Clean up unit prefixes for binary multiples in comments and prints
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned int val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned int plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned int **output,
139 unsigned int *maxv, unsigned int *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned int *ovals = NULL;
145 int is_last;
146
147 *minv = -1U;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int len, j = 0, minv, maxv;
205 unsigned int *ovals;
206 int is_last, per_line, scale_down;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len)
211 goto out;
212
213 /*
214 * We default to usecs, but if the value range is such that we
215 * should scale down to msecs, do that.
216 */
217 if (minv > 2000 && maxv > 99999) {
218 scale_down = 1;
219 log_buf(out, " clat percentiles (msec):\n |");
220 } else {
221 scale_down = 0;
222 log_buf(out, " clat percentiles (usec):\n |");
223 }
224
225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226 per_line = (80 - 7) / (precision + 14);
227
228 for (j = 0; j < len; j++) {
229 char fbuf[16], *ptr = fbuf;
230
231 /* for formatting */
232 if (j != 0 && (j % per_line) == 0)
233 log_buf(out, " |");
234
235 /* end of the list */
236 is_last = (j == len - 1);
237
238 if (plist[j].u.f < 10.0)
239 ptr += sprintf(fbuf, " ");
240
241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243 if (scale_down)
244 ovals[j] = (ovals[j] + 999) / 1000;
245
246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248 if (is_last)
249 break;
250
251 if ((j % per_line) == per_line - 1) /* for formatting */
252 log_buf(out, "\n");
253 }
254
255out:
256 if (ovals)
257 free(ovals);
258}
259
260bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261 double *mean, double *dev)
262{
263 double n = (double) is->samples;
264
265 if (n == 0)
266 return false;
267
268 *min = is->min_val;
269 *max = is->max_val;
270 *mean = is->mean.u.f;
271
272 if (n > 1.0)
273 *dev = sqrt(is->S.u.f / (n - 1.0));
274 else
275 *dev = 0;
276
277 return true;
278}
279
280void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281{
282 char *p1, *p2, *p3, *p4;
283 const char *str[] = { " READ", " WRITE" , " TRIM"};
284 int i;
285
286 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289 const int i2p = is_power_of_2(rs->kb_base);
290
291 if (!rs->max_run[i])
292 continue;
293
294 p1 = num2str(rs->iobytes[i], 6, 1, i2p, 8);
295 p2 = num2str(rs->agg[i], 6, 1, i2p, rs->unit_base);
296 p3 = num2str(rs->min_bw[i], 6, 1, i2p, rs->unit_base);
297 p4 = num2str(rs->max_bw[i], 6, 1, i2p, rs->unit_base);
298
299 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300 " mint=%llumsec, maxt=%llumsec\n",
301 rs->unified_rw_rep ? " MIXED" : str[i],
302 p1, p2, p3, p4,
303 (unsigned long long) rs->min_run[i],
304 (unsigned long long) rs->max_run[i]);
305
306 free(p1);
307 free(p2);
308 free(p3);
309 free(p4);
310 }
311}
312
313void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314{
315 int i;
316
317 /*
318 * Do depth distribution calculations
319 */
320 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321 if (total) {
322 io_u_dist[i] = (double) map[i] / (double) total;
323 io_u_dist[i] *= 100.0;
324 if (io_u_dist[i] < 0.1 && map[i])
325 io_u_dist[i] = 0.1;
326 } else
327 io_u_dist[i] = 0.0;
328 }
329}
330
331static void stat_calc_lat(struct thread_stat *ts, double *dst,
332 unsigned int *src, int nr)
333{
334 unsigned long total = ddir_rw_sum(ts->total_io_u);
335 int i;
336
337 /*
338 * Do latency distribution calculations
339 */
340 for (i = 0; i < nr; i++) {
341 if (total) {
342 dst[i] = (double) src[i] / (double) total;
343 dst[i] *= 100.0;
344 if (dst[i] < 0.01 && src[i])
345 dst[i] = 0.01;
346 } else
347 dst[i] = 0.0;
348 }
349}
350
351void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352{
353 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354}
355
356void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357{
358 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359}
360
361static void display_lat(const char *name, unsigned long min, unsigned long max,
362 double mean, double dev, struct buf_output *out)
363{
364 const char *base = "(usec)";
365 char *minp, *maxp;
366
367 if (usec_to_msec(&min, &max, &mean, &dev))
368 base = "(msec)";
369
370 minp = num2str(min, 6, 1, 0, 0);
371 maxp = num2str(max, 6, 1, 0, 0);
372
373 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
374 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376 free(minp);
377 free(maxp);
378}
379
380static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381 int ddir, struct buf_output *out)
382{
383 const char *str[] = { " read", "write", " trim" };
384 unsigned long min, max, runt;
385 unsigned long long bw, iops;
386 double mean, dev;
387 char *io_p, *bw_p, *iops_p;
388 int i2p;
389
390 assert(ddir_rw(ddir));
391
392 if (!ts->runtime[ddir])
393 return;
394
395 i2p = is_power_of_2(rs->kb_base);
396 runt = ts->runtime[ddir];
397
398 bw = (1000 * ts->io_bytes[ddir]) / runt;
399 io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400 bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403 iops_p = num2str(iops, 6, 1, 0, 0);
404
405 log_buf(out, " %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406 rs->unified_rw_rep ? "mixed" : str[ddir],
407 io_p, bw_p, iops_p,
408 (unsigned long long) ts->runtime[ddir]);
409
410 free(io_p);
411 free(bw_p);
412 free(iops_p);
413
414 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415 display_lat("slat", min, max, mean, dev, out);
416 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417 display_lat("clat", min, max, mean, dev, out);
418 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419 display_lat(" lat", min, max, mean, dev, out);
420
421 if (ts->clat_percentiles) {
422 show_clat_percentiles(ts->io_u_plat[ddir],
423 ts->clat_stat[ddir].samples,
424 ts->percentile_list,
425 ts->percentile_precision, out);
426 }
427 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431 if (rs->unit_base == 1) {
432 min *= 8.0;
433 max *= 8.0;
434 mean *= 8.0;
435 dev *= 8.0;
436 }
437
438 if (rs->agg[ddir]) {
439 p_of_agg = mean * 100 / (double) rs->agg[ddir];
440 if (p_of_agg > 100.0)
441 p_of_agg = 100.0;
442 }
443
444 if (mean > fkb_base * fkb_base) {
445 min /= fkb_base;
446 max /= fkb_base;
447 mean /= fkb_base;
448 dev /= fkb_base;
449 bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450 }
451
452 log_buf(out, " bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453 " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454 p_of_agg, mean, dev);
455 }
456}
457
458static int show_lat(double *io_u_lat, int nr, const char **ranges,
459 const char *msg, struct buf_output *out)
460{
461 int new_line = 1, i, line = 0, shown = 0;
462
463 for (i = 0; i < nr; i++) {
464 if (io_u_lat[i] <= 0.0)
465 continue;
466 shown = 1;
467 if (new_line) {
468 if (line)
469 log_buf(out, "\n");
470 log_buf(out, " lat (%s) : ", msg);
471 new_line = 0;
472 line = 0;
473 }
474 if (line)
475 log_buf(out, ", ");
476 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477 line++;
478 if (line == 5)
479 new_line = 1;
480 }
481
482 if (shown)
483 log_buf(out, "\n");
484
485 return shown;
486}
487
488static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489{
490 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491 "250=", "500=", "750=", "1000=", };
492
493 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494}
495
496static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497{
498 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499 "250=", "500=", "750=", "1000=", "2000=",
500 ">=2000=", };
501
502 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503}
504
505static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506{
507 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510 stat_calc_lat_u(ts, io_u_lat_u);
511 stat_calc_lat_m(ts, io_u_lat_m);
512
513 show_lat_u(io_u_lat_u, out);
514 show_lat_m(io_u_lat_m, out);
515}
516
517static int block_state_category(int block_state)
518{
519 switch (block_state) {
520 case BLOCK_STATE_UNINIT:
521 return 0;
522 case BLOCK_STATE_TRIMMED:
523 case BLOCK_STATE_WRITTEN:
524 return 1;
525 case BLOCK_STATE_WRITE_FAILURE:
526 case BLOCK_STATE_TRIM_FAILURE:
527 return 2;
528 default:
529 /* Silence compile warning on some BSDs and have a return */
530 assert(0);
531 return -1;
532 }
533}
534
535static int compare_block_infos(const void *bs1, const void *bs2)
536{
537 uint32_t block1 = *(uint32_t *)bs1;
538 uint32_t block2 = *(uint32_t *)bs2;
539 int state1 = BLOCK_INFO_STATE(block1);
540 int state2 = BLOCK_INFO_STATE(block2);
541 int bscat1 = block_state_category(state1);
542 int bscat2 = block_state_category(state2);
543 int cycles1 = BLOCK_INFO_TRIMS(block1);
544 int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546 if (bscat1 < bscat2)
547 return -1;
548 if (bscat1 > bscat2)
549 return 1;
550
551 if (cycles1 < cycles2)
552 return -1;
553 if (cycles1 > cycles2)
554 return 1;
555
556 if (state1 < state2)
557 return -1;
558 if (state1 > state2)
559 return 1;
560
561 assert(block1 == block2);
562 return 0;
563}
564
565static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566 fio_fp64_t *plist, unsigned int **percentiles,
567 unsigned int *types)
568{
569 int len = 0;
570 int i, nr_uninit;
571
572 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575 len++;
576
577 if (!len)
578 return 0;
579
580 /*
581 * Sort the percentile list. Note that it may already be sorted if
582 * we are using the default values, but since it's a short list this
583 * isn't a worry. Also note that this does not work for NaN values.
