steadystate: clean up checks for when steadystate termination is not engaged
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/types.h>
5#include <sys/stat.h>
6#include <dirent.h>
7#include <libgen.h>
8#include <math.h>
9
10#include "fio.h"
11#include "diskutil.h"
12#include "lib/ieee754.h"
13#include "json.h"
14#include "lib/getrusage.h"
15#include "idletime.h"
16#include "lib/pow2.h"
17#include "lib/output_buffer.h"
18#include "helper_thread.h"
19#include "smalloc.h"
20
21#define LOG_MSEC_SLACK 10
22
23struct fio_mutex *stat_mutex;
24
25void clear_rusage_stat(struct thread_data *td)
26{
27 struct thread_stat *ts = &td->ts;
28
29 fio_getrusage(&td->ru_start);
30 ts->usr_time = ts->sys_time = 0;
31 ts->ctx = 0;
32 ts->minf = ts->majf = 0;
33}
34
35void update_rusage_stat(struct thread_data *td)
36{
37 struct thread_stat *ts = &td->ts;
38
39 fio_getrusage(&td->ru_end);
40 ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41 &td->ru_end.ru_utime);
42 ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43 &td->ru_end.ru_stime);
44 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50}
51
52/*
53 * Given a latency, return the index of the corresponding bucket in
54 * the structure tracking percentiles.
55 *
56 * (1) find the group (and error bits) that the value (latency)
57 * belongs to by looking at its MSB. (2) find the bucket number in the
58 * group by looking at the index bits.
59 *
60 */
61static unsigned int plat_val_to_idx(unsigned int val)
62{
63 unsigned int msb, error_bits, base, offset, idx;
64
65 /* Find MSB starting from bit 0 */
66 if (val == 0)
67 msb = 0;
68 else
69 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71 /*
72 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73 * all bits of the sample as index
74 */
75 if (msb <= FIO_IO_U_PLAT_BITS)
76 return val;
77
78 /* Compute the number of error bits to discard*/
79 error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81 /* Compute the number of buckets before the group */
82 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84 /*
85 * Discard the error bits and apply the mask to find the
86 * index for the buckets in the group
87 */
88 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90 /* Make sure the index does not exceed (array size - 1) */
91 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94 return idx;
95}
96
97/*
98 * Convert the given index of the bucket array to the value
99 * represented by the bucket
100 */
101static unsigned int plat_idx_to_val(unsigned int idx)
102{
103 unsigned int error_bits, k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138 fio_fp64_t *plist, unsigned int **output,
139 unsigned int *maxv, unsigned int *minv)
140{
141 unsigned long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned int oval_len = 0;
144 unsigned int *ovals = NULL;
145 int is_last;
146
147 *minv = -1U;
148 *maxv = 0;
149
150 len = 0;
151 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152 len++;
153
154 if (!len)
155 return 0;
156
157 /*
158 * Sort the percentile list. Note that it may already be sorted if
159 * we are using the default values, but since it's a short list this
160 * isn't a worry. Also note that this does not work for NaN values.
161 */
162 if (len > 1)
163 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165 /*
166 * Calculate bucket values, note down max and min values
167 */
168 is_last = 0;
169 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170 sum += io_u_plat[i];
171 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172 assert(plist[j].u.f <= 100.0);
173
174 if (j == oval_len) {
175 oval_len += 100;
176 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177 }
178
179 ovals[j] = plat_idx_to_val(i);
180 if (ovals[j] < *minv)
181 *minv = ovals[j];
182 if (ovals[j] > *maxv)
183 *maxv = ovals[j];
184
185 is_last = (j == len - 1);
186 if (is_last)
187 break;
188
189 j++;
190 }
191 }
192
193 *output = ovals;
194 return len;
195}
196
197/*
198 * Find and display the p-th percentile of clat
199 */
200static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201 fio_fp64_t *plist, unsigned int precision,
202 struct buf_output *out)
203{
204 unsigned int len, j = 0, minv, maxv;
205 unsigned int *ovals;
206 int is_last, per_line, scale_down;
207 char fmt[32];
208
209 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210 if (!len)
211 goto out;
212
213 /*
214 * We default to usecs, but if the value range is such that we
215 * should scale down to msecs, do that.
216 */
217 if (minv > 2000 && maxv > 99999) {
218 scale_down = 1;
219 log_buf(out, " clat percentiles (msec):\n |");
220 } else {
221 scale_down = 0;
222 log_buf(out, " clat percentiles (usec):\n |");
223 }
224
225 snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226 per_line = (80 - 7) / (precision + 14);
227
228 for (j = 0; j < len; j++) {
229 char fbuf[16], *ptr = fbuf;
230
231 /* for formatting */
232 if (j != 0 && (j % per_line) == 0)
233 log_buf(out, " |");
234
235 /* end of the list */
236 is_last = (j == len - 1);
237
238 if (plist[j].u.f < 10.0)
239 ptr += sprintf(fbuf, " ");
240
241 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243 if (scale_down)
244 ovals[j] = (ovals[j] + 999) / 1000;
245
246 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248 if (is_last)
249 break;
250
251 if ((j % per_line) == per_line - 1) /* for formatting */
252 log_buf(out, "\n");
253 }
254
255out:
256 if (ovals)
257 free(ovals);
258}
259
260int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261 double *mean, double *dev)
262{
263 double n = (double) is->samples;
264
265 if (n == 0)
266 return 0;
267
268 *min = is->min_val;
269 *max = is->max_val;
270 *mean = is->mean.u.f;
271
272 if (n > 1.0)
273 *dev = sqrt(is->S.u.f / (n - 1.0));
274 else
275 *dev = 0;
276
277 return 1;
278}
279
280void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281{
282 char *p1, *p2, *p3, *p4;
283 const char *str[] = { " READ", " WRITE" , " TRIM"};
284 int i;
285
286 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289 const int i2p = is_power_of_2(rs->kb_base);
290
291 if (!rs->max_run[i])
292 continue;
293
294 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300 " mint=%llumsec, maxt=%llumsec\n",
301 rs->unified_rw_rep ? " MIXED" : str[i],
302 p1, p2, p3, p4,
303 (unsigned long long) rs->min_run[i],
304 (unsigned long long) rs->max_run[i]);
305
306 free(p1);
307 free(p2);
308 free(p3);
309 free(p4);
310 }
311}
312
313void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314{
315 int i;
316
317 /*
318 * Do depth distribution calculations
319 */
320 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321 if (total) {
322 io_u_dist[i] = (double) map[i] / (double) total;
323 io_u_dist[i] *= 100.0;
324 if (io_u_dist[i] < 0.1 && map[i])
325 io_u_dist[i] = 0.1;
326 } else
327 io_u_dist[i] = 0.0;
328 }
329}
330
331static void stat_calc_lat(struct thread_stat *ts, double *dst,
332 unsigned int *src, int nr)
333{
334 unsigned long total = ddir_rw_sum(ts->total_io_u);
335 int i;
336
337 /*
338 * Do latency distribution calculations
339 */
340 for (i = 0; i < nr; i++) {
341 if (total) {
342 dst[i] = (double) src[i] / (double) total;
343 dst[i] *= 100.0;
344 if (dst[i] < 0.01 && src[i])
345 dst[i] = 0.01;
346 } else
347 dst[i] = 0.0;
348 }
349}
350
351void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352{
353 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354}
355
356void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357{
358 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359}
360
361static void display_lat(const char *name, unsigned long min, unsigned long max,
362 double mean, double dev, struct buf_output *out)
363{
364 const char *base = "(usec)";
365 char *minp, *maxp;
366
367 if (!usec_to_msec(&min, &max, &mean, &dev))
368 base = "(msec)";
369
370 minp = num2str(min, 6, 1, 0, 0);
371 maxp = num2str(max, 6, 1, 0, 0);
372
373 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
374 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376 free(minp);
377 free(maxp);
378}
379
380static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381 int ddir, struct buf_output *out)
382{
383 const char *str[] = { "read ", "write", "trim" };
384 unsigned long min, max, runt;
385 unsigned long long bw, iops;
386 double mean, dev;
387 char *io_p, *bw_p, *iops_p;
388 int i2p;
389
390 assert(ddir_rw(ddir));
391
392 if (!ts->runtime[ddir])
393 return;
394
395 i2p = is_power_of_2(rs->kb_base);
396 runt = ts->runtime[ddir];
397
398 bw = (1000 * ts->io_bytes[ddir]) / runt;
399 io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400 bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403 iops_p = num2str(iops, 6, 1, 0, 0);
404
405 log_buf(out, " %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406 rs->unified_rw_rep ? "mixed" : str[ddir],
407 io_p, bw_p, iops_p,
408 (unsigned long long) ts->runtime[ddir]);
409
410 free(io_p);
411 free(bw_p);
412 free(iops_p);
413
414 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415 display_lat("slat", min, max, mean, dev, out);
416 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417 display_lat("clat", min, max, mean, dev, out);
418 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419 display_lat(" lat", min, max, mean, dev, out);
420
421 if (ts->clat_percentiles) {
