Optimize the code that copies strings
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18
19#define LOG_MSEC_SLACK 1
20
21struct fio_sem *stat_sem;
22
23void clear_rusage_stat(struct thread_data *td)
24{
25 struct thread_stat *ts = &td->ts;
26
27 fio_getrusage(&td->ru_start);
28 ts->usr_time = ts->sys_time = 0;
29 ts->ctx = 0;
30 ts->minf = ts->majf = 0;
31}
32
33void update_rusage_stat(struct thread_data *td)
34{
35 struct thread_stat *ts = &td->ts;
36
37 fio_getrusage(&td->ru_end);
38 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39 &td->ru_end.ru_utime);
40 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41 &td->ru_end.ru_stime);
42 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48}
49
50/*
51 * Given a latency, return the index of the corresponding bucket in
52 * the structure tracking percentiles.
53 *
54 * (1) find the group (and error bits) that the value (latency)
55 * belongs to by looking at its MSB. (2) find the bucket number in the
56 * group by looking at the index bits.
57 *
58 */
59static unsigned int plat_val_to_idx(unsigned long long val)
60{
61 unsigned int msb, error_bits, base, offset, idx;
62
63 /* Find MSB starting from bit 0 */
64 if (val == 0)
65 msb = 0;
66 else
67 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69 /*
70 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71 * all bits of the sample as index
72 */
73 if (msb <= FIO_IO_U_PLAT_BITS)
74 return val;
75
76 /* Compute the number of error bits to discard*/
77 error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79 /* Compute the number of buckets before the group */
80 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82 /*
83 * Discard the error bits and apply the mask to find the
84 * index for the buckets in the group
85 */
86 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88 /* Make sure the index does not exceed (array size - 1) */
89 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92 return idx;
93}
94
95/*
96 * Convert the given index of the bucket array to the value
97 * represented by the bucket
98 */
99static unsigned long long plat_idx_to_val(unsigned int idx)
100{
101 unsigned int error_bits;
102 unsigned long long k, base;
103
104 assert(idx < FIO_IO_U_PLAT_NR);
105
106 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107 * all bits of the sample as index */
108 if (idx < (FIO_IO_U_PLAT_VAL << 1))
109 return idx;
110
111 /* Find the group and compute the minimum value of that group */
112 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115 /* Find its bucket number of the group */
116 k = idx % FIO_IO_U_PLAT_VAL;
117
118 /* Return the mean of the range of the bucket */
119 return base + ((k + 0.5) * (1 << error_bits));
120}
121
122static int double_cmp(const void *a, const void *b)
123{
124 const fio_fp64_t fa = *(const fio_fp64_t *) a;
125 const fio_fp64_t fb = *(const fio_fp64_t *) b;
126 int cmp = 0;
127
128 if (fa.u.f > fb.u.f)
129 cmp = 1;
130 else if (fa.u.f < fb.u.f)
131 cmp = -1;
132
133 return cmp;
134}
135
136unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137 fio_fp64_t *plist, unsigned long long **output,
138 unsigned long long *maxv, unsigned long long *minv)
139{
140 unsigned long long sum = 0;
141 unsigned int len, i, j = 0;
142 unsigned long long *ovals = NULL;
143 bool is_last;
144
145 *minv = -1ULL;
146 *maxv = 0;
147
148 len = 0;
149 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
150 len++;
151
152 if (!len)
153 return 0;
154
155 /*
156 * Sort the percentile list. Note that it may already be sorted if
157 * we are using the default values, but since it's a short list this
158 * isn't a worry. Also note that this does not work for NaN values.
159 */
160 if (len > 1)
161 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
162
163 ovals = malloc(len * sizeof(*ovals));
164 if (!ovals)
165 return 0;
166
167 /*
168 * Calculate bucket values, note down max and min values
169 */
170 is_last = false;
171 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
172 sum += io_u_plat[i];
173 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
174 assert(plist[j].u.f <= 100.0);
175
176 ovals[j] = plat_idx_to_val(i);
177 if (ovals[j] < *minv)
178 *minv = ovals[j];
179 if (ovals[j] > *maxv)
180 *maxv = ovals[j];
181
182 is_last = (j == len - 1) != 0;
183 if (is_last)
184 break;
185
186 j++;
187 }
188 }
189
190 if (!is_last)
191 log_err("fio: error calculating latency percentiles\n");
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 const char *pre, struct buf_output *out)
203{
204 unsigned int divisor, len, i, j = 0;
205 unsigned long long minv, maxv;
206 unsigned long long *ovals;
207 int per_line, scale_down, time_width;
208 bool is_last;
209 char fmt[32];
210
211 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
212 if (!len || !ovals)
213 goto out;
214
215 /*
216 * We default to nsecs, but if the value range is such that we
217 * should scale down to usecs or msecs, do that.
218 */
219 if (minv > 2000000 && maxv > 99999999ULL) {
220 scale_down = 2;
221 divisor = 1000000;
222 log_buf(out, " %s percentiles (msec):\n |", pre);
223 } else if (minv > 2000 && maxv > 99999) {
224 scale_down = 1;
225 divisor = 1000;
226 log_buf(out, " %s percentiles (usec):\n |", pre);
227 } else {
228 scale_down = 0;
229 divisor = 1;
230 log_buf(out, " %s percentiles (nsec):\n |", pre);
231 }
232
233
234 time_width = max(5, (int) (log10(maxv / divisor) + 1));
235 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
236 precision, time_width);
237 /* fmt will be something like " %5.2fth=[%4llu]%c" */
238 per_line = (80 - 7) / (precision + 10 + time_width);
239
240 for (j = 0; j < len; j++) {
241 /* for formatting */
242 if (j != 0 && (j % per_line) == 0)
243 log_buf(out, " |");
244
245 /* end of the list */
246 is_last = (j == len - 1) != 0;
247
248 for (i = 0; i < scale_down; i++)
249 ovals[j] = (ovals[j] + 999) / 1000;
250
251 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
252
253 if (is_last)
254 break;
255
256 if ((j % per_line) == per_line - 1) /* for formatting */
257 log_buf(out, "\n");
258 }
259
260out:
261 if (ovals)
262 free(ovals);
263}
264
265bool calc_lat(struct io_stat *is, unsigned long long *min,
266 unsigned long long *max, double *mean, double *dev)
267{
268 double n = (double) is->samples;
269
270 if (n == 0)
271 return false;
272
273 *min = is->min_val;
274 *max = is->max_val;
275 *mean = is->mean.u.f;
276
277 if (n > 1.0)
278 *dev = sqrt(is->S.u.f / (n - 1.0));
279 else
280 *dev = 0;
281
282 return true;
283}
284
285void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286{
287 char *io, *agg, *min, *max;
288 char *ioalt, *aggalt, *minalt, *maxalt;
289 const char *str[] = { " READ", " WRITE" , " TRIM"};
290 int i;
291
292 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295 const int i2p = is_power_of_2(rs->kb_base);
296
297 if (!rs->max_run[i])
298 continue;
299
300 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
301 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
302 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
303 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309 rs->unified_rw_rep ? " MIXED" : str[i],
310 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311 (unsigned long long) rs->min_run[i],
312 (unsigned long long) rs->max_run[i]);
313
314 free(io);
315 free(agg);
316 free(min);
317 free(max);
318 free(ioalt);
319 free(aggalt);
320 free(minalt);
321 free(maxalt);
322 }
323}
324
325void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
326{
327 int i;
328
329 /*
330 * Do depth distribution calculations
331 */
332 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333 if (total) {
334 io_u_dist[i] = (double) map[i] / (double) total;
335 io_u_dist[i] *= 100.0;
336 if (io_u_dist[i] < 0.1 && map[i])
337 io_u_dist[i] = 0.1;
338 } else
339 io_u_dist[i] = 0.0;
340 }
341}
342
343static void stat_calc_lat(struct thread_stat *ts, double *dst,
344 uint64_t *src, int nr)
345{
346 unsigned long total = ddir_rw_sum(ts->total_io_u);
347 int i;
348
349 /*
350 * Do latency distribution calculations
351 */
352 for (i = 0; i < nr; i++) {
353 if (total) {
354 dst[i] = (double) src[i] / (double) total;
355 dst[i] *= 100.0;
356 if (dst[i] < 0.01 && src[i])
357 dst[i] = 0.01;
358 } else
359 dst[i] = 0.0;
360 }
361}
362
363/*
364 * To keep the terse format unaltered, add all of the ns latency
365 * buckets to the first us latency bucket
366 */
367static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368{
369 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370 int i;
371
372 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375 ntotal += ts->io_u_lat_n[i];
376
377 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378}
379
380void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381{
382 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383}
384
385void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386{
387 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388}
389
390void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391{
392 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393}
394
395static void display_lat(const char *name, unsigned long long min,
396 unsigned long long max, double mean, double dev,
397 struct buf_output *out)
398{
399 const char *base = "(nsec)";
400 char *minp, *maxp;
401
402 if (nsec_to_msec(&min, &max, &mean, &dev))
403 base = "(msec)";
404 else if (nsec_to_usec(&min, &max, &mean, &dev))
405 base = "(usec)";
406
407 minp = num2str(min, 6, 1, 0, N2S_NONE);
408 maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
411 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413 free(minp);
414 free(maxp);
415}
416
417static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418 int ddir, struct buf_output *out)
419{
420 unsigned long runt;
421 unsigned long long min, max, bw, iops;
422 double mean, dev;
423 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
424 int i2p;
425
426 if (ddir_sync(ddir)) {
427 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
429 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
430 show_clat_percentiles(ts->io_u_sync_plat,
431 ts->sync_stat.samples,
432 ts->percentile_list,
433 ts->percentile_precision,
434 io_ddir_name(ddir), out);
435 }
436 return;
437 }
438
439 assert(ddir_rw(ddir));
440
441 if (!ts->runtime[ddir])
442 return;
443
444 i2p = is_power_of_2(rs->kb_base);
445 runt = ts->runtime[ddir];
446
447 bw = (1000 * ts->io_bytes[ddir]) / runt;
448 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454 if (ddir == DDIR_WRITE)
455 post_st = zbd_write_status(ts);
456 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
457 uint64_t total;
458 double hit;
459
460 total = ts->cachehit + ts->cachemiss;
461 hit = (double) ts->cachehit / (double) total;
462 hit *= 100.0;
463 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
464 post_st = NULL;
465 }
466