584 */
585 if (len > 1)
586 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588 nr_uninit = 0;
589 /* Start only after the uninit entries end */
590 for (nr_uninit = 0;
591 nr_uninit < nr_block_infos
592 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593 nr_uninit ++)
594 ;
595
596 if (nr_uninit == nr_block_infos)
597 return 0;
598
599 *percentiles = calloc(len, sizeof(**percentiles));
600
601 for (i = 0; i < len; i++) {
602 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603 + nr_uninit;
604 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605 }
606
607 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608 for (i = 0; i < nr_block_infos; i++)
609 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611 return len;
612}
613
614static const char *block_state_names[] = {
615 [BLOCK_STATE_UNINIT] = "unwritten",
616 [BLOCK_STATE_TRIMMED] = "trimmed",
617 [BLOCK_STATE_WRITTEN] = "written",
618 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620};
621
622static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623 fio_fp64_t *plist, struct buf_output *out)
624{
625 int len, pos, i;
626 unsigned int *percentiles = NULL;
627 unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630 &percentiles, block_state_counts);
631
632 log_buf(out, " block lifetime percentiles :\n |");
633 pos = 0;
634 for (i = 0; i < len; i++) {
635 uint32_t block_info = percentiles[i];
636#define LINE_LENGTH 75
637 char str[LINE_LENGTH];
638 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639 plist[i].u.f, block_info,
640 i == len - 1 ? '\n' : ',');
641 assert(strln < LINE_LENGTH);
642 if (pos + strln > LINE_LENGTH) {
643 pos = 0;
644 log_buf(out, "\n |");
645 }
646 log_buf(out, "%s", str);
647 pos += strln;
648#undef LINE_LENGTH
649 }
650 if (percentiles)
651 free(percentiles);
652
653 log_buf(out, " states :");
654 for (i = 0; i < BLOCK_STATE_COUNT; i++)
655 log_buf(out, " %s=%u%c",
656 block_state_names[i], block_state_counts[i],
657 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658}
659
660static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
661{
662 char *p1, *p2;
663 unsigned long long bw_mean, iops_mean;
664 const int i2p = is_power_of_2(ts->kb_base);
665
666 if (!ts->ss_dur)
667 return;
668
669 bw_mean = steadystate_bw_mean(ts);
670 iops_mean = steadystate_iops_mean(ts);
671
672 p1 = num2str(bw_mean / ts->kb_base, 6, ts->kb_base, i2p, ts->unit_base);
673 p2 = num2str(iops_mean, 6, 1, 0, 0);
674
675 log_buf(out, " steadystate : attained=%s, bw=%s/s, iops=%s, %s%s=%.3f%s\n",
676 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
677 p1, p2,
678 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
679 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
680 ts->ss_criterion.u.f,
681 ts->ss_state & __FIO_SS_PCT ? "%" : "");
682
683 free(p1);
684 free(p2);
685}
686
687static void show_thread_status_normal(struct thread_stat *ts,
688 struct group_run_stats *rs,
689 struct buf_output *out)
690{
691 double usr_cpu, sys_cpu;
692 unsigned long runtime;
693 double io_u_dist[FIO_IO_U_MAP_NR];
694 time_t time_p;
695 char time_buf[32];
696
697 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
698 return;
699
700 memset(time_buf, 0, sizeof(time_buf));
701
702 time(&time_p);
703 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
704
705 if (!ts->error) {
706 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
707 ts->name, ts->groupid, ts->members,
708 ts->error, (int) ts->pid, time_buf);
709 } else {
710 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
711 ts->name, ts->groupid, ts->members,
712 ts->error, ts->verror, (int) ts->pid,
713 time_buf);
714 }
715
716 if (strlen(ts->description))
717 log_buf(out, " Description : [%s]\n", ts->description);
718
719 if (ts->io_bytes[DDIR_READ])
720 show_ddir_status(rs, ts, DDIR_READ, out);
721 if (ts->io_bytes[DDIR_WRITE])
722 show_ddir_status(rs, ts, DDIR_WRITE, out);
723 if (ts->io_bytes[DDIR_TRIM])
724 show_ddir_status(rs, ts, DDIR_TRIM, out);
725
726 show_latencies(ts, out);
727
728 runtime = ts->total_run_time;
729 if (runtime) {
730 double runt = (double) runtime;
731
732 usr_cpu = (double) ts->usr_time * 100 / runt;
733 sys_cpu = (double) ts->sys_time * 100 / runt;
734 } else {
735 usr_cpu = 0;
736 sys_cpu = 0;
737 }
738
739 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
740 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
741 (unsigned long long) ts->ctx,
742 (unsigned long long) ts->majf,
743 (unsigned long long) ts->minf);
744
745 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
746 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
747 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
748 io_u_dist[1], io_u_dist[2],
749 io_u_dist[3], io_u_dist[4],
750 io_u_dist[5], io_u_dist[6]);
751
752 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
753 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
754 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
755 io_u_dist[1], io_u_dist[2],
756 io_u_dist[3], io_u_dist[4],
757 io_u_dist[5], io_u_dist[6]);
758 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
759 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
760 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
761 io_u_dist[1], io_u_dist[2],
762 io_u_dist[3], io_u_dist[4],
763 io_u_dist[5], io_u_dist[6]);
764 log_buf(out, " issued : total=r=%llu/w=%llu/d=%llu,"
765 " short=r=%llu/w=%llu/d=%llu,"
766 " drop=r=%llu/w=%llu/d=%llu\n",
767 (unsigned long long) ts->total_io_u[0],
768 (unsigned long long) ts->total_io_u[1],
769 (unsigned long long) ts->total_io_u[2],
770 (unsigned long long) ts->short_io_u[0],
771 (unsigned long long) ts->short_io_u[1],
772 (unsigned long long) ts->short_io_u[2],
773 (unsigned long long) ts->drop_io_u[0],
774 (unsigned long long) ts->drop_io_u[1],
775 (unsigned long long) ts->drop_io_u[2]);
776 if (ts->continue_on_error) {
777 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
778 (unsigned long long)ts->total_err_count,
779 ts->first_error,
780 strerror(ts->first_error));
781 }
782 if (ts->latency_depth) {
783 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
784 (unsigned long long)ts->latency_target,
785 (unsigned long long)ts->latency_window,
786 ts->latency_percentile.u.f,
787 ts->latency_depth);
788 }
789
790 if (ts->nr_block_infos)
791 show_block_infos(ts->nr_block_infos, ts->block_infos,
792 ts->percentile_list, out);
793
794 if (ts->ss_dur)
795 show_ss_normal(ts, out);
796}
797
798static void show_ddir_status_terse(struct thread_stat *ts,
799 struct group_run_stats *rs, int ddir,
800 struct buf_output *out)
801{
802 unsigned long min, max;
803 unsigned long long bw, iops;
804 unsigned int *ovals = NULL;
805 double mean, dev;
806 unsigned int len, minv, maxv;
807 int i;
808
809 assert(ddir_rw(ddir));
810
811 iops = bw = 0;
812 if (ts->runtime[ddir]) {
813 uint64_t runt = ts->runtime[ddir];
814
815 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
816 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
817 }
818
819 log_buf(out, ";%llu;%llu;%llu;%llu",
820 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
821 (unsigned long long) ts->runtime[ddir]);
822
823 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
824 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
825 else
826 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
827
828 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
829 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
830 else
831 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
832
833 if (ts->clat_percentiles) {
834 len = calc_clat_percentiles(ts->io_u_plat[ddir],
835 ts->clat_stat[ddir].samples,
836 ts->percentile_list, &ovals, &maxv,
837 &minv);
838 } else
839 len = 0;
840
841 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
842 if (i >= len) {
843 log_buf(out, ";0%%=0");
844 continue;
845 }
846 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
847 }
848
849 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
850 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
851 else
852 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
853
854 if (ovals)
855 free(ovals);
856
857 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
858 double p_of_agg = 100.0;
859
860 if (rs->agg[ddir]) {
861 p_of_agg = mean * 100 / (double) rs->agg[ddir];
862 if (p_of_agg > 100.0)
863 p_of_agg = 100.0;
864 }
865
866 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
867 } else
868 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
869}
870