422 show_clat_percentiles(ts->io_u_plat[ddir],
423 ts->clat_stat[ddir].samples,
424 ts->percentile_list,
425 ts->percentile_precision, out);
426 }
427 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431 if (rs->unit_base == 1) {
432 min *= 8.0;
433 max *= 8.0;
434 mean *= 8.0;
435 dev *= 8.0;
436 }
437
438 if (rs->agg[ddir]) {
439 p_of_agg = mean * 100 / (double) rs->agg[ddir];
440 if (p_of_agg > 100.0)
441 p_of_agg = 100.0;
442 }
443
444 if (mean > fkb_base * fkb_base) {
445 min /= fkb_base;
446 max /= fkb_base;
447 mean /= fkb_base;
448 dev /= fkb_base;
449 bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450 }
451
452 log_buf(out, " bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453 " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454 p_of_agg, mean, dev);
455 }
456}
457
458static int show_lat(double *io_u_lat, int nr, const char **ranges,
459 const char *msg, struct buf_output *out)
460{
461 int new_line = 1, i, line = 0, shown = 0;
462
463 for (i = 0; i < nr; i++) {
464 if (io_u_lat[i] <= 0.0)
465 continue;
466 shown = 1;
467 if (new_line) {
468 if (line)
469 log_buf(out, "\n");
470 log_buf(out, " lat (%s) : ", msg);
471 new_line = 0;
472 line = 0;
473 }
474 if (line)
475 log_buf(out, ", ");
476 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477 line++;
478 if (line == 5)
479 new_line = 1;
480 }
481
482 if (shown)
483 log_buf(out, "\n");
484
485 return shown;
486}
487
488static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489{
490 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491 "250=", "500=", "750=", "1000=", };
492
493 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494}
495
496static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497{
498 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499 "250=", "500=", "750=", "1000=", "2000=",
500 ">=2000=", };
501
502 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503}
504
505static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506{
507 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510 stat_calc_lat_u(ts, io_u_lat_u);
511 stat_calc_lat_m(ts, io_u_lat_m);
512
513 show_lat_u(io_u_lat_u, out);
514 show_lat_m(io_u_lat_m, out);
515}
516
517static int block_state_category(int block_state)
518{
519 switch (block_state) {
520 case BLOCK_STATE_UNINIT:
521 return 0;
522 case BLOCK_STATE_TRIMMED:
523 case BLOCK_STATE_WRITTEN:
524 return 1;
525 case BLOCK_STATE_WRITE_FAILURE:
526 case BLOCK_STATE_TRIM_FAILURE:
527 return 2;
528 default:
529 /* Silence compile warning on some BSDs and have a return */
530 assert(0);
531 return -1;
532 }
533}
534
535static int compare_block_infos(const void *bs1, const void *bs2)
536{
537 uint32_t block1 = *(uint32_t *)bs1;
538 uint32_t block2 = *(uint32_t *)bs2;
539 int state1 = BLOCK_INFO_STATE(block1);
540 int state2 = BLOCK_INFO_STATE(block2);
541 int bscat1 = block_state_category(state1);
542 int bscat2 = block_state_category(state2);
543 int cycles1 = BLOCK_INFO_TRIMS(block1);
544 int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546 if (bscat1 < bscat2)
547 return -1;
548 if (bscat1 > bscat2)
549 return 1;
550
551 if (cycles1 < cycles2)
552 return -1;
553 if (cycles1 > cycles2)
554 return 1;
555
556 if (state1 < state2)
557 return -1;
558 if (state1 > state2)
559 return 1;
560
561 assert(block1 == block2);
562 return 0;
563}
564
565static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566 fio_fp64_t *plist, unsigned int **percentiles,
567 unsigned int *types)
568{
569 int len = 0;
570 int i, nr_uninit;
571
572 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575 len++;
576
577 if (!len)
578 return 0;
579
580 /*
581 * Sort the percentile list. Note that it may already be sorted if
582 * we are using the default values, but since it's a short list this
583 * isn't a worry. Also note that this does not work for NaN values.
584 */
585 if (len > 1)
586 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588 nr_uninit = 0;
589 /* Start only after the uninit entries end */
590 for (nr_uninit = 0;
591 nr_uninit < nr_block_infos
592 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593 nr_uninit ++)
594 ;
595
596 if (nr_uninit == nr_block_infos)
597 return 0;
598
599 *percentiles = calloc(len, sizeof(**percentiles));
600
601 for (i = 0; i < len; i++) {
602 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603 + nr_uninit;
604 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605 }
606
607 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608 for (i = 0; i < nr_block_infos; i++)
609 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611 return len;
612}
613
614static const char *block_state_names[] = {
615 [BLOCK_STATE_UNINIT] = "unwritten",
616 [BLOCK_STATE_TRIMMED] = "trimmed",
617 [BLOCK_STATE_WRITTEN] = "written",
618 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620};
621
622static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623 fio_fp64_t *plist, struct buf_output *out)
624{
625 int len, pos, i;
626 unsigned int *percentiles = NULL;
627 unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630 &percentiles, block_state_counts);
631
632 log_buf(out, " block lifetime percentiles :\n |");
633 pos = 0;
634 for (i = 0; i < len; i++) {
635 uint32_t block_info = percentiles[i];
636#define LINE_LENGTH 75
637 char str[LINE_LENGTH];
638 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639 plist[i].u.f, block_info,
640 i == len - 1 ? '\n' : ',');
641 assert(strln < LINE_LENGTH);
642 if (pos + strln > LINE_LENGTH) {
643 pos = 0;
644 log_buf(out, "\n |");
645 }
646 log_buf(out, "%s", str);
647 pos += strln;
648#undef LINE_LENGTH
649 }
650 if (percentiles)
651 free(percentiles);
652
653 log_buf(out, " states :");
654 for (i = 0; i < BLOCK_STATE_COUNT; i++)
655 log_buf(out, " %s=%u%c",
656 block_state_names[i], block_state_counts[i],
657 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658}
659
660static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
661{
662 char *p1, *p2;
663 unsigned long long bw_mean, iops_mean;
664 const int i2p = is_power_of_2(ts->kb_base);
665
666 if (!ts->ss_dur)
667 return;
668
669 bw_mean = steadystate_bw_mean(ts);
670 iops_mean = steadystate_iops_mean(ts);
671
672 p1 = num2str(bw_mean / ts->kb_base, 6, ts->kb_base, i2p, ts->unit_base);
673 p2 = num2str(iops_mean, 6, 1, 0, 0);
674
675 log_buf(out, " steadystate : attained=%s, bw=%s/s, iops=%s, %s%s=%.3f%s\n",
676 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
677 p1, p2,
678 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
679 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
680 ts->ss_criterion.u.f,
681 ts->ss_state & __FIO_SS_PCT ? "%" : "");
682
683 free(p1);
684 free(p2);
685}
686
687static void show_thread_status_normal(struct thread_stat *ts,
688 struct group_run_stats *rs,
689 struct buf_output *out)
690{
691 double usr_cpu, sys_cpu;
692 unsigned long runtime;
693 double io_u_dist[FIO_IO_U_MAP_NR];
694 time_t time_p;
695 char time_buf[32];
696
697 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
698 return;
699
700 time(&time_p);
701 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
702
703 if (!ts->error) {
704 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
705 ts->name, ts->groupid, ts->members,
706 ts->error, (int) ts->pid, time_buf);
707 } else {
708 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
709 ts->name, ts->groupid, ts->members,
710 ts->error, ts->verror, (int) ts->pid,
711 time_buf);
712 }
713
714 if (strlen(ts->description))
715 log_buf(out, " Description : [%s]\n", ts->description);
716
717 if (ts->io_bytes[DDIR_READ])
718 show_ddir_status(rs, ts, DDIR_READ, out);
719 if (ts->io_bytes[DDIR_WRITE])
720 show_ddir_status(rs, ts, DDIR_WRITE, out);
721 if (ts->io_bytes[DDIR_TRIM])
722 show_ddir_status(rs, ts, DDIR_TRIM, out);
723
724 show_latencies(ts, out);
725
726 runtime = ts->total_run_time;
727 if (runtime) {
728 double runt = (double) runtime;
729
730 usr_cpu = (double) ts->usr_time * 100 / runt;
731 sys_cpu = (double) ts->sys_time * 100 / runt;
732 } else {
733 usr_cpu = 0;
734 sys_cpu = 0;
735 }
736
737 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
738 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
739 (unsigned long long) ts->ctx,
740 (unsigned long long) ts->majf,
741 (unsigned long long) ts->minf);
742
743 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
744 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
745 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
746 io_u_dist[1], io_u_dist[2],
747 io_u_dist[3], io_u_dist[4],
748 io_u_dist[5], io_u_dist[6]);
749
750 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
751 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
752 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
753 io_u_dist[1], io_u_dist[2],
754 io_u_dist[3], io_u_dist[4],
755 io_u_dist[5], io_u_dist[6]);
756 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
757 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
758 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
759 io_u_dist[1], io_u_dist[2],
760 io_u_dist[3], io_u_dist[4],
761 io_u_dist[5], io_u_dist[6]);
762 log_buf(out, " issued : total=r=%llu/w=%llu/d=%llu,"
763 " short=r=%llu/w=%llu/d=%llu,"
764 " drop=r=%llu/w=%llu/d=%llu\n",
765 (unsigned long long) ts->total_io_u[0],
766 (unsigned long long) ts->total_io_u[1],
