2403 sum_thread_stats(ts, &td->ts, idx == 1);
2404
2405 if (td->o.ss_dur) {
2406 ts->ss_state = td->ss.state;
2407 ts->ss_dur = td->ss.dur;
2408 ts->ss_head = td->ss.head;
2409 ts->ss_bw_data = td->ss.bw_data;
2410 ts->ss_iops_data = td->ss.iops_data;
2411 ts->ss_limit.u.f = td->ss.limit;
2412 ts->ss_slope.u.f = td->ss.slope;
2413 ts->ss_deviation.u.f = td->ss.deviation;
2414 ts->ss_criterion.u.f = td->ss.criterion;
2415 }
2416 else
2417 ts->ss_dur = ts->ss_state = 0;
2418 }
2419
2420 for (i = 0; i < nr_ts; i++) {
2421 unsigned long long bw;
2422
2423 ts = &threadstats[i];
2424 if (ts->groupid == -1)
2425 continue;
2426 rs = &runstats[ts->groupid];
2427 rs->kb_base = ts->kb_base;
2428 rs->unit_base = ts->unit_base;
2429 rs->sig_figs = ts->sig_figs;
2430 rs->unified_rw_rep |= ts->unified_rw_rep;
2431
2432 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2433 if (!ts->runtime[j])
2434 continue;
2435 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2436 rs->min_run[j] = ts->runtime[j];
2437 if (ts->runtime[j] > rs->max_run[j])
2438 rs->max_run[j] = ts->runtime[j];
2439
2440 bw = 0;
2441 if (ts->runtime[j])
2442 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2443 if (bw < rs->min_bw[j])
2444 rs->min_bw[j] = bw;
2445 if (bw > rs->max_bw[j])
2446 rs->max_bw[j] = bw;
2447
2448 rs->iobytes[j] += ts->io_bytes[j];
2449 }
2450 }
2451
2452 for (i = 0; i < groupid + 1; i++) {
2453 int ddir;
2454
2455 rs = &runstats[i];
2456
2457 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2458 if (rs->max_run[ddir])
2459 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2460 rs->max_run[ddir];
2461 }
2462 }
2463
2464 for (i = 0; i < FIO_OUTPUT_NR; i++)
2465 buf_output_init(&output[i]);
2466
2467 /*
2468 * don't overwrite last signal output
2469 */
2470 if (output_format & FIO_OUTPUT_NORMAL)
2471 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2472 if (output_format & FIO_OUTPUT_JSON) {
2473 struct thread_data *global;
2474 char time_buf[32];
2475 struct timeval now;
2476 unsigned long long ms_since_epoch;
2477 time_t tv_sec;
2478
2479 gettimeofday(&now, NULL);
2480 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2481 (unsigned long long)(now.tv_usec) / 1000;
2482
2483 tv_sec = now.tv_sec;
2484 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2485 if (time_buf[strlen(time_buf) - 1] == '\n')
2486 time_buf[strlen(time_buf) - 1] = '\0';
2487
2488 root = json_create_object();
2489 json_object_add_value_string(root, "fio version", fio_version_string);
2490 json_object_add_value_int(root, "timestamp", now.tv_sec);
2491 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2492 json_object_add_value_string(root, "time", time_buf);
2493 global = get_global_options();
2494 json_add_job_opts(root, "global options", &global->opt_list);
2495 array = json_create_array();
2496 json_object_add_value_array(root, "jobs", array);
2497 }
2498
2499 if (is_backend)
2500 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2501
2502 for (i = 0; i < nr_ts; i++) {
2503 ts = &threadstats[i];
2504 rs = &runstats[ts->groupid];
2505
2506 if (is_backend) {
2507 fio_server_send_job_options(opt_lists[i], i);
2508 fio_server_send_ts(ts, rs);
2509 } else {
2510 if (output_format & FIO_OUTPUT_TERSE)
2511 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2512 if (output_format & FIO_OUTPUT_JSON) {
2513 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2514 json_array_add_value_object(array, tmp);
2515 }
2516 if (output_format & FIO_OUTPUT_NORMAL)
2517 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2518 }
2519 }
2520 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2521 /* disk util stats, if any */
2522 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2523
2524 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2525
2526 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2527 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2528 json_free_object(root);
2529 }
2530