871static void add_ddir_status_json(struct thread_stat *ts,
872 struct group_run_stats *rs, int ddir, struct json_object *parent)
873{
874 unsigned long min, max;
875 unsigned long long bw;
876 unsigned int *ovals = NULL;
877 double mean, dev, iops;
878 unsigned int len, minv, maxv;
879 int i;
880 const char *ddirname[] = {"read", "write", "trim"};
881 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
882 char buf[120];
883 double p_of_agg = 100.0;
884
885 assert(ddir_rw(ddir));
886
887 if (ts->unified_rw_rep && ddir != DDIR_READ)
888 return;
889
890 dir_object = json_create_object();
891 json_object_add_value_object(parent,
892 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
893
894 bw = 0;
895 iops = 0.0;
896 if (ts->runtime[ddir]) {
897 uint64_t runt = ts->runtime[ddir];
898
899 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
900 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
901 }
902
903 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
904 json_object_add_value_int(dir_object, "bw", bw);
905 json_object_add_value_float(dir_object, "iops", iops);
906 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
907 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
908 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
909 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
910
911 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
912 min = max = 0;
913 mean = dev = 0.0;
914 }
915 tmp_object = json_create_object();
916 json_object_add_value_object(dir_object, "slat", tmp_object);
917 json_object_add_value_int(tmp_object, "min", min);
918 json_object_add_value_int(tmp_object, "max", max);
919 json_object_add_value_float(tmp_object, "mean", mean);
920 json_object_add_value_float(tmp_object, "stddev", dev);
921
922 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
923 min = max = 0;
924 mean = dev = 0.0;
925 }
926 tmp_object = json_create_object();
927 json_object_add_value_object(dir_object, "clat", tmp_object);
928 json_object_add_value_int(tmp_object, "min", min);
929 json_object_add_value_int(tmp_object, "max", max);
930 json_object_add_value_float(tmp_object, "mean", mean);
931 json_object_add_value_float(tmp_object, "stddev", dev);
932
933 if (ts->clat_percentiles) {
934 len = calc_clat_percentiles(ts->io_u_plat[ddir],
935 ts->clat_stat[ddir].samples,
936 ts->percentile_list, &ovals, &maxv,
937 &minv);
938 } else
939 len = 0;
940
941 percentile_object = json_create_object();
942 json_object_add_value_object(tmp_object, "percentile", percentile_object);
943 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
944 if (i >= len) {
945 json_object_add_value_int(percentile_object, "0.00", 0);
946 continue;
947 }
948 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
949 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
950 }
951
952 if (output_format & FIO_OUTPUT_JSON_PLUS) {
953 clat_bins_object = json_create_object();
954 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
955 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
956 snprintf(buf, sizeof(buf), "%d", i);
957 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
958 }
959 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
960 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
961 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
962 }
963
964 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
965 min = max = 0;
966 mean = dev = 0.0;
967 }
968 tmp_object = json_create_object();
969 json_object_add_value_object(dir_object, "lat", tmp_object);
970 json_object_add_value_int(tmp_object, "min", min);
971 json_object_add_value_int(tmp_object, "max", max);
972 json_object_add_value_float(tmp_object, "mean", mean);
973 json_object_add_value_float(tmp_object, "stddev", dev);
974 if (ovals)
975 free(ovals);
976
977 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
978 if (rs->agg[ddir]) {
979 p_of_agg = mean * 100 / (double) rs->agg[ddir];
980 if (p_of_agg > 100.0)
981 p_of_agg = 100.0;
982 }
983 } else {
984 min = max = 0;
985 p_of_agg = mean = dev = 0.0;
986 }
987 json_object_add_value_int(dir_object, "bw_min", min);
988 json_object_add_value_int(dir_object, "bw_max", max);
989 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
990 json_object_add_value_float(dir_object, "bw_mean", mean);
991 json_object_add_value_float(dir_object, "bw_dev", dev);
992}
993
994static void show_thread_status_terse_v2(struct thread_stat *ts,
995 struct group_run_stats *rs,
996 struct buf_output *out)
997{
998 double io_u_dist[FIO_IO_U_MAP_NR];
999 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1000 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1001 double usr_cpu, sys_cpu;
1002 int i;
1003
1004 /* General Info */
1005 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1006 /* Log Read Status */
1007 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1008 /* Log Write Status */
1009 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1010 /* Log Trim Status */
1011 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1012
1013 /* CPU Usage */
1014 if (ts->total_run_time) {
1015 double runt = (double) ts->total_run_time;
1016
1017 usr_cpu = (double) ts->usr_time * 100 / runt;
1018 sys_cpu = (double) ts->sys_time * 100 / runt;
1019 } else {
1020 usr_cpu = 0;
1021 sys_cpu = 0;
1022 }
1023
1024 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1025 (unsigned long long) ts->ctx,
1026 (unsigned long long) ts->majf,
1027 (unsigned long long) ts->minf);
1028
1029 /* Calc % distribution of IO depths, usecond, msecond latency */
1030 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1031 stat_calc_lat_u(ts, io_u_lat_u);
1032 stat_calc_lat_m(ts, io_u_lat_m);
1033
1034 /* Only show fixed 7 I/O depth levels*/
1035 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1036 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1037 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1038
1039 /* Microsecond latency */
1040 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1041 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1042 /* Millisecond latency */
1043 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1044 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1045 /* Additional output if continue_on_error set - default off*/
1046 if (ts->continue_on_error)
1047 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1048 log_buf(out, "\n");
1049
1050 /* Additional output if description is set */
1051 if (strlen(ts->description))
1052 log_buf(out, ";%s", ts->description);
1053
1054 log_buf(out, "\n");
1055}
1056
1057static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1058 struct group_run_stats *rs, int ver,
1059 struct buf_output *out)
1060{
1061 double io_u_dist[FIO_IO_U_MAP_NR];
1062 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1063 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1064 double usr_cpu, sys_cpu;
1065 int i;
1066
1067 /* General Info */
1068 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1069 ts->name, ts->groupid, ts->error);
1070 /* Log Read Status */
1071 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1072 /* Log Write Status */
1073 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1074 /* Log Trim Status */
1075 if (ver == 4)
1076 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1077
1078 /* CPU Usage */
1079 if (ts->total_run_time) {
1080 double runt = (double) ts->total_run_time;
1081
1082 usr_cpu = (double) ts->usr_time * 100 / runt;
1083 sys_cpu = (double) ts->sys_time * 100 / runt;
1084 } else {
1085 usr_cpu = 0;
1086 sys_cpu = 0;
1087 }
1088
1089 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1090 (unsigned long long) ts->ctx,
1091 (unsigned long long) ts->majf,
1092 (unsigned long long) ts->minf);
1093
1094 /* Calc % distribution of IO depths, usecond, msecond latency */
1095 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1096 stat_calc_lat_u(ts, io_u_lat_u);
1097 stat_calc_lat_m(ts, io_u_lat_m);
1098
1099 /* Only show fixed 7 I/O depth levels*/
1100 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1101 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1102 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1103
1104 /* Microsecond latency */
1105 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1106 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1107 /* Millisecond latency */
1108 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1109 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1110
1111 /* disk util stats, if any */
1112 show_disk_util(1, NULL, out);
1113