767 (unsigned long long) ts->total_io_u[2],
768 (unsigned long long) ts->short_io_u[0],
769 (unsigned long long) ts->short_io_u[1],
770 (unsigned long long) ts->short_io_u[2],
771 (unsigned long long) ts->drop_io_u[0],
772 (unsigned long long) ts->drop_io_u[1],
773 (unsigned long long) ts->drop_io_u[2]);
774 if (ts->continue_on_error) {
775 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
776 (unsigned long long)ts->total_err_count,
777 ts->first_error,
778 strerror(ts->first_error));
779 }
780 if (ts->latency_depth) {
781 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
782 (unsigned long long)ts->latency_target,
783 (unsigned long long)ts->latency_window,
784 ts->latency_percentile.u.f,
785 ts->latency_depth);
786 }
787
788 if (ts->nr_block_infos)
789 show_block_infos(ts->nr_block_infos, ts->block_infos,
790 ts->percentile_list, out);
791
792 if (ts->ss_dur)
793 show_ss_normal(ts, out);
794}
795
796static void show_ddir_status_terse(struct thread_stat *ts,
797 struct group_run_stats *rs, int ddir,
798 struct buf_output *out)
799{
800 unsigned long min, max;
801 unsigned long long bw, iops;
802 unsigned int *ovals = NULL;
803 double mean, dev;
804 unsigned int len, minv, maxv;
805 int i;
806
807 assert(ddir_rw(ddir));
808
809 iops = bw = 0;
810 if (ts->runtime[ddir]) {
811 uint64_t runt = ts->runtime[ddir];
812
813 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
814 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
815 }
816
817 log_buf(out, ";%llu;%llu;%llu;%llu",
818 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
819 (unsigned long long) ts->runtime[ddir]);
820
821 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
822 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
823 else
824 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
825
826 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
827 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
828 else
829 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
830
831 if (ts->clat_percentiles) {
832 len = calc_clat_percentiles(ts->io_u_plat[ddir],
833 ts->clat_stat[ddir].samples,
834 ts->percentile_list, &ovals, &maxv,
835 &minv);
836 } else
837 len = 0;
838
839 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
840 if (i >= len) {
841 log_buf(out, ";0%%=0");
842 continue;
843 }
844 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
845 }
846
847 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
848 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
849 else
850 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
851
852 if (ovals)
853 free(ovals);
854
855 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
856 double p_of_agg = 100.0;
857
858 if (rs->agg[ddir]) {
859 p_of_agg = mean * 100 / (double) rs->agg[ddir];
860 if (p_of_agg > 100.0)
861 p_of_agg = 100.0;
862 }
863
864 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
865 } else
866 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
867}
868
869static void add_ddir_status_json(struct thread_stat *ts,
870 struct group_run_stats *rs, int ddir, struct json_object *parent)
871{
872 unsigned long min, max;
873 unsigned long long bw;
874 unsigned int *ovals = NULL;
875 double mean, dev, iops;
876 unsigned int len, minv, maxv;
877 int i;
878 const char *ddirname[] = {"read", "write", "trim"};
879 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
880 char buf[120];
881 double p_of_agg = 100.0;
882
883 assert(ddir_rw(ddir));
884
885 if (ts->unified_rw_rep && ddir != DDIR_READ)
886 return;
887
888 dir_object = json_create_object();
889 json_object_add_value_object(parent,
890 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
891
892 bw = 0;
893 iops = 0.0;
894 if (ts->runtime[ddir]) {
895 uint64_t runt = ts->runtime[ddir];
896
897 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
898 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
899 }
900
901 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
902 json_object_add_value_int(dir_object, "bw", bw);
903 json_object_add_value_float(dir_object, "iops", iops);
904 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
905 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
906 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
907 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
908
909 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
910 min = max = 0;
911 mean = dev = 0.0;
912 }
913 tmp_object = json_create_object();
914 json_object_add_value_object(dir_object, "slat", tmp_object);
915 json_object_add_value_int(tmp_object, "min", min);
916 json_object_add_value_int(tmp_object, "max", max);
917 json_object_add_value_float(tmp_object, "mean", mean);
918 json_object_add_value_float(tmp_object, "stddev", dev);
919
920 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
921 min = max = 0;
922 mean = dev = 0.0;
923 }
924 tmp_object = json_create_object();
925 json_object_add_value_object(dir_object, "clat", tmp_object);
926 json_object_add_value_int(tmp_object, "min", min);
927 json_object_add_value_int(tmp_object, "max", max);
928 json_object_add_value_float(tmp_object, "mean", mean);
929 json_object_add_value_float(tmp_object, "stddev", dev);
930
931 if (ts->clat_percentiles) {
932 len = calc_clat_percentiles(ts->io_u_plat[ddir],
933 ts->clat_stat[ddir].samples,
934 ts->percentile_list, &ovals, &maxv,
935 &minv);
936 } else
937 len = 0;
938
939 percentile_object = json_create_object();
940 json_object_add_value_object(tmp_object, "percentile", percentile_object);
941 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
942 if (i >= len) {
943 json_object_add_value_int(percentile_object, "0.00", 0);
944 continue;
945 }
946 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
947 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
948 }
949
950 if (output_format & FIO_OUTPUT_JSON_PLUS) {
951 clat_bins_object = json_create_object();
952 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
953 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
954 snprintf(buf, sizeof(buf), "%d", i);
955 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
956 }
957 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
958 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
959 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
960 }
961
962 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
963 min = max = 0;
964 mean = dev = 0.0;
965 }
966 tmp_object = json_create_object();
967 json_object_add_value_object(dir_object, "lat", tmp_object);
968 json_object_add_value_int(tmp_object, "min", min);
969 json_object_add_value_int(tmp_object, "max", max);
970 json_object_add_value_float(tmp_object, "mean", mean);
971 json_object_add_value_float(tmp_object, "stddev", dev);
972 if (ovals)
973 free(ovals);
974
975 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
976 if (rs->agg[ddir]) {
977 p_of_agg = mean * 100 / (double) rs->agg[ddir];
978 if (p_of_agg > 100.0)
979 p_of_agg = 100.0;
980 }
981 } else {
982 min = max = 0;
983 p_of_agg = mean = dev = 0.0;
984 }
985 json_object_add_value_int(dir_object, "bw_min", min);
986 json_object_add_value_int(dir_object, "bw_max", max);
987 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
988 json_object_add_value_float(dir_object, "bw_mean", mean);
989 json_object_add_value_float(dir_object, "bw_dev", dev);
990}
991
992static void show_thread_status_terse_v2(struct thread_stat *ts,
993 struct group_run_stats *rs,
994 struct buf_output *out)
995{
996 double io_u_dist[FIO_IO_U_MAP_NR];
997 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
998 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
999 double usr_cpu, sys_cpu;
1000 int i;
1001
1002 /* General Info */
1003 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1004 /* Log Read Status */
1005 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1006 /* Log Write Status */
1007 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1008 /* Log Trim Status */
1009 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1010
1011 /* CPU Usage */
1012 if (ts->total_run_time) {
1013 double runt = (double) ts->total_run_time;
1014
1015 usr_cpu = (double) ts->usr_time * 100 / runt;
1016 sys_cpu = (double) ts->sys_time * 100 / runt;
1017 } else {
1018 usr_cpu = 0;
1019 sys_cpu = 0;
1020 }
1021
1022 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1023 (unsigned long long) ts->ctx,
1024 (unsigned long long) ts->majf,
1025 (unsigned long long) ts->minf);
1026
1027 /* Calc % distribution of IO depths, usecond, msecond latency */
1028 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1029 stat_calc_lat_u(ts, io_u_lat_u);
1030 stat_calc_lat_m(ts, io_u_lat_m);
1031
1032 /* Only show fixed 7 I/O depth levels*/
1033 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1034 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1035 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1036
1037 /* Microsecond latency */
1038 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1039 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1040 /* Millisecond latency */
1041 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1042 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1043 /* Additional output if continue_on_error set - default off*/
1044 if (ts->continue_on_error)
1045 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1046 log_buf(out, "\n");