467 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
468 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
469 iops_p, bw_p, bw_p_alt, io_p,
470 (unsigned long long) ts->runtime[ddir],
471 post_st ? : "");
472
473 free(post_st);
474 free(io_p);
475 free(bw_p);
476 free(bw_p_alt);
477 free(iops_p);
478
479 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
480 display_lat("slat", min, max, mean, dev, out);
481 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
482 display_lat("clat", min, max, mean, dev, out);
483 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
484 display_lat(" lat", min, max, mean, dev, out);
485
486 if (ts->clat_percentiles || ts->lat_percentiles) {
487 const char *name = ts->clat_percentiles ? "clat" : " lat";
488 uint64_t samples;
489
490 if (ts->clat_percentiles)
491 samples = ts->clat_stat[ddir].samples;
492 else
493 samples = ts->lat_stat[ddir].samples;
494
495 show_clat_percentiles(ts->io_u_plat[ddir],
496 samples,
497 ts->percentile_list,
498 ts->percentile_precision, name, out);
499 }
500 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
501 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
502 const char *bw_str;
503
504 if ((rs->unit_base == 1) && i2p)
505 bw_str = "Kibit";
506 else if (rs->unit_base == 1)
507 bw_str = "kbit";
508 else if (i2p)
509 bw_str = "KiB";
510 else
511 bw_str = "kB";
512
513 if (rs->agg[ddir]) {
514 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
515 if (p_of_agg > 100.0)
516 p_of_agg = 100.0;
517 }
518
519 if (rs->unit_base == 1) {
520 min *= 8.0;
521 max *= 8.0;
522 mean *= 8.0;
523 dev *= 8.0;
524 }
525
526 if (mean > fkb_base * fkb_base) {
527 min /= fkb_base;
528 max /= fkb_base;
529 mean /= fkb_base;
530 dev /= fkb_base;
531 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
532 }
533
534 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
535 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
536 bw_str, min, max, p_of_agg, mean, dev,
537 (&ts->bw_stat[ddir])->samples);
538 }
539 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
540 log_buf(out, " iops : min=%5llu, max=%5llu, "
541 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
542 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
543 }
544}
545
546static bool show_lat(double *io_u_lat, int nr, const char **ranges,
547 const char *msg, struct buf_output *out)
548{
549 bool new_line = true, shown = false;
550 int i, line = 0;
551
552 for (i = 0; i < nr; i++) {
553 if (io_u_lat[i] <= 0.0)
554 continue;
555 shown = true;
556 if (new_line) {
557 if (line)
558 log_buf(out, "\n");
559 log_buf(out, " lat (%s) : ", msg);
560 new_line = false;
561 line = 0;
562 }
563 if (line)
564 log_buf(out, ", ");
565 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
566 line++;
567 if (line == 5)
568 new_line = true;
569 }
570
571 if (shown)
572 log_buf(out, "\n");
573
574 return true;
575}
576
577static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
578{
579 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
580 "250=", "500=", "750=", "1000=", };
581
582 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
583}
584
585static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
586{
587 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
588 "250=", "500=", "750=", "1000=", };
589
590 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
591}
592
593static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
594{
595 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
596 "250=", "500=", "750=", "1000=", "2000=",
597 ">=2000=", };
598
599 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
600}
601
602static void show_latencies(struct thread_stat *ts, struct buf_output *out)
603{
604 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
605 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
606 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
607
608 stat_calc_lat_n(ts, io_u_lat_n);
609 stat_calc_lat_u(ts, io_u_lat_u);
610 stat_calc_lat_m(ts, io_u_lat_m);
611
612 show_lat_n(io_u_lat_n, out);
613 show_lat_u(io_u_lat_u, out);
614 show_lat_m(io_u_lat_m, out);
615}
616
617static int block_state_category(int block_state)
618{
619 switch (block_state) {
620 case BLOCK_STATE_UNINIT:
621 return 0;
622 case BLOCK_STATE_TRIMMED:
623 case BLOCK_STATE_WRITTEN:
624 return 1;
625 case BLOCK_STATE_WRITE_FAILURE:
626 case BLOCK_STATE_TRIM_FAILURE:
627 return 2;
628 default:
629 /* Silence compile warning on some BSDs and have a return */
630 assert(0);
631 return -1;
632 }
633}
634
635static int compare_block_infos(const void *bs1, const void *bs2)
636{
637 uint64_t block1 = *(uint64_t *)bs1;
638 uint64_t block2 = *(uint64_t *)bs2;
639 int state1 = BLOCK_INFO_STATE(block1);
640 int state2 = BLOCK_INFO_STATE(block2);
641 int bscat1 = block_state_category(state1);
642 int bscat2 = block_state_category(state2);
643 int cycles1 = BLOCK_INFO_TRIMS(block1);
644 int cycles2 = BLOCK_INFO_TRIMS(block2);
645
646 if (bscat1 < bscat2)
647 return -1;
648 if (bscat1 > bscat2)
649 return 1;
650
651 if (cycles1 < cycles2)
652 return -1;
653 if (cycles1 > cycles2)
654 return 1;
655
656 if (state1 < state2)
657 return -1;
658 if (state1 > state2)
659 return 1;
660
661 assert(block1 == block2);
662 return 0;
663}
664
665static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
666 fio_fp64_t *plist, unsigned int **percentiles,
667 unsigned int *types)
668{
669 int len = 0;
670 int i, nr_uninit;
671
672 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
673
674 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
675 len++;
676
677 if (!len)
678 return 0;
679
680 /*
681 * Sort the percentile list. Note that it may already be sorted if
682 * we are using the default values, but since it's a short list this
683 * isn't a worry. Also note that this does not work for NaN values.
684 */
685 if (len > 1)
686 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
687
688 /* Start only after the uninit entries end */
689 for (nr_uninit = 0;
690 nr_uninit < nr_block_infos
691 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
692 nr_uninit ++)
693 ;
694
695 if (nr_uninit == nr_block_infos)
696 return 0;
697
698 *percentiles = calloc(len, sizeof(**percentiles));
699
700 for (i = 0; i < len; i++) {
701 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
702 + nr_uninit;
703 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
704 }
705
706 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
707 for (i = 0; i < nr_block_infos; i++)
708 types[BLOCK_INFO_STATE(block_infos[i])]++;
709
710 return len;
711}
712
713static const char *block_state_names[] = {
714 [BLOCK_STATE_UNINIT] = "unwritten",
715 [BLOCK_STATE_TRIMMED] = "trimmed",
716 [BLOCK_STATE_WRITTEN] = "written",
717 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
718 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
719};
720
721static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
722 fio_fp64_t *plist, struct buf_output *out)
723{
724 int len, pos, i;
725 unsigned int *percentiles = NULL;
726 unsigned int block_state_counts[BLOCK_STATE_COUNT];
727
728 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
729 &percentiles, block_state_counts);
730
731 log_buf(out, " block lifetime percentiles :\n |");
732 pos = 0;
733 for (i = 0; i < len; i++) {
734 uint32_t block_info = percentiles[i];
735#define LINE_LENGTH 75
736 char str[LINE_LENGTH];
737 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
738 plist[i].u.f, block_info,
739 i == len - 1 ? '\n' : ',');
740 assert(strln < LINE_LENGTH);
741 if (pos + strln > LINE_LENGTH) {
742 pos = 0;
743 log_buf(out, "\n |");
744 }
745 log_buf(out, "%s", str);
746 pos += strln;
747#undef LINE_LENGTH
748 }
749 if (percentiles)
750 free(percentiles);
751
752 log_buf(out, " states :");
753 for (i = 0; i < BLOCK_STATE_COUNT; i++)
754 log_buf(out, " %s=%u%c",
755 block_state_names[i], block_state_counts[i],
756 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
757}
758
759static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
760{
761 char *p1, *p1alt, *p2;
762 unsigned long long bw_mean, iops_mean;
763 const int i2p = is_power_of_2(ts->kb_base);
764
765 if (!ts->ss_dur)
766 return;
767
768 bw_mean = steadystate_bw_mean(ts);
769 iops_mean = steadystate_iops_mean(ts);
770
771 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
772 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
773 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
774
775 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
776 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
777 p1, p1alt, p2,
778 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
779 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
780 ts->ss_criterion.u.f,
781 ts->ss_state & FIO_SS_PCT ? "%" : "");
782
783 free(p1);
784 free(p1alt);
785 free(p2);
786}
787
788static void show_thread_status_normal(struct thread_stat *ts,
789 struct group_run_stats *rs,
790 struct buf_output *out)
791{
792 double usr_cpu, sys_cpu;
793 unsigned long runtime;
794 double io_u_dist[FIO_IO_U_MAP_NR];
795 time_t time_p;
796 char time_buf[32];
797
798 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
799 return;
800
801 memset(time_buf, 0, sizeof(time_buf));
802
803 time(&time_p);
804 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
805
806 if (!ts->error) {
807 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
808 ts->name, ts->groupid, ts->members,
809 ts->error, (int) ts->pid, time_buf);
810 } else {
811 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
812 ts->name, ts->groupid, ts->members,
813 ts->error, ts->verror, (int) ts->pid,
814 time_buf);
815 }
816
817 if (strlen(ts->description))
818 log_buf(out, " Description : [%s]\n", ts->description);
819
820 if (ts->io_bytes[DDIR_READ])
821 show_ddir_status(rs, ts, DDIR_READ, out);
822 if (ts->io_bytes[DDIR_WRITE])
823 show_ddir_status(rs, ts, DDIR_WRITE, out);
824 if (ts->io_bytes[DDIR_TRIM])
825 show_ddir_status(rs, ts, DDIR_TRIM, out);
826
827 show_latencies(ts, out);
828
829 if (ts->sync_stat.samples)
830 show_ddir_status(rs, ts, DDIR_SYNC, out);
831
832 runtime = ts->total_run_time;
833 if (runtime) {
834 double runt = (double) runtime;
835
836 usr_cpu = (double) ts->usr_time * 100 / runt;
837 sys_cpu = (double) ts->sys_time * 100 / runt;
838 } else {
839 usr_cpu = 0;
840 sys_cpu = 0;
841 }
842
843 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
844 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
845 (unsigned long long) ts->ctx,
846 (unsigned long long) ts->majf,
847 (unsigned long long) ts->minf);
848
849 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
850 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
851 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
852 io_u_dist[1], io_u_dist[2],
853 io_u_dist[3], io_u_dist[4],
854 io_u_dist[5], io_u_dist[6]);
855
856 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