1114 /* Additional output if continue_on_error set - default off*/
1115 if (ts->continue_on_error)
1116 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1117
1118 /* Additional output if description is set */
1119 if (strlen(ts->description))
1120 log_buf(out, ";%s", ts->description);
1121
1122 log_buf(out, "\n");
1123}
1124
1125static void json_add_job_opts(struct json_object *root, const char *name,
1126 struct flist_head *opt_list, bool num_jobs)
1127{
1128 struct json_object *dir_object;
1129 struct flist_head *entry;
1130 struct print_option *p;
1131
1132 if (flist_empty(opt_list))
1133 return;
1134
1135 dir_object = json_create_object();
1136 json_object_add_value_object(root, name, dir_object);
1137
1138 flist_for_each(entry, opt_list) {
1139 const char *pos = "";
1140
1141 p = flist_entry(entry, struct print_option, list);
1142 if (!num_jobs && !strcmp(p->name, "numjobs"))
1143 continue;
1144 if (p->value)
1145 pos = p->value;
1146 json_object_add_value_string(dir_object, p->name, pos);
1147 }
1148}
1149
1150static struct json_object *show_thread_status_json(struct thread_stat *ts,
1151 struct group_run_stats *rs,
1152 struct flist_head *opt_list)
1153{
1154 struct json_object *root, *tmp;
1155 struct jobs_eta *je;
1156 double io_u_dist[FIO_IO_U_MAP_NR];
1157 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1158 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1159 double usr_cpu, sys_cpu;
1160 int i;
1161 size_t size;
1162
1163 root = json_create_object();
1164 json_object_add_value_string(root, "jobname", ts->name);
1165 json_object_add_value_int(root, "groupid", ts->groupid);
1166 json_object_add_value_int(root, "error", ts->error);
1167
1168 /* ETA Info */
1169 je = get_jobs_eta(true, &size);
1170 if (je) {
1171 json_object_add_value_int(root, "eta", je->eta_sec);
1172 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1173 }
1174
1175 if (opt_list)
1176 json_add_job_opts(root, "job options", opt_list, true);
1177
1178 add_ddir_status_json(ts, rs, DDIR_READ, root);
1179 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1180 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1181
1182 /* CPU Usage */
1183 if (ts->total_run_time) {
1184 double runt = (double) ts->total_run_time;
1185
1186 usr_cpu = (double) ts->usr_time * 100 / runt;
1187 sys_cpu = (double) ts->sys_time * 100 / runt;
1188 } else {
1189 usr_cpu = 0;
1190 sys_cpu = 0;
1191 }
1192 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1193 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1194 json_object_add_value_int(root, "ctx", ts->ctx);
1195 json_object_add_value_int(root, "majf", ts->majf);
1196 json_object_add_value_int(root, "minf", ts->minf);
1197
1198
1199 /* Calc % distribution of IO depths, usecond, msecond latency */
1200 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1201 stat_calc_lat_u(ts, io_u_lat_u);
1202 stat_calc_lat_m(ts, io_u_lat_m);
1203
1204 tmp = json_create_object();
1205 json_object_add_value_object(root, "iodepth_level", tmp);
1206 /* Only show fixed 7 I/O depth levels*/
1207 for (i = 0; i < 7; i++) {
1208 char name[20];
1209 if (i < 6)
1210 snprintf(name, 20, "%d", 1 << i);
1211 else
1212 snprintf(name, 20, ">=%d", 1 << i);
1213 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1214 }
1215
1216 tmp = json_create_object();
1217 json_object_add_value_object(root, "latency_us", tmp);
1218 /* Microsecond latency */
1219 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1220 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1221 "250", "500", "750", "1000", };
1222 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1223 }
1224 /* Millisecond latency */
1225 tmp = json_create_object();
1226 json_object_add_value_object(root, "latency_ms", tmp);
1227 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1228 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1229 "250", "500", "750", "1000", "2000",
1230 ">=2000", };
1231 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1232 }
1233
1234 /* Additional output if continue_on_error set - default off*/
1235 if (ts->continue_on_error) {
1236 json_object_add_value_int(root, "total_err", ts->total_err_count);
1237 json_object_add_value_int(root, "first_error", ts->first_error);
1238 }
1239
1240 if (ts->latency_depth) {
1241 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1242 json_object_add_value_int(root, "latency_target", ts->latency_target);
1243 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1244 json_object_add_value_int(root, "latency_window", ts->latency_window);
1245 }
1246
1247 /* Additional output if description is set */
1248 if (strlen(ts->description))
1249 json_object_add_value_string(root, "desc", ts->description);
1250
1251 if (ts->nr_block_infos) {
1252 /* Block error histogram and types */
1253 int len;
1254 unsigned int *percentiles = NULL;
1255 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1256
1257 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1258 ts->percentile_list,
1259 &percentiles, block_state_counts);
1260
1261 if (len) {
1262 struct json_object *block, *percentile_object, *states;
1263 int state;
1264 block = json_create_object();
1265 json_object_add_value_object(root, "block", block);
1266
1267 percentile_object = json_create_object();
1268 json_object_add_value_object(block, "percentiles",
1269 percentile_object);
1270 for (i = 0; i < len; i++) {
1271 char buf[20];
1272 snprintf(buf, sizeof(buf), "%f",
1273 ts->percentile_list[i].u.f);
1274 json_object_add_value_int(percentile_object,
1275 (const char *)buf,
1276 percentiles[i]);
1277 }
1278
1279 states = json_create_object();
1280 json_object_add_value_object(block, "states", states);
1281 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1282 json_object_add_value_int(states,
1283 block_state_names[state],
1284 block_state_counts[state]);
1285 }
1286 free(percentiles);
1287 }
1288 }
1289
1290 if (ts->ss_dur) {
1291 struct json_object *data;
1292 struct json_array *iops, *bw;
1293 int i, j, k;
1294 char ss_buf[64];
1295
1296 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1297 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1298 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1299 (float) ts->ss_limit.u.f,
1300 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1301
1302 tmp = json_create_object();
1303 json_object_add_value_object(root, "steadystate", tmp);
1304 json_object_add_value_string(tmp, "ss", ss_buf);
1305 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1306 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1307
1308 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1309 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1310 json_object_add_value_string(tmp, "criterion", ss_buf);
1311 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1312 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1313
1314 data = json_create_object();
1315 json_object_add_value_object(tmp, "data", data);
1316 bw = json_create_array();
1317 iops = json_create_array();
1318
1319 /*
1320 ** if ss was attained or the buffer is not full,
1321 ** ss->head points to the first element in the list.
1322 ** otherwise it actually points to the second element
1323 ** in the list
1324 */
1325 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1326 j = ts->ss_head;
1327 else
1328 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1329 for (i = 0; i < ts->ss_dur; i++) {
1330 k = (j + i) % ts->ss_dur;
1331 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1332 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1333 }
1334 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1335 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1336 json_object_add_value_array(data, "iops", iops);
1337 json_object_add_value_array(data, "bw", bw);
1338 }
1339
1340 return root;
1341}
1342
1343static void show_thread_status_terse(struct thread_stat *ts,
1344 struct group_run_stats *rs,
1345 struct buf_output *out)
1346{
1347 if (terse_version == 2)
1348 show_thread_status_terse_v2(ts, rs, out);
1349 else if (terse_version == 3 || terse_version == 4)
1350 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1351 else
1352 log_err("fio: bad terse version!? %d\n", terse_version);
1353}
1354
1355struct json_object *show_thread_status(struct thread_stat *ts,
1356 struct group_run_stats *rs,
1357 struct flist_head *opt_list,
1358 struct buf_output *out)
1359{
1360 struct json_object *ret = NULL;
1361
1362 if (output_format & FIO_OUTPUT_TERSE)
1363 show_thread_status_terse(ts, rs, out);