2531 for (i = 0; i < groupid + 1; i++) {
2532 rs = &runstats[i];
2533
2534 rs->groupid = i;
2535 if (is_backend)
2536 fio_server_send_gs(rs);
2537 else if (output_format & FIO_OUTPUT_NORMAL)
2538 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2539 }
2540
2541 if (is_backend)
2542 fio_server_send_du();
2543 else if (output_format & FIO_OUTPUT_NORMAL) {
2544 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2545 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2546 }
2547
2548 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2549 struct buf_output *out = &output[i];
2550
2551 log_info_buf(out->buf, out->buflen);
2552 buf_output_free(out);
2553 }
2554
2555 fio_idle_prof_cleanup();
2556
2557 log_info_flush();
2558 free(runstats);
2559 free(threadstats);
2560 free(opt_lists);
2561}
2562
2563int __show_running_run_stats(void)
2564{
2565 struct thread_data *td;
2566 unsigned long long *rt;
2567 struct timespec ts;
2568 int i;
2569
2570 fio_sem_down(stat_sem);
2571
2572 rt = malloc(thread_number * sizeof(unsigned long long));
2573 fio_gettime(&ts, NULL);
2574
2575 for_each_td(td, i) {
2576 td->update_rusage = 1;
2577 for_each_rw_ddir(ddir) {
2578 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2579 }
2580 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2581
2582 rt[i] = mtime_since(&td->start, &ts);
2583 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2584 td->ts.runtime[DDIR_READ] += rt[i];
2585 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2586 td->ts.runtime[DDIR_WRITE] += rt[i];
2587 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2588 td->ts.runtime[DDIR_TRIM] += rt[i];
2589 }
2590
2591 for_each_td(td, i) {
2592 if (td->runstate >= TD_EXITED)
2593 continue;
2594 if (td->rusage_sem) {
2595 td->update_rusage = 1;
2596 fio_sem_down(td->rusage_sem);
2597 }
2598 td->update_rusage = 0;
2599 }
2600
2601 __show_run_stats();
2602
2603 for_each_td(td, i) {
2604 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2605 td->ts.runtime[DDIR_READ] -= rt[i];
2606 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2607 td->ts.runtime[DDIR_WRITE] -= rt[i];
2608 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2609 td->ts.runtime[DDIR_TRIM] -= rt[i];
2610 }
2611
2612 free(rt);
2613 fio_sem_up(stat_sem);
2614
2615 return 0;
2616}
2617
2618static bool status_file_disabled;
2619
2620#define FIO_STATUS_FILE "fio-dump-status"
2621
2622static int check_status_file(void)
2623{
2624 struct stat sb;
2625 const char *temp_dir;
2626 char fio_status_file_path[PATH_MAX];
2627
2628 if (status_file_disabled)
2629 return 0;
2630
2631 temp_dir = getenv("TMPDIR");
2632 if (temp_dir == NULL) {
2633 temp_dir = getenv("TEMP");
2634 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2635 temp_dir = NULL;
2636 }
2637 if (temp_dir == NULL)
2638 temp_dir = "/tmp";
2639#ifdef __COVERITY__
2640 __coverity_tainted_data_sanitize__(temp_dir);
2641#endif
2642
2643 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2644
2645 if (stat(fio_status_file_path, &sb))
2646 return 0;
2647
2648 if (unlink(fio_status_file_path) < 0) {
2649 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2650 strerror(errno));
2651 log_err("fio: disabling status file updates\n");
2652 status_file_disabled = true;
2653 }
2654
2655 return 1;
2656}
2657
2658void check_for_running_stats(void)
2659{
2660 if (check_status_file()) {
2661 show_running_run_stats();
2662 return;
2663 }
2664}
2665
2666static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2667{
2668 double val = data;
2669 double delta;
2670
2671 if (data > is->max_val)
2672 is->max_val = data;
2673 if (data < is->min_val)
2674 is->min_val = data;
2675
2676 delta = val - is->mean.u.f;
2677 if (delta) {
2678 is->mean.u.f += delta / (is->samples + 1.0);
2679 is->S.u.f += delta * (val - is->mean.u.f);
2680 }
2681
2682 is->samples++;
2683}
2684
2685/*
2686 * Return a struct io_logs, which is added to the tail of the log
2687 * list for 'iolog'.