857 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
858 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
859 io_u_dist[1], io_u_dist[2],
860 io_u_dist[3], io_u_dist[4],
861 io_u_dist[5], io_u_dist[6]);
862 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
863 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
864 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
865 io_u_dist[1], io_u_dist[2],
866 io_u_dist[3], io_u_dist[4],
867 io_u_dist[5], io_u_dist[6]);
868 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
869 " short=%llu,%llu,%llu,0"
870 " dropped=%llu,%llu,%llu,0\n",
871 (unsigned long long) ts->total_io_u[0],
872 (unsigned long long) ts->total_io_u[1],
873 (unsigned long long) ts->total_io_u[2],
874 (unsigned long long) ts->total_io_u[3],
875 (unsigned long long) ts->short_io_u[0],
876 (unsigned long long) ts->short_io_u[1],
877 (unsigned long long) ts->short_io_u[2],
878 (unsigned long long) ts->drop_io_u[0],
879 (unsigned long long) ts->drop_io_u[1],
880 (unsigned long long) ts->drop_io_u[2]);
881 if (ts->continue_on_error) {
882 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
883 (unsigned long long)ts->total_err_count,
884 ts->first_error,
885 strerror(ts->first_error));
886 }
887 if (ts->latency_depth) {
888 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
889 (unsigned long long)ts->latency_target,
890 (unsigned long long)ts->latency_window,
891 ts->latency_percentile.u.f,
892 ts->latency_depth);
893 }
894
895 if (ts->nr_block_infos)
896 show_block_infos(ts->nr_block_infos, ts->block_infos,
897 ts->percentile_list, out);
898
899 if (ts->ss_dur)
900 show_ss_normal(ts, out);
901}
902
903static void show_ddir_status_terse(struct thread_stat *ts,
904 struct group_run_stats *rs, int ddir,
905 int ver, struct buf_output *out)
906{
907 unsigned long long min, max, minv, maxv, bw, iops;
908 unsigned long long *ovals = NULL;
909 double mean, dev;
910 unsigned int len;
911 int i, bw_stat;
912
913 assert(ddir_rw(ddir));
914
915 iops = bw = 0;
916 if (ts->runtime[ddir]) {
917 uint64_t runt = ts->runtime[ddir];
918
919 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
920 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
921 }
922
923 log_buf(out, ";%llu;%llu;%llu;%llu",
924 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
925 (unsigned long long) ts->runtime[ddir]);
926
927 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
928 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
929 else
930 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
931
932 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
933 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
934 else
935 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
936
937 if (ts->clat_percentiles || ts->lat_percentiles) {
938 len = calc_clat_percentiles(ts->io_u_plat[ddir],
939 ts->clat_stat[ddir].samples,
940 ts->percentile_list, &ovals, &maxv,
941 &minv);
942 } else
943 len = 0;
944
945 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
946 if (i >= len) {
947 log_buf(out, ";0%%=0");
948 continue;
949 }
950 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
951 }
952
953 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
954 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
955 else
956 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
957
958 if (ovals)
959 free(ovals);
960
961 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
962 if (bw_stat) {
963 double p_of_agg = 100.0;
964
965 if (rs->agg[ddir]) {
966 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
967 if (p_of_agg > 100.0)
968 p_of_agg = 100.0;
969 }
970
971 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
972 } else
973 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
974
975 if (ver == 5) {
976 if (bw_stat)
977 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
978 else
979 log_buf(out, ";%lu", 0UL);
980
981 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
982 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
983 mean, dev, (&ts->iops_stat[ddir])->samples);
984 else
985 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
986 }
987}
988
989static void add_ddir_status_json(struct thread_stat *ts,
990 struct group_run_stats *rs, int ddir, struct json_object *parent)
991{
992 unsigned long long min, max, minv, maxv;
993 unsigned long long bw_bytes, bw;
994 unsigned long long *ovals = NULL;
995 double mean, dev, iops;
996 unsigned int len;
997 int i;
998 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
999 char buf[120];
1000 double p_of_agg = 100.0;
1001
1002 assert(ddir_rw(ddir) || ddir_sync(ddir));
1003
1004 if (ts->unified_rw_rep && ddir != DDIR_READ)
1005 return;
1006
1007 dir_object = json_create_object();
1008 json_object_add_value_object(parent,
1009 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1010
1011 if (ddir_rw(ddir)) {
1012 bw_bytes = 0;
1013 bw = 0;
1014 iops = 0.0;
1015 if (ts->runtime[ddir]) {
1016 uint64_t runt = ts->runtime[ddir];
1017
1018 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1019 bw = bw_bytes / 1024; /* KiB/s */
1020 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1021 }
1022
1023 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1024 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1025 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1026 json_object_add_value_int(dir_object, "bw", bw);
1027 json_object_add_value_float(dir_object, "iops", iops);
1028 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1029 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1030 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1031 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1032
1033 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1034 min = max = 0;
1035 mean = dev = 0.0;
1036 }
1037 tmp_object = json_create_object();
1038 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1039 json_object_add_value_int(tmp_object, "min", min);
1040 json_object_add_value_int(tmp_object, "max", max);
1041 json_object_add_value_float(tmp_object, "mean", mean);
1042 json_object_add_value_float(tmp_object, "stddev", dev);
1043
1044 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1045 min = max = 0;
1046 mean = dev = 0.0;
1047 }
1048 tmp_object = json_create_object();
1049 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1050 json_object_add_value_int(tmp_object, "min", min);
1051 json_object_add_value_int(tmp_object, "max", max);
1052 json_object_add_value_float(tmp_object, "mean", mean);
1053 json_object_add_value_float(tmp_object, "stddev", dev);
1054 } else {
1055 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1056 min = max = 0;
1057 mean = dev = 0.0;
1058 }
1059
1060 tmp_object = json_create_object();
1061 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1062 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1063 json_object_add_value_int(tmp_object, "min", min);
1064 json_object_add_value_int(tmp_object, "max", max);
1065 json_object_add_value_float(tmp_object, "mean", mean);
1066 json_object_add_value_float(tmp_object, "stddev", dev);
1067 }
1068
1069 if (ts->clat_percentiles || ts->lat_percentiles) {
1070 if (ddir_rw(ddir)) {
1071 uint64_t samples;
1072
1073 if (ts->clat_percentiles)
1074 samples = ts->clat_stat[ddir].samples;
1075 else
1076 samples = ts->lat_stat[ddir].samples;
1077
1078 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1079 samples, ts->percentile_list, &ovals,
1080 &maxv, &minv);
1081 } else {
1082 len = calc_clat_percentiles(ts->io_u_sync_plat,
1083 ts->sync_stat.samples,
1084 ts->percentile_list, &ovals, &maxv,
1085 &minv);
1086 }
1087
1088 if (len > FIO_IO_U_LIST_MAX_LEN)
1089 len = FIO_IO_U_LIST_MAX_LEN;
1090 } else
1091 len = 0;
1092
1093 percentile_object = json_create_object();
1094 if (ts->clat_percentiles)
1095 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1096 for (i = 0; i < len; i++) {
1097 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1098 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1099 }
1100
1101 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1102 clat_bins_object = json_create_object();
1103 if (ts->clat_percentiles)
1104 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1105
1106 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1107 if (ddir_rw(ddir)) {
1108 if (ts->io_u_plat[ddir][i]) {
1109 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1110 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1111 }
1112 } else {
1113 if (ts->io_u_sync_plat[i]) {
1114 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1115 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1116 }
1117 }
1118 }
1119 }
1120
1121 if (!ddir_rw(ddir))
1122 return;
1123
1124 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1125 min = max = 0;
1126 mean = dev = 0.0;
1127 }
1128 tmp_object = json_create_object();
1129 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1130 json_object_add_value_int(tmp_object, "min", min);
1131 json_object_add_value_int(tmp_object, "max", max);
1132 json_object_add_value_float(tmp_object, "mean", mean);
1133 json_object_add_value_float(tmp_object, "stddev", dev);
1134 if (ts->lat_percentiles)
1135 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1136 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1137 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1138
1139 if (ovals)
1140 free(ovals);
1141
1142 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1143 if (rs->agg[ddir]) {
1144 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1145 if (p_of_agg > 100.0)
1146 p_of_agg = 100.0;
1147 }
1148 } else {
1149 min = max = 0;
1150 p_of_agg = mean = dev = 0.0;
1151 }
1152 json_object_add_value_int(dir_object, "bw_min", min);
1153 json_object_add_value_int(dir_object, "bw_max", max);
1154 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1155 json_object_add_value_float(dir_object, "bw_mean", mean);
1156 json_object_add_value_float(dir_object, "bw_dev", dev);
1157 json_object_add_value_int(dir_object, "bw_samples",
1158 (&ts->bw_stat[ddir])->samples);
1159
1160 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1161 min = max = 0;
1162 mean = dev = 0.0;
1163 }
1164 json_object_add_value_int(dir_object, "iops_min", min);
1165 json_object_add_value_int(dir_object, "iops_max", max);
1166 json_object_add_value_float(dir_object, "iops_mean", mean);
1167 json_object_add_value_float(dir_object, "iops_stddev", dev);
1168 json_object_add_value_int(dir_object, "iops_samples",
1169 (&ts->iops_stat[ddir])->samples);
1170
1171 if (ts->cachehit + ts->cachemiss) {
1172 uint64_t total;
1173 double hit;
1174
1175 total = ts->cachehit + ts->cachemiss;
1176 hit = (double) ts->cachehit / (double) total;
1177 hit *= 100.0;
1178 json_object_add_value_float(dir_object, "cachehit", hit);
1179 }
1180}
1181
1182static void show_thread_status_terse_all(struct thread_stat *ts,
