lib/output_buffer: harden buf_output_free() and kill buf_output_clear()
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned int val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned long long plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned int **output,
139 unsigned int *maxv, unsigned int *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned int *ovals = NULL;
145 int is_last;
146
147 *minv = -1U;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int len, j = 0, minv, maxv;
205 unsigned int *ovals;
206 int is_last, per_line, scale_down;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len)
211 goto out;
212
213 /*
214 * We default to usecs, but if the value range is such that we
215 * should scale down to msecs, do that.
216 */
217 if (minv > 2000 && maxv > 99999) {
218 scale_down = 1;
219 log_buf(out, " clat percentiles (msec):\n |");
220 } else {
221 scale_down = 0;
222 log_buf(out, " clat percentiles (usec):\n |");
223 }
224
225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226 per_line = (80 - 7) / (precision + 14);
227
228 for (j = 0; j < len; j++) {
229 char fbuf[16], *ptr = fbuf;
230
231 /* for formatting */
232 if (j != 0 && (j % per_line) == 0)
233 log_buf(out, " |");
234
235 /* end of the list */
236 is_last = (j == len - 1);
237
238 if (plist[j].u.f < 10.0)
239 ptr += sprintf(fbuf, " ");
240
241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243 if (scale_down)
244 ovals[j] = (ovals[j] + 999) / 1000;
245
246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248 if (is_last)
249 break;
250
251 if ((j % per_line) == per_line - 1) /* for formatting */
252 log_buf(out, "\n");
253 }
254
255out:
256 if (ovals)
257 free(ovals);
258}
259
260bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261 double *mean, double *dev)
262{
263 double n = (double) is->samples;
264
265 if (n == 0)
266 return false;
267
268 *min = is->min_val;
269 *max = is->max_val;
270 *mean = is->mean.u.f;
271
272 if (n > 1.0)
273 *dev = sqrt(is->S.u.f / (n - 1.0));
274 else
275 *dev = 0;
276
277 return true;
278}
279
280void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281{
282 char *io, *agg, *min, *max;
283 char *ioalt, *aggalt, *minalt, *maxalt;
284 const char *str[] = { " READ", " WRITE" , " TRIM"};
285 int i;
286
287 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
288
289 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
290 const int i2p = is_power_of_2(rs->kb_base);
291
292 if (!rs->max_run[i])
293 continue;
294
295 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
296 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
297 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
298 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
299 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
300 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
301 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
302 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
303 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
304 rs->unified_rw_rep ? " MIXED" : str[i],
305 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
306 (unsigned long long) rs->min_run[i],
307 (unsigned long long) rs->max_run[i]);
308
309 free(io);
310 free(agg);
311 free(min);
312 free(max);
313 free(ioalt);
314 free(aggalt);
315 free(minalt);
316 free(maxalt);
317 }
318}
319
320void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
321{
322 int i;
323
324 /*
325 * Do depth distribution calculations
326 */
327 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
328 if (total) {
329 io_u_dist[i] = (double) map[i] / (double) total;
330 io_u_dist[i] *= 100.0;
331 if (io_u_dist[i] < 0.1 && map[i])
332 io_u_dist[i] = 0.1;
333 } else
334 io_u_dist[i] = 0.0;
335 }
336}
337
338static void stat_calc_lat(struct thread_stat *ts, double *dst,
339 unsigned int *src, int nr)
340{
341 unsigned long total = ddir_rw_sum(ts->total_io_u);
342 int i;
343
344 /*
345 * Do latency distribution calculations
346 */
347 for (i = 0; i < nr; i++) {
348 if (total) {
349 dst[i] = (double) src[i] / (double) total;
350 dst[i] *= 100.0;
351 if (dst[i] < 0.01 && src[i])
352 dst[i] = 0.01;
353 } else
354 dst[i] = 0.0;
355 }
356}
357
358void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
359{
360 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
361}
362
363void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
364{
365 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
366}
367
368static void display_lat(const char *name, unsigned long min, unsigned long max,
369 double mean, double dev, struct buf_output *out)
370{
371 const char *base = "(usec)";
372 char *minp, *maxp;
373
374 if (usec_to_msec(&min, &max, &mean, &dev))
375 base = "(msec)";
376
377 minp = num2str(min, 6, 1, 0, N2S_NONE);
378 maxp = num2str(max, 6, 1, 0, N2S_NONE);
379
380 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
381 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
382
383 free(minp);
384 free(maxp);
385}
386
387static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
388 int ddir, struct buf_output *out)
389{
390 const char *str[] = { " read", "write", " trim" };
391 unsigned long min, max, runt;
392 unsigned long long bw, iops;
393 double mean, dev;
394 char *io_p, *bw_p, *bw_p_alt, *iops_p;
395 int i2p;
396
397 assert(ddir_rw(ddir));
398
399 if (!ts->runtime[ddir])
400 return;
401
402 i2p = is_power_of_2(rs->kb_base);
403 runt = ts->runtime[ddir];
404
405 bw = (1000 * ts->io_bytes[ddir]) / runt;
406 io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
407 bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
408 bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
409
410 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
411 iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
412
413 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
414 rs->unified_rw_rep ? "mixed" : str[ddir],
415 iops_p, bw_p, bw_p_alt, io_p,
416 (unsigned long long) ts->runtime[ddir]);
417
418 free(io_p);
419 free(bw_p);
420 free(bw_p_alt);
421 free(iops_p);
422
423 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
424 display_lat("slat", min, max, mean, dev, out);
425 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
426 display_lat("clat", min, max, mean, dev, out);
427 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
428 display_lat(" lat", min, max, mean, dev, out);
429
430 if (ts->clat_percentiles) {
431 show_clat_percentiles(ts->io_u_plat[ddir],
432 ts->clat_stat[ddir].samples,
433 ts->percentile_list,
434 ts->percentile_precision, out);
435 }
436 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
437 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
438 const char *bw_str;
439
440 if ((rs->unit_base == 1) && i2p)
441 bw_str = "Kibit";
442 else if (rs->unit_base == 1)
443 bw_str = "kbit";
444 else if (i2p)
445 bw_str = "KiB";
446 else
447 bw_str = "kB";
448
449 if (rs->unit_base == 1) {
450 min *= 8.0;
451 max *= 8.0;
452 mean *= 8.0;
453 dev *= 8.0;
454 }
455
456 if (rs->agg[ddir]) {
457 p_of_agg = mean * 100 / (double) rs->agg[ddir];
458 if (p_of_agg > 100.0)
459 p_of_agg = 100.0;
460 }
461
462 if (mean > fkb_base * fkb_base) {
463 min /= fkb_base;
464 max /= fkb_base;
465 mean /= fkb_base;
466 dev /= fkb_base;
467 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
468 }
469
470 log_buf(out, " bw (%5s/s): min=%5lu, max=%5lu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
471 bw_str, min, max, p_of_agg, mean, dev);
472 }
473}
474
475static int show_lat(double *io_u_lat, int nr, const char **ranges,
476 const char *msg, struct buf_output *out)
477{
478 int new_line = 1, i, line = 0, shown = 0;
479
480 for (i = 0; i < nr; i++) {
481 if (io_u_lat[i] <= 0.0)
482 continue;
483 shown = 1;
484 if (new_line) {
485 if (line)
486 log_buf(out, "\n");
487 log_buf(out, " lat (%s) : ", msg);
488 new_line = 0;
489 line = 0;
490 }
491 if (line)
492 log_buf(out, ", ");
493 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
494 line++;
495 if (line == 5)
496 new_line = 1;
497 }
498
499 if (shown)
500 log_buf(out, "\n");
501
502 return shown;
503}
504
505static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
506{
507 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
508 "250=", "500=", "750=", "1000=", };
509
510 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
511}
512
513static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
514{
515 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
516 "250=", "500=", "750=", "1000=", "2000=",
517 ">=2000=", };
518
519 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
520}
521
522static void show_latencies(struct thread_stat *ts, struct buf_output *out)
523{
524 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
525 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
526
527 stat_calc_lat_u(ts, io_u_lat_u);
528 stat_calc_lat_m(ts, io_u_lat_m);
529
530 show_lat_u(io_u_lat_u, out);
531 show_lat_m(io_u_lat_m, out);
532}
533
534static int block_state_category(int block_state)
535{
536 switch (block_state) {
537 case BLOCK_STATE_UNINIT:
538 return 0;
539 case BLOCK_STATE_TRIMMED:
540 case BLOCK_STATE_WRITTEN:
541 return 1;
542 case BLOCK_STATE_WRITE_FAILURE:
543 case BLOCK_STATE_TRIM_FAILURE:
544 return 2;
545 default:
546 /* Silence compile warning on some BSDs and have a return */
547 assert(0);
548 return -1;
549 }
550}
551
552static int compare_block_infos(const void *bs1, const void *bs2)
553{
554 uint32_t block1 = *(uint32_t *)bs1;
555 uint32_t block2 = *(uint32_t *)bs2;
556 int state1 = BLOCK_INFO_STATE(block1);
557 int state2 = BLOCK_INFO_STATE(block2);
558 int bscat1 = block_state_category(state1);
559 int bscat2 = block_state_category(state2);
560 int cycles1 = BLOCK_INFO_TRIMS(block1);
561 int cycles2 = BLOCK_INFO_TRIMS(block2);
562
563 if (bscat1 < bscat2)
564 return -1;
565 if (bscat1 > bscat2)
566 return 1;
567
568 if (cycles1 < cycles2)
569 return -1;
570 if (cycles1 > cycles2)
571 return 1;
572
573 if (state1 < state2)
574 return -1;
575 if (state1 > state2)
576 return 1;
577
578 assert(block1 == block2);
579 return 0;
580}
581
582static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
583 fio_fp64_t *plist, unsigned int **percentiles,
584 unsigned int *types)
585{
586 int len = 0;
587 int i, nr_uninit;
588
589 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
590
591 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
592 len++;
593
594 if (!len)
595 return 0;
596
597 /*
598 * Sort the percentile list. Note that it may already be sorted if
599 * we are using the default values, but since it's a short list this
600 * isn't a worry. Also note that this does not work for NaN values.