2688 */
2689static struct io_logs *get_new_log(struct io_log *iolog)
2690{
2691 size_t new_samples;
2692 struct io_logs *cur_log;
2693
2694 /*
2695 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2696 * forever
2697 */
2698 if (!iolog->cur_log_max) {
2699 new_samples = iolog->td->o.log_entries;
2700 } else {
2701 new_samples = iolog->cur_log_max * 2;
2702 if (new_samples > MAX_LOG_ENTRIES)
2703 new_samples = MAX_LOG_ENTRIES;
2704 }
2705
2706 cur_log = smalloc(sizeof(*cur_log));
2707 if (cur_log) {
2708 INIT_FLIST_HEAD(&cur_log->list);
2709 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2710 if (cur_log->log) {
2711 cur_log->nr_samples = 0;
2712 cur_log->max_samples = new_samples;
2713 flist_add_tail(&cur_log->list, &iolog->io_logs);
2714 iolog->cur_log_max = new_samples;
2715 return cur_log;
2716 }
2717 sfree(cur_log);
2718 }
2719
2720 return NULL;
2721}
2722
2723/*
2724 * Add and return a new log chunk, or return current log if big enough
2725 */
2726static struct io_logs *regrow_log(struct io_log *iolog)
2727{
2728 struct io_logs *cur_log;
2729 int i;
2730
2731 if (!iolog || iolog->disabled)
2732 goto disable;
2733
2734 cur_log = iolog_cur_log(iolog);
2735 if (!cur_log) {
2736 cur_log = get_new_log(iolog);
2737 if (!cur_log)
2738 return NULL;
2739 }
2740
2741 if (cur_log->nr_samples < cur_log->max_samples)
2742 return cur_log;
2743
2744 /*
2745 * No room for a new sample. If we're compressing on the fly, flush
2746 * out the current chunk
2747 */
2748 if (iolog->log_gz) {
2749 if (iolog_cur_flush(iolog, cur_log)) {
2750 log_err("fio: failed flushing iolog! Will stop logging.\n");
2751 return NULL;
2752 }
2753 }
2754
2755 /*
2756 * Get a new log array, and add to our list
2757 */
2758 cur_log = get_new_log(iolog);
2759 if (!cur_log) {
2760 log_err("fio: failed extending iolog! Will stop logging.\n");
2761 return NULL;
2762 }
2763
2764 if (!iolog->pending || !iolog->pending->nr_samples)
2765 return cur_log;
2766
2767 /*
2768 * Flush pending items to new log
2769 */
2770 for (i = 0; i < iolog->pending->nr_samples; i++) {
2771 struct io_sample *src, *dst;
2772
2773 src = get_sample(iolog, iolog->pending, i);
2774 dst = get_sample(iolog, cur_log, i);
2775 memcpy(dst, src, log_entry_sz(iolog));
2776 }
2777 cur_log->nr_samples = iolog->pending->nr_samples;
2778
2779 iolog->pending->nr_samples = 0;
2780 return cur_log;
2781disable:
2782 if (iolog)
2783 iolog->disabled = true;
2784 return NULL;
2785}
2786
2787void regrow_logs(struct thread_data *td)
2788{
2789 regrow_log(td->slat_log);
2790 regrow_log(td->clat_log);
2791 regrow_log(td->clat_hist_log);
2792 regrow_log(td->lat_log);
2793 regrow_log(td->bw_log);
2794 regrow_log(td->iops_log);
2795 td->flags &= ~TD_F_REGROW_LOGS;
2796}
2797
2798void regrow_agg_logs(void)
2799{
2800 enum fio_ddir ddir;
2801
2802 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2803 regrow_log(agg_io_log[ddir]);
2804}
2805
2806static struct io_logs *get_cur_log(struct io_log *iolog)
2807{
2808 struct io_logs *cur_log;
2809
2810 cur_log = iolog_cur_log(iolog);
2811 if (!cur_log) {
2812 cur_log = get_new_log(iolog);
2813 if (!cur_log)
2814 return NULL;
2815 }
2816
2817 if (cur_log->nr_samples < cur_log->max_samples)
2818 return cur_log;
2819
2820 /*
2821 * Out of space. If we're in IO offload mode, or we're not doing
2822 * per unit logging (hence logging happens outside of the IO thread