1183 struct group_run_stats *rs, int ver,
1184 struct buf_output *out)
1185{
1186 double io_u_dist[FIO_IO_U_MAP_NR];
1187 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1188 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1189 double usr_cpu, sys_cpu;
1190 int i;
1191
1192 /* General Info */
1193 if (ver == 2)
1194 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1195 else
1196 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1197 ts->name, ts->groupid, ts->error);
1198
1199 /* Log Read Status */
1200 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1201 /* Log Write Status */
1202 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1203 /* Log Trim Status */
1204 if (ver == 2 || ver == 4 || ver == 5)
1205 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1206
1207 /* CPU Usage */
1208 if (ts->total_run_time) {
1209 double runt = (double) ts->total_run_time;
1210
1211 usr_cpu = (double) ts->usr_time * 100 / runt;
1212 sys_cpu = (double) ts->sys_time * 100 / runt;
1213 } else {
1214 usr_cpu = 0;
1215 sys_cpu = 0;
1216 }
1217
1218 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1219 (unsigned long long) ts->ctx,
1220 (unsigned long long) ts->majf,
1221 (unsigned long long) ts->minf);
1222
1223 /* Calc % distribution of IO depths, usecond, msecond latency */
1224 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1225 stat_calc_lat_nu(ts, io_u_lat_u);
1226 stat_calc_lat_m(ts, io_u_lat_m);
1227
1228 /* Only show fixed 7 I/O depth levels*/
1229 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1230 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1231 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1232
1233 /* Microsecond latency */
1234 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1235 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1236 /* Millisecond latency */
1237 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1238 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1239
1240 /* disk util stats, if any */
1241 if (ver >= 3 && is_running_backend())
1242 show_disk_util(1, NULL, out);
1243
1244 /* Additional output if continue_on_error set - default off*/
1245 if (ts->continue_on_error)
1246 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1247
1248 /* Additional output if description is set */
1249 if (strlen(ts->description)) {
1250 if (ver == 2)
1251 log_buf(out, "\n");
1252 log_buf(out, ";%s", ts->description);
1253 }
1254
1255 log_buf(out, "\n");
1256}
1257
1258static void json_add_job_opts(struct json_object *root, const char *name,
1259 struct flist_head *opt_list)
1260{
1261 struct json_object *dir_object;
1262 struct flist_head *entry;
1263 struct print_option *p;
1264
1265 if (flist_empty(opt_list))
1266 return;
1267
1268 dir_object = json_create_object();
1269 json_object_add_value_object(root, name, dir_object);
1270
1271 flist_for_each(entry, opt_list) {
1272 const char *pos = "";
1273
1274 p = flist_entry(entry, struct print_option, list);
1275 if (p->value)
1276 pos = p->value;
1277 json_object_add_value_string(dir_object, p->name, pos);
1278 }
1279}
1280
1281static struct json_object *show_thread_status_json(struct thread_stat *ts,
1282 struct group_run_stats *rs,
1283 struct flist_head *opt_list)
1284{
1285 struct json_object *root, *tmp;
1286 struct jobs_eta *je;
1287 double io_u_dist[FIO_IO_U_MAP_NR];
1288 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1289 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1290 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1291 double usr_cpu, sys_cpu;
1292 int i;
1293 size_t size;
1294
1295 root = json_create_object();
1296 json_object_add_value_string(root, "jobname", ts->name);
1297 json_object_add_value_int(root, "groupid", ts->groupid);
1298 json_object_add_value_int(root, "error", ts->error);
1299
1300 /* ETA Info */
1301 je = get_jobs_eta(true, &size);
1302 if (je) {
1303 json_object_add_value_int(root, "eta", je->eta_sec);
1304 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1305 }
1306
1307 if (opt_list)
1308 json_add_job_opts(root, "job options", opt_list);
1309
1310 add_ddir_status_json(ts, rs, DDIR_READ, root);
1311 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1312 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1313 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1314
1315 /* CPU Usage */
1316 if (ts->total_run_time) {
1317 double runt = (double) ts->total_run_time;
1318
1319 usr_cpu = (double) ts->usr_time * 100 / runt;
1320 sys_cpu = (double) ts->sys_time * 100 / runt;
1321 } else {
1322 usr_cpu = 0;
1323 sys_cpu = 0;
1324 }
1325 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1326 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1327 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1328 json_object_add_value_int(root, "ctx", ts->ctx);
1329 json_object_add_value_int(root, "majf", ts->majf);
1330 json_object_add_value_int(root, "minf", ts->minf);
1331
1332 /* Calc % distribution of IO depths */
1333 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1334 tmp = json_create_object();
1335 json_object_add_value_object(root, "iodepth_level", tmp);
1336 /* Only show fixed 7 I/O depth levels*/
1337 for (i = 0; i < 7; i++) {
1338 char name[20];
1339 if (i < 6)
1340 snprintf(name, 20, "%d", 1 << i);
1341 else
1342 snprintf(name, 20, ">=%d", 1 << i);
1343 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1344 }
1345
1346 /* Calc % distribution of submit IO depths */
1347 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1348 tmp = json_create_object();
1349 json_object_add_value_object(root, "iodepth_submit", tmp);
1350 /* Only show fixed 7 I/O depth levels*/
1351 for (i = 0; i < 7; i++) {
1352 char name[20];
1353 if (i == 0)
1354 snprintf(name, 20, "0");
1355 else if (i < 6)
1356 snprintf(name, 20, "%d", 1 << (i+1));
1357 else
1358 snprintf(name, 20, ">=%d", 1 << i);
1359 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1360 }
1361
1362 /* Calc % distribution of completion IO depths */
1363 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1364 tmp = json_create_object();
1365 json_object_add_value_object(root, "iodepth_complete", tmp);
1366 /* Only show fixed 7 I/O depth levels*/
1367 for (i = 0; i < 7; i++) {
1368 char name[20];
1369 if (i == 0)
1370 snprintf(name, 20, "0");
1371 else if (i < 6)
1372 snprintf(name, 20, "%d", 1 << (i+1));
1373 else
1374 snprintf(name, 20, ">=%d", 1 << i);
1375 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1376 }
1377
1378 /* Calc % distribution of nsecond, usecond, msecond latency */
1379 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1380 stat_calc_lat_n(ts, io_u_lat_n);
1381 stat_calc_lat_u(ts, io_u_lat_u);
1382 stat_calc_lat_m(ts, io_u_lat_m);
1383
1384 /* Nanosecond latency */
1385 tmp = json_create_object();
1386 json_object_add_value_object(root, "latency_ns", tmp);
1387 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1388 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1389 "250", "500", "750", "1000", };
1390 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1391 }
1392 /* Microsecond latency */
1393 tmp = json_create_object();
1394 json_object_add_value_object(root, "latency_us", tmp);
1395 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1396 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1397 "250", "500", "750", "1000", };
1398 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1399 }
1400 /* Millisecond latency */
1401 tmp = json_create_object();
1402 json_object_add_value_object(root, "latency_ms", tmp);
1403 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1404 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1405 "250", "500", "750", "1000", "2000",
1406 ">=2000", };
1407 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1408 }
1409
1410 /* Additional output if continue_on_error set - default off*/
1411 if (ts->continue_on_error) {
1412 json_object_add_value_int(root, "total_err", ts->total_err_count);
1413 json_object_add_value_int(root, "first_error", ts->first_error);
1414 }
1415
1416 if (ts->latency_depth) {
1417 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1418 json_object_add_value_int(root, "latency_target", ts->latency_target);
1419 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1420 json_object_add_value_int(root, "latency_window", ts->latency_window);
1421 }
1422
1423 /* Additional output if description is set */
1424 if (strlen(ts->description))
1425 json_object_add_value_string(root, "desc", ts->description);
1426
1427 if (ts->nr_block_infos) {
1428 /* Block error histogram and types */
1429 int len;
1430 unsigned int *percentiles = NULL;
1431 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1432
1433 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1434 ts->percentile_list,
1435 &percentiles, block_state_counts);
1436
1437 if (len) {
1438 struct json_object *block, *percentile_object, *states;
1439 int state;
1440 block = json_create_object();
1441 json_object_add_value_object(root, "block", block);
1442
1443 percentile_object = json_create_object();
1444 json_object_add_value_object(block, "percentiles",
1445 percentile_object);
1446 for (i = 0; i < len; i++) {
1447 char buf[20];
1448 snprintf(buf, sizeof(buf), "%f",
1449 ts->percentile_list[i].u.f);
1450 json_object_add_value_int(percentile_object,
1451 (const char *)buf,
1452 percentiles[i]);
1453 }
1454
1455 states = json_create_object();
1456 json_object_add_value_object(block, "states", states);
1457 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1458 json_object_add_value_int(states,
1459 block_state_names[state],
1460 block_state_counts[state]);
1461 }
1462 free(percentiles);
1463 }
1464 }
1465
1466 if (ts->ss_dur) {
1467 struct json_object *data;
1468 struct json_array *iops, *bw;
1469 int j, k, l;
1470 char ss_buf[64];
1471
1472 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1473 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1474 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1475 (float) ts->ss_limit.u.f,
1476 ts->ss_state & FIO_SS_PCT ? "%" : "");
1477
1478 tmp = json_create_object();
1479 json_object_add_value_object(root, "steadystate", tmp);
1480 json_object_add_value_string(tmp, "ss", ss_buf);
1481 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1482 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1483
1484 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1485 ts->ss_state & FIO_SS_PCT ? "%" : "");
1486 json_object_add_value_string(tmp, "criterion", ss_buf);
1487 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1488 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1489
1490 data = json_create_object();
1491 json_object_add_value_object(tmp, "data", data);
1492 bw = json_create_array();
1493 iops = json_create_array();
1494
1495 /*
1496 ** if ss was attained or the buffer is not full,
1497 ** ss->head points to the first element in the list.