601 */
602 if (len > 1)
603 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
604
605 nr_uninit = 0;
606 /* Start only after the uninit entries end */
607 for (nr_uninit = 0;
608 nr_uninit < nr_block_infos
609 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
610 nr_uninit ++)
611 ;
612
613 if (nr_uninit == nr_block_infos)
614 return 0;
615
616 *percentiles = calloc(len, sizeof(**percentiles));
617
618 for (i = 0; i < len; i++) {
619 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
620 + nr_uninit;
621 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
622 }
623
624 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
625 for (i = 0; i < nr_block_infos; i++)
626 types[BLOCK_INFO_STATE(block_infos[i])]++;
627
628 return len;
629}
630
631static const char *block_state_names[] = {
632 [BLOCK_STATE_UNINIT] = "unwritten",
633 [BLOCK_STATE_TRIMMED] = "trimmed",
634 [BLOCK_STATE_WRITTEN] = "written",
635 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
636 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
637};
638
639static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
640 fio_fp64_t *plist, struct buf_output *out)
641{
642 int len, pos, i;
643 unsigned int *percentiles = NULL;
644 unsigned int block_state_counts[BLOCK_STATE_COUNT];
645
646 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
647 &percentiles, block_state_counts);
648
649 log_buf(out, " block lifetime percentiles :\n |");
650 pos = 0;
651 for (i = 0; i < len; i++) {
652 uint32_t block_info = percentiles[i];
653#define LINE_LENGTH 75
654 char str[LINE_LENGTH];
655 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
656 plist[i].u.f, block_info,
657 i == len - 1 ? '\n' : ',');
658 assert(strln < LINE_LENGTH);
659 if (pos + strln > LINE_LENGTH) {
660 pos = 0;
661 log_buf(out, "\n |");
662 }
663 log_buf(out, "%s", str);
664 pos += strln;
665#undef LINE_LENGTH
666 }
667 if (percentiles)
668 free(percentiles);
669
670 log_buf(out, " states :");
671 for (i = 0; i < BLOCK_STATE_COUNT; i++)
672 log_buf(out, " %s=%u%c",
673 block_state_names[i], block_state_counts[i],
674 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
675}
676
677static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
678{
679 char *p1, *p1alt, *p2;
680 unsigned long long bw_mean, iops_mean;
681 const int i2p = is_power_of_2(ts->kb_base);
682
683 if (!ts->ss_dur)
684 return;
685
686 bw_mean = steadystate_bw_mean(ts);
687 iops_mean = steadystate_iops_mean(ts);
688
689 p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
690 p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
691 p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
692
693 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
694 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
695 p1, p1alt, p2,
696 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
697 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
698 ts->ss_criterion.u.f,
699 ts->ss_state & __FIO_SS_PCT ? "%" : "");
700
701 free(p1);
702 free(p1alt);
703 free(p2);
704}
705
706static void show_thread_status_normal(struct thread_stat *ts,
707 struct group_run_stats *rs,
708 struct buf_output *out)
709{
710 double usr_cpu, sys_cpu;
711 unsigned long runtime;
712 double io_u_dist[FIO_IO_U_MAP_NR];
713 time_t time_p;
714 char time_buf[32];
715
716 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
717 return;
718
719 memset(time_buf, 0, sizeof(time_buf));
720
721 time(&time_p);
722 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
723
724 if (!ts->error) {
725 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
726 ts->name, ts->groupid, ts->members,
727 ts->error, (int) ts->pid, time_buf);
728 } else {
729 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
730 ts->name, ts->groupid, ts->members,
731 ts->error, ts->verror, (int) ts->pid,
732 time_buf);
733 }
734
735 if (strlen(ts->description))
736 log_buf(out, " Description : [%s]\n", ts->description);
737
738 if (ts->io_bytes[DDIR_READ])
739 show_ddir_status(rs, ts, DDIR_READ, out);
740 if (ts->io_bytes[DDIR_WRITE])
741 show_ddir_status(rs, ts, DDIR_WRITE, out);
742 if (ts->io_bytes[DDIR_TRIM])
743 show_ddir_status(rs, ts, DDIR_TRIM, out);
744
745 show_latencies(ts, out);
746
747 runtime = ts->total_run_time;
748 if (runtime) {
749 double runt = (double) runtime;
750
751 usr_cpu = (double) ts->usr_time * 100 / runt;
752 sys_cpu = (double) ts->sys_time * 100 / runt;
753 } else {
754 usr_cpu = 0;
755 sys_cpu = 0;
756 }
757
758 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
759 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
760 (unsigned long long) ts->ctx,
761 (unsigned long long) ts->majf,
762 (unsigned long long) ts->minf);
763
764 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
765 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
766 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
767 io_u_dist[1], io_u_dist[2],
768 io_u_dist[3], io_u_dist[4],
769 io_u_dist[5], io_u_dist[6]);
770
771 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
772 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
773 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
774 io_u_dist[1], io_u_dist[2],
775 io_u_dist[3], io_u_dist[4],
776 io_u_dist[5], io_u_dist[6]);
777 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
778 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
779 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
780 io_u_dist[1], io_u_dist[2],
781 io_u_dist[3], io_u_dist[4],
782 io_u_dist[5], io_u_dist[6]);
783 log_buf(out, " issued rwt: total=%llu,%llu,%llu,"
784 " short=%llu,%llu,%llu,"
785 " dropped=%llu,%llu,%llu\n",
786 (unsigned long long) ts->total_io_u[0],
787 (unsigned long long) ts->total_io_u[1],
788 (unsigned long long) ts->total_io_u[2],
789 (unsigned long long) ts->short_io_u[0],
790 (unsigned long long) ts->short_io_u[1],
791 (unsigned long long) ts->short_io_u[2],
792 (unsigned long long) ts->drop_io_u[0],
793 (unsigned long long) ts->drop_io_u[1],
794 (unsigned long long) ts->drop_io_u[2]);
795 if (ts->continue_on_error) {
796 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
797 (unsigned long long)ts->total_err_count,
798 ts->first_error,
799 strerror(ts->first_error));
800 }
801 if (ts->latency_depth) {
802 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
803 (unsigned long long)ts->latency_target,
804 (unsigned long long)ts->latency_window,
805 ts->latency_percentile.u.f,
806 ts->latency_depth);
807 }
808
809 if (ts->nr_block_infos)
810 show_block_infos(ts->nr_block_infos, ts->block_infos,
811 ts->percentile_list, out);
812
813 if (ts->ss_dur)
814 show_ss_normal(ts, out);
815}
816
817static void show_ddir_status_terse(struct thread_stat *ts,
818 struct group_run_stats *rs, int ddir,
819 struct buf_output *out)
820{
821 unsigned long min, max;
822 unsigned long long bw, iops;
823 unsigned int *ovals = NULL;
824 double mean, dev;
825 unsigned int len, minv, maxv;
826 int i;
827
828 assert(ddir_rw(ddir));
829
830 iops = bw = 0;
831 if (ts->runtime[ddir]) {
832 uint64_t runt = ts->runtime[ddir];
833
834 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
835 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
836 }
837
838 log_buf(out, ";%llu;%llu;%llu;%llu",
839 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
840 (unsigned long long) ts->runtime[ddir]);
841
842 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
843 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
844 else
845 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
846
847 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
848 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
849 else
850 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
851
852 if (ts->clat_percentiles) {
853 len = calc_clat_percentiles(ts->io_u_plat[ddir],
854 ts->clat_stat[ddir].samples,
855 ts->percentile_list, &ovals, &maxv,
856 &minv);
857 } else
858 len = 0;
859
860 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
861 if (i >= len) {
862 log_buf(out, ";0%%=0");
863 continue;
864 }
865 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