1047
1048 /* Additional output if description is set */
1049 if (strlen(ts->description))
1050 log_buf(out, ";%s", ts->description);
1051
1052 log_buf(out, "\n");
1053}
1054
1055static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1056 struct group_run_stats *rs, int ver,
1057 struct buf_output *out)
1058{
1059 double io_u_dist[FIO_IO_U_MAP_NR];
1060 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1061 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1062 double usr_cpu, sys_cpu;
1063 int i;
1064
1065 /* General Info */
1066 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1067 ts->name, ts->groupid, ts->error);
1068 /* Log Read Status */
1069 show_ddir_status_terse(ts, rs, DDIR_READ, out);
1070 /* Log Write Status */
1071 show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1072 /* Log Trim Status */
1073 if (ver == 4)
1074 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1075
1076 /* CPU Usage */
1077 if (ts->total_run_time) {
1078 double runt = (double) ts->total_run_time;
1079
1080 usr_cpu = (double) ts->usr_time * 100 / runt;
1081 sys_cpu = (double) ts->sys_time * 100 / runt;
1082 } else {
1083 usr_cpu = 0;
1084 sys_cpu = 0;
1085 }
1086
1087 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1088 (unsigned long long) ts->ctx,
1089 (unsigned long long) ts->majf,
1090 (unsigned long long) ts->minf);
1091
1092 /* Calc % distribution of IO depths, usecond, msecond latency */
1093 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1094 stat_calc_lat_u(ts, io_u_lat_u);
1095 stat_calc_lat_m(ts, io_u_lat_m);
1096
1097 /* Only show fixed 7 I/O depth levels*/
1098 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1099 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1100 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1101
1102 /* Microsecond latency */
1103 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1104 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1105 /* Millisecond latency */
1106 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1107 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1108
1109 /* disk util stats, if any */
1110 show_disk_util(1, NULL, out);
1111
1112 /* Additional output if continue_on_error set - default off*/
1113 if (ts->continue_on_error)
1114 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1115
1116 /* Additional output if description is set */
1117 if (strlen(ts->description))
1118 log_buf(out, ";%s", ts->description);
1119
1120 log_buf(out, "\n");
1121}
1122
1123void json_add_job_opts(struct json_object *root, const char *name,
1124 struct flist_head *opt_list, bool num_jobs)
1125{
1126 struct json_object *dir_object;
1127 struct flist_head *entry;
1128 struct print_option *p;
1129
1130 if (flist_empty(opt_list))
1131 return;
1132
1133 dir_object = json_create_object();
1134 json_object_add_value_object(root, name, dir_object);
1135
1136 flist_for_each(entry, opt_list) {
1137 const char *pos = "";
1138
1139 p = flist_entry(entry, struct print_option, list);
1140 if (!num_jobs && !strcmp(p->name, "numjobs"))
1141 continue;
1142 if (p->value)
1143 pos = p->value;
1144 json_object_add_value_string(dir_object, p->name, pos);
1145 }
1146}
1147
1148static struct json_object *show_thread_status_json(struct thread_stat *ts,
1149 struct group_run_stats *rs,
1150 struct flist_head *opt_list)
1151{
1152 struct json_object *root, *tmp;
1153 struct jobs_eta *je;
1154 double io_u_dist[FIO_IO_U_MAP_NR];
1155 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1156 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1157 double usr_cpu, sys_cpu;
1158 int i;
1159 size_t size;
1160
1161 root = json_create_object();
1162 json_object_add_value_string(root, "jobname", ts->name);
1163 json_object_add_value_int(root, "groupid", ts->groupid);
1164 json_object_add_value_int(root, "error", ts->error);
1165
1166 /* ETA Info */
1167 je = get_jobs_eta(true, &size);
1168 if (je) {
1169 json_object_add_value_int(root, "eta", je->eta_sec);
1170 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1171 }
1172
1173 if (opt_list)
1174 json_add_job_opts(root, "job options", opt_list, true);
1175
1176 add_ddir_status_json(ts, rs, DDIR_READ, root);
1177 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1178 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1179
1180 /* CPU Usage */
1181 if (ts->total_run_time) {
1182 double runt = (double) ts->total_run_time;
1183
1184 usr_cpu = (double) ts->usr_time * 100 / runt;
1185 sys_cpu = (double) ts->sys_time * 100 / runt;
1186 } else {
1187 usr_cpu = 0;
1188 sys_cpu = 0;
1189 }
1190 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1191 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1192 json_object_add_value_int(root, "ctx", ts->ctx);
1193 json_object_add_value_int(root, "majf", ts->majf);
1194 json_object_add_value_int(root, "minf", ts->minf);
1195
1196
1197 /* Calc % distribution of IO depths, usecond, msecond latency */
1198 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1199 stat_calc_lat_u(ts, io_u_lat_u);
1200 stat_calc_lat_m(ts, io_u_lat_m);
1201
1202 tmp = json_create_object();
1203 json_object_add_value_object(root, "iodepth_level", tmp);
1204 /* Only show fixed 7 I/O depth levels*/
1205 for (i = 0; i < 7; i++) {
1206 char name[20];
1207 if (i < 6)
1208 snprintf(name, 20, "%d", 1 << i);
1209 else
1210 snprintf(name, 20, ">=%d", 1 << i);
1211 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1212 }
1213
1214 tmp = json_create_object();
1215 json_object_add_value_object(root, "latency_us", tmp);
1216 /* Microsecond latency */
1217 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1218 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1219 "250", "500", "750", "1000", };
1220 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1221 }
1222 /* Millisecond latency */
1223 tmp = json_create_object();
1224 json_object_add_value_object(root, "latency_ms", tmp);
1225 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1226 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1227 "250", "500", "750", "1000", "2000",
1228 ">=2000", };
1229 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1230 }
1231
1232 /* Additional output if continue_on_error set - default off*/
1233 if (ts->continue_on_error) {
1234 json_object_add_value_int(root, "total_err", ts->total_err_count);
1235 json_object_add_value_int(root, "first_error", ts->first_error);
1236 }
1237
1238 if (ts->latency_depth) {
1239 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1240 json_object_add_value_int(root, "latency_target", ts->latency_target);
1241 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1242 json_object_add_value_int(root, "latency_window", ts->latency_window);
1243 }
1244
1245 /* Additional output if description is set */
1246 if (strlen(ts->description))
1247 json_object_add_value_string(root, "desc", ts->description);
1248
1249 if (ts->nr_block_infos) {
1250 /* Block error histogram and types */
1251 int len;
1252 unsigned int *percentiles = NULL;
1253 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1254
1255 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1256 ts->percentile_list,
1257 &percentiles, block_state_counts);
1258
1259 if (len) {
1260 struct json_object *block, *percentile_object, *states;
1261 int state;
1262 block = json_create_object();
1263 json_object_add_value_object(root, "block", block);
1264
1265 percentile_object = json_create_object();
1266 json_object_add_value_object(block, "percentiles",
1267 percentile_object);
1268 for (i = 0; i < len; i++) {
1269 char buf[20];
1270 snprintf(buf, sizeof(buf), "%f",
1271 ts->percentile_list[i].u.f);
1272 json_object_add_value_int(percentile_object,
1273 (const char *)buf,
1274 percentiles[i]);
1275 }
1276
1277 states = json_create_object();
1278 json_object_add_value_object(block, "states", states);
1279 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1280 json_object_add_value_int(states,
1281 block_state_names[state],
1282 block_state_counts[state]);
1283 }
1284 free(percentiles);
1285 }
1286 }
1287
1288 if (ts->ss_dur) {
1289 struct json_object *data;
1290 struct json_array *iops, *bw;
1291 int i, j, k;
1292 char ss_buf[64];
1293
1294 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1295 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1296 ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1297 (float) ts->ss_limit.u.f,
1298 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1299
1300 tmp = json_create_object();
1301 json_object_add_value_object(root, "steadystate", tmp);
1302 json_object_add_value_string(tmp, "ss", ss_buf);
1303 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1304 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1305
1306 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1307 ts->ss_state & __FIO_SS_PCT ? "%" : "");
1308 json_object_add_value_string(tmp, "criterion", ss_buf);
1309 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1310 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1311
1312 data = json_create_object();
1313 json_object_add_value_object(tmp, "data", data);
1314 bw = json_create_array();
1315 iops = json_create_array();
1316
1317 /*
1318 ** if ss was attained or the buffer is not full,
1319 ** ss->head points to the first element in the list.