2823 * as well), add a new log chunk inline. If we're doing inline
2824 * submissions, flag 'td' as needing a log regrow and we'll take
2825 * care of it on the submission side.
2826 */
2827 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2828 !per_unit_log(iolog))
2829 return regrow_log(iolog);
2830
2831 if (iolog->td)
2832 iolog->td->flags |= TD_F_REGROW_LOGS;
2833 if (iolog->pending)
2834 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2835 return iolog->pending;
2836}
2837
2838static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2839 enum fio_ddir ddir, unsigned long long bs,
2840 unsigned long t, uint64_t offset,
2841 unsigned int priority)
2842{
2843 struct io_logs *cur_log;
2844
2845 if (iolog->disabled)
2846 return;
2847 if (flist_empty(&iolog->io_logs))
2848 iolog->avg_last[ddir] = t;
2849
2850 cur_log = get_cur_log(iolog);
2851 if (cur_log) {
2852 struct io_sample *s;
2853
2854 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2855
2856 s->data = data;
2857 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2858 io_sample_set_ddir(iolog, s, ddir);
2859 s->bs = bs;
2860 s->priority = priority;
2861
2862 if (iolog->log_offset) {
2863 struct io_sample_offset *so = (void *) s;
2864
2865 so->offset = offset;
2866 }
2867
2868 cur_log->nr_samples++;
2869 return;
2870 }
2871
2872 iolog->disabled = true;
2873}
2874
2875static inline void reset_io_stat(struct io_stat *ios)
2876{
2877 ios->min_val = -1ULL;
2878 ios->max_val = ios->samples = 0;
2879 ios->mean.u.f = ios->S.u.f = 0;
2880}
2881
2882void reset_io_stats(struct thread_data *td)
2883{
2884 struct thread_stat *ts = &td->ts;
2885 int i, j, k;
2886
2887 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2888 reset_io_stat(&ts->clat_high_prio_stat[i]);
2889 reset_io_stat(&ts->clat_low_prio_stat[i]);
2890 reset_io_stat(&ts->clat_stat[i]);
2891 reset_io_stat(&ts->slat_stat[i]);
2892 reset_io_stat(&ts->lat_stat[i]);
2893 reset_io_stat(&ts->bw_stat[i]);
2894 reset_io_stat(&ts->iops_stat[i]);
2895
2896 ts->io_bytes[i] = 0;
2897 ts->runtime[i] = 0;
2898 ts->total_io_u[i] = 0;
2899 ts->short_io_u[i] = 0;
2900 ts->drop_io_u[i] = 0;
2901
2902 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2903 ts->io_u_plat_high_prio[i][j] = 0;
2904 ts->io_u_plat_low_prio[i][j] = 0;
2905 if (!i)
2906 ts->io_u_sync_plat[j] = 0;
2907 }
2908 }
2909
2910 for (i = 0; i < FIO_LAT_CNT; i++)
2911 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2912 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2913 ts->io_u_plat[i][j][k] = 0;
2914
2915 ts->total_io_u[DDIR_SYNC] = 0;
2916
2917 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2918 ts->io_u_map[i] = 0;
2919 ts->io_u_submit[i] = 0;
2920 ts->io_u_complete[i] = 0;
2921 }
2922
2923 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2924 ts->io_u_lat_n[i] = 0;
2925 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2926 ts->io_u_lat_u[i] = 0;
2927 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2928 ts->io_u_lat_m[i] = 0;
2929
2930 ts->total_submit = 0;
2931 ts->total_complete = 0;
2932 ts->nr_zone_resets = 0;
2933 ts->cachehit = ts->cachemiss = 0;
2934}
2935
2936static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2937 unsigned long elapsed, bool log_max)
2938{
2939 /*
2940 * Note an entry in the log. Use the mean from the logged samples,
2941 * making sure to properly round up. Only write a log entry if we
2942 * had actual samples done.