866 }
867
868 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
869 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
870 else
871 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
872
873 if (ovals)
874 free(ovals);
875
876 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
877 double p_of_agg = 100.0;
878
879 if (rs->agg[ddir]) {
880 p_of_agg = mean * 100 / (double) rs->agg[ddir];
881 if (p_of_agg > 100.0)
882 p_of_agg = 100.0;
883 }
884
885 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
886 } else
887 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
888}
889
890static void add_ddir_status_json(struct thread_stat *ts,
891 struct group_run_stats *rs, int ddir, struct json_object *parent)
892{
893 unsigned long min, max;
894 unsigned long long bw;
895 unsigned int *ovals = NULL;
896 double mean, dev, iops;
897 unsigned int len, minv, maxv;
898 int i;
899 const char *ddirname[] = {"read", "write", "trim"};
900 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
901 char buf[120];
902 double p_of_agg = 100.0;
903
904 assert(ddir_rw(ddir));
905
906 if (ts->unified_rw_rep && ddir != DDIR_READ)
907 return;
908
909 dir_object = json_create_object();
910 json_object_add_value_object(parent,
911 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
912
913 bw = 0;
914 iops = 0.0;
915 if (ts->runtime[ddir]) {
916 uint64_t runt = ts->runtime[ddir];
917
918 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
919 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
920 }
921
922 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
923 json_object_add_value_int(dir_object, "bw", bw);
924 json_object_add_value_float(dir_object, "iops", iops);
925 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
926 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
927 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
928 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
929
930 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
931 min = max = 0;
932 mean = dev = 0.0;
933 }
934 tmp_object = json_create_object();
935 json_object_add_value_object(dir_object, "slat", tmp_object);
936 json_object_add_value_int(tmp_object, "min", min);
937 json_object_add_value_int(tmp_object, "max", max);
938 json_object_add_value_float(tmp_object, "mean", mean);
939 json_object_add_value_float(tmp_object, "stddev", dev);
940
941 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
942 min = max = 0;
943 mean = dev = 0.0;
944 }
945 tmp_object = json_create_object();
946 json_object_add_value_object(dir_object, "clat", tmp_object);
947 json_object_add_value_int(tmp_object, "min", min);
948 json_object_add_value_int(tmp_object, "max", max);
949 json_object_add_value_float(tmp_object, "mean", mean);
950 json_object_add_value_float(tmp_object, "stddev", dev);
951
952 if (ts->clat_percentiles) {
953 len = calc_clat_percentiles(ts->io_u_plat[ddir],
954 ts->clat_stat[ddir].samples,
955 ts->percentile_list, &ovals, &maxv,
956 &minv);
957 } else
958 len = 0;
959
960 percentile_object = json_create_object();
961 json_object_add_value_object(tmp_object, "percentile", percentile_object);
962 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
963 if (i >= len) {
964 json_object_add_value_int(percentile_object, "0.00", 0);
965 continue;
966 }
967 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
968 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
969 }
970
971 if (output_format & FIO_OUTPUT_JSON_PLUS) {
972 clat_bins_object = json_create_object();
973 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
974 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
975 if (ts->io_u_plat[ddir][i]) {
976 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
977 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
978 }
979 }
980 }
981
982 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
983 min = max = 0;
984 mean = dev = 0.0;
985 }
986 tmp_object = json_create_object();
987 json_object_add_value_object(dir_object, "lat", tmp_object);
988 json_object_add_value_int(tmp_object, "min", min);
989 json_object_add_value_int(tmp_object, "max", max);
990 json_object_add_value_float(tmp_object, "mean", mean);
991 json_object_add_value_float(tmp_object, "stddev", dev);
992 if (ovals)
993 free(ovals);
994
995 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
996 if (rs->agg[ddir]) {
997 p_of_agg = mean * 100 / (double) rs->agg[ddir];
998 if (p_of_agg > 100.0)
999 p_of_agg = 100.0;
1000 }
1001 } else {
1002 min = max = 0;
1003 p_of_agg = mean = dev = 0.0;
1004 }
1005 json_object_add_value_int(dir_object, "bw_min", min);
1006 json_object_add_value_int(dir_object, "bw_max", max);
1007 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1008 json_object_add_value_float(dir_object, "bw_mean", mean);
1009 json_object_add_value_float(dir_object, "bw_dev", dev);
1010}
1011
1012static void show_thread_status_terse_v2(struct thread_stat *ts,
1013 struct group_run_stats *rs,
1014 struct buf_output *out)
1015{
1016 double io_u_dist[FIO_IO_U_MAP_NR];
1017 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1018 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1019 double usr_cpu, sys_cpu;
1020 int i;
1021
1022 /* General Info */
1023 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1024 /* Log Read Status */
1025 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1026 /* Log Write Status */
1027 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1028 /* Log Trim Status */
1029 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1030
1031 /* CPU Usage */
1032 if (ts->total_run_time) {
1033 double runt = (double) ts->total_run_time;
1034
1035 usr_cpu = (double) ts->usr_time * 100 / runt;
1036 sys_cpu = (double) ts->sys_time * 100 / runt;
1037 } else {
1038 usr_cpu = 0;
1039 sys_cpu = 0;
1040 }
1041
1042 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1043 (unsigned long long) ts->ctx,
1044 (unsigned long long) ts->majf,
1045 (unsigned long long) ts->minf);
1046
1047 /* Calc % distribution of IO depths, usecond, msecond latency */
1048 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1049 stat_calc_lat_u(ts, io_u_lat_u);
1050 stat_calc_lat_m(ts, io_u_lat_m);
1051
1052 /* Only show fixed 7 I/O depth levels*/
1053 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1054 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1055 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1056
1057 /* Microsecond latency */
1058 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1059 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1060 /* Millisecond latency */
1061 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1062 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1063 /* Additional output if continue_on_error set - default off*/
1064 if (ts->continue_on_error)
1065 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1066 log_buf(out, "\n");
1067
1068 /* Additional output if description is set */
1069 if (strlen(ts->description))
1070 log_buf(out, ";%s", ts->description);
1071
1072 log_buf(out, "\n");
1073}
1074
1075static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1076 struct group_run_stats *rs, int ver,
1077 struct buf_output *out)
1078{
1079 double io_u_dist[FIO_IO_U_MAP_NR];
1080 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1081 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1082 double usr_cpu, sys_cpu;
1083 int i;
1084
1085 /* General Info */
1086 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1087 ts->name, ts->groupid, ts->error);
1088 /* Log Read Status */
1089 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1090 /* Log Write Status */
1091 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1092 /* Log Trim Status */
1093 if (ver == 4)
1094 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1095
1096 /* CPU Usage */
1097 if (ts->total_run_time) {
1098 double runt = (double) ts->total_run_time;
1099
1100 usr_cpu = (double) ts->usr_time * 100 / runt;
1101 sys_cpu = (double) ts->sys_time * 100 / runt;
1102 } else {
1103 usr_cpu = 0;
1104 sys_cpu = 0;
1105 }
1106