1498 ** otherwise it actually points to the second element
1499 ** in the list
1500 */
1501 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1502 j = ts->ss_head;
1503 else
1504 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1505 for (l = 0; l < ts->ss_dur; l++) {
1506 k = (j + l) % ts->ss_dur;
1507 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1508 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1509 }
1510 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1511 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1512 json_object_add_value_array(data, "iops", iops);
1513 json_object_add_value_array(data, "bw", bw);
1514 }
1515
1516 return root;
1517}
1518
1519static void show_thread_status_terse(struct thread_stat *ts,
1520 struct group_run_stats *rs,
1521 struct buf_output *out)
1522{
1523 if (terse_version >= 2 && terse_version <= 5)
1524 show_thread_status_terse_all(ts, rs, terse_version, out);
1525 else
1526 log_err("fio: bad terse version!? %d\n", terse_version);
1527}
1528
1529struct json_object *show_thread_status(struct thread_stat *ts,
1530 struct group_run_stats *rs,
1531 struct flist_head *opt_list,
1532 struct buf_output *out)
1533{
1534 struct json_object *ret = NULL;
1535
1536 if (output_format & FIO_OUTPUT_TERSE)
1537 show_thread_status_terse(ts, rs, out);
1538 if (output_format & FIO_OUTPUT_JSON)
1539 ret = show_thread_status_json(ts, rs, opt_list);
1540 if (output_format & FIO_OUTPUT_NORMAL)
1541 show_thread_status_normal(ts, rs, out);
1542
1543 return ret;
1544}
1545
1546static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1547{
1548 double mean, S;
1549
1550 dst->min_val = min(dst->min_val, src->min_val);
1551 dst->max_val = max(dst->max_val, src->max_val);
1552
1553 /*
1554 * Compute new mean and S after the merge
1555 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1556 * #Parallel_algorithm>
1557 */
1558 if (first) {
1559 mean = src->mean.u.f;
1560 S = src->S.u.f;
1561 } else {
1562 double delta = src->mean.u.f - dst->mean.u.f;
1563
1564 mean = ((src->mean.u.f * src->samples) +
1565 (dst->mean.u.f * dst->samples)) /
1566 (dst->samples + src->samples);
1567
1568 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1569 (dst->samples * src->samples) /
1570 (dst->samples + src->samples);
1571 }
1572
1573 dst->samples += src->samples;
1574 dst->mean.u.f = mean;
1575 dst->S.u.f = S;
1576
1577}
1578
1579/*
1580 * We sum two kinds of stats - one that is time based, in which case we
1581 * apply the proper summing technique, and then one that is iops/bw
1582 * numbers. For group_reporting, we should just add those up, not make
1583 * them the mean of everything.
1584 */
1585static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1586 bool pure_sum)
1587{
1588 if (src->samples == 0)
1589 return;
1590
1591 if (!pure_sum) {
1592 __sum_stat(dst, src, first);
1593 return;
1594 }
1595
1596 if (first) {
1597 dst->min_val = src->min_val;
1598 dst->max_val = src->max_val;
1599 dst->samples = src->samples;
1600 dst->mean.u.f = src->mean.u.f;
1601 dst->S.u.f = src->S.u.f;
1602 } else {
1603 dst->min_val += src->min_val;
1604 dst->max_val += src->max_val;
1605 dst->samples += src->samples;
1606 dst->mean.u.f += src->mean.u.f;
1607 dst->S.u.f += src->S.u.f;
1608 }
1609}
1610
1611void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1612{
1613 int i;
1614
1615 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1616 if (dst->max_run[i] < src->max_run[i])
1617 dst->max_run[i] = src->max_run[i];
1618 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1619 dst->min_run[i] = src->min_run[i];
1620 if (dst->max_bw[i] < src->max_bw[i])
1621 dst->max_bw[i] = src->max_bw[i];
1622 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1623 dst->min_bw[i] = src->min_bw[i];
1624
1625 dst->iobytes[i] += src->iobytes[i];
1626 dst->agg[i] += src->agg[i];
1627 }
1628
1629 if (!dst->kb_base)
1630 dst->kb_base = src->kb_base;
1631 if (!dst->unit_base)
1632 dst->unit_base = src->unit_base;
1633 if (!dst->sig_figs)
1634 dst->sig_figs = src->sig_figs;
1635}
1636
1637void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1638 bool first)
1639{
1640 int l, k;
1641
1642 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1643 if (!dst->unified_rw_rep) {
1644 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1645 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1646 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1647 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1648 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1649
1650 dst->io_bytes[l] += src->io_bytes[l];
1651
1652 if (dst->runtime[l] < src->runtime[l])
1653 dst->runtime[l] = src->runtime[l];
1654 } else {
1655 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1656 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1657 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1658 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1659 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1660
1661 dst->io_bytes[0] += src->io_bytes[l];
1662
1663 if (dst->runtime[0] < src->runtime[l])
1664 dst->runtime[0] = src->runtime[l];
1665
1666 /*
1667 * We're summing to the same destination, so override
1668 * 'first' after the first iteration of the loop
1669 */
1670 first = false;
1671 }
1672 }
1673
1674 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1675 dst->usr_time += src->usr_time;
1676 dst->sys_time += src->sys_time;
1677 dst->ctx += src->ctx;
1678 dst->majf += src->majf;
1679 dst->minf += src->minf;
1680
1681 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1682 dst->io_u_map[k] += src->io_u_map[k];
1683 dst->io_u_submit[k] += src->io_u_submit[k];
1684 dst->io_u_complete[k] += src->io_u_complete[k];
1685 }
1686
1687 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1688 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1689 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1690 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1691 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1692 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1693
1694 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1695 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1696
1697 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1698 if (!dst->unified_rw_rep) {
1699 dst->total_io_u[k] += src->total_io_u[k];
1700 dst->short_io_u[k] += src->short_io_u[k];
1701 dst->drop_io_u[k] += src->drop_io_u[k];
1702 } else {
1703 dst->total_io_u[0] += src->total_io_u[k];
1704 dst->short_io_u[0] += src->short_io_u[k];
1705 dst->drop_io_u[0] += src->drop_io_u[k];
1706 }
1707 }
1708
1709 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1710
1711 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1712 int m;
1713
1714 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1715 if (!dst->unified_rw_rep)
1716 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1717 else
1718 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1719 }
1720 }
1721
1722 dst->total_run_time += src->total_run_time;
1723 dst->total_submit += src->total_submit;
1724 dst->total_complete += src->total_complete;
1725 dst->nr_zone_resets += src->nr_zone_resets;
1726 dst->cachehit += src->cachehit;
1727 dst->cachemiss += src->cachemiss;
1728}
1729
1730void init_group_run_stat(struct group_run_stats *gs)
1731{
1732 int i;
1733 memset(gs, 0, sizeof(*gs));
1734
1735 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1736 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1737}
1738
1739void init_thread_stat(struct thread_stat *ts)
1740{
1741 int j;
1742
1743 memset(ts, 0, sizeof(*ts));
1744
1745 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1746 ts->lat_stat[j].min_val = -1UL;
1747 ts->clat_stat[j].min_val = -1UL;
1748 ts->slat_stat[j].min_val = -1UL;
1749 ts->bw_stat[j].min_val = -1UL;
1750 ts->iops_stat[j].min_val = -1UL;
1751 }
1752 ts->sync_stat.min_val = -1UL;
1753 ts->groupid = -1;
1754}
1755
1756void __show_run_stats(void)
1757{
1758 struct group_run_stats *runstats, *rs;
1759 struct thread_data *td;
1760 struct thread_stat *threadstats, *ts;
1761 int i, j, k, nr_ts, last_ts, idx;
1762 bool kb_base_warned = false;
1763 bool unit_base_warned = false;
1764 struct json_object *root = NULL;
1765 struct json_array *array = NULL;
1766 struct buf_output output[FIO_OUTPUT_NR];
1767 struct flist_head **opt_lists;
1768
1769 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1770
1771 for (i = 0; i < groupid + 1; i++)
1772 init_group_run_stat(&runstats[i]);
1773
1774 /*
1775 * find out how many threads stats we need. if group reporting isn't
1776 * enabled, it's one-per-td.
1777 */
1778 nr_ts = 0;
1779 last_ts = -1;
1780 for_each_td(td, i) {
1781 if (!td->o.group_reporting) {
1782 nr_ts++;
1783 continue;
1784 }
1785 if (last_ts == td->groupid)
1786 continue;
1787 if (!td->o.stats)
1788 continue;
1789
1790 last_ts = td->groupid;
1791 nr_ts++;
1792 }
1793
1794 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1795 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1796
1797 for (i = 0; i < nr_ts; i++) {
1798 init_thread_stat(&threadstats[i]);
1799 opt_lists[i] = NULL;
1800 }
1801
1802 j = 0;
1803 last_ts = -1;
1804 idx = 0;
1805 for_each_td(td, i) {
1806 if (!td->o.stats)
1807 continue;
1808 if (idx && (!td->o.group_reporting ||
1809 (td->o.group_reporting && last_ts != td->groupid))) {
1810 idx = 0;
1811 j++;
1812 }
1813
1814 last_ts = td->groupid;
1815
1816 ts = &threadstats[j];
1817
1818 ts->clat_percentiles = td->o.clat_percentiles;
1819 ts->lat_percentiles = td->o.lat_percentiles;
1820 ts->percentile_precision = td->o.percentile_precision;
1821 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1822 opt_lists[j] = &td->opt_list;
1823
1824 idx++;
1825 ts->members++;
1826
1827 if (ts->groupid == -1) {
1828 /*
1829 * These are per-group shared already
1830 */
1831 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
1832 if (td->o.description)
1833 snprintf(ts->description,
1834 sizeof(ts->description), "%s",
1835 td->o.description);
1836 else
1837 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1838
1839 /*
1840 * If multiple entries in this group, this is
1841 * the first member.