1320 ** otherwise it actually points to the second element
1321 ** in the list
1322 */
1323 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1324 j = ts->ss_head;
1325 else
1326 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1327 for (i = 0; i < ts->ss_dur; i++) {
1328 k = (j + i) % ts->ss_dur;
1329 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1330 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1331 }
1332 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1333 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1334 json_object_add_value_array(data, "iops", iops);
1335 json_object_add_value_array(data, "bw", bw);
1336 }
1337
1338 return root;
1339}
1340
1341static void show_thread_status_terse(struct thread_stat *ts,
1342 struct group_run_stats *rs,
1343 struct buf_output *out)
1344{
1345 if (terse_version == 2)
1346 show_thread_status_terse_v2(ts, rs, out);
1347 else if (terse_version == 3 || terse_version == 4)
1348 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1349 else
1350 log_err("fio: bad terse version!? %d\n", terse_version);
1351}
1352
1353struct json_object *show_thread_status(struct thread_stat *ts,
1354 struct group_run_stats *rs,
1355 struct flist_head *opt_list,
1356 struct buf_output *out)
1357{
1358 struct json_object *ret = NULL;
1359
1360 if (output_format & FIO_OUTPUT_TERSE)
1361 show_thread_status_terse(ts, rs, out);
1362 if (output_format & FIO_OUTPUT_JSON)
1363 ret = show_thread_status_json(ts, rs, opt_list);
1364 if (output_format & FIO_OUTPUT_NORMAL)
1365 show_thread_status_normal(ts, rs, out);
1366
1367 return ret;
1368}
1369
1370static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1371{
1372 double mean, S;
1373
1374 if (src->samples == 0)
1375 return;
1376
1377 dst->min_val = min(dst->min_val, src->min_val);
1378 dst->max_val = max(dst->max_val, src->max_val);
1379
1380 /*
1381 * Compute new mean and S after the merge
1382 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1383 * #Parallel_algorithm>
1384 */
1385 if (first) {
1386 mean = src->mean.u.f;
1387 S = src->S.u.f;
1388 } else {
1389 double delta = src->mean.u.f - dst->mean.u.f;
1390
1391 mean = ((src->mean.u.f * src->samples) +
1392 (dst->mean.u.f * dst->samples)) /
1393 (dst->samples + src->samples);
1394
1395 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1396 (dst->samples * src->samples) /
1397 (dst->samples + src->samples);
1398 }
1399
1400 dst->samples += src->samples;
1401 dst->mean.u.f = mean;
1402 dst->S.u.f = S;
1403}
1404
1405void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1406{
1407 int i;
1408
1409 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1410 if (dst->max_run[i] < src->max_run[i])
1411 dst->max_run[i] = src->max_run[i];
1412 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1413 dst->min_run[i] = src->min_run[i];
1414 if (dst->max_bw[i] < src->max_bw[i])
1415 dst->max_bw[i] = src->max_bw[i];
1416 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1417 dst->min_bw[i] = src->min_bw[i];
1418
1419 dst->io_kb[i] += src->io_kb[i];
1420 dst->agg[i] += src->agg[i];
1421 }
1422
1423 if (!dst->kb_base)
1424 dst->kb_base = src->kb_base;
1425 if (!dst->unit_base)
1426 dst->unit_base = src->unit_base;
1427}
1428
1429void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1430 bool first)
1431{
1432 int l, k;
1433
1434 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1435 if (!dst->unified_rw_rep) {
1436 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1437 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1438 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1439 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1440
1441 dst->io_bytes[l] += src->io_bytes[l];
1442
1443 if (dst->runtime[l] < src->runtime[l])
1444 dst->runtime[l] = src->runtime[l];
1445 } else {
1446 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1447 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1448 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1449 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1450
1451 dst->io_bytes[0] += src->io_bytes[l];
1452
1453 if (dst->runtime[0] < src->runtime[l])
1454 dst->runtime[0] = src->runtime[l];
1455
1456 /*
1457 * We're summing to the same destination, so override
1458 * 'first' after the first iteration of the loop
1459 */
1460 first = false;
1461 }
1462 }
1463
1464 dst->usr_time += src->usr_time;
1465 dst->sys_time += src->sys_time;
1466 dst->ctx += src->ctx;
1467 dst->majf += src->majf;
1468 dst->minf += src->minf;
1469
1470 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1471 dst->io_u_map[k] += src->io_u_map[k];
1472 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1473 dst->io_u_submit[k] += src->io_u_submit[k];
1474 for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1475 dst->io_u_complete[k] += src->io_u_complete[k];
1476 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1477 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1478 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1479 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1480
1481 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1482 if (!dst->unified_rw_rep) {
1483 dst->total_io_u[k] += src->total_io_u[k];
1484 dst->short_io_u[k] += src->short_io_u[k];
1485 dst->drop_io_u[k] += src->drop_io_u[k];
1486 } else {
1487 dst->total_io_u[0] += src->total_io_u[k];
1488 dst->short_io_u[0] += src->short_io_u[k];
1489 dst->drop_io_u[0] += src->drop_io_u[k];
1490 }
1491 }
1492
1493 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1494 int m;
1495
1496 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1497 if (!dst->unified_rw_rep)
1498 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1499 else
1500 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1501 }
1502 }
1503
1504 dst->total_run_time += src->total_run_time;
1505 dst->total_submit += src->total_submit;
1506 dst->total_complete += src->total_complete;
1507}
1508
1509void init_group_run_stat(struct group_run_stats *gs)
1510{
1511 int i;
1512 memset(gs, 0, sizeof(*gs));
1513
1514 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1515 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1516}
1517
1518void init_thread_stat(struct thread_stat *ts)
1519{
1520 int j;
1521
1522 memset(ts, 0, sizeof(*ts));
1523
1524 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1525 ts->lat_stat[j].min_val = -1UL;
1526 ts->clat_stat[j].min_val = -1UL;
1527 ts->slat_stat[j].min_val = -1UL;
1528 ts->bw_stat[j].min_val = -1UL;
1529 }
1530 ts->groupid = -1;
1531}
1532
1533void __show_run_stats(void)
1534{
1535 struct group_run_stats *runstats, *rs;
1536 struct thread_data *td;
1537 struct thread_stat *threadstats, *ts;
1538 int i, j, k, nr_ts, last_ts, idx;
1539 int kb_base_warned = 0;
1540 int unit_base_warned = 0;
1541 struct json_object *root = NULL;
1542 struct json_array *array = NULL;
1543 struct buf_output output[FIO_OUTPUT_NR];
1544 struct flist_head **opt_lists;
1545
1546 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1547
1548 for (i = 0; i < groupid + 1; i++)
1549 init_group_run_stat(&runstats[i]);
1550
1551 /*
1552 * find out how many threads stats we need. if group reporting isn't
1553 * enabled, it's one-per-td.
1554 */
1555 nr_ts = 0;
1556 last_ts = -1;
1557 for_each_td(td, i) {
1558 if (!td->o.group_reporting) {
1559 nr_ts++;
1560 continue;
1561 }
1562 if (last_ts == td->groupid)
1563 continue;
1564
1565 last_ts = td->groupid;
1566 nr_ts++;
1567 }
1568
1569 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1570 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1571
1572 for (i = 0; i < nr_ts; i++) {
1573 init_thread_stat(&threadstats[i]);
1574 opt_lists[i] = NULL;
1575 }
1576
1577 j = 0;
1578 last_ts = -1;
1579 idx = 0;
1580 for_each_td(td, i) {
1581 if (idx && (!td->o.group_reporting ||
1582 (td->o.group_reporting && last_ts != td->groupid))) {
1583 idx = 0;
1584 j++;
1585 }
1586
1587 last_ts = td->groupid;
1588
1589 ts = &threadstats[j];
1590
1591 ts->clat_percentiles = td->o.clat_percentiles;
1592 ts->percentile_precision = td->o.percentile_precision;
1593 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1594 opt_lists[j] = &td->opt_list;
1595
1596 idx++;
1597 ts->members++;
1598
1599 if (ts->groupid == -1) {
1600 /*
1601 * These are per-group shared already
1602 */
1603 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1604 if (td->o.description)
1605 strncpy(ts->description, td->o.description,
1606 FIO_JOBDESC_SIZE - 1);
1607 else
1608 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1609
1610 /*
1611 * If multiple entries in this group, this is
1612 * the first member.
1613 */
1614 ts->thread_number = td->thread_number;
1615 ts->groupid = td->groupid;
1616
1617 /*
1618 * first pid in group, not very useful...