1107 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1108 (unsigned long long) ts->ctx,
1109 (unsigned long long) ts->majf,
1110 (unsigned long long) ts->minf);
1111
1112 /* Calc % distribution of IO depths, usecond, msecond latency */
1113 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1114 stat_calc_lat_u(ts, io_u_lat_u);
1115 stat_calc_lat_m(ts, io_u_lat_m);
1116
1117 /* Only show fixed 7 I/O depth levels*/
1118 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1119 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1120 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1121
1122 /* Microsecond latency */
1123 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1124 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1125 /* Millisecond latency */
1126 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1127 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1128
1129 /* disk util stats, if any */
1130 show_disk_util(1, NULL, out);
1131
1132 /* Additional output if continue_on_error set - default off*/
1133 if (ts->continue_on_error)
1134 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1135
1136 /* Additional output if description is set */
1137 if (strlen(ts->description))
1138 log_buf(out, ";%s", ts->description);
1139
1140 log_buf(out, "\n");
1141}
1142
1143static void json_add_job_opts(struct json_object *root, const char *name,
1144 struct flist_head *opt_list, bool num_jobs)
1145{
1146 struct json_object *dir_object;
1147 struct flist_head *entry;
1148 struct print_option *p;
1149
1150 if (flist_empty(opt_list))
1151 return;
1152
1153 dir_object = json_create_object();
1154 json_object_add_value_object(root, name, dir_object);
1155
1156 flist_for_each(entry, opt_list) {
1157 const char *pos = "";
1158
1159 p = flist_entry(entry, struct print_option, list);
1160 if (!num_jobs && !strcmp(p->name, "numjobs"))
1161 continue;
1162 if (p->value)
1163 pos = p->value;
1164 json_object_add_value_string(dir_object, p->name, pos);
1165 }
1166}
1167
1168static struct json_object *show_thread_status_json(struct thread_stat *ts,
1169 struct group_run_stats *rs,
1170 struct flist_head *opt_list)
1171{
1172 struct json_object *root, *tmp;
1173 struct jobs_eta *je;
1174 double io_u_dist[FIO_IO_U_MAP_NR];
1175 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1176 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1177 double usr_cpu, sys_cpu;
1178 int i;
1179 size_t size;
1180
1181 root = json_create_object();
1182 json_object_add_value_string(root, "jobname", ts->name);
1183 json_object_add_value_int(root, "groupid", ts->groupid);
1184 json_object_add_value_int(root, "error", ts->error);
1185
1186 /* ETA Info */
1187 je = get_jobs_eta(true, &size);
1188 if (je) {
1189 json_object_add_value_int(root, "eta", je->eta_sec);
1190 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1191 }
1192
1193 if (opt_list)
1194 json_add_job_opts(root, "job options", opt_list, true);
1195
1196 add_ddir_status_json(ts, rs, DDIR_READ, root);
1197 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1198 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1199
1200 /* CPU Usage */
1201 if (ts->total_run_time) {
1202 double runt = (double) ts->total_run_time;
1203
1204 usr_cpu = (double) ts->usr_time * 100 / runt;
1205 sys_cpu = (double) ts->sys_time * 100 / runt;
1206 } else {
1207 usr_cpu = 0;
1208 sys_cpu = 0;
1209 }
1210 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1211 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1212 json_object_add_value_int(root, "ctx", ts->ctx);
1213 json_object_add_value_int(root, "majf", ts->majf);
1214 json_object_add_value_int(root, "minf", ts->minf);
1215
1216
1217 /* Calc % distribution of IO depths, usecond, msecond latency */
1218 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1219 stat_calc_lat_u(ts, io_u_lat_u);
1220 stat_calc_lat_m(ts, io_u_lat_m);
1221
1222 tmp = json_create_object();
1223 json_object_add_value_object(root, "iodepth_level", tmp);
1224 /* Only show fixed 7 I/O depth levels*/
1225 for (i = 0; i < 7; i++) {
1226 char name[20];
1227 if (i < 6)
1228 snprintf(name, 20, "%d", 1 << i);
1229 else
1230 snprintf(name, 20, ">=%d", 1 << i);
1231 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1232 }
1233
1234 tmp = json_create_object();
1235 json_object_add_value_object(root, "latency_us", tmp);
1236 /* Microsecond latency */
1237 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1238 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1239 "250", "500", "750", "1000", };
1240 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1241 }
1242 /* Millisecond latency */
1243 tmp = json_create_object();
1244 json_object_add_value_object(root, "latency_ms", tmp);
1245 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1246 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1247 "250", "500", "750", "1000", "2000",
1248 ">=2000", };
1249 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1250 }
1251
1252 /* Additional output if continue_on_error set - default off*/
1253 if (ts->continue_on_error) {
1254 json_object_add_value_int(root, "total_err", ts->total_err_count);
1255 json_object_add_value_int(root, "first_error", ts->first_error);
1256 }
1257
1258 if (ts->latency_depth) {
1259 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1260 json_object_add_value_int(root, "latency_target", ts->latency_target);
1261 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1262 json_object_add_value_int(root, "latency_window", ts->latency_window);
1263 }
1264
1265 /* Additional output if description is set */
1266 if (strlen(ts->description))
1267 json_object_add_value_string(root, "desc", ts->description);
1268
1269 if (ts->nr_block_infos) {
1270 /* Block error histogram and types */
1271 int len;
1272 unsigned int *percentiles = NULL;
1273 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1274
1275 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1276 ts->percentile_list,
1277 &percentiles, block_state_counts);
1278
1279 if (len) {
1280 struct json_object *block, *percentile_object, *states;
1281 int state;
1282 block = json_create_object();
1283 json_object_add_value_object(root, "block", block);
1284
1285 percentile_object = json_create_object();
1286 json_object_add_value_object(block, "percentiles",
1287 percentile_object);
1288 for (i = 0; i < len; i++) {
1289 char buf[20];
1290 snprintf(buf, sizeof(buf), "%f",
1291 ts->percentile_list[i].u.f);
1292 json_object_add_value_int(percentile_object,
1293 (const char *)buf,
1294 percentiles[i]);
1295 }
1296
1297 states = json_create_object();
1298 json_object_add_value_object(block, "states", states);
1299 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1300 json_object_add_value_int(states,
1301 block_state_names[state],
1302 block_state_counts[state]);
1303 }
1304 free(percentiles);
1305 }
1306 }
1307
1308 if (ts->ss_dur) {
1309 struct json_object *data;
1310 struct json_array *iops, *bw;
1311 int i, j, k;
1312 char ss_buf[64];
1313
1314 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1315 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1316 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1317 (float) ts->ss_limit.u.f,
1318 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1319
1320 tmp = json_create_object();
1321 json_object_add_value_object(root, "steadystate", tmp);
1322 json_object_add_value_string(tmp, "ss", ss_buf);
1323 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1324 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1325
1326 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1327 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1328 json_object_add_value_string(tmp, "criterion", ss_buf);
1329 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1330 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1331
1332 data = json_create_object();
1333 json_object_add_value_object(tmp, "data", data);
1334 bw = json_create_array();
1335 iops = json_create_array();
1336
1337 /*
1338 ** if ss was attained or the buffer is not full,
1339 ** ss->head points to the first element in the list.