1842 */
1843 ts->thread_number = td->thread_number;
1844 ts->groupid = td->groupid;
1845
1846 /*
1847 * first pid in group, not very useful...
1848 */
1849 ts->pid = td->pid;
1850
1851 ts->kb_base = td->o.kb_base;
1852 ts->unit_base = td->o.unit_base;
1853 ts->sig_figs = td->o.sig_figs;
1854 ts->unified_rw_rep = td->o.unified_rw_rep;
1855 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1856 log_info("fio: kb_base differs for jobs in group, using"
1857 " %u as the base\n", ts->kb_base);
1858 kb_base_warned = true;
1859 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1860 log_info("fio: unit_base differs for jobs in group, using"
1861 " %u as the base\n", ts->unit_base);
1862 unit_base_warned = true;
1863 }
1864
1865 ts->continue_on_error = td->o.continue_on_error;
1866 ts->total_err_count += td->total_err_count;
1867 ts->first_error = td->first_error;
1868 if (!ts->error) {
1869 if (!td->error && td->o.continue_on_error &&
1870 td->first_error) {
1871 ts->error = td->first_error;
1872 snprintf(ts->verror, sizeof(ts->verror), "%s",
1873 td->verror);
1874 } else if (td->error) {
1875 ts->error = td->error;
1876 snprintf(ts->verror, sizeof(ts->verror), "%s",
1877 td->verror);
1878 }
1879 }
1880
1881 ts->latency_depth = td->latency_qd;
1882 ts->latency_target = td->o.latency_target;
1883 ts->latency_percentile = td->o.latency_percentile;
1884 ts->latency_window = td->o.latency_window;
1885
1886 ts->nr_block_infos = td->ts.nr_block_infos;
1887 for (k = 0; k < ts->nr_block_infos; k++)
1888 ts->block_infos[k] = td->ts.block_infos[k];
1889
1890 sum_thread_stats(ts, &td->ts, idx == 1);
1891
1892 if (td->o.ss_dur) {
1893 ts->ss_state = td->ss.state;
1894 ts->ss_dur = td->ss.dur;
1895 ts->ss_head = td->ss.head;
1896 ts->ss_bw_data = td->ss.bw_data;
1897 ts->ss_iops_data = td->ss.iops_data;
1898 ts->ss_limit.u.f = td->ss.limit;
1899 ts->ss_slope.u.f = td->ss.slope;
1900 ts->ss_deviation.u.f = td->ss.deviation;
1901 ts->ss_criterion.u.f = td->ss.criterion;
1902 }
1903 else
1904 ts->ss_dur = ts->ss_state = 0;
1905 }
1906
1907 for (i = 0; i < nr_ts; i++) {
1908 unsigned long long bw;
1909
1910 ts = &threadstats[i];
1911 if (ts->groupid == -1)
1912 continue;
1913 rs = &runstats[ts->groupid];
1914 rs->kb_base = ts->kb_base;
1915 rs->unit_base = ts->unit_base;
1916 rs->sig_figs = ts->sig_figs;
1917 rs->unified_rw_rep += ts->unified_rw_rep;
1918
1919 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1920 if (!ts->runtime[j])
1921 continue;
1922 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1923 rs->min_run[j] = ts->runtime[j];
1924 if (ts->runtime[j] > rs->max_run[j])
1925 rs->max_run[j] = ts->runtime[j];
1926
1927 bw = 0;
1928 if (ts->runtime[j])
1929 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1930 if (bw < rs->min_bw[j])
1931 rs->min_bw[j] = bw;
1932 if (bw > rs->max_bw[j])
1933 rs->max_bw[j] = bw;
1934
1935 rs->iobytes[j] += ts->io_bytes[j];
1936 }
1937 }
1938
1939 for (i = 0; i < groupid + 1; i++) {
1940 int ddir;
1941
1942 rs = &runstats[i];
1943
1944 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1945 if (rs->max_run[ddir])
1946 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1947 rs->max_run[ddir];
1948 }
1949 }
1950
1951 for (i = 0; i < FIO_OUTPUT_NR; i++)
1952 buf_output_init(&output[i]);
1953
1954 /*
1955 * don't overwrite last signal output
1956 */
1957 if (output_format & FIO_OUTPUT_NORMAL)
1958 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1959 if (output_format & FIO_OUTPUT_JSON) {
1960 struct thread_data *global;
1961 char time_buf[32];
1962 struct timeval now;
1963 unsigned long long ms_since_epoch;
1964 time_t tv_sec;
1965
1966 gettimeofday(&now, NULL);
1967 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1968 (unsigned long long)(now.tv_usec) / 1000;
1969
1970 tv_sec = now.tv_sec;
1971 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1972 if (time_buf[strlen(time_buf) - 1] == '\n')
1973 time_buf[strlen(time_buf) - 1] = '\0';
1974
1975 root = json_create_object();
1976 json_object_add_value_string(root, "fio version", fio_version_string);
1977 json_object_add_value_int(root, "timestamp", now.tv_sec);
1978 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1979 json_object_add_value_string(root, "time", time_buf);
1980 global = get_global_options();
1981 json_add_job_opts(root, "global options", &global->opt_list);
1982 array = json_create_array();
1983 json_object_add_value_array(root, "jobs", array);
1984 }
1985
1986 if (is_backend)
1987 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1988
1989 for (i = 0; i < nr_ts; i++) {
1990 ts = &threadstats[i];
1991 rs = &runstats[ts->groupid];
1992
1993 if (is_backend) {
1994 fio_server_send_job_options(opt_lists[i], i);
1995 fio_server_send_ts(ts, rs);
1996 } else {
1997 if (output_format & FIO_OUTPUT_TERSE)
1998 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1999 if (output_format & FIO_OUTPUT_JSON) {
2000 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2001 json_array_add_value_object(array, tmp);
2002 }
2003 if (output_format & FIO_OUTPUT_NORMAL)
2004 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2005 }
2006 }
2007 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2008 /* disk util stats, if any */
2009 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2010
2011 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2012
2013 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2014 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2015 json_free_object(root);
2016 }
2017
2018 for (i = 0; i < groupid + 1; i++) {
2019 rs = &runstats[i];
2020
2021 rs->groupid = i;
2022 if (is_backend)
2023 fio_server_send_gs(rs);
2024 else if (output_format & FIO_OUTPUT_NORMAL)
2025 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2026 }
2027
2028 if (is_backend)
2029 fio_server_send_du();
2030 else if (output_format & FIO_OUTPUT_NORMAL) {
2031 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2032 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2033 }
2034
2035 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2036 struct buf_output *out = &output[i];
2037
2038 log_info_buf(out->buf, out->buflen);
2039 buf_output_free(out);
2040 }
2041
2042 fio_idle_prof_cleanup();
2043
2044 log_info_flush();
2045 free(runstats);
2046 free(threadstats);
2047 free(opt_lists);
2048}
2049
2050void __show_running_run_stats(void)
2051{
2052 struct thread_data *td;
2053 unsigned long long *rt;
2054 struct timespec ts;
2055 int i;
2056
2057 fio_sem_down(stat_sem);
2058
2059 rt = malloc(thread_number * sizeof(unsigned long long));
2060 fio_gettime(&ts, NULL);
2061
2062 for_each_td(td, i) {
2063 td->update_rusage = 1;
2064 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2065 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2066 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2067 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2068
2069 rt[i] = mtime_since(&td->start, &ts);
2070 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2071 td->ts.runtime[DDIR_READ] += rt[i];
2072 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2073 td->ts.runtime[DDIR_WRITE] += rt[i];
2074 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2075 td->ts.runtime[DDIR_TRIM] += rt[i];
2076 }
2077
2078 for_each_td(td, i) {
2079 if (td->runstate >= TD_EXITED)
2080 continue;
2081 if (td->rusage_sem) {
2082 td->update_rusage = 1;
2083 fio_sem_down(td->rusage_sem);
2084 }
2085 td->update_rusage = 0;
2086 }
2087
2088 __show_run_stats();
2089
2090 for_each_td(td, i) {
2091 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2092 td->ts.runtime[DDIR_READ] -= rt[i];
2093 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2094 td->ts.runtime[DDIR_WRITE] -= rt[i];
2095 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2096 td->ts.runtime[DDIR_TRIM] -= rt[i];
2097 }
2098
2099 free(rt);
2100 fio_sem_up(stat_sem);
2101}
2102
2103static bool status_interval_init;
2104static struct timespec status_time;
2105static bool status_file_disabled;
2106
2107#define FIO_STATUS_FILE "fio-dump-status"
2108
2109static int check_status_file(void)
2110{
2111 struct stat sb;
2112 const char *temp_dir;
2113 char fio_status_file_path[PATH_MAX];
2114
2115 if (status_file_disabled)
2116 return 0;
2117
2118 temp_dir = getenv("TMPDIR");
2119 if (temp_dir == NULL) {
2120 temp_dir = getenv("TEMP");
2121 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2122 temp_dir = NULL;
2123 }
2124 if (temp_dir == NULL)
2125 temp_dir = "/tmp";
2126
2127 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2128
2129 if (stat(fio_status_file_path, &sb))
2130 return 0;
2131
2132 if (unlink(fio_status_file_path) < 0) {
2133 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2134 strerror(errno));
2135 log_err("fio: disabling status file updates\n");
2136 status_file_disabled = true;
2137 }
2138
2139 return 1;
2140}
2141
2142void check_for_running_stats(void)
2143{
2144 if (status_interval) {
2145 if (!status_interval_init) {
2146 fio_gettime(&status_time, NULL);
2147 status_interval_init = true;
2148 } else if (mtime_since_now(&status_time) >= status_interval) {
2149 show_running_run_stats();
2150 fio_gettime(&status_time, NULL);
2151 return;
2152 }
2153 }
2154 if (check_status_file()) {
2155 show_running_run_stats();
2156 return;
2157 }
2158}
2159
2160static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2161{
2162 double val = data;
2163 double delta;
2164
2165 if (data > is->max_val)
2166 is->max_val = data;
2167 if (data < is->min_val)
2168 is->min_val = data;
2169
2170 delta = val - is->mean.u.f;
2171 if (delta) {
2172 is->mean.u.f += delta / (is->samples + 1.0);
2173 is->S.u.f += delta * (val - is->mean.u.f);
2174 }
2175
2176 is->samples++;
2177}
2178
2179/*
2180 * Return a struct io_logs, which is added to the tail of the log
2181 * list for 'iolog'.