1619 */
1620 ts->pid = td->pid;
1621
1622 ts->kb_base = td->o.kb_base;
1623 ts->unit_base = td->o.unit_base;
1624 ts->unified_rw_rep = td->o.unified_rw_rep;
1625 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1626 log_info("fio: kb_base differs for jobs in group, using"
1627 " %u as the base\n", ts->kb_base);
1628 kb_base_warned = 1;
1629 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1630 log_info("fio: unit_base differs for jobs in group, using"
1631 " %u as the base\n", ts->unit_base);
1632 unit_base_warned = 1;
1633 }
1634
1635 ts->continue_on_error = td->o.continue_on_error;
1636 ts->total_err_count += td->total_err_count;
1637 ts->first_error = td->first_error;
1638 if (!ts->error) {
1639 if (!td->error && td->o.continue_on_error &&
1640 td->first_error) {
1641 ts->error = td->first_error;
1642 ts->verror[sizeof(ts->verror) - 1] = '\0';
1643 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1644 } else if (td->error) {
1645 ts->error = td->error;
1646 ts->verror[sizeof(ts->verror) - 1] = '\0';
1647 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1648 }
1649 }
1650
1651 ts->latency_depth = td->latency_qd;
1652 ts->latency_target = td->o.latency_target;
1653 ts->latency_percentile = td->o.latency_percentile;
1654 ts->latency_window = td->o.latency_window;
1655
1656 ts->nr_block_infos = td->ts.nr_block_infos;
1657 for (k = 0; k < ts->nr_block_infos; k++)
1658 ts->block_infos[k] = td->ts.block_infos[k];
1659
1660 sum_thread_stats(ts, &td->ts, idx == 1);
1661
1662 if (td->o.ss_dur) {
1663 ts->ss_state = td->ss.state;
1664 ts->ss_dur = td->ss.dur;
1665 ts->ss_head = td->ss.head;
1666 ts->ss_bw_data = td->ss.bw_data;
1667 ts->ss_iops_data = td->ss.iops_data;
1668 ts->ss_limit.u.f = td->ss.limit;
1669 ts->ss_slope.u.f = td->ss.slope;
1670 ts->ss_deviation.u.f = td->ss.deviation;
1671 ts->ss_criterion.u.f = td->ss.criterion;
1672 }
1673 else
1674 ts->ss_dur = ts->ss_state = 0;
1675 }
1676
1677 for (i = 0; i < nr_ts; i++) {
1678 unsigned long long bw;
1679
1680 ts = &threadstats[i];
1681 if (ts->groupid == -1)
1682 continue;
1683 rs = &runstats[ts->groupid];
1684 rs->kb_base = ts->kb_base;
1685 rs->unit_base = ts->unit_base;
1686 rs->unified_rw_rep += ts->unified_rw_rep;
1687
1688 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1689 if (!ts->runtime[j])
1690 continue;
1691 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1692 rs->min_run[j] = ts->runtime[j];
1693 if (ts->runtime[j] > rs->max_run[j])
1694 rs->max_run[j] = ts->runtime[j];
1695
1696 bw = 0;
1697 if (ts->runtime[j]) {
1698 unsigned long runt = ts->runtime[j];
1699 unsigned long long kb;
1700
1701 kb = ts->io_bytes[j] / rs->kb_base;
1702 bw = kb * 1000 / runt;
1703 }
1704 if (bw < rs->min_bw[j])
1705 rs->min_bw[j] = bw;
1706 if (bw > rs->max_bw[j])
1707 rs->max_bw[j] = bw;
1708
1709 rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1710 }
1711 }
1712
1713 for (i = 0; i < groupid + 1; i++) {
1714 int ddir;
1715
1716 rs = &runstats[i];
1717
1718 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1719 if (rs->max_run[ddir])
1720 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1721 rs->max_run[ddir];
1722 }
1723 }
1724
1725 for (i = 0; i < FIO_OUTPUT_NR; i++)
1726 buf_output_init(&output[i]);
1727
1728 /*
1729 * don't overwrite last signal output
1730 */
1731 if (output_format & FIO_OUTPUT_NORMAL)
1732 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1733 if (output_format & FIO_OUTPUT_JSON) {
1734 struct thread_data *global;
1735 char time_buf[32];
1736 struct timeval now;
1737 unsigned long long ms_since_epoch;
1738
1739 gettimeofday(&now, NULL);
1740 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1741 (unsigned long long)(now.tv_usec) / 1000;
1742
1743 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1744 sizeof(time_buf));
1745 time_buf[strlen(time_buf) - 1] = '\0';
1746
1747 root = json_create_object();
1748 json_object_add_value_string(root, "fio version", fio_version_string);
1749 json_object_add_value_int(root, "timestamp", now.tv_sec);
1750 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1751 json_object_add_value_string(root, "time", time_buf);
1752 global = get_global_options();
1753 json_add_job_opts(root, "global options", &global->opt_list, false);
1754 array = json_create_array();
1755 json_object_add_value_array(root, "jobs", array);
1756 }
1757
1758 if (is_backend)
1759 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1760
1761 for (i = 0; i < nr_ts; i++) {
1762 ts = &threadstats[i];
1763 rs = &runstats[ts->groupid];
1764
1765 if (is_backend) {
1766 fio_server_send_job_options(opt_lists[i], i);
1767 fio_server_send_ts(ts, rs);
1768 } else {
1769 if (output_format & FIO_OUTPUT_TERSE)
1770 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1771 if (output_format & FIO_OUTPUT_JSON) {
1772 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1773 json_array_add_value_object(array, tmp);
1774 }
1775 if (output_format & FIO_OUTPUT_NORMAL)
1776 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1777 }
1778 }
1779 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1780 /* disk util stats, if any */
1781 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1782
1783 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1784
1785 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1786 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1787 json_free_object(root);
1788 }
1789
1790 for (i = 0; i < groupid + 1; i++) {
1791 rs = &runstats[i];
1792
1793 rs->groupid = i;
1794 if (is_backend)
1795 fio_server_send_gs(rs);
1796 else if (output_format & FIO_OUTPUT_NORMAL)
1797 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1798 }
1799
1800 if (is_backend)
1801 fio_server_send_du();
1802 else if (output_format & FIO_OUTPUT_NORMAL) {
1803 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1804 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1805 }
1806
1807 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1808 buf_output_flush(&output[i]);
1809 buf_output_free(&output[i]);
1810 }
1811
1812 log_info_flush();
1813 free(runstats);
1814 free(threadstats);
1815 free(opt_lists);
1816}
1817
1818void show_run_stats(void)
1819{
1820 fio_mutex_down(stat_mutex);
1821 __show_run_stats();
1822 fio_mutex_up(stat_mutex);
1823}
1824
1825void __show_running_run_stats(void)
1826{
1827 struct thread_data *td;
1828 unsigned long long *rt;
1829 struct timeval tv;
1830 int i;
1831
1832 fio_mutex_down(stat_mutex);
1833
1834 rt = malloc(thread_number * sizeof(unsigned long long));
1835 fio_gettime(&tv, NULL);
1836
1837 for_each_td(td, i) {
1838 td->update_rusage = 1;
1839 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1840 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1841 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1842 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1843
1844 rt[i] = mtime_since(&td->start, &tv);
1845 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1846 td->ts.runtime[DDIR_READ] += rt[i];
1847 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1848 td->ts.runtime[DDIR_WRITE] += rt[i];
1849 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1850 td->ts.runtime[DDIR_TRIM] += rt[i];
1851 }
1852
1853 for_each_td(td, i) {
1854 if (td->runstate >= TD_EXITED)
1855 continue;
1856 if (td->rusage_sem) {
1857 td->update_rusage = 1;
1858 fio_mutex_down(td->rusage_sem);
1859 }
1860 td->update_rusage = 0;
1861 }
1862
1863 __show_run_stats();
1864
1865 for_each_td(td, i) {
1866 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1867 td->ts.runtime[DDIR_READ] -= rt[i];
1868 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1869 td->ts.runtime[DDIR_WRITE] -= rt[i];
1870 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1871 td->ts.runtime[DDIR_TRIM] -= rt[i];
1872 }
1873
1874 free(rt);
1875 fio_mutex_up(stat_mutex);
1876}
1877
1878static int status_interval_init;
1879static struct timeval status_time;
1880static int status_file_disabled;
1881
1882#define FIO_STATUS_FILE "fio-dump-status"
1883
1884static int check_status_file(void)
1885{
1886 struct stat sb;
1887 const char *temp_dir;
1888 char fio_status_file_path[PATH_MAX];
1889
1890 if (status_file_disabled)
1891 return 0;
1892
1893 temp_dir = getenv("TMPDIR");
1894 if (temp_dir == NULL) {
1895 temp_dir = getenv("TEMP");
1896 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1897 temp_dir = NULL;
1898 }
1899 if (temp_dir == NULL)
1900 temp_dir = "/tmp";
1901
1902 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1903
1904 if (stat(fio_status_file_path, &sb))
1905 return 0;
1906
1907 if (unlink(fio_status_file_path) < 0) {
1908 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1909 strerror(errno));
1910 log_err("fio: disabling status file updates\n");
1911 status_file_disabled = 1;
1912 }
1913
1914 return 1;
1915}
1916
1917void check_for_running_stats(void)
1918{
1919 if (status_interval) {
1920 if (!status_interval_init) {
1921 fio_gettime(&status_time, NULL);
1922 status_interval_init = 1;
1923 } else if (mtime_since_now(&status_time) >= status_interval) {
1924 show_running_run_stats();
1925 fio_gettime(&status_time, NULL);
1926 return;
1927 }
1928 }
1929 if (check_status_file()) {
1930 show_running_run_stats();
1931 return;
1932 }
1933}
1934
1935static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1936{
1937 double val = data;
1938 double delta;
1939
1940 if (data > is->max_val)
1941 is->max_val = data;
1942 if (data < is->min_val)
1943 is->min_val = data;
1944
1945 delta = val - is->mean.u.f;
1946 if (delta) {
1947 is->mean.u.f += delta / (is->samples + 1.0);
1948 is->S.u.f += delta * (val - is->mean.u.f);
1949 }
1950
1951 is->samples++;
1952}
1953
1954/*
1955 * Return a struct io_logs, which is added to the tail of the log
1956 * list for 'iolog'.