1340 ** otherwise it actually points to the second element
1341 ** in the list
1342 */
1343 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1344 j = ts->ss_head;
1345 else
1346 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1347 for (i = 0; i < ts->ss_dur; i++) {
1348 k = (j + i) % ts->ss_dur;
1349 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1350 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1351 }
1352 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1353 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1354 json_object_add_value_array(data, "iops", iops);
1355 json_object_add_value_array(data, "bw", bw);
1356 }
1357
1358 return root;
1359}
1360
1361static void show_thread_status_terse(struct thread_stat *ts,
1362 struct group_run_stats *rs,
1363 struct buf_output *out)
1364{
1365 if (terse_version == 2)
1366 show_thread_status_terse_v2(ts, rs, out);
1367 else if (terse_version == 3 || terse_version == 4)
1368 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1369 else
1370 log_err("fio: bad terse version!? %d\n", terse_version);
1371}
1372
1373struct json_object *show_thread_status(struct thread_stat *ts,
1374 struct group_run_stats *rs,
1375 struct flist_head *opt_list,
1376 struct buf_output *out)
1377{
1378 struct json_object *ret = NULL;
1379
1380 if (output_format & FIO_OUTPUT_TERSE)
1381 show_thread_status_terse(ts, rs, out);
1382 if (output_format & FIO_OUTPUT_JSON)
1383 ret = show_thread_status_json(ts, rs, opt_list);
1384 if (output_format & FIO_OUTPUT_NORMAL)
1385 show_thread_status_normal(ts, rs, out);
1386
1387 return ret;
1388}
1389
1390static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1391{
1392 double mean, S;
1393
1394 if (src->samples == 0)
1395 return;
1396
1397 dst->min_val = min(dst->min_val, src->min_val);
1398 dst->max_val = max(dst->max_val, src->max_val);
1399
1400 /*
1401 * Compute new mean and S after the merge
1402 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1403 * #Parallel_algorithm>
1404 */
1405 if (first) {
1406 mean = src->mean.u.f;
1407 S = src->S.u.f;
1408 } else {
1409 double delta = src->mean.u.f - dst->mean.u.f;
1410
1411 mean = ((src->mean.u.f * src->samples) +
1412 (dst->mean.u.f * dst->samples)) /
1413 (dst->samples + src->samples);
1414
1415 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1416 (dst->samples * src->samples) /
1417 (dst->samples + src->samples);
1418 }
1419
1420 dst->samples += src->samples;
1421 dst->mean.u.f = mean;
1422 dst->S.u.f = S;
1423}
1424
1425void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1426{
1427 int i;
1428
1429 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1430 if (dst->max_run[i] < src->max_run[i])
1431 dst->max_run[i] = src->max_run[i];
1432 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1433 dst->min_run[i] = src->min_run[i];
1434 if (dst->max_bw[i] < src->max_bw[i])
1435 dst->max_bw[i] = src->max_bw[i];
1436 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1437 dst->min_bw[i] = src->min_bw[i];
1438
1439 dst->iobytes[i] += src->iobytes[i];
1440 dst->agg[i] += src->agg[i];
1441 }
1442
1443 if (!dst->kb_base)
1444 dst->kb_base = src->kb_base;
1445 if (!dst->unit_base)
1446 dst->unit_base = src->unit_base;
1447}
1448
1449void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1450 bool first)
1451{
1452 int l, k;
1453
1454 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1455 if (!dst->unified_rw_rep) {
1456 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1457 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1458 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1459 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1460
1461 dst->io_bytes[l] += src->io_bytes[l];
1462
1463 if (dst->runtime[l] < src->runtime[l])
1464 dst->runtime[l] = src->runtime[l];
1465 } else {
1466 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1467 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1468 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1469 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1470
1471 dst->io_bytes[0] += src->io_bytes[l];
1472
1473 if (dst->runtime[0] < src->runtime[l])
1474 dst->runtime[0] = src->runtime[l];
1475
1476 /*
1477 * We're summing to the same destination, so override
1478 * 'first' after the first iteration of the loop
1479 */
1480 first = false;
1481 }
1482 }
1483
1484 dst->usr_time += src->usr_time;
1485 dst->sys_time += src->sys_time;
1486 dst->ctx += src->ctx;
1487 dst->majf += src->majf;
1488 dst->minf += src->minf;
1489
1490 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1491 dst->io_u_map[k] += src->io_u_map[k];
1492 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1493 dst->io_u_submit[k] += src->io_u_submit[k];
1494 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1495 dst->io_u_complete[k] += src->io_u_complete[k];
1496 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1497 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1498 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1499 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1500
1501 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1502 if (!dst->unified_rw_rep) {
1503 dst->total_io_u[k] += src->total_io_u[k];
1504 dst->short_io_u[k] += src->short_io_u[k];
1505 dst->drop_io_u[k] += src->drop_io_u[k];
1506 } else {
1507 dst->total_io_u[0] += src->total_io_u[k];
1508 dst->short_io_u[0] += src->short_io_u[k];
1509 dst->drop_io_u[0] += src->drop_io_u[k];
1510 }
1511 }
1512
1513 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1514 int m;
1515
1516 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1517 if (!dst->unified_rw_rep)
1518 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1519 else
1520 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1521 }
1522 }
1523
1524 dst->total_run_time += src->total_run_time;
1525 dst->total_submit += src->total_submit;
1526 dst->total_complete += src->total_complete;
1527}
1528
1529void init_group_run_stat(struct group_run_stats *gs)
1530{
1531 int i;
1532 memset(gs, 0, sizeof(*gs));
1533
1534 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1535 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1536}
1537
1538void init_thread_stat(struct thread_stat *ts)
1539{
1540 int j;
1541
1542 memset(ts, 0, sizeof(*ts));
1543
1544 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1545 ts->lat_stat[j].min_val = -1UL;
1546 ts->clat_stat[j].min_val = -1UL;
1547 ts->slat_stat[j].min_val = -1UL;
1548 ts->bw_stat[j].min_val = -1UL;
1549 }
1550 ts->groupid = -1;
1551}
1552
1553void __show_run_stats(void)
1554{
1555 struct group_run_stats *runstats, *rs;
1556 struct thread_data *td;
1557 struct thread_stat *threadstats, *ts;
1558 int i, j, k, nr_ts, last_ts, idx;
1559 int kb_base_warned = 0;
1560 int unit_base_warned = 0;
1561 struct json_object *root = NULL;
1562 struct json_array *array = NULL;
1563 struct buf_output output[FIO_OUTPUT_NR];
1564 struct flist_head **opt_lists;
1565
1566 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1567
1568 for (i = 0; i < groupid + 1; i++)
1569 init_group_run_stat(&runstats[i]);
1570
1571 /*
1572 * find out how many threads stats we need. if group reporting isn't
1573 * enabled, it's one-per-td.
1574 */
1575 nr_ts = 0;
1576 last_ts = -1;
1577 for_each_td(td, i) {
1578 if (!td->o.group_reporting) {
1579 nr_ts++;
1580 continue;
1581 }
1582 if (last_ts == td->groupid)
1583 continue;
1584 if (!td->o.stats)
1585 continue;
1586
1587 last_ts = td->groupid;
1588 nr_ts++;
1589 }
1590
1591 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1592 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1593
1594 for (i = 0; i < nr_ts; i++) {
1595 init_thread_stat(&threadstats[i]);
1596 opt_lists[i] = NULL;
1597 }
1598
1599 j = 0;
1600 last_ts = -1;
1601 idx = 0;
1602 for_each_td(td, i) {
1603 if (!td->o.stats)
1604 continue;
1605 if (idx && (!td->o.group_reporting ||
1606 (td->o.group_reporting && last_ts != td->groupid))) {
1607 idx = 0;
1608 j++;
1609 }
1610
1611 last_ts = td->groupid;
1612
1613 ts = &threadstats[j];
1614
1615 ts->clat_percentiles = td->o.clat_percentiles;
1616 ts->percentile_precision = td->o.percentile_precision;
1617 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1618 opt_lists[j] = &td->opt_list;
1619
1620 idx++;
1621 ts->members++;
1622
1623 if (ts->groupid == -1) {
1624 /*
1625 * These are per-group shared already
1626 */
1627 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1628 if (td->o.description)
1629 strncpy(ts->description, td->o.description,
1630 FIO_JOBDESC_SIZE - 1);
1631 else
1632 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1633
1634 /*
1635 * If multiple entries in this group, this is
1636 * the first member.
1637 */
1638 ts->thread_number = td->thread_number;
1639 ts->groupid = td->groupid;
1640
1641 /*
1642 * first pid in group, not very useful...