2182 */
2183static struct io_logs *get_new_log(struct io_log *iolog)
2184{
2185 size_t new_size, new_samples;
2186 struct io_logs *cur_log;
2187
2188 /*
2189 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2190 * forever
2191 */
2192 if (!iolog->cur_log_max)
2193 new_samples = DEF_LOG_ENTRIES;
2194 else {
2195 new_samples = iolog->cur_log_max * 2;
2196 if (new_samples > MAX_LOG_ENTRIES)
2197 new_samples = MAX_LOG_ENTRIES;
2198 }
2199
2200 new_size = new_samples * log_entry_sz(iolog);
2201
2202 cur_log = smalloc(sizeof(*cur_log));
2203 if (cur_log) {
2204 INIT_FLIST_HEAD(&cur_log->list);
2205 cur_log->log = malloc(new_size);
2206 if (cur_log->log) {
2207 cur_log->nr_samples = 0;
2208 cur_log->max_samples = new_samples;
2209 flist_add_tail(&cur_log->list, &iolog->io_logs);
2210 iolog->cur_log_max = new_samples;
2211 return cur_log;
2212 }
2213 sfree(cur_log);
2214 }
2215
2216 return NULL;
2217}
2218
2219/*
2220 * Add and return a new log chunk, or return current log if big enough
2221 */
2222static struct io_logs *regrow_log(struct io_log *iolog)
2223{
2224 struct io_logs *cur_log;
2225 int i;
2226
2227 if (!iolog || iolog->disabled)
2228 goto disable;
2229
2230 cur_log = iolog_cur_log(iolog);
2231 if (!cur_log) {
2232 cur_log = get_new_log(iolog);
2233 if (!cur_log)
2234 return NULL;
2235 }
2236
2237 if (cur_log->nr_samples < cur_log->max_samples)
2238 return cur_log;
2239
2240 /*
2241 * No room for a new sample. If we're compressing on the fly, flush
2242 * out the current chunk
2243 */
2244 if (iolog->log_gz) {
2245 if (iolog_cur_flush(iolog, cur_log)) {
2246 log_err("fio: failed flushing iolog! Will stop logging.\n");
2247 return NULL;
2248 }
2249 }
2250
2251 /*
2252 * Get a new log array, and add to our list
2253 */
2254 cur_log = get_new_log(iolog);
2255 if (!cur_log) {
2256 log_err("fio: failed extending iolog! Will stop logging.\n");
2257 return NULL;
2258 }
2259
2260 if (!iolog->pending || !iolog->pending->nr_samples)
2261 return cur_log;
2262
2263 /*
2264 * Flush pending items to new log
2265 */
2266 for (i = 0; i < iolog->pending->nr_samples; i++) {
2267 struct io_sample *src, *dst;
2268
2269 src = get_sample(iolog, iolog->pending, i);
2270 dst = get_sample(iolog, cur_log, i);
2271 memcpy(dst, src, log_entry_sz(iolog));
2272 }
2273 cur_log->nr_samples = iolog->pending->nr_samples;
2274
2275 iolog->pending->nr_samples = 0;
2276 return cur_log;
2277disable:
2278 if (iolog)
2279 iolog->disabled = true;
2280 return NULL;
2281}
2282
2283void regrow_logs(struct thread_data *td)
2284{
2285 regrow_log(td->slat_log);
2286 regrow_log(td->clat_log);
2287 regrow_log(td->clat_hist_log);
2288 regrow_log(td->lat_log);
2289 regrow_log(td->bw_log);
2290 regrow_log(td->iops_log);
2291 td->flags &= ~TD_F_REGROW_LOGS;
2292}
2293
2294static struct io_logs *get_cur_log(struct io_log *iolog)
2295{
2296 struct io_logs *cur_log;
2297
2298 cur_log = iolog_cur_log(iolog);
2299 if (!cur_log) {
2300 cur_log = get_new_log(iolog);
2301 if (!cur_log)
2302 return NULL;
2303 }
2304
2305 if (cur_log->nr_samples < cur_log->max_samples)
2306 return cur_log;
2307
2308 /*
2309 * Out of space. If we're in IO offload mode, or we're not doing
2310 * per unit logging (hence logging happens outside of the IO thread
2311 * as well), add a new log chunk inline. If we're doing inline
2312 * submissions, flag 'td' as needing a log regrow and we'll take
2313 * care of it on the submission side.
2314 */
2315 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2316 !per_unit_log(iolog))
2317 return regrow_log(iolog);
2318
2319 if (iolog->td)
2320 iolog->td->flags |= TD_F_REGROW_LOGS;
2321 if (iolog->pending)
2322 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2323 return iolog->pending;
2324}
2325
2326static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2327 enum fio_ddir ddir, unsigned long long bs,
2328 unsigned long t, uint64_t offset)
2329{
2330 struct io_logs *cur_log;
2331
2332 if (iolog->disabled)
2333 return;
2334 if (flist_empty(&iolog->io_logs))
2335 iolog->avg_last[ddir] = t;
2336
2337 cur_log = get_cur_log(iolog);
2338 if (cur_log) {
2339 struct io_sample *s;
2340
2341 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2342
2343 s->data = data;
2344 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2345 io_sample_set_ddir(iolog, s, ddir);
2346 s->bs = bs;
2347
2348 if (iolog->log_offset) {
2349 struct io_sample_offset *so = (void *) s;
2350
2351 so->offset = offset;
2352 }
2353
2354 cur_log->nr_samples++;
2355 return;
2356 }
2357
2358 iolog->disabled = true;
2359}
2360
2361static inline void reset_io_stat(struct io_stat *ios)
2362{
2363 ios->min_val = -1ULL;
2364 ios->max_val = ios->samples = 0;
2365 ios->mean.u.f = ios->S.u.f = 0;
2366}
2367
2368void reset_io_stats(struct thread_data *td)
2369{
2370 struct thread_stat *ts = &td->ts;
2371 int i, j;
2372
2373 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2374 reset_io_stat(&ts->clat_stat[i]);
2375 reset_io_stat(&ts->slat_stat[i]);
2376 reset_io_stat(&ts->lat_stat[i]);
2377 reset_io_stat(&ts->bw_stat[i]);
2378 reset_io_stat(&ts->iops_stat[i]);
2379
2380 ts->io_bytes[i] = 0;
2381 ts->runtime[i] = 0;
2382 ts->total_io_u[i] = 0;
2383 ts->short_io_u[i] = 0;
2384 ts->drop_io_u[i] = 0;
2385
2386 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2387 ts->io_u_plat[i][j] = 0;
2388 if (!i)
2389 ts->io_u_sync_plat[j] = 0;
2390 }
2391 }
2392
2393 ts->total_io_u[DDIR_SYNC] = 0;
2394
2395 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2396 ts->io_u_map[i] = 0;
2397 ts->io_u_submit[i] = 0;
2398 ts->io_u_complete[i] = 0;
2399 }
2400
2401 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2402 ts->io_u_lat_n[i] = 0;
2403 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2404 ts->io_u_lat_u[i] = 0;
2405 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2406 ts->io_u_lat_m[i] = 0;
2407
2408 ts->total_submit = 0;
2409 ts->total_complete = 0;
2410 ts->nr_zone_resets = 0;
2411 ts->cachehit = ts->cachemiss = 0;
2412}
2413
2414static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2415 unsigned long elapsed, bool log_max)
2416{
2417 /*
2418 * Note an entry in the log. Use the mean from the logged samples,
2419 * making sure to properly round up. Only write a log entry if we
2420 * had actual samples done.
2421 */
2422 if (iolog->avg_window[ddir].samples) {
2423 union io_sample_data data;
2424
2425 if (log_max)
2426 data.val = iolog->avg_window[ddir].max_val;
2427 else
2428 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2429
2430 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2431 }
2432
2433 reset_io_stat(&iolog->avg_window[ddir]);
2434}
2435
2436static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2437 bool log_max)
2438{
2439 int ddir;
2440
2441 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2442 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2443}
2444
2445static unsigned long add_log_sample(struct thread_data *td,
2446 struct io_log *iolog,
2447 union io_sample_data data,
2448 enum fio_ddir ddir, unsigned long long bs,
2449 uint64_t offset)
2450{
2451 unsigned long elapsed, this_window;
2452
2453 if (!ddir_rw(ddir))
2454 return 0;
2455
2456 elapsed = mtime_since_now(&td->epoch);
2457
2458 /*
2459 * If no time averaging, just add the log sample.
2460 */
2461 if (!iolog->avg_msec) {
2462 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2463 return 0;
2464 }
2465
2466 /*
2467 * Add the sample. If the time period has passed, then
2468 * add that entry to the log and clear.
2469 */
2470 add_stat_sample(&iolog->avg_window[ddir], data.val);
2471
2472 /*
2473 * If period hasn't passed, adding the above sample is all we
2474 * need to do.