1957 */
1958static struct io_logs *get_new_log(struct io_log *iolog)
1959{
1960 size_t new_size, new_samples;
1961 struct io_logs *cur_log;
1962
1963 /*
1964 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1965 * forever
1966 */
1967 if (!iolog->cur_log_max)
1968 new_samples = DEF_LOG_ENTRIES;
1969 else {
1970 new_samples = iolog->cur_log_max * 2;
1971 if (new_samples > MAX_LOG_ENTRIES)
1972 new_samples = MAX_LOG_ENTRIES;
1973 }
1974
1975 new_size = new_samples * log_entry_sz(iolog);
1976
1977 cur_log = smalloc(sizeof(*cur_log));
1978 if (cur_log) {
1979 INIT_FLIST_HEAD(&cur_log->list);
1980 cur_log->log = malloc(new_size);
1981 if (cur_log->log) {
1982 cur_log->nr_samples = 0;
1983 cur_log->max_samples = new_samples;
1984 flist_add_tail(&cur_log->list, &iolog->io_logs);
1985 iolog->cur_log_max = new_samples;
1986 return cur_log;
1987 }
1988 sfree(cur_log);
1989 }
1990
1991 return NULL;
1992}
1993
1994/*
1995 * Add and return a new log chunk, or return current log if big enough
1996 */
1997static struct io_logs *regrow_log(struct io_log *iolog)
1998{
1999 struct io_logs *cur_log;
2000 int i;
2001
2002 if (!iolog || iolog->disabled)
2003 goto disable;
2004
2005 cur_log = iolog_cur_log(iolog);
2006 if (!cur_log) {
2007 cur_log = get_new_log(iolog);
2008 if (!cur_log)
2009 return NULL;
2010 }
2011
2012 if (cur_log->nr_samples < cur_log->max_samples)
2013 return cur_log;
2014
2015 /*
2016 * No room for a new sample. If we're compressing on the fly, flush
2017 * out the current chunk
2018 */
2019 if (iolog->log_gz) {
2020 if (iolog_cur_flush(iolog, cur_log)) {
2021 log_err("fio: failed flushing iolog! Will stop logging.\n");
2022 return NULL;
2023 }
2024 }
2025
2026 /*
2027 * Get a new log array, and add to our list
2028 */
2029 cur_log = get_new_log(iolog);
2030 if (!cur_log) {
2031 log_err("fio: failed extending iolog! Will stop logging.\n");
2032 return NULL;
2033 }
2034
2035 if (!iolog->pending || !iolog->pending->nr_samples)
2036 return cur_log;
2037
2038 /*
2039 * Flush pending items to new log
2040 */
2041 for (i = 0; i < iolog->pending->nr_samples; i++) {
2042 struct io_sample *src, *dst;
2043
2044 src = get_sample(iolog, iolog->pending, i);
2045 dst = get_sample(iolog, cur_log, i);
2046 memcpy(dst, src, log_entry_sz(iolog));
2047 }
2048 cur_log->nr_samples = iolog->pending->nr_samples;
2049
2050 iolog->pending->nr_samples = 0;
2051 return cur_log;
2052disable:
2053 if (iolog)
2054 iolog->disabled = true;
2055 return NULL;
2056}
2057
2058void regrow_logs(struct thread_data *td)
2059{
2060 regrow_log(td->slat_log);
2061 regrow_log(td->clat_log);
2062 regrow_log(td->clat_hist_log);
2063 regrow_log(td->lat_log);
2064 regrow_log(td->bw_log);
2065 regrow_log(td->iops_log);
2066 td->flags &= ~TD_F_REGROW_LOGS;
2067}
2068
2069static struct io_logs *get_cur_log(struct io_log *iolog)
2070{
2071 struct io_logs *cur_log;
2072
2073 cur_log = iolog_cur_log(iolog);
2074 if (!cur_log) {
2075 cur_log = get_new_log(iolog);
2076 if (!cur_log)
2077 return NULL;
2078 }
2079
2080 if (cur_log->nr_samples < cur_log->max_samples)
2081 return cur_log;
2082
2083 /*
2084 * Out of space. If we're in IO offload mode, or we're not doing
2085 * per unit logging (hence logging happens outside of the IO thread
2086 * as well), add a new log chunk inline. If we're doing inline
2087 * submissions, flag 'td' as needing a log regrow and we'll take
2088 * care of it on the submission side.
2089 */
2090 if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2091 !per_unit_log(iolog))
2092 return regrow_log(iolog);
2093
2094 iolog->td->flags |= TD_F_REGROW_LOGS;
2095 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2096 return iolog->pending;
2097}
2098
2099static void __add_log_sample(struct io_log *iolog, unsigned long val,
2100 enum fio_ddir ddir, unsigned int bs,
2101 unsigned long t, uint64_t offset)
2102{
2103 struct io_logs *cur_log;
2104
2105 if (iolog->disabled)
2106 return;
2107 if (flist_empty(&iolog->io_logs))
2108 iolog->avg_last = t;
2109
2110 cur_log = get_cur_log(iolog);
2111 if (cur_log) {
2112 struct io_sample *s;
2113
2114 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2115
2116 s->val = val;
2117 s->time = t;
2118 io_sample_set_ddir(iolog, s, ddir);
2119 s->bs = bs;
2120
2121 if (iolog->log_offset) {
2122 struct io_sample_offset *so = (void *) s;
2123
2124 so->offset = offset;
2125 }
2126
2127 cur_log->nr_samples++;
2128 return;
2129 }
2130
2131 iolog->disabled = true;
2132}
2133
2134static inline void reset_io_stat(struct io_stat *ios)
2135{
2136 ios->max_val = ios->min_val = ios->samples = 0;
2137 ios->mean.u.f = ios->S.u.f = 0;
2138}
2139
2140void reset_io_stats(struct thread_data *td)
2141{
2142 struct thread_stat *ts = &td->ts;
2143 int i, j;
2144
2145 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2146 reset_io_stat(&ts->clat_stat[i]);
2147 reset_io_stat(&ts->slat_stat[i]);
2148 reset_io_stat(&ts->lat_stat[i]);
2149 reset_io_stat(&ts->bw_stat[i]);
2150 reset_io_stat(&ts->iops_stat[i]);
2151
2152 ts->io_bytes[i] = 0;
2153 ts->runtime[i] = 0;
2154
2155 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2156 ts->io_u_plat[i][j] = 0;
2157 }
2158
2159 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2160 ts->io_u_map[i] = 0;
2161 ts->io_u_submit[i] = 0;
2162 ts->io_u_complete[i] = 0;
2163 ts->io_u_lat_u[i] = 0;
2164 ts->io_u_lat_m[i] = 0;
2165 ts->total_submit = 0;
2166 ts->total_complete = 0;
2167 }
2168
2169 for (i = 0; i < 3; i++) {
2170 ts->total_io_u[i] = 0;
2171 ts->short_io_u[i] = 0;
2172 ts->drop_io_u[i] = 0;
2173 }
2174}
2175
2176static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2177 unsigned long elapsed, bool log_max)
2178{
2179 /*
2180 * Note an entry in the log. Use the mean from the logged samples,
2181 * making sure to properly round up. Only write a log entry if we
2182 * had actual samples done.
2183 */
2184 if (iolog->avg_window[ddir].samples) {
2185 unsigned long val;
2186
2187 if (log_max)
2188 val = iolog->avg_window[ddir].max_val;
2189 else
2190 val = iolog->avg_window[ddir].mean.u.f + 0.50;
2191
2192 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2193 }
2194
2195 reset_io_stat(&iolog->avg_window[ddir]);
2196}
2197
2198static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2199 bool log_max)
2200{
2201 int ddir;
2202
2203 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2204 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2205}
2206
2207static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2208 unsigned long val, enum fio_ddir ddir,
2209 unsigned int bs, uint64_t offset)
2210{
2211 unsigned long elapsed, this_window;
2212
2213 if (!ddir_rw(ddir))
2214 return 0;
2215
2216 elapsed = mtime_since_now(&td->epoch);
2217
2218 /*
2219 * If no time averaging, just add the log sample.
2220 */
2221 if (!iolog->avg_msec) {
2222 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2223 return 0;
2224 }
2225
2226 /*
2227 * Add the sample. If the time period has passed, then
2228 * add that entry to the log and clear.
2229 */
2230 add_stat_sample(&iolog->avg_window[ddir], val);
2231
2232 /*
2233 * If period hasn't passed, adding the above sample is all we
2234 * need to do.