1364 if (output_format & FIO_OUTPUT_JSON)
1365 ret = show_thread_status_json(ts, rs, opt_list);
1366 if (output_format & FIO_OUTPUT_NORMAL)
1367 show_thread_status_normal(ts, rs, out);
1368
1369 return ret;
1370}
1371
1372static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1373{
1374 double mean, S;
1375
1376 if (src->samples == 0)
1377 return;
1378
1379 dst->min_val = min(dst->min_val, src->min_val);
1380 dst->max_val = max(dst->max_val, src->max_val);
1381
1382 /*
1383 * Compute new mean and S after the merge
1384 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1385 * #Parallel_algorithm>
1386 */
1387 if (first) {
1388 mean = src->mean.u.f;
1389 S = src->S.u.f;
1390 } else {
1391 double delta = src->mean.u.f - dst->mean.u.f;
1392
1393 mean = ((src->mean.u.f * src->samples) +
1394 (dst->mean.u.f * dst->samples)) /
1395 (dst->samples + src->samples);
1396
1397 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1398 (dst->samples * src->samples) /
1399 (dst->samples + src->samples);
1400 }
1401
1402 dst->samples += src->samples;
1403 dst->mean.u.f = mean;
1404 dst->S.u.f = S;
1405}
1406
1407void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1408{
1409 int i;
1410
1411 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1412 if (dst->max_run[i] < src->max_run[i])
1413 dst->max_run[i] = src->max_run[i];
1414 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1415 dst->min_run[i] = src->min_run[i];
1416 if (dst->max_bw[i] < src->max_bw[i])
1417 dst->max_bw[i] = src->max_bw[i];
1418 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1419 dst->min_bw[i] = src->min_bw[i];
1420
1421 dst->iobytes[i] += src->iobytes[i];
1422 dst->agg[i] += src->agg[i];
1423 }
1424
1425 if (!dst->kb_base)
1426 dst->kb_base = src->kb_base;
1427 if (!dst->unit_base)
1428 dst->unit_base = src->unit_base;
1429}
1430
1431void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1432 bool first)
1433{
1434 int l, k;
1435
1436 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1437 if (!dst->unified_rw_rep) {
1438 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1439 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1440 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1441 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1442
1443 dst->io_bytes[l] += src->io_bytes[l];
1444
1445 if (dst->runtime[l] < src->runtime[l])
1446 dst->runtime[l] = src->runtime[l];
1447 } else {
1448 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1449 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1450 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1451 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1452
1453 dst->io_bytes[0] += src->io_bytes[l];
1454
1455 if (dst->runtime[0] < src->runtime[l])
1456 dst->runtime[0] = src->runtime[l];
1457
1458 /*
1459 * We're summing to the same destination, so override
1460 * 'first' after the first iteration of the loop
1461 */
1462 first = false;
1463 }
1464 }
1465
1466 dst->usr_time += src->usr_time;
1467 dst->sys_time += src->sys_time;
1468 dst->ctx += src->ctx;
1469 dst->majf += src->majf;
1470 dst->minf += src->minf;
1471
1472 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1473 dst->io_u_map[k] += src->io_u_map[k];
1474 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1475 dst->io_u_submit[k] += src->io_u_submit[k];
1476 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1477 dst->io_u_complete[k] += src->io_u_complete[k];
1478 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1479 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1480 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1481 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1482
1483 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1484 if (!dst->unified_rw_rep) {
1485 dst->total_io_u[k] += src->total_io_u[k];
1486 dst->short_io_u[k] += src->short_io_u[k];
1487 dst->drop_io_u[k] += src->drop_io_u[k];
1488 } else {
1489 dst->total_io_u[0] += src->total_io_u[k];
1490 dst->short_io_u[0] += src->short_io_u[k];
1491 dst->drop_io_u[0] += src->drop_io_u[k];
1492 }
1493 }
1494
1495 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1496 int m;
1497
1498 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1499 if (!dst->unified_rw_rep)
1500 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1501 else
1502 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1503 }
1504 }
1505
1506 dst->total_run_time += src->total_run_time;
1507 dst->total_submit += src->total_submit;
1508 dst->total_complete += src->total_complete;
1509}
1510
1511void init_group_run_stat(struct group_run_stats *gs)
1512{
1513 int i;
1514 memset(gs, 0, sizeof(*gs));
1515
1516 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1517 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1518}
1519
1520void init_thread_stat(struct thread_stat *ts)
1521{
1522 int j;
1523
1524 memset(ts, 0, sizeof(*ts));
1525
1526 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1527 ts->lat_stat[j].min_val = -1UL;
1528 ts->clat_stat[j].min_val = -1UL;
1529 ts->slat_stat[j].min_val = -1UL;
1530 ts->bw_stat[j].min_val = -1UL;
1531 }
1532 ts->groupid = -1;
1533}
1534
1535void __show_run_stats(void)
1536{
1537 struct group_run_stats *runstats, *rs;
1538 struct thread_data *td;
1539 struct thread_stat *threadstats, *ts;
1540 int i, j, k, nr_ts, last_ts, idx;
1541 int kb_base_warned = 0;
1542 int unit_base_warned = 0;
1543 struct json_object *root = NULL;
1544 struct json_array *array = NULL;
1545 struct buf_output output[FIO_OUTPUT_NR];
1546 struct flist_head **opt_lists;
1547
1548 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1549
1550 for (i = 0; i < groupid + 1; i++)
1551 init_group_run_stat(&runstats[i]);
1552
1553 /*
1554 * find out how many threads stats we need. if group reporting isn't
1555 * enabled, it's one-per-td.
1556 */
1557 nr_ts = 0;
1558 last_ts = -1;
1559 for_each_td(td, i) {
1560 if (!td->o.group_reporting) {
1561 nr_ts++;
1562 continue;
1563 }
1564 if (last_ts == td->groupid)
1565 continue;
1566
1567 last_ts = td->groupid;
1568 nr_ts++;
1569 }
1570
1571 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1572 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1573
1574 for (i = 0; i < nr_ts; i++) {
1575 init_thread_stat(&threadstats[i]);
1576 opt_lists[i] = NULL;
1577 }
1578
1579 j = 0;
1580 last_ts = -1;
1581 idx = 0;
1582 for_each_td(td, i) {
1583 if (idx && (!td->o.group_reporting ||
1584 (td->o.group_reporting && last_ts != td->groupid))) {
1585 idx = 0;
1586 j++;
1587 }
1588
1589 last_ts = td->groupid;
1590
1591 ts = &threadstats[j];
1592
1593 ts->clat_percentiles = td->o.clat_percentiles;
1594 ts->percentile_precision = td->o.percentile_precision;
1595 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1596 opt_lists[j] = &td->opt_list;
1597
1598 idx++;
1599 ts->members++;
1600
1601 if (ts->groupid == -1) {
1602 /*
1603 * These are per-group shared already
1604 */
1605 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1606 if (td->o.description)
1607 strncpy(ts->description, td->o.description,
1608 FIO_JOBDESC_SIZE - 1);
1609 else
1610 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1611
1612 /*
1613 * If multiple entries in this group, this is
1614 * the first member.
1615 */
1616 ts->thread_number = td->thread_number;
1617 ts->groupid = td->groupid;
1618
1619 /*
1620 * first pid in group, not very useful...
1621 */
1622 ts->pid = td->pid;
1623
1624 ts->kb_base = td->o.kb_base;
1625 ts->unit_base = td->o.unit_base;
1626 ts->unified_rw_rep = td->o.unified_rw_rep;
1627 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1628 log_info("fio: kb_base differs for jobs in group, using"
1629 " %u as the base\n", ts->kb_base);
1630 kb_base_warned = 1;
1631 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1632 log_info("fio: unit_base differs for jobs in group, using"
1633 " %u as the base\n", ts->unit_base);
1634 unit_base_warned = 1;
1635 }
1636
1637 ts->continue_on_error = td->o.continue_on_error;
1638 ts->total_err_count += td->total_err_count;
1639 ts->first_error = td->first_error;
1640 if (!ts->error) {
1641 if (!td->error && td->o.continue_on_error &&
1642 td->first_error) {
1643 ts->error = td->first_error;
1644 ts->verror[sizeof(ts->verror) - 1] = '\0';
1645 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1646 } else if (td->error) {
1647 ts->error = td->error;
1648 ts->verror[sizeof(ts->verror) - 1] = '\0';
1649 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1650 }
1651 }
1652
1653 ts->latency_depth = td->latency_qd;