2475 */
2476 this_window = elapsed - iolog->avg_last[ddir];
2477 if (elapsed < iolog->avg_last[ddir])
2478 return iolog->avg_last[ddir] - elapsed;
2479 else if (this_window < iolog->avg_msec) {
2480 unsigned long diff = iolog->avg_msec - this_window;
2481
2482 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2483 return diff;
2484 }
2485
2486 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2487
2488 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2489 return iolog->avg_msec;
2490}
2491
2492void finalize_logs(struct thread_data *td, bool unit_logs)
2493{
2494 unsigned long elapsed;
2495
2496 elapsed = mtime_since_now(&td->epoch);
2497
2498 if (td->clat_log && unit_logs)
2499 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2500 if (td->slat_log && unit_logs)
2501 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2502 if (td->lat_log && unit_logs)
2503 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2504 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2505 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2506 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2507 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2508}
2509
2510void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2511{
2512 struct io_log *iolog;
2513
2514 if (!ddir_rw(ddir))
2515 return;
2516
2517 iolog = agg_io_log[ddir];
2518 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2519}
2520
2521void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2522{
2523 unsigned int idx = plat_val_to_idx(nsec);
2524 assert(idx < FIO_IO_U_PLAT_NR);
2525
2526 ts->io_u_sync_plat[idx]++;
2527 add_stat_sample(&ts->sync_stat, nsec);
2528}
2529
2530static void add_clat_percentile_sample(struct thread_stat *ts,
2531 unsigned long long nsec, enum fio_ddir ddir)
2532{
2533 unsigned int idx = plat_val_to_idx(nsec);
2534 assert(idx < FIO_IO_U_PLAT_NR);
2535
2536 ts->io_u_plat[ddir][idx]++;
2537}
2538
2539void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2540 unsigned long long nsec, unsigned long long bs,
2541 uint64_t offset)
2542{
2543 const bool needs_lock = td_async_processing(td);
2544 unsigned long elapsed, this_window;
2545 struct thread_stat *ts = &td->ts;
2546 struct io_log *iolog = td->clat_hist_log;
2547
2548 if (needs_lock)
2549 __td_io_u_lock(td);
2550
2551 add_stat_sample(&ts->clat_stat[ddir], nsec);
2552
2553 if (td->clat_log)
2554 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2555 offset);
2556
2557 if (ts->clat_percentiles)
2558 add_clat_percentile_sample(ts, nsec, ddir);
2559
2560 if (iolog && iolog->hist_msec) {
2561 struct io_hist *hw = &iolog->hist_window[ddir];
2562
2563 hw->samples++;
2564 elapsed = mtime_since_now(&td->epoch);
2565 if (!hw->hist_last)
2566 hw->hist_last = elapsed;
2567 this_window = elapsed - hw->hist_last;
2568
2569 if (this_window >= iolog->hist_msec) {
2570 uint64_t *io_u_plat;
2571 struct io_u_plat_entry *dst;
2572
2573 /*
2574 * Make a byte-for-byte copy of the latency histogram
2575 * stored in td->ts.io_u_plat[ddir], recording it in a
2576 * log sample. Note that the matching call to free() is
2577 * located in iolog.c after printing this sample to the
2578 * log file.
2579 */
2580 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2581 dst = malloc(sizeof(struct io_u_plat_entry));
2582 memcpy(&(dst->io_u_plat), io_u_plat,
2583 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2584 flist_add(&dst->list, &hw->list);
2585 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2586 elapsed, offset);
2587
2588 /*
2589 * Update the last time we recorded as being now, minus
2590 * any drift in time we encountered before actually
2591 * making the record.
2592 */
2593 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2594 hw->samples = 0;
2595 }
2596 }
2597
2598 if (needs_lock)
2599 __td_io_u_unlock(td);
2600}
2601
2602void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2603 unsigned long usec, unsigned long long bs, uint64_t offset)
2604{
2605 const bool needs_lock = td_async_processing(td);
2606 struct thread_stat *ts = &td->ts;
2607
2608 if (!ddir_rw(ddir))
2609 return;
2610
2611 if (needs_lock)
2612 __td_io_u_lock(td);
2613
2614 add_stat_sample(&ts->slat_stat[ddir], usec);
2615
2616 if (td->slat_log)
2617 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2618
2619 if (needs_lock)
2620 __td_io_u_unlock(td);
2621}
2622
2623void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2624 unsigned long long nsec, unsigned long long bs,
2625 uint64_t offset)
2626{
2627 const bool needs_lock = td_async_processing(td);
2628 struct thread_stat *ts = &td->ts;
2629
2630 if (!ddir_rw(ddir))
2631 return;
2632
2633 if (needs_lock)
2634 __td_io_u_lock(td);
2635
2636 add_stat_sample(&ts->lat_stat[ddir], nsec);
2637
2638 if (td->lat_log)
2639 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2640 offset);
2641
2642 if (ts->lat_percentiles)
2643 add_clat_percentile_sample(ts, nsec, ddir);
2644
2645 if (needs_lock)
2646 __td_io_u_unlock(td);
2647}
2648
2649void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2650 unsigned int bytes, unsigned long long spent)
2651{
2652 const bool needs_lock = td_async_processing(td);
2653 struct thread_stat *ts = &td->ts;
2654 unsigned long rate;
2655
2656 if (spent)
2657 rate = (unsigned long) (bytes * 1000000ULL / spent);
2658 else
2659 rate = 0;
2660
2661 if (needs_lock)
2662 __td_io_u_lock(td);
2663
2664 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2665
2666 if (td->bw_log)
2667 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2668 bytes, io_u->offset);
2669
2670 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2671
2672 if (needs_lock)
2673 __td_io_u_unlock(td);
2674}
2675
2676static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2677 struct timespec *t, unsigned int avg_time,
2678 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2679 struct io_stat *stat, struct io_log *log,
2680 bool is_kb)
2681{
2682 const bool needs_lock = td_async_processing(td);
2683 unsigned long spent, rate;
2684 enum fio_ddir ddir;
2685 unsigned long next, next_log;
2686
2687 next_log = avg_time;
2688
2689 spent = mtime_since(parent_tv, t);
2690 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2691 return avg_time - spent;
2692
2693 if (needs_lock)
2694 __td_io_u_lock(td);
2695
2696 /*
2697 * Compute both read and write rates for the interval.
2698 */
2699 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2700 uint64_t delta;
2701
2702 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2703 if (!delta)
2704 continue; /* No entries for interval */
2705
2706 if (spent) {
2707 if (is_kb)
2708 rate = delta * 1000 / spent / 1024; /* KiB/s */
2709 else
2710 rate = (delta * 1000) / spent;
2711 } else
2712 rate = 0;
2713
2714 add_stat_sample(&stat[ddir], rate);
2715
2716 if (log) {
2717 unsigned long long bs = 0;
2718
2719 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2720 bs = td->o.min_bs[ddir];
2721
2722 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2723 next_log = min(next_log, next);
2724 }
2725
2726 stat_io_bytes[ddir] = this_io_bytes[ddir];
2727 }
2728
2729 timespec_add_msec(parent_tv, avg_time);
2730
2731 if (needs_lock)
2732 __td_io_u_unlock(td);
2733
2734 if (spent <= avg_time)
2735 next = avg_time;
2736 else
2737 next = avg_time - (1 + spent - avg_time);
2738
2739 return min(next, next_log);
2740}
2741
2742static int add_bw_samples(struct thread_data *td, struct timespec *t)
2743{
2744 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2745 td->this_io_bytes, td->stat_io_bytes,
2746 td->ts.bw_stat, td->bw_log, true);
2747}
2748
2749void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2750 unsigned int bytes)
2751{
2752 const bool needs_lock = td_async_processing(td);
2753 struct thread_stat *ts = &td->ts;
2754
2755 if (needs_lock)
2756 __td_io_u_lock(td);
2757
2758 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2759
2760 if (td->iops_log)
2761 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2762 bytes, io_u->offset);
2763
2764 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2765
2766 if (needs_lock)
2767 __td_io_u_unlock(td);
2768}
2769
2770static int add_iops_samples(struct thread_data *td, struct timespec *t)
2771{
2772 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2773 td->this_io_blocks, td->stat_io_blocks,
2774 td->ts.iops_stat, td->iops_log, false);
2775}
2776
2777/*
2778 * Returns msecs to next event
2779 */
2780int calc_log_samples(void)
2781{
2782 struct thread_data *td;
2783 unsigned int next = ~0U, tmp;
2784 struct timespec now;
2785 int i;
2786
2787 fio_gettime(&now, NULL);
2788
2789 for_each_td(td, i) {
2790 if (!td->o.stats)
2791 continue;
2792 if (in_ramp_time(td) ||
2793 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2794 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2795 continue;
2796 }
2797 if (!td->bw_log ||
2798 (td->bw_log && !per_unit_log(td->bw_log))) {
2799 tmp = add_bw_samples(td, &now);
2800 if (tmp < next)
2801 next = tmp;
2802 }
2803 if (!td->iops_log ||
2804 (td->iops_log && !per_unit_log(td->iops_log))) {
2805 tmp = add_iops_samples(td, &now);
2806 if (tmp < next)
2807 next = tmp;
2808 }
2809 }
2810
2811 return next == ~0U ? 0 : next;
2812}
2813
2814void stat_init(void)
2815{
2816 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2817}
2818
2819void stat_exit(void)
2820{
2821 /*
2822 * When we have the mutex, we know out-of-band access to it
2823 * have ended.
2824 */
2825 fio_sem_down(stat_sem);
2826 fio_sem_remove(stat_sem);
2827}
2828
2829/*
2830 * Called from signal handler. Wake up status thread.
2831 */
2832void show_running_run_stats(void)
2833{
2834 helper_do_stat();
2835}
2836
2837uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2838{
2839 /* Ignore io_u's which span multiple blocks--they will just get
2840 * inaccurate counts. */
2841 int idx = (io_u->offset - io_u->file->file_offset)
2842 / td->o.bs[DDIR_TRIM];
2843 uint32_t *info = &td->ts.block_infos[idx];
2844 assert(idx < td->ts.nr_block_infos);
2845 return info;
2846}