1643 */
1644 ts->pid = td->pid;
1645
1646 ts->kb_base = td->o.kb_base;
1647 ts->unit_base = td->o.unit_base;
1648 ts->unified_rw_rep = td->o.unified_rw_rep;
1649 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1650 log_info("fio: kb_base differs for jobs in group, using"
1651 " %u as the base\n", ts->kb_base);
1652 kb_base_warned = 1;
1653 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1654 log_info("fio: unit_base differs for jobs in group, using"
1655 " %u as the base\n", ts->unit_base);
1656 unit_base_warned = 1;
1657 }
1658
1659 ts->continue_on_error = td->o.continue_on_error;
1660 ts->total_err_count += td->total_err_count;
1661 ts->first_error = td->first_error;
1662 if (!ts->error) {
1663 if (!td->error && td->o.continue_on_error &&
1664 td->first_error) {
1665 ts->error = td->first_error;
1666 ts->verror[sizeof(ts->verror) - 1] = '\0';
1667 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1668 } else if (td->error) {
1669 ts->error = td->error;
1670 ts->verror[sizeof(ts->verror) - 1] = '\0';
1671 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1672 }
1673 }
1674
1675 ts->latency_depth = td->latency_qd;
1676 ts->latency_target = td->o.latency_target;
1677 ts->latency_percentile = td->o.latency_percentile;
1678 ts->latency_window = td->o.latency_window;
1679
1680 ts->nr_block_infos = td->ts.nr_block_infos;
1681 for (k = 0; k < ts->nr_block_infos; k++)
1682 ts->block_infos[k] = td->ts.block_infos[k];
1683
1684 sum_thread_stats(ts, &td->ts, idx == 1);
1685
1686 if (td->o.ss_dur) {
1687 ts->ss_state = td->ss.state;
1688 ts->ss_dur = td->ss.dur;
1689 ts->ss_head = td->ss.head;
1690 ts->ss_bw_data = td->ss.bw_data;
1691 ts->ss_iops_data = td->ss.iops_data;
1692 ts->ss_limit.u.f = td->ss.limit;
1693 ts->ss_slope.u.f = td->ss.slope;
1694 ts->ss_deviation.u.f = td->ss.deviation;
1695 ts->ss_criterion.u.f = td->ss.criterion;
1696 }
1697 else
1698 ts->ss_dur = ts->ss_state = 0;
1699 }
1700
1701 for (i = 0; i < nr_ts; i++) {
1702 unsigned long long bw;
1703
1704 ts = &threadstats[i];
1705 if (ts->groupid == -1)
1706 continue;
1707 rs = &runstats[ts->groupid];
1708 rs->kb_base = ts->kb_base;
1709 rs->unit_base = ts->unit_base;
1710 rs->unified_rw_rep += ts->unified_rw_rep;
1711
1712 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1713 if (!ts->runtime[j])
1714 continue;
1715 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1716 rs->min_run[j] = ts->runtime[j];
1717 if (ts->runtime[j] > rs->max_run[j])
1718 rs->max_run[j] = ts->runtime[j];
1719
1720 bw = 0;
1721 if (ts->runtime[j])
1722 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1723 if (bw < rs->min_bw[j])
1724 rs->min_bw[j] = bw;
1725 if (bw > rs->max_bw[j])
1726 rs->max_bw[j] = bw;
1727
1728 rs->iobytes[j] += ts->io_bytes[j];
1729 }
1730 }
1731
1732 for (i = 0; i < groupid + 1; i++) {
1733 int ddir;
1734
1735 rs = &runstats[i];
1736
1737 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1738 if (rs->max_run[ddir])
1739 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1740 rs->max_run[ddir];
1741 }
1742 }
1743
1744 for (i = 0; i < FIO_OUTPUT_NR; i++)
1745 buf_output_init(&output[i]);
1746
1747 /*
1748 * don't overwrite last signal output
1749 */
1750 if (output_format & FIO_OUTPUT_NORMAL)
1751 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1752 if (output_format & FIO_OUTPUT_JSON) {
1753 struct thread_data *global;
1754 char time_buf[32];
1755 struct timeval now;
1756 unsigned long long ms_since_epoch;
1757
1758 gettimeofday(&now, NULL);
1759 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1760 (unsigned long long)(now.tv_usec) / 1000;
1761
1762 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1763 sizeof(time_buf));
1764 if (time_buf[strlen(time_buf) - 1] == '\n')
1765 time_buf[strlen(time_buf) - 1] = '\0';
1766
1767 root = json_create_object();
1768 json_object_add_value_string(root, "fio version", fio_version_string);
1769 json_object_add_value_int(root, "timestamp", now.tv_sec);
1770 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1771 json_object_add_value_string(root, "time", time_buf);
1772 global = get_global_options();
1773 json_add_job_opts(root, "global options", &global->opt_list, false);
1774 array = json_create_array();
1775 json_object_add_value_array(root, "jobs", array);
1776 }
1777
1778 if (is_backend)
1779 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1780
1781 for (i = 0; i < nr_ts; i++) {
1782 ts = &threadstats[i];
1783 rs = &runstats[ts->groupid];
1784
1785 if (is_backend) {
1786 fio_server_send_job_options(opt_lists[i], i);
1787 fio_server_send_ts(ts, rs);
1788 } else {
1789 if (output_format & FIO_OUTPUT_TERSE)
1790 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1791 if (output_format & FIO_OUTPUT_JSON) {
1792 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1793 json_array_add_value_object(array, tmp);
1794 }
1795 if (output_format & FIO_OUTPUT_NORMAL)
1796 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1797 }
1798 }
1799 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1800 /* disk util stats, if any */
1801 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1802
1803 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1804
1805 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1806 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1807 json_free_object(root);
1808 }
1809
1810 for (i = 0; i < groupid + 1; i++) {
1811 rs = &runstats[i];
1812
1813 rs->groupid = i;
1814 if (is_backend)
1815 fio_server_send_gs(rs);
1816 else if (output_format & FIO_OUTPUT_NORMAL)
1817 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1818 }
1819
1820 if (is_backend)
1821 fio_server_send_du();
1822 else if (output_format & FIO_OUTPUT_NORMAL) {
1823 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1824 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1825 }
1826
1827 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1828 struct buf_output *out = &output[i];
1829
1830 log_info_buf(out->buf, out->buflen);
1831 buf_output_free(out);
1832 }
1833
1834 log_info_flush();
1835 free(runstats);
1836 free(threadstats);
1837 free(opt_lists);
1838}
1839
1840void show_run_stats(void)
1841{
1842 fio_mutex_down(stat_mutex);
1843 __show_run_stats();
1844 fio_mutex_up(stat_mutex);
1845}
1846
1847void __show_running_run_stats(void)
1848{
1849 struct thread_data *td;
1850 unsigned long long *rt;
1851 struct timeval tv;
1852 int i;
1853
1854 fio_mutex_down(stat_mutex);
1855
1856 rt = malloc(thread_number * sizeof(unsigned long long));
1857 fio_gettime(&tv, NULL);
1858
1859 for_each_td(td, i) {
1860 td->update_rusage = 1;
1861 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1862 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1863 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1864 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1865
1866 rt[i] = mtime_since(&td->start, &tv);
1867 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1868 td->ts.runtime[DDIR_READ] += rt[i];
1869 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1870 td->ts.runtime[DDIR_WRITE] += rt[i];
1871 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1872 td->ts.runtime[DDIR_TRIM] += rt[i];
1873 }
1874
1875 for_each_td(td, i) {
1876 if (td->runstate >= TD_EXITED)
1877 continue;
1878 if (td->rusage_sem) {
1879 td->update_rusage = 1;
1880 fio_mutex_down(td->rusage_sem);
1881 }
1882 td->update_rusage = 0;
1883 }
1884
1885 __show_run_stats();
1886
1887 for_each_td(td, i) {
1888 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1889 td->ts.runtime[DDIR_READ] -= rt[i];
1890 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1891 td->ts.runtime[DDIR_WRITE] -= rt[i];
1892 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1893 td->ts.runtime[DDIR_TRIM] -= rt[i];
1894 }
1895
1896 free(rt);
1897 fio_mutex_up(stat_mutex);
1898}
1899
1900static int status_interval_init;
1901static struct timeval status_time;
1902static int status_file_disabled;
1903
1904#define FIO_STATUS_FILE "fio-dump-status"
1905
1906static int check_status_file(void)
1907{
1908 struct stat sb;
1909 const char *temp_dir;
1910 char fio_status_file_path[PATH_MAX];
1911
1912 if (status_file_disabled)
1913 return 0;
1914
1915 temp_dir = getenv("TMPDIR");
1916 if (temp_dir == NULL) {
1917 temp_dir = getenv("TEMP");
1918 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1919 temp_dir = NULL;
1920 }
1921 if (temp_dir == NULL)
1922 temp_dir = "/tmp";
1923
1924 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1925
1926 if (stat(fio_status_file_path, &sb))
1927 return 0;
1928
1929 if (unlink(fio_status_file_path) < 0) {
1930 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1931 strerror(errno));
1932 log_err("fio: disabling status file updates\n");
1933 status_file_disabled = 1;
1934 }
1935
1936 return 1;
1937}
1938
1939void check_for_running_stats(void)
1940{
1941 if (status_interval) {
1942 if (!status_interval_init) {
1943 fio_gettime(&status_time, NULL);
1944 status_interval_init = 1;
1945 } else if (mtime_since_now(&status_time) >= status_interval) {
1946 show_running_run_stats();
1947 fio_gettime(&status_time, NULL);
1948 return;
1949 }
1950 }
1951 if (check_status_file()) {
1952 show_running_run_stats();
1953 return;
1954 }
1955}
1956
1957static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1958{
1959 double val = data;
1960 double delta;
1961
1962 if (data > is->max_val)
1963 is->max_val = data;
1964 if (data < is->min_val)
1965 is->min_val = data;
1966
1967 delta = val - is->mean.u.f;
1968 if (delta) {
1969 is->mean.u.f += delta / (is->samples + 1.0);
1970 is->S.u.f += delta * (val - is->mean.u.f);
1971 }
1972
1973 is->samples++;
1974}
1975
1976/*
1977 * Return a struct io_logs, which is added to the tail of the log
1978 * list for 'iolog'.