1654 ts->latency_target = td->o.latency_target;
1655 ts->latency_percentile = td->o.latency_percentile;
1656 ts->latency_window = td->o.latency_window;
1657
1658 ts->nr_block_infos = td->ts.nr_block_infos;
1659 for (k = 0; k < ts->nr_block_infos; k++)
1660 ts->block_infos[k] = td->ts.block_infos[k];
1661
1662 sum_thread_stats(ts, &td->ts, idx == 1);
1663
1664 if (td->o.ss_dur) {
1665 ts->ss_state = td->ss.state;
1666 ts->ss_dur = td->ss.dur;
1667 ts->ss_head = td->ss.head;
1668 ts->ss_bw_data = td->ss.bw_data;
1669 ts->ss_iops_data = td->ss.iops_data;
1670 ts->ss_limit.u.f = td->ss.limit;
1671 ts->ss_slope.u.f = td->ss.slope;
1672 ts->ss_deviation.u.f = td->ss.deviation;
1673 ts->ss_criterion.u.f = td->ss.criterion;
1674 }
1675 else
1676 ts->ss_dur = ts->ss_state = 0;
1677 }
1678
1679 for (i = 0; i < nr_ts; i++) {
1680 unsigned long long bw;
1681
1682 ts = &threadstats[i];
1683 if (ts->groupid == -1)
1684 continue;
1685 rs = &runstats[ts->groupid];
1686 rs->kb_base = ts->kb_base;
1687 rs->unit_base = ts->unit_base;
1688 rs->unified_rw_rep += ts->unified_rw_rep;
1689
1690 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1691 if (!ts->runtime[j])
1692 continue;
1693 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1694 rs->min_run[j] = ts->runtime[j];
1695 if (ts->runtime[j] > rs->max_run[j])
1696 rs->max_run[j] = ts->runtime[j];
1697
1698 bw = 0;
1699 if (ts->runtime[j])
1700 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1701 if (bw < rs->min_bw[j])
1702 rs->min_bw[j] = bw;
1703 if (bw > rs->max_bw[j])
1704 rs->max_bw[j] = bw;
1705
1706 rs->iobytes[j] += ts->io_bytes[j];
1707 }
1708 }
1709
1710 for (i = 0; i < groupid + 1; i++) {
1711 int ddir;
1712
1713 rs = &runstats[i];
1714
1715 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1716 if (rs->max_run[ddir])
1717 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1718 rs->max_run[ddir];
1719 }
1720 }
1721
1722 for (i = 0; i < FIO_OUTPUT_NR; i++)
1723 buf_output_init(&output[i]);
1724
1725 /*
1726 * don't overwrite last signal output
1727 */
1728 if (output_format & FIO_OUTPUT_NORMAL)
1729 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1730 if (output_format & FIO_OUTPUT_JSON) {
1731 struct thread_data *global;
1732 char time_buf[32];
1733 struct timeval now;
1734 unsigned long long ms_since_epoch;
1735
1736 gettimeofday(&now, NULL);
1737 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1738 (unsigned long long)(now.tv_usec) / 1000;
1739
1740 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1741 sizeof(time_buf));
1742 if (time_buf[strlen(time_buf) - 1] == '\n')
1743 time_buf[strlen(time_buf) - 1] = '\0';
1744
1745 root = json_create_object();
1746 json_object_add_value_string(root, "fio version", fio_version_string);
1747 json_object_add_value_int(root, "timestamp", now.tv_sec);
1748 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1749 json_object_add_value_string(root, "time", time_buf);
1750 global = get_global_options();
1751 json_add_job_opts(root, "global options", &global->opt_list, false);
1752 array = json_create_array();
1753 json_object_add_value_array(root, "jobs", array);
1754 }
1755
1756 if (is_backend)
1757 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1758
1759 for (i = 0; i < nr_ts; i++) {
1760 ts = &threadstats[i];
1761 rs = &runstats[ts->groupid];
1762
1763 if (is_backend) {
1764 fio_server_send_job_options(opt_lists[i], i);
1765 fio_server_send_ts(ts, rs);
1766 } else {
1767 if (output_format & FIO_OUTPUT_TERSE)
1768 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1769 if (output_format & FIO_OUTPUT_JSON) {
1770 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1771 json_array_add_value_object(array, tmp);
1772 }
1773 if (output_format & FIO_OUTPUT_NORMAL)
1774 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1775 }
1776 }
1777 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1778 /* disk util stats, if any */
1779 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1780
1781 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1782
1783 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1784 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1785 json_free_object(root);
1786 }
1787
1788 for (i = 0; i < groupid + 1; i++) {
1789 rs = &runstats[i];
1790
1791 rs->groupid = i;
1792 if (is_backend)
1793 fio_server_send_gs(rs);
1794 else if (output_format & FIO_OUTPUT_NORMAL)
1795 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1796 }
1797
1798 if (is_backend)
1799 fio_server_send_du();
1800 else if (output_format & FIO_OUTPUT_NORMAL) {
1801 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1802 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1803 }
1804
1805 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1806 buf_output_flush(&output[i]);
1807 buf_output_free(&output[i]);
1808 }
1809
1810 log_info_flush();
1811 free(runstats);
1812 free(threadstats);
1813 free(opt_lists);
1814}
1815
1816void show_run_stats(void)
1817{
1818 fio_mutex_down(stat_mutex);
1819 __show_run_stats();
1820 fio_mutex_up(stat_mutex);
1821}
1822
1823void __show_running_run_stats(void)
1824{
1825 struct thread_data *td;
1826 unsigned long long *rt;
1827 struct timeval tv;
1828 int i;
1829
1830 fio_mutex_down(stat_mutex);
1831
1832 rt = malloc(thread_number * sizeof(unsigned long long));
1833 fio_gettime(&tv, NULL);
1834
1835 for_each_td(td, i) {
1836 td->update_rusage = 1;
1837 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1838 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1839 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1840 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1841
1842 rt[i] = mtime_since(&td->start, &tv);
1843 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1844 td->ts.runtime[DDIR_READ] += rt[i];
1845 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1846 td->ts.runtime[DDIR_WRITE] += rt[i];
1847 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1848 td->ts.runtime[DDIR_TRIM] += rt[i];
1849 }
1850
1851 for_each_td(td, i) {
1852 if (td->runstate >= TD_EXITED)
1853 continue;
1854 if (td->rusage_sem) {
1855 td->update_rusage = 1;
1856 fio_mutex_down(td->rusage_sem);
1857 }
1858 td->update_rusage = 0;
1859 }
1860
1861 __show_run_stats();
1862
1863 for_each_td(td, i) {
1864 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1865 td->ts.runtime[DDIR_READ] -= rt[i];
1866 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1867 td->ts.runtime[DDIR_WRITE] -= rt[i];
1868 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1869 td->ts.runtime[DDIR_TRIM] -= rt[i];
1870 }
1871
1872 free(rt);
1873 fio_mutex_up(stat_mutex);
1874}
1875
1876static int status_interval_init;
1877static struct timeval status_time;
1878static int status_file_disabled;
1879
1880#define FIO_STATUS_FILE "fio-dump-status"
1881
1882static int check_status_file(void)
1883{
1884 struct stat sb;
1885 const char *temp_dir;
1886 char fio_status_file_path[PATH_MAX];
1887
1888 if (status_file_disabled)
1889 return 0;
1890
1891 temp_dir = getenv("TMPDIR");
1892 if (temp_dir == NULL) {
1893 temp_dir = getenv("TEMP");
1894 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1895 temp_dir = NULL;
1896 }
1897 if (temp_dir == NULL)
1898 temp_dir = "/tmp";
1899
1900 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1901
1902 if (stat(fio_status_file_path, &sb))
1903 return 0;
1904
1905 if (unlink(fio_status_file_path) < 0) {
1906 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1907 strerror(errno));
1908 log_err("fio: disabling status file updates\n");
1909 status_file_disabled = 1;
1910 }
1911
1912 return 1;
1913}
1914
1915void check_for_running_stats(void)
1916{
1917 if (status_interval) {
1918 if (!status_interval_init) {
1919 fio_gettime(&status_time, NULL);
1920 status_interval_init = 1;
1921 } else if (mtime_since_now(&status_time) >= status_interval) {
1922 show_running_run_stats();
1923 fio_gettime(&status_time, NULL);
1924 return;
1925 }
1926 }
1927 if (check_status_file()) {
1928 show_running_run_stats();
1929 return;
1930 }
1931}
1932
1933static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1934{
1935 double val = data;
1936 double delta;
1937
1938 if (data > is->max_val)
1939 is->max_val = data;
1940 if (data < is->min_val)
1941 is->min_val = data;
1942
1943 delta = val - is->mean.u.f;
1944 if (delta) {
1945 is->mean.u.f += delta / (is->samples + 1.0);
1946 is->S.u.f += delta * (val - is->mean.u.f);
1947 }
1948
1949 is->samples++;
1950}
1951
1952/*
1953 * Return a struct io_logs, which is added to the tail of the log
1954 * list for 'iolog'.