2943 */
2944 if (iolog->avg_window[ddir].samples) {
2945 union io_sample_data data;
2946
2947 if (log_max)
2948 data.val = iolog->avg_window[ddir].max_val;
2949 else
2950 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2951
2952 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2953 }
2954
2955 reset_io_stat(&iolog->avg_window[ddir]);
2956}
2957
2958static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2959 bool log_max)
2960{
2961 int ddir;
2962
2963 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2964 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2965}
2966
2967static unsigned long add_log_sample(struct thread_data *td,
2968 struct io_log *iolog,
2969 union io_sample_data data,
2970 enum fio_ddir ddir, unsigned long long bs,
2971 uint64_t offset, unsigned int ioprio)
2972{
2973 unsigned long elapsed, this_window;
2974
2975 if (!ddir_rw(ddir))
2976 return 0;
2977
2978 elapsed = mtime_since_now(&td->epoch);
2979
2980 /*
2981 * If no time averaging, just add the log sample.
2982 */
2983 if (!iolog->avg_msec) {
2984 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
2985 ioprio);
2986 return 0;
2987 }
2988
2989 /*
2990 * Add the sample. If the time period has passed, then
2991 * add that entry to the log and clear.
2992 */
2993 add_stat_sample(&iolog->avg_window[ddir], data.val);
2994
2995 /*
2996 * If period hasn't passed, adding the above sample is all we
2997 * need to do.
2998 */
2999 this_window = elapsed - iolog->avg_last[ddir];
3000 if (elapsed < iolog->avg_last[ddir])
3001 return iolog->avg_last[ddir] - elapsed;
3002 else if (this_window < iolog->avg_msec) {
3003 unsigned long diff = iolog->avg_msec - this_window;
3004
3005 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3006 return diff;
3007 }
3008
3009 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3010
3011 iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3012
3013 return iolog->avg_msec;
3014}
3015
3016void finalize_logs(struct thread_data *td, bool unit_logs)
3017{
3018 unsigned long elapsed;
3019
3020 elapsed = mtime_since_now(&td->epoch);
3021
3022 if (td->clat_log && unit_logs)
3023 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3024 if (td->slat_log && unit_logs)
3025 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3026 if (td->lat_log && unit_logs)
3027 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3028 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3029 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3030 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3031 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3032}
3033
3034void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3035 unsigned long long bs)
3036{
3037 struct io_log *iolog;
3038
3039 if (!ddir_rw(ddir))
3040 return;
3041
3042 iolog = agg_io_log[ddir];
3043 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3044}
3045
3046void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3047{
3048 unsigned int idx = plat_val_to_idx(nsec);
3049 assert(idx < FIO_IO_U_PLAT_NR);
3050
3051 ts->io_u_sync_plat[idx]++;
3052 add_stat_sample(&ts->sync_stat, nsec);
3053}
3054
3055static inline void add_lat_percentile_sample(struct thread_stat *ts,
3056 unsigned long long nsec,
3057 enum fio_ddir ddir,