1979 */
1980static struct io_logs *get_new_log(struct io_log *iolog)
1981{
1982 size_t new_size, new_samples;
1983 struct io_logs *cur_log;
1984
1985 /*
1986 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1987 * forever
1988 */
1989 if (!iolog->cur_log_max)
1990 new_samples = DEF_LOG_ENTRIES;
1991 else {
1992 new_samples = iolog->cur_log_max * 2;
1993 if (new_samples > MAX_LOG_ENTRIES)
1994 new_samples = MAX_LOG_ENTRIES;
1995 }
1996
1997 new_size = new_samples * log_entry_sz(iolog);
1998
1999 cur_log = smalloc(sizeof(*cur_log));
2000 if (cur_log) {
2001 INIT_FLIST_HEAD(&cur_log->list);
2002 cur_log->log = malloc(new_size);
2003 if (cur_log->log) {
2004 cur_log->nr_samples = 0;
2005 cur_log->max_samples = new_samples;
2006 flist_add_tail(&cur_log->list, &iolog->io_logs);
2007 iolog->cur_log_max = new_samples;
2008 return cur_log;
2009 }
2010 sfree(cur_log);
2011 }
2012
2013 return NULL;
2014}
2015
2016/*
2017 * Add and return a new log chunk, or return current log if big enough
2018 */
2019static struct io_logs *regrow_log(struct io_log *iolog)
2020{
2021 struct io_logs *cur_log;
2022 int i;
2023
2024 if (!iolog || iolog->disabled)
2025 goto disable;
2026
2027 cur_log = iolog_cur_log(iolog);
2028 if (!cur_log) {
2029 cur_log = get_new_log(iolog);
2030 if (!cur_log)
2031 return NULL;
2032 }
2033
2034 if (cur_log->nr_samples < cur_log->max_samples)
2035 return cur_log;
2036
2037 /*
2038 * No room for a new sample. If we're compressing on the fly, flush
2039 * out the current chunk
2040 */
2041 if (iolog->log_gz) {
2042 if (iolog_cur_flush(iolog, cur_log)) {
2043 log_err("fio: failed flushing iolog! Will stop logging.\n");
2044 return NULL;
2045 }
2046 }
2047
2048 /*
2049 * Get a new log array, and add to our list
2050 */
2051 cur_log = get_new_log(iolog);
2052 if (!cur_log) {
2053 log_err("fio: failed extending iolog! Will stop logging.\n");
2054 return NULL;
2055 }
2056
2057 if (!iolog->pending || !iolog->pending->nr_samples)
2058 return cur_log;
2059
2060 /*
2061 * Flush pending items to new log
2062 */
2063 for (i = 0; i < iolog->pending->nr_samples; i++) {
2064 struct io_sample *src, *dst;
2065
2066 src = get_sample(iolog, iolog->pending, i);
2067 dst = get_sample(iolog, cur_log, i);
2068 memcpy(dst, src, log_entry_sz(iolog));
2069 }
2070 cur_log->nr_samples = iolog->pending->nr_samples;
2071
2072 iolog->pending->nr_samples = 0;
2073 return cur_log;
2074disable:
2075 if (iolog)
2076 iolog->disabled = true;
2077 return NULL;
2078}
2079
2080void regrow_logs(struct thread_data *td)
2081{
2082 regrow_log(td->slat_log);
2083 regrow_log(td->clat_log);
2084 regrow_log(td->clat_hist_log);
2085 regrow_log(td->lat_log);
2086 regrow_log(td->bw_log);
2087 regrow_log(td->iops_log);
2088 td->flags &= ~TD_F_REGROW_LOGS;
2089}
2090
2091static struct io_logs *get_cur_log(struct io_log *iolog)
2092{
2093 struct io_logs *cur_log;
2094
2095 cur_log = iolog_cur_log(iolog);
2096 if (!cur_log) {
2097 cur_log = get_new_log(iolog);
2098 if (!cur_log)
2099 return NULL;
2100 }
2101
2102 if (cur_log->nr_samples < cur_log->max_samples)
2103 return cur_log;
2104
2105 /*
2106 * Out of space. If we're in IO offload mode, or we're not doing
2107 * per unit logging (hence logging happens outside of the IO thread
2108 * as well), add a new log chunk inline. If we're doing inline
2109 * submissions, flag 'td' as needing a log regrow and we'll take
2110 * care of it on the submission side.
2111 */
2112 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2113 !per_unit_log(iolog))
2114 return regrow_log(iolog);
2115
2116 iolog->td->flags |= TD_F_REGROW_LOGS;
2117 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2118 return iolog->pending;
2119}
2120
2121static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2122 enum fio_ddir ddir, unsigned int bs,
2123 unsigned long t, uint64_t offset)
2124{
2125 struct io_logs *cur_log;
2126
2127 if (iolog->disabled)
2128 return;
2129 if (flist_empty(&iolog->io_logs))
2130 iolog->avg_last = t;
2131
2132 cur_log = get_cur_log(iolog);
2133 if (cur_log) {
2134 struct io_sample *s;
2135
2136 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2137
2138 s->data = data;
2139 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2140 io_sample_set_ddir(iolog, s, ddir);
2141 s->bs = bs;
2142
2143 if (iolog->log_offset) {
2144 struct io_sample_offset *so = (void *) s;
2145
2146 so->offset = offset;
2147 }
2148
2149 cur_log->nr_samples++;
2150 return;
2151 }
2152
2153 iolog->disabled = true;
2154}
2155
2156static inline void reset_io_stat(struct io_stat *ios)
2157{
2158 ios->max_val = ios->min_val = ios->samples = 0;
2159 ios->mean.u.f = ios->S.u.f = 0;
2160}
2161
2162void reset_io_stats(struct thread_data *td)
2163{
2164 struct thread_stat *ts = &td->ts;
2165 int i, j;
2166
2167 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2168 reset_io_stat(&ts->clat_stat[i]);
2169 reset_io_stat(&ts->slat_stat[i]);
2170 reset_io_stat(&ts->lat_stat[i]);
2171 reset_io_stat(&ts->bw_stat[i]);
2172 reset_io_stat(&ts->iops_stat[i]);
2173
2174 ts->io_bytes[i] = 0;
2175 ts->runtime[i] = 0;
2176 ts->total_io_u[i] = 0;
2177 ts->short_io_u[i] = 0;
2178 ts->drop_io_u[i] = 0;
2179
2180 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2181 ts->io_u_plat[i][j] = 0;
2182 }
2183
2184 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2185 ts->io_u_map[i] = 0;
2186 ts->io_u_submit[i] = 0;
2187 ts->io_u_complete[i] = 0;
2188 }
2189
2190 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2191 ts->io_u_lat_u[i] = 0;
2192 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2193 ts->io_u_lat_m[i] = 0;
2194
2195 ts->total_submit = 0;
2196 ts->total_complete = 0;
2197}
2198
2199static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2200 unsigned long elapsed, bool log_max)
2201{
2202 /*
2203 * Note an entry in the log. Use the mean from the logged samples,
2204 * making sure to properly round up. Only write a log entry if we
2205 * had actual samples done.
2206 */
2207 if (iolog->avg_window[ddir].samples) {
2208 union io_sample_data data;
2209
2210 if (log_max)
2211 data.val = iolog->avg_window[ddir].max_val;
2212 else
2213 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2214
2215 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2216 }
2217
2218 reset_io_stat(&iolog->avg_window[ddir]);
2219}
2220
2221static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2222 bool log_max)
2223{
2224 int ddir;
2225
2226 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2227 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2228}
2229
2230static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2231 union io_sample_data data, enum fio_ddir ddir,
2232 unsigned int bs, uint64_t offset)
2233{
2234 unsigned long elapsed, this_window;
2235
2236 if (!ddir_rw(ddir))
2237 return 0;
2238
2239 elapsed = mtime_since_now(&td->epoch);
2240
2241 /*
2242 * If no time averaging, just add the log sample.
2243 */
2244 if (!iolog->avg_msec) {
2245 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2246 return 0;
2247 }
2248
2249 /*
2250 * Add the sample. If the time period has passed, then
2251 * add that entry to the log and clear.
2252 */
2253 add_stat_sample(&iolog->avg_window[ddir], data.val);
2254
2255 /*
2256 * If period hasn't passed, adding the above sample is all we
2257 * need to do.