1955 */
1956static struct io_logs *get_new_log(struct io_log *iolog)
1957{
1958 size_t new_size, new_samples;
1959 struct io_logs *cur_log;
1960
1961 /*
1962 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1963 * forever
1964 */
1965 if (!iolog->cur_log_max)
1966 new_samples = DEF_LOG_ENTRIES;
1967 else {
1968 new_samples = iolog->cur_log_max * 2;
1969 if (new_samples > MAX_LOG_ENTRIES)
1970 new_samples = MAX_LOG_ENTRIES;
1971 }
1972
1973 new_size = new_samples * log_entry_sz(iolog);
1974
1975 cur_log = smalloc(sizeof(*cur_log));
1976 if (cur_log) {
1977 INIT_FLIST_HEAD(&cur_log->list);
1978 cur_log->log = malloc(new_size);
1979 if (cur_log->log) {
1980 cur_log->nr_samples = 0;
1981 cur_log->max_samples = new_samples;
1982 flist_add_tail(&cur_log->list, &iolog->io_logs);
1983 iolog->cur_log_max = new_samples;
1984 return cur_log;
1985 }
1986 sfree(cur_log);
1987 }
1988
1989 return NULL;
1990}
1991
1992/*
1993 * Add and return a new log chunk, or return current log if big enough
1994 */
1995static struct io_logs *regrow_log(struct io_log *iolog)
1996{
1997 struct io_logs *cur_log;
1998 int i;
1999
2000 if (!iolog || iolog->disabled)
2001 goto disable;
2002
2003 cur_log = iolog_cur_log(iolog);
2004 if (!cur_log) {
2005 cur_log = get_new_log(iolog);
2006 if (!cur_log)
2007 return NULL;
2008 }
2009
2010 if (cur_log->nr_samples < cur_log->max_samples)
2011 return cur_log;
2012
2013 /*
2014 * No room for a new sample. If we're compressing on the fly, flush
2015 * out the current chunk
2016 */
2017 if (iolog->log_gz) {
2018 if (iolog_cur_flush(iolog, cur_log)) {
2019 log_err("fio: failed flushing iolog! Will stop logging.\n");
2020 return NULL;
2021 }
2022 }
2023
2024 /*
2025 * Get a new log array, and add to our list
2026 */
2027 cur_log = get_new_log(iolog);
2028 if (!cur_log) {
2029 log_err("fio: failed extending iolog! Will stop logging.\n");
2030 return NULL;
2031 }
2032
2033 if (!iolog->pending || !iolog->pending->nr_samples)
2034 return cur_log;
2035
2036 /*
2037 * Flush pending items to new log
2038 */
2039 for (i = 0; i < iolog->pending->nr_samples; i++) {
2040 struct io_sample *src, *dst;
2041
2042 src = get_sample(iolog, iolog->pending, i);
2043 dst = get_sample(iolog, cur_log, i);
2044 memcpy(dst, src, log_entry_sz(iolog));
2045 }
2046 cur_log->nr_samples = iolog->pending->nr_samples;
2047
2048 iolog->pending->nr_samples = 0;
2049 return cur_log;
2050disable:
2051 if (iolog)
2052 iolog->disabled = true;
2053 return NULL;
2054}
2055
2056void regrow_logs(struct thread_data *td)
2057{
2058 regrow_log(td->slat_log);
2059 regrow_log(td->clat_log);
2060 regrow_log(td->clat_hist_log);
2061 regrow_log(td->lat_log);
2062 regrow_log(td->bw_log);
2063 regrow_log(td->iops_log);
2064 td->flags &= ~TD_F_REGROW_LOGS;
2065}
2066
2067static struct io_logs *get_cur_log(struct io_log *iolog)
2068{
2069 struct io_logs *cur_log;
2070
2071 cur_log = iolog_cur_log(iolog);
2072 if (!cur_log) {
2073 cur_log = get_new_log(iolog);
2074 if (!cur_log)
2075 return NULL;
2076 }
2077
2078 if (cur_log->nr_samples < cur_log->max_samples)
2079 return cur_log;
2080
2081 /*
2082 * Out of space. If we're in IO offload mode, or we're not doing
2083 * per unit logging (hence logging happens outside of the IO thread
2084 * as well), add a new log chunk inline. If we're doing inline
2085 * submissions, flag 'td' as needing a log regrow and we'll take
2086 * care of it on the submission side.
2087 */
2088 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2089 !per_unit_log(iolog))
2090 return regrow_log(iolog);
2091
2092 iolog->td->flags |= TD_F_REGROW_LOGS;
2093 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2094 return iolog->pending;
2095}
2096
2097static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2098 enum fio_ddir ddir, unsigned int bs,
2099 unsigned long t, uint64_t offset)
2100{
2101 struct io_logs *cur_log;
2102
2103 if (iolog->disabled)
2104 return;
2105 if (flist_empty(&iolog->io_logs))
2106 iolog->avg_last = t;
2107
2108 cur_log = get_cur_log(iolog);
2109 if (cur_log) {
2110 struct io_sample *s;
2111
2112 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2113
2114 s->data = data;
2115 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2116 io_sample_set_ddir(iolog, s, ddir);
2117 s->bs = bs;
2118
2119 if (iolog->log_offset) {
2120 struct io_sample_offset *so = (void *) s;
2121
2122 so->offset = offset;
2123 }
2124
2125 cur_log->nr_samples++;
2126 return;
2127 }
2128
2129 iolog->disabled = true;
2130}
2131
2132static inline void reset_io_stat(struct io_stat *ios)
2133{
2134 ios->max_val = ios->min_val = ios->samples = 0;
2135 ios->mean.u.f = ios->S.u.f = 0;
2136}
2137
2138void reset_io_stats(struct thread_data *td)
2139{
2140 struct thread_stat *ts = &td->ts;
2141 int i, j;
2142
2143 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2144 reset_io_stat(&ts->clat_stat[i]);
2145 reset_io_stat(&ts->slat_stat[i]);
2146 reset_io_stat(&ts->lat_stat[i]);
2147 reset_io_stat(&ts->bw_stat[i]);
2148 reset_io_stat(&ts->iops_stat[i]);
2149
2150 ts->io_bytes[i] = 0;
2151 ts->runtime[i] = 0;
2152
2153 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2154 ts->io_u_plat[i][j] = 0;
2155 }
2156
2157 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2158 ts->io_u_map[i] = 0;
2159 ts->io_u_submit[i] = 0;
2160 ts->io_u_complete[i] = 0;
2161 ts->io_u_lat_u[i] = 0;
2162 ts->io_u_lat_m[i] = 0;
2163 ts->total_submit = 0;
2164 ts->total_complete = 0;
2165 }
2166
2167 for (i = 0; i < 3; i++) {
2168 ts->total_io_u[i] = 0;
2169 ts->short_io_u[i] = 0;
2170 ts->drop_io_u[i] = 0;
2171 }
2172}
2173
2174static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2175 unsigned long elapsed, bool log_max)
2176{
2177 /*
2178 * Note an entry in the log. Use the mean from the logged samples,
2179 * making sure to properly round up. Only write a log entry if we
2180 * had actual samples done.
2181 */
2182 if (iolog->avg_window[ddir].samples) {
2183 union io_sample_data data;
2184
2185 if (log_max)
2186 data.val = iolog->avg_window[ddir].max_val;
2187 else
2188 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2189
2190 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2191 }
2192
2193 reset_io_stat(&iolog->avg_window[ddir]);
2194}
2195
2196static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2197 bool log_max)
2198{
2199 int ddir;
2200
2201 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2202 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2203}
2204
2205static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2206 union io_sample_data data, enum fio_ddir ddir,
2207 unsigned int bs, uint64_t offset)
2208{
2209 unsigned long elapsed, this_window;
2210
2211 if (!ddir_rw(ddir))
2212 return 0;
2213
2214 elapsed = mtime_since_now(&td->epoch);
2215
2216 /*
2217 * If no time averaging, just add the log sample.
2218 */
2219 if (!iolog->avg_msec) {
2220 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2221 return 0;
2222 }
2223
2224 /*
2225 * Add the sample. If the time period has passed, then
2226 * add that entry to the log and clear.
2227 */
2228 add_stat_sample(&iolog->avg_window[ddir], data.val);
2229
2230 /*
2231 * If period hasn't passed, adding the above sample is all we
2232 * need to do.
2233 */
2234 this_window = elapsed - iolog->avg_last;
2235 if (elapsed < iolog->avg_last)
2236 return iolog->avg_last - elapsed;
2237 else if (this_window < iolog->avg_msec) {
2238 int diff = iolog->avg_msec - this_window;
2239
2240 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2241 return diff;
2242 }
2243
2244 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2245
2246 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2247 return iolog->avg_msec;
2248}
2249
2250void finalize_logs(struct thread_data *td, bool unit_logs)
2251{
2252 unsigned long elapsed;
2253
2254 elapsed = mtime_since_now(&td->epoch);
2255
2256 if (td->clat_log && unit_logs)
2257 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2258 if (td->slat_log && unit_logs)
2259 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2260 if (td->lat_log && unit_logs)
2261 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2262 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2263 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2264 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2265 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2266}
2267
2268void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2269{
2270 struct io_log *iolog;
2271
2272 if (!ddir_rw(ddir))
2273 return;
2274
2275 iolog = agg_io_log[ddir];
2276 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2277}
2278
2279static void add_clat_percentile_sample(struct thread_stat *ts,
2280 unsigned long usec, enum fio_ddir ddir)
2281{
2282 unsigned int idx = plat_val_to_idx(usec);
2283 assert(idx < FIO_IO_U_PLAT_NR);
2284
2285 ts->io_u_plat[ddir][idx]++;
2286}
2287
2288void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2289 unsigned long usec, unsigned int bs, uint64_t offset)
2290{
2291 unsigned long elapsed, this_window;
2292 struct thread_stat *ts = &td->ts;
2293 struct io_log *iolog = td->clat_hist_log;
2294
2295 td_io_u_lock(td);
2296
2297 add_stat_sample(&ts->clat_stat[ddir], usec);
2298
2299 if (td->clat_log)
2300 add_log_sample(td, td->clat_log, sample_val(usec), ddir, bs,
2301 offset);
2302
2303 if (ts->clat_percentiles)
2304 add_clat_percentile_sample(ts, usec, ddir);
2305
2306 if (iolog && iolog->hist_msec) {
2307 struct io_hist *hw = &iolog->hist_window[ddir];
2308
2309 hw->samples++;
2310 elapsed = mtime_since_now(&td->epoch);
2311 if (!hw->hist_last)
2312 hw->hist_last = elapsed;
2313 this_window = elapsed - hw->hist_last;
2314
2315 if (this_window >= iolog->hist_msec) {
2316 unsigned int *io_u_plat;
2317 struct io_u_plat_entry *dst;
2318
2319 /*
2320 * Make a byte-for-byte copy of the latency histogram
2321 * stored in td->ts.io_u_plat[ddir], recording it in a
2322 * log sample. Note that the matching call to free() is
2323 * located in iolog.c after printing this sample to the
2324 * log file.