3058 enum fio_lat lat)
3059{
3060 unsigned int idx = plat_val_to_idx(nsec);
3061 assert(idx < FIO_IO_U_PLAT_NR);
3062
3063 ts->io_u_plat[lat][ddir][idx]++;
3064}
3065
3066static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
3067 unsigned long long nsec,
3068 enum fio_ddir ddir,
3069 bool high_prio)
3070{
3071 unsigned int idx = plat_val_to_idx(nsec);
3072
3073 if (!high_prio)
3074 ts->io_u_plat_low_prio[ddir][idx]++;
3075 else
3076 ts->io_u_plat_high_prio[ddir][idx]++;
3077}
3078
3079void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3080 unsigned long long nsec, unsigned long long bs,
3081 uint64_t offset, unsigned int ioprio, bool high_prio)
3082{
3083 const bool needs_lock = td_async_processing(td);
3084 unsigned long elapsed, this_window;
3085 struct thread_stat *ts = &td->ts;
3086 struct io_log *iolog = td->clat_hist_log;
3087
3088 if (needs_lock)
3089 __td_io_u_lock(td);
3090
3091 add_stat_sample(&ts->clat_stat[ddir], nsec);
3092
3093 /*
3094 * When lat_percentiles=1 (default 0), the reported high/low priority
3095 * percentiles and stats are used for describing total latency values,
3096 * even though the variable names themselves start with clat_.
3097 *
3098 * Because of the above definition, add a prio stat sample only when
3099 * lat_percentiles=0. add_lat_sample() will add the prio stat sample
3100 * when lat_percentiles=1.
3101 */
3102 if (!ts->lat_percentiles) {
3103 if (high_prio)
3104 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3105 else
3106 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3107 }
3108
3109 if (td->clat_log)
3110 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3111 offset, ioprio);
3112
3113 if (ts->clat_percentiles) {
3114 /*
3115 * Because of the above definition, add a prio lat percentile
3116 * sample only when lat_percentiles=0. add_lat_sample() will add
3117 * the prio lat percentile sample when lat_percentiles=1.
3118 */
3119 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3120 if (!ts->lat_percentiles)
3121 add_lat_percentile_prio_sample(ts, nsec, ddir,
3122 high_prio);
3123 }
3124
3125 if (iolog && iolog->hist_msec) {
3126 struct io_hist *hw = &iolog->hist_window[ddir];
3127
3128 hw->samples++;
3129 elapsed = mtime_since_now(&td->epoch);
3130 if (!hw->hist_last)
3131 hw->hist_last = elapsed;
3132 this_window = elapsed - hw->hist_last;
3133
3134 if (this_window >= iolog->hist_msec) {
3135 uint64_t *io_u_plat;
3136 struct io_u_plat_entry *dst;
3137
3138 /*
3139 * Make a byte-for-byte copy of the latency histogram
3140 * stored in td->ts.io_u_plat[ddir], recording it in a
3141 * log sample. Note that the matching call to free() is
3142 * located in iolog.c after printing this sample to the
3143 * log file.
3144 */
3145 io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3146 dst = malloc(sizeof(struct io_u_plat_entry));
3147 memcpy(&(dst->io_u_plat), io_u_plat,
3148 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3149 flist_add(&dst->list, &hw->list);
3150 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3151 elapsed, offset, ioprio);
3152
3153 /*
3154 * Update the last time we recorded as being now, minus
3155 * any drift in time we encountered before actually
3156 * making the record.