2235 */
2236 this_window = elapsed - iolog->avg_last;
2237 if (elapsed < iolog->avg_last)
2238 return iolog->avg_last - elapsed;
2239 else if (this_window < iolog->avg_msec) {
2240 int diff = iolog->avg_msec - this_window;
2241
2242 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2243 return diff;
2244 }
2245
2246 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2247
2248 iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2249 return iolog->avg_msec;
2250}
2251
2252void finalize_logs(struct thread_data *td, bool unit_logs)
2253{
2254 unsigned long elapsed;
2255
2256 elapsed = mtime_since_now(&td->epoch);
2257
2258 if (td->clat_log && unit_logs)
2259 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2260 if (td->slat_log && unit_logs)
2261 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2262 if (td->lat_log && unit_logs)
2263 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2264 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2265 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2266 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2267 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2268}
2269
2270void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2271{
2272 struct io_log *iolog;
2273
2274 if (!ddir_rw(ddir))
2275 return;
2276
2277 iolog = agg_io_log[ddir];
2278 __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2279}
2280
2281static void add_clat_percentile_sample(struct thread_stat *ts,
2282 unsigned long usec, enum fio_ddir ddir)
2283{
2284 unsigned int idx = plat_val_to_idx(usec);
2285 assert(idx < FIO_IO_U_PLAT_NR);
2286
2287 ts->io_u_plat[ddir][idx]++;
2288}
2289
2290void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2291 unsigned long usec, unsigned int bs, uint64_t offset)
2292{
2293 unsigned long elapsed, this_window;
2294 struct thread_stat *ts = &td->ts;
2295 struct io_log *iolog = td->clat_hist_log;
2296
2297 td_io_u_lock(td);
2298
2299 add_stat_sample(&ts->clat_stat[ddir], usec);
2300
2301 if (td->clat_log)
2302 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2303
2304 if (ts->clat_percentiles)
2305 add_clat_percentile_sample(ts, usec, ddir);
2306
2307 if (iolog && iolog->hist_msec) {
2308 struct io_hist *hw = &iolog->hist_window[ddir];
2309
2310 hw->samples++;
2311 elapsed = mtime_since_now(&td->epoch);
2312 if (!hw->hist_last)
2313 hw->hist_last = elapsed;
2314 this_window = elapsed - hw->hist_last;
2315
2316 if (this_window >= iolog->hist_msec) {
2317 unsigned int *io_u_plat;
2318 unsigned int *dst;
2319
2320 /*
2321 * Make a byte-for-byte copy of the latency histogram
2322 * stored in td->ts.io_u_plat[ddir], recording it in a
2323 * log sample. Note that the matching call to free() is
2324 * located in iolog.c after printing this sample to the
2325 * log file.
2326 */
2327 io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2328 dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2329 memcpy(dst, io_u_plat,
2330 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2331 __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2332 elapsed, offset);
2333
2334 /*
2335 * Update the last time we recorded as being now, minus
2336 * any drift in time we encountered before actually
2337 * making the record.
2338 */
2339 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2340 hw->samples = 0;
2341 }
2342 }
2343
2344 td_io_u_unlock(td);
2345}
2346
2347void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2348 unsigned long usec, unsigned int bs, uint64_t offset)
2349{
2350 struct thread_stat *ts = &td->ts;
2351
2352 if (!ddir_rw(ddir))
2353 return;
2354
2355 td_io_u_lock(td);
2356
2357 add_stat_sample(&ts->slat_stat[ddir], usec);
2358
2359 if (td->slat_log)
2360 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2361
2362 td_io_u_unlock(td);
2363}
2364
2365void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2366 unsigned long usec, unsigned int bs, uint64_t offset)
2367{
2368 struct thread_stat *ts = &td->ts;
2369
2370 if (!ddir_rw(ddir))
2371 return;
2372
2373 td_io_u_lock(td);
2374
2375 add_stat_sample(&ts->lat_stat[ddir], usec);
2376
2377 if (td->lat_log)
2378 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2379
2380 td_io_u_unlock(td);
2381}
2382
2383void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2384 unsigned int bytes, unsigned long spent)
2385{
2386 struct thread_stat *ts = &td->ts;
2387 unsigned long rate;
2388
2389 if (spent)
2390 rate = bytes * 1000 / spent;
2391 else
2392 rate = 0;
2393
2394 td_io_u_lock(td);
2395
2396 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2397
2398 if (td->bw_log)
2399 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2400
2401 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2402 td_io_u_unlock(td);
2403}
2404
2405static int add_bw_samples(struct thread_data *td, struct timeval *t)
2406{
2407 struct thread_stat *ts = &td->ts;
2408 unsigned long spent, rate;
2409 enum fio_ddir ddir;
2410 unsigned int next, next_log;
2411
2412 next_log = td->o.bw_avg_time;
2413
2414 spent = mtime_since(&td->bw_sample_time, t);
2415 if (spent < td->o.bw_avg_time &&
2416 td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2417 return td->o.bw_avg_time - spent;
2418
2419 td_io_u_lock(td);
2420
2421 /*
2422 * Compute both read and write rates for the interval.
2423 */
2424 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2425 uint64_t delta;
2426
2427 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2428 if (!delta)
2429 continue; /* No entries for interval */
2430
2431 if (spent)
2432 rate = delta * 1000 / spent / 1024;
2433 else
2434 rate = 0;
2435
2436 add_stat_sample(&ts->bw_stat[ddir], rate);
2437
2438 if (td->bw_log) {
2439 unsigned int bs = 0;
2440
2441 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2442 bs = td->o.min_bs[ddir];
2443
2444 next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2445 next_log = min(next_log, next);
2446 }
2447
2448 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2449 }
2450
2451 timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2452
2453 td_io_u_unlock(td);
2454
2455 if (spent <= td->o.bw_avg_time)
2456 return min(next_log, td->o.bw_avg_time);
2457
2458 next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2459 return min(next, next_log);
2460}
2461
2462void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2463 unsigned int bytes)
2464{
2465 struct thread_stat *ts = &td->ts;
2466
2467 td_io_u_lock(td);
2468
2469 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2470
2471 if (td->iops_log)
2472 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2473
2474 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2475 td_io_u_unlock(td);
2476}
2477
2478static int add_iops_samples(struct thread_data *td, struct timeval *t)
2479{
2480 struct thread_stat *ts = &td->ts;
2481 unsigned long spent, iops;
2482 enum fio_ddir ddir;
2483 unsigned int next, next_log;
2484
2485 next_log = td->o.iops_avg_time;
2486
2487 spent = mtime_since(&td->iops_sample_time, t);
2488 if (spent < td->o.iops_avg_time &&
2489 td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2490 return td->o.iops_avg_time - spent;
2491
2492 td_io_u_lock(td);
2493
2494 /*
2495 * Compute both read and write rates for the interval.
2496 */
2497 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2498 uint64_t delta;
2499
2500 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2501 if (!delta)
2502 continue; /* No entries for interval */
2503
2504 if (spent)
2505 iops = (delta * 1000) / spent;
2506 else
2507 iops = 0;
2508
2509 add_stat_sample(&ts->iops_stat[ddir], iops);
2510
2511 if (td->iops_log) {
2512 unsigned int bs = 0;
2513
2514 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2515 bs = td->o.min_bs[ddir];
2516
2517 next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2518 next_log = min(next_log, next);
2519 }
2520
2521 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2522 }
2523
2524 timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2525
2526 td_io_u_unlock(td);
2527
2528 if (spent <= td->o.iops_avg_time)
2529 return min(next_log, td->o.iops_avg_time);
2530
2531 next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2532 return min(next, next_log);
2533}
2534
2535/*
2536 * Returns msecs to next event
2537 */
2538int calc_log_samples(void)
2539{
2540 struct thread_data *td;
2541 unsigned int next = ~0U, tmp;
2542 struct timeval now;
2543 int i;
2544
2545 fio_gettime(&now, NULL);
2546
2547 for_each_td(td, i) {
2548 if (in_ramp_time(td) ||
2549 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2550 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2551 continue;
2552 }
2553 if (!per_unit_log(td->bw_log)) {
2554 tmp = add_bw_samples(td, &now);
2555 if (tmp < next)
2556 next = tmp;
2557 }
2558 if (!per_unit_log(td->iops_log)) {
2559 tmp = add_iops_samples(td, &now);
2560 if (tmp < next)
2561 next = tmp;
2562 }
2563 }
2564
2565 return next == ~0U ? 0 : next;
2566}
2567
2568void stat_init(void)
2569{
2570 stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2571}
2572
2573void stat_exit(void)
2574{
2575 /*
2576 * When we have the mutex, we know out-of-band access to it
2577 * have ended.
2578 */
2579 fio_mutex_down(stat_mutex);
2580 fio_mutex_remove(stat_mutex);
2581}
2582
2583/*
2584 * Called from signal handler. Wake up status thread.
2585 */
2586void show_running_run_stats(void)
2587{
2588 helper_do_stat();
2589}
2590
2591uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2592{
2593 /* Ignore io_u's which span multiple blocks--they will just get
2594 * inaccurate counts. */
2595 int idx = (io_u->offset - io_u->file->file_offset)
2596 / td->o.bs[DDIR_TRIM];
2597 uint32_t *info = &td->ts.block_infos[idx];
2598 assert(idx < td->ts.nr_block_infos);
2599 return info;
2600}