2325 */
2326 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2327 dst = malloc(sizeof(struct io_u_plat_entry));
2328 memcpy(&(dst->io_u_plat), io_u_plat,
2329 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2330 flist_add(&dst->list, &hw->list);
2331 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2332 elapsed, offset);
2333
2334 /*
2335 * Update the last time we recorded as being now, minus
2336 * any drift in time we encountered before actually
2337 * making the record.
2338 */
2339 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2340 hw->samples = 0;
2341 }
2342 }
2343
2344 td_io_u_unlock(td);
2345}
2346
2347void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2348 unsigned long usec, unsigned int bs, uint64_t offset)
2349{
2350 struct thread_stat *ts = &td->ts;
2351
2352 if (!ddir_rw(ddir))
2353 return;
2354
2355 td_io_u_lock(td);
2356
2357 add_stat_sample(&ts->slat_stat[ddir], usec);
2358
2359 if (td->slat_log)
2360 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2361
2362 td_io_u_unlock(td);
2363}
2364
2365void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2366 unsigned long usec, unsigned int bs, uint64_t offset)
2367{
2368 struct thread_stat *ts = &td->ts;
2369
2370 if (!ddir_rw(ddir))
2371 return;
2372
2373 td_io_u_lock(td);
2374
2375 add_stat_sample(&ts->lat_stat[ddir], usec);
2376
2377 if (td->lat_log)
2378 add_log_sample(td, td->lat_log, sample_val(usec), ddir, bs,
2379 offset);
2380
2381 td_io_u_unlock(td);
2382}
2383
2384void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2385 unsigned int bytes, unsigned long spent)
2386{
2387 struct thread_stat *ts = &td->ts;
2388 unsigned long rate;
2389
2390 if (spent)
2391 rate = bytes * 1000 / spent;
2392 else
2393 rate = 0;
2394
2395 td_io_u_lock(td);
2396
2397 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2398
2399 if (td->bw_log)
2400 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2401 bytes, io_u->offset);
2402
2403 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2404 td_io_u_unlock(td);
2405}
2406
2407static int add_bw_samples(struct thread_data *td, struct timeval *t)
2408{
2409 struct thread_stat *ts = &td->ts;
2410 unsigned long spent, rate;
2411 enum fio_ddir ddir;
2412 unsigned int next, next_log;
2413
2414 next_log = td->o.bw_avg_time;
2415
2416 spent = mtime_since(&td->bw_sample_time, t);
2417 if (spent < td->o.bw_avg_time &&
2418 td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2419 return td->o.bw_avg_time - spent;
2420
2421 td_io_u_lock(td);
2422
2423 /*
2424 * Compute both read and write rates for the interval.
2425 */
2426 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2427 uint64_t delta;
2428
2429 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2430 if (!delta)
2431 continue; /* No entries for interval */
2432
2433 if (spent)
2434 rate = delta * 1000 / spent / 1024; /* KiB/s */
2435 else
2436 rate = 0;
2437
2438 add_stat_sample(&ts->bw_stat[ddir], rate);
2439
2440 if (td->bw_log) {
2441 unsigned int bs = 0;
2442
2443 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2444 bs = td->o.min_bs[ddir];
2445
2446 next = add_log_sample(td, td->bw_log, sample_val(rate),
2447 ddir, bs, 0);
2448 next_log = min(next_log, next);
2449 }
2450
2451 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2452 }
2453
2454 timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2455
2456 td_io_u_unlock(td);
2457
2458 if (spent <= td->o.bw_avg_time)
2459 return min(next_log, td->o.bw_avg_time);
2460
2461 next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2462 return min(next, next_log);
2463}
2464
2465void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2466 unsigned int bytes)
2467{
2468 struct thread_stat *ts = &td->ts;
2469
2470 td_io_u_lock(td);
2471
2472 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2473
2474 if (td->iops_log)
2475 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2476 bytes, io_u->offset);
2477
2478 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2479 td_io_u_unlock(td);
2480}
2481
2482static int add_iops_samples(struct thread_data *td, struct timeval *t)
2483{
2484 struct thread_stat *ts = &td->ts;
2485 unsigned long spent, iops;
2486 enum fio_ddir ddir;
2487 unsigned int next, next_log;
2488
2489 next_log = td->o.iops_avg_time;
2490
2491 spent = mtime_since(&td->iops_sample_time, t);
2492 if (spent < td->o.iops_avg_time &&
2493 td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2494 return td->o.iops_avg_time - spent;
2495
2496 td_io_u_lock(td);
2497
2498 /*
2499 * Compute both read and write rates for the interval.
2500 */
2501 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2502 uint64_t delta;
2503
2504 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2505 if (!delta)
2506 continue; /* No entries for interval */
2507
2508 if (spent)
2509 iops = (delta * 1000) / spent;
2510 else
2511 iops = 0;
2512
2513 add_stat_sample(&ts->iops_stat[ddir], iops);
2514
2515 if (td->iops_log) {
2516 unsigned int bs = 0;
2517
2518 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2519 bs = td->o.min_bs[ddir];
2520
2521 next = add_log_sample(td, td->iops_log,
2522 sample_val(iops), ddir, bs, 0);
2523 next_log = min(next_log, next);
2524 }
2525
2526 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2527 }
2528
2529 timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2530
2531 td_io_u_unlock(td);
2532
2533 if (spent <= td->o.iops_avg_time)
2534 return min(next_log, td->o.iops_avg_time);
2535
2536 next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2537 return min(next, next_log);
2538}
2539
2540/*
2541 * Returns msecs to next event
2542 */
2543int calc_log_samples(void)
2544{
2545 struct thread_data *td;
2546 unsigned int next = ~0U, tmp;
2547 struct timeval now;
2548 int i;
2549
2550 fio_gettime(&now, NULL);
2551
2552 for_each_td(td, i) {
2553 if (in_ramp_time(td) ||
2554 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2555 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2556 continue;
2557 }
2558 if (td->bw_log && !per_unit_log(td->bw_log)) {
2559 tmp = add_bw_samples(td, &now);
2560 if (tmp < next)
2561 next = tmp;
2562 }
2563 if (td->iops_log && !per_unit_log(td->iops_log)) {
2564 tmp = add_iops_samples(td, &now);
2565 if (tmp < next)
2566 next = tmp;
2567 }
2568 }
2569
2570 return next == ~0U ? 0 : next;
2571}
2572
2573void stat_init(void)
2574{
2575 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2576}
2577
2578void stat_exit(void)
2579{
2580 /*
2581 * When we have the mutex, we know out-of-band access to it
2582 * have ended.
2583 */
2584 fio_mutex_down(stat_mutex);
2585 fio_mutex_remove(stat_mutex);
2586}
2587
2588/*
2589 * Called from signal handler. Wake up status thread.
2590 */
2591void show_running_run_stats(void)
2592{
2593 helper_do_stat();
2594}
2595
2596uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2597{
2598 /* Ignore io_u's which span multiple blocks--they will just get
2599 * inaccurate counts. */
2600 int idx = (io_u->offset - io_u->file->file_offset)
2601 / td->o.bs[DDIR_TRIM];
2602 uint32_t *info = &td->ts.block_infos[idx];
2603 assert(idx < td->ts.nr_block_infos);
2604 return info;
2605}