3157 */
3158 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3159 hw->samples = 0;
3160 }
3161 }
3162
3163 if (needs_lock)
3164 __td_io_u_unlock(td);
3165}
3166
3167void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3168 unsigned long long nsec, unsigned long long bs,
3169 uint64_t offset, unsigned int ioprio)
3170{
3171 const bool needs_lock = td_async_processing(td);
3172 struct thread_stat *ts = &td->ts;
3173
3174 if (!ddir_rw(ddir))
3175 return;
3176
3177 if (needs_lock)
3178 __td_io_u_lock(td);
3179
3180 add_stat_sample(&ts->slat_stat[ddir], nsec);
3181
3182 if (td->slat_log)
3183 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3184 offset, ioprio);
3185
3186 if (ts->slat_percentiles)
3187 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3188
3189 if (needs_lock)
3190 __td_io_u_unlock(td);
3191}
3192
3193void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3194 unsigned long long nsec, unsigned long long bs,
3195 uint64_t offset, unsigned int ioprio, bool high_prio)
3196{
3197 const bool needs_lock = td_async_processing(td);
3198 struct thread_stat *ts = &td->ts;
3199
3200 if (!ddir_rw(ddir))
3201 return;
3202
3203 if (needs_lock)
3204 __td_io_u_lock(td);
3205
3206 add_stat_sample(&ts->lat_stat[ddir], nsec);
3207
3208 if (td->lat_log)
3209 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3210 offset, ioprio);
3211
3212 /*
3213 * When lat_percentiles=1 (default 0), the reported high/low priority
3214 * percentiles and stats are used for describing total latency values,
3215 * even though the variable names themselves start with clat_.
3216 *
3217 * Because of the above definition, add a prio stat and prio lat
3218 * percentile sample only when lat_percentiles=1. add_clat_sample() will
3219 * add the prio stat and prio lat percentile sample when
3220 * lat_percentiles=0.
3221 */
3222 if (ts->lat_percentiles) {
3223 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3224 add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3225 if (high_prio)
3226 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3227 else
3228 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3229
3230 }
3231 if (needs_lock)
3232 __td_io_u_unlock(td);
3233}
3234
3235void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3236 unsigned int bytes, unsigned long long spent)
3237{
3238 const bool needs_lock = td_async_processing(td);
3239 struct thread_stat *ts = &td->ts;
3240 unsigned long rate;
3241
3242 if (spent)
3243 rate = (unsigned long) (bytes * 1000000ULL / spent);
3244 else
3245 rate = 0;
3246
3247 if (needs_lock)
3248 __td_io_u_lock(td);
3249
3250 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3251
3252 if (td->bw_log)
3253 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3254 bytes, io_u->offset, io_u->ioprio);
3255
3256 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3257
3258 if (needs_lock)
3259 __td_io_u_unlock(td);
3260}
3261
3262static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3263 struct timespec *t, unsigned int avg_time,
3264 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3265 struct io_stat *stat, struct io_log *log,
3266 bool is_kb)
3267{
3268 const bool needs_lock = td_async_processing(td);
3269 unsigned long spent, rate;
3270 enum fio_ddir ddir;
3271 unsigned long next, next_log;
3272
3273 next_log = avg_time;
3274
3275 spent = mtime_since(parent_tv, t);
3276 if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3277 return avg_time - spent;
3278
3279 if (needs_lock)
3280 __td_io_u_lock(td);
3281
3282 /*
3283 * Compute both read and write rates for the interval.