2258 */
2259 this_window = elapsed - iolog->avg_last;
2260 if (elapsed < iolog->avg_last)
2261 return iolog->avg_last - elapsed;
2262 else if (this_window < iolog->avg_msec) {
2263 int diff = iolog->avg_msec - this_window;
2264
2265 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2266 return diff;
2267 }
2268
2269 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2270
2271 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2272 return iolog->avg_msec;
2273}
2274
2275void finalize_logs(struct thread_data *td, bool unit_logs)
2276{
2277 unsigned long elapsed;
2278
2279 elapsed = mtime_since_now(&td->epoch);
2280
2281 if (td->clat_log && unit_logs)
2282 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2283 if (td->slat_log && unit_logs)
2284 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2285 if (td->lat_log && unit_logs)
2286 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2287 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2288 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2289 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2290 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2291}
2292
2293void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2294{
2295 struct io_log *iolog;
2296
2297 if (!ddir_rw(ddir))
2298 return;
2299
2300 iolog = agg_io_log[ddir];
2301 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2302}
2303
2304static void add_clat_percentile_sample(struct thread_stat *ts,
2305 unsigned long usec, enum fio_ddir ddir)
2306{
2307 unsigned int idx = plat_val_to_idx(usec);
2308 assert(idx < FIO_IO_U_PLAT_NR);
2309
2310 ts->io_u_plat[ddir][idx]++;
2311}
2312
2313void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2314 unsigned long usec, unsigned int bs, uint64_t offset)
2315{
2316 unsigned long elapsed, this_window;
2317 struct thread_stat *ts = &td->ts;
2318 struct io_log *iolog = td->clat_hist_log;
2319
2320 td_io_u_lock(td);
2321
2322 add_stat_sample(&ts->clat_stat[ddir], usec);
2323
2324 if (td->clat_log)
2325 add_log_sample(td, td->clat_log, sample_val(usec), ddir, bs,
2326 offset);
2327
2328 if (ts->clat_percentiles)
2329 add_clat_percentile_sample(ts, usec, ddir);
2330
2331 if (iolog && iolog->hist_msec) {
2332 struct io_hist *hw = &iolog->hist_window[ddir];
2333
2334 hw->samples++;
2335 elapsed = mtime_since_now(&td->epoch);
2336 if (!hw->hist_last)
2337 hw->hist_last = elapsed;
2338 this_window = elapsed - hw->hist_last;
2339
2340 if (this_window >= iolog->hist_msec) {
2341 unsigned int *io_u_plat;
2342 struct io_u_plat_entry *dst;
2343
2344 /*
2345 * Make a byte-for-byte copy of the latency histogram
2346 * stored in td->ts.io_u_plat[ddir], recording it in a
2347 * log sample. Note that the matching call to free() is
2348 * located in iolog.c after printing this sample to the
2349 * log file.
2350 */
2351 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2352 dst = malloc(sizeof(struct io_u_plat_entry));
2353 memcpy(&(dst->io_u_plat), io_u_plat,
2354 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2355 flist_add(&dst->list, &hw->list);
2356 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2357 elapsed, offset);
2358
2359 /*
2360 * Update the last time we recorded as being now, minus
2361 * any drift in time we encountered before actually
2362 * making the record.
2363 */
2364 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2365 hw->samples = 0;
2366 }
2367 }
2368
2369 td_io_u_unlock(td);
2370}
2371
2372void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2373 unsigned long usec, unsigned int bs, uint64_t offset)
2374{
2375 struct thread_stat *ts = &td->ts;
2376
2377 if (!ddir_rw(ddir))
2378 return;
2379
2380 td_io_u_lock(td);
2381
2382 add_stat_sample(&ts->slat_stat[ddir], usec);
2383
2384 if (td->slat_log)
2385 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2386
2387 td_io_u_unlock(td);
2388}
2389
2390void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2391 unsigned long usec, unsigned int bs, uint64_t offset)
2392{
2393 struct thread_stat *ts = &td->ts;
2394
2395 if (!ddir_rw(ddir))
2396 return;
2397
2398 td_io_u_lock(td);
2399
2400 add_stat_sample(&ts->lat_stat[ddir], usec);
2401
2402 if (td->lat_log)
2403 add_log_sample(td, td->lat_log, sample_val(usec), ddir, bs,
2404 offset);
2405
2406 td_io_u_unlock(td);
2407}
2408
2409void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2410 unsigned int bytes, unsigned long spent)
2411{
2412 struct thread_stat *ts = &td->ts;
2413 unsigned long rate;
2414
2415 if (spent)
2416 rate = bytes * 1000 / spent;
2417 else
2418 rate = 0;
2419
2420 td_io_u_lock(td);
2421
2422 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2423
2424 if (td->bw_log)
2425 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2426 bytes, io_u->offset);
2427
2428 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2429 td_io_u_unlock(td);
2430}
2431
2432static int __add_samples(struct thread_data *td, struct timeval *parent_tv,
2433 struct timeval *t, unsigned int avg_time,
2434 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2435 struct io_stat *stat, struct io_log *log,
2436 bool is_kb)
2437{
2438 unsigned long spent, rate;
2439 enum fio_ddir ddir;
2440 unsigned int next, next_log;
2441
2442 next_log = avg_time;
2443
2444 spent = mtime_since(parent_tv, t);
2445 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2446 return avg_time - spent;
2447
2448 td_io_u_lock(td);
2449
2450 /*
2451 * Compute both read and write rates for the interval.
2452 */
2453 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2454 uint64_t delta;
2455
2456 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2457 if (!delta)
2458 continue; /* No entries for interval */
2459
2460 if (spent) {
2461 if (is_kb)
2462 rate = delta * 1000 / spent / 1024; /* KiB/s */
2463 else
2464 rate = (delta * 1000) / spent;
2465 } else
2466 rate = 0;
2467
2468 add_stat_sample(&stat[ddir], rate);
2469
2470 if (log) {
2471 unsigned int bs = 0;
2472
2473 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2474 bs = td->o.min_bs[ddir];
2475
2476 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2477 next_log = min(next_log, next);
2478 }
2479
2480 stat_io_bytes[ddir] = this_io_bytes[ddir];
2481 }
2482
2483 timeval_add_msec(parent_tv, avg_time);
2484
2485 td_io_u_unlock(td);
2486
2487 if (spent <= avg_time)
2488 next = avg_time;
2489 else
2490 next = avg_time - (1 + spent - avg_time);
2491
2492 return min(next, next_log);
2493}
2494
2495static int add_bw_samples(struct thread_data *td, struct timeval *t)
2496{
2497 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2498 td->this_io_bytes, td->stat_io_bytes,
2499 td->ts.bw_stat, td->bw_log, true);
2500}
2501
2502void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2503 unsigned int bytes)
2504{
2505 struct thread_stat *ts = &td->ts;
2506
2507 td_io_u_lock(td);
2508
2509 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2510
2511 if (td->iops_log)
2512 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2513 bytes, io_u->offset);
2514
2515 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2516 td_io_u_unlock(td);
2517}
2518
2519static int add_iops_samples(struct thread_data *td, struct timeval *t)
2520{
2521 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2522 td->this_io_blocks, td->stat_io_blocks,
2523 td->ts.iops_stat, td->iops_log, false);
2524}
2525
2526/*
2527 * Returns msecs to next event
2528 */
2529int calc_log_samples(void)
2530{
2531 struct thread_data *td;
2532 unsigned int next = ~0U, tmp;
2533 struct timeval now;
2534 int i;
2535
2536 fio_gettime(&now, NULL);
2537
2538 for_each_td(td, i) {
2539 if (!td->o.stats)
2540 continue;
2541 if (in_ramp_time(td) ||
2542 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2543 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2544 continue;
2545 }
2546 if (!td->bw_log ||
2547 (td->bw_log && !per_unit_log(td->bw_log))) {
2548 tmp = add_bw_samples(td, &now);
2549 if (tmp < next)
2550 next = tmp;
2551 }
2552 if (!td->iops_log ||
2553 (td->iops_log && !per_unit_log(td->iops_log))) {
2554 tmp = add_iops_samples(td, &now);
2555 if (tmp < next)
2556 next = tmp;
2557 }
2558 }
2559
2560 return next == ~0U ? 0 : next;
2561}
2562
2563void stat_init(void)
2564{
2565 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2566}
2567
2568void stat_exit(void)
2569{
2570 /*
2571 * When we have the mutex, we know out-of-band access to it
2572 * have ended.
2573 */
2574 fio_mutex_down(stat_mutex);
2575 fio_mutex_remove(stat_mutex);
2576}
2577
2578/*
2579 * Called from signal handler. Wake up status thread.
2580 */
2581void show_running_run_stats(void)
2582{
2583 helper_do_stat();
2584}
2585
2586uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2587{
2588 /* Ignore io_u's which span multiple blocks--they will just get
2589 * inaccurate counts. */
2590 int idx = (io_u->offset - io_u->file->file_offset)
2591 / td->o.bs[DDIR_TRIM];
2592 uint32_t *info = &td->ts.block_infos[idx];
2593 assert(idx < td->ts.nr_block_infos);
2594 return info;
2595}