3284 */
3285 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3286 uint64_t delta;
3287
3288 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3289 if (!delta)
3290 continue; /* No entries for interval */
3291
3292 if (spent) {
3293 if (is_kb)
3294 rate = delta * 1000 / spent / 1024; /* KiB/s */
3295 else
3296 rate = (delta * 1000) / spent;
3297 } else
3298 rate = 0;
3299
3300 add_stat_sample(&stat[ddir], rate);
3301
3302 if (log) {
3303 unsigned long long bs = 0;
3304
3305 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3306 bs = td->o.min_bs[ddir];
3307
3308 next = add_log_sample(td, log, sample_val(rate), ddir,
3309 bs, 0, 0);
3310 next_log = min(next_log, next);
3311 }
3312
3313 stat_io_bytes[ddir] = this_io_bytes[ddir];
3314 }
3315
3316 *parent_tv = *t;
3317
3318 if (needs_lock)
3319 __td_io_u_unlock(td);
3320
3321 if (spent <= avg_time)
3322 next = avg_time;
3323 else
3324 next = avg_time - (1 + spent - avg_time);
3325
3326 return min(next, next_log);
3327}
3328
3329static int add_bw_samples(struct thread_data *td, struct timespec *t)
3330{
3331 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3332 td->this_io_bytes, td->stat_io_bytes,
3333 td->ts.bw_stat, td->bw_log, true);
3334}
3335
3336void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3337 unsigned int bytes)
3338{
3339 const bool needs_lock = td_async_processing(td);
3340 struct thread_stat *ts = &td->ts;
3341
3342 if (needs_lock)
3343 __td_io_u_lock(td);
3344
3345 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3346
3347 if (td->iops_log)
3348 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3349 bytes, io_u->offset, io_u->ioprio);
3350
3351 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3352
3353 if (needs_lock)
3354 __td_io_u_unlock(td);
3355}
3356
3357static int add_iops_samples(struct thread_data *td, struct timespec *t)
3358{
3359 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3360 td->this_io_blocks, td->stat_io_blocks,
3361 td->ts.iops_stat, td->iops_log, false);
3362}
3363
3364/*
3365 * Returns msecs to next event
3366 */
3367int calc_log_samples(void)
3368{
3369 struct thread_data *td;
3370 unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3371 struct timespec now;
3372 int i;
3373 long elapsed_time = 0;
3374
3375 fio_gettime(&now, NULL);
3376
3377 for_each_td(td, i) {
3378 elapsed_time = mtime_since_now(&td->epoch);
3379
3380 if (!td->o.stats)
3381 continue;
3382 if (in_ramp_time(td) ||
3383 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3384 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3385 continue;
3386 }
3387 if (!td->bw_log ||
3388 (td->bw_log && !per_unit_log(td->bw_log))) {
3389 tmp = add_bw_samples(td, &now);
3390
3391 if (td->bw_log)
3392 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3393 }
3394 if (!td->iops_log ||
3395 (td->iops_log && !per_unit_log(td->iops_log))) {
3396 tmp = add_iops_samples(td, &now);
3397
3398 if (td->iops_log)
3399 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3400 }
3401
3402 if (tmp < next)
3403 next = tmp;
3404 }
3405
3406 /* if log_avg_msec_min has not been changed, set it to 0 */
3407 if (log_avg_msec_min == -1U)
3408 log_avg_msec_min = 0;
3409
3410 if (log_avg_msec_min == 0)
3411 next_mod = elapsed_time;
3412 else
3413 next_mod = elapsed_time % log_avg_msec_min;
3414
3415 /* correction to keep the time on the log avg msec boundary */
3416 next = min(next, (log_avg_msec_min - next_mod));
3417
3418 return next == ~0U ? 0 : next;
3419}
3420
3421void stat_init(void)
3422{
3423 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3424}
3425
3426void stat_exit(void)
3427{
3428 /*
3429 * When we have the mutex, we know out-of-band access to it
3430 * have ended.
3431 */
3432 fio_sem_down(stat_sem);
3433 fio_sem_remove(stat_sem);
3434}
3435
3436/*
3437 * Called from signal handler. Wake up status thread.
3438 */
3439void show_running_run_stats(void)
3440{
3441 helper_do_stat();
3442}
3443
3444uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3445{
3446 /* Ignore io_u's which span multiple blocks--they will just get
3447 * inaccurate counts. */
3448 int idx = (io_u->offset - io_u->file->file_offset)
3449 / td->o.bs[DDIR_TRIM];
3450 uint32_t *info = &td->ts.block_infos[idx];
3451 assert(idx < td->ts.nr_block_infos);
3452 return info;
3453}
3454