io_uring: we should not need two write barriers for SQ updates
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18#include "oslib/asprintf.h"
19
20#define LOG_MSEC_SLACK 1
21
22struct fio_sem *stat_sem;
23
24void clear_rusage_stat(struct thread_data *td)
25{
26 struct thread_stat *ts = &td->ts;
27
28 fio_getrusage(&td->ru_start);
29 ts->usr_time = ts->sys_time = 0;
30 ts->ctx = 0;
31 ts->minf = ts->majf = 0;
32}
33
34void update_rusage_stat(struct thread_data *td)
35{
36 struct thread_stat *ts = &td->ts;
37
38 fio_getrusage(&td->ru_end);
39 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
40 &td->ru_end.ru_utime);
41 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
42 &td->ru_end.ru_stime);
43 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
44 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
45 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
46 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
47
48 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
49}
50
51/*
52 * Given a latency, return the index of the corresponding bucket in
53 * the structure tracking percentiles.
54 *
55 * (1) find the group (and error bits) that the value (latency)
56 * belongs to by looking at its MSB. (2) find the bucket number in the
57 * group by looking at the index bits.
58 *
59 */
60static unsigned int plat_val_to_idx(unsigned long long val)
61{
62 unsigned int msb, error_bits, base, offset, idx;
63
64 /* Find MSB starting from bit 0 */
65 if (val == 0)
66 msb = 0;
67 else
68 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
69
70 /*
71 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
72 * all bits of the sample as index
73 */
74 if (msb <= FIO_IO_U_PLAT_BITS)
75 return val;
76
77 /* Compute the number of error bits to discard*/
78 error_bits = msb - FIO_IO_U_PLAT_BITS;
79
80 /* Compute the number of buckets before the group */
81 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
82
83 /*
84 * Discard the error bits and apply the mask to find the
85 * index for the buckets in the group
86 */
87 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
88
89 /* Make sure the index does not exceed (array size - 1) */
90 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
91 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
92
93 return idx;
94}
95
96/*
97 * Convert the given index of the bucket array to the value
98 * represented by the bucket
99 */
100static unsigned long long plat_idx_to_val(unsigned int idx)
101{
102 unsigned int error_bits;
103 unsigned long long k, base;
104
105 assert(idx < FIO_IO_U_PLAT_NR);
106
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
110 return idx;
111
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
115
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
118
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
121}
122
123static int double_cmp(const void *a, const void *b)
124{
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
127 int cmp = 0;
128
129 if (fa.u.f > fb.u.f)
130 cmp = 1;
131 else if (fa.u.f < fb.u.f)
132 cmp = -1;
133
134 return cmp;
135}
136
137unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
138 fio_fp64_t *plist, unsigned long long **output,
139 unsigned long long *maxv, unsigned long long *minv)
140{
141 unsigned long long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned long long *ovals = NULL;
144 bool is_last;
145
146 *minv = -1ULL;
147 *maxv = 0;
148
149 len = 0;
150 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151 len++;
152
153 if (!len)
154 return 0;
155
156 /*
157 * Sort the percentile list. Note that it may already be sorted if
158 * we are using the default values, but since it's a short list this
159 * isn't a worry. Also note that this does not work for NaN values.
160 */
161 if (len > 1)
162 qsort(plist, len, sizeof(plist[0]), double_cmp);
163
164 ovals = malloc(len * sizeof(*ovals));
165 if (!ovals)
166 return 0;
167
168 /*
169 * Calculate bucket values, note down max and min values
170 */
171 is_last = false;
172 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
173 sum += io_u_plat[i];
174 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
175 assert(plist[j].u.f <= 100.0);
176
177 ovals[j] = plat_idx_to_val(i);
178 if (ovals[j] < *minv)
179 *minv = ovals[j];
180 if (ovals[j] > *maxv)
181 *maxv = ovals[j];
182
183 is_last = (j == len - 1) != 0;
184 if (is_last)
185 break;
186
187 j++;
188 }
189 }
190
191 if (!is_last)
192 log_err("fio: error calculating latency percentiles\n");
193
194 *output = ovals;
195 return len;
196}
197
198/*
199 * Find and display the p-th percentile of clat
200 */
201static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202 fio_fp64_t *plist, unsigned int precision,
203 const char *pre, struct buf_output *out)
204{
205 unsigned int divisor, len, i, j = 0;
206 unsigned long long minv, maxv;
207 unsigned long long *ovals;
208 int per_line, scale_down, time_width;
209 bool is_last;
210 char fmt[32];
211
212 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
213 if (!len || !ovals)
214 goto out;
215
216 /*
217 * We default to nsecs, but if the value range is such that we
218 * should scale down to usecs or msecs, do that.
219 */
220 if (minv > 2000000 && maxv > 99999999ULL) {
221 scale_down = 2;
222 divisor = 1000000;
223 log_buf(out, " %s percentiles (msec):\n |", pre);
224 } else if (minv > 2000 && maxv > 99999) {
225 scale_down = 1;
226 divisor = 1000;
227 log_buf(out, " %s percentiles (usec):\n |", pre);
228 } else {
229 scale_down = 0;
230 divisor = 1;
231 log_buf(out, " %s percentiles (nsec):\n |", pre);
232 }
233
234
235 time_width = max(5, (int) (log10(maxv / divisor) + 1));
236 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237 precision, time_width);
238 /* fmt will be something like " %5.2fth=[%4llu]%c" */
239 per_line = (80 - 7) / (precision + 10 + time_width);
240
241 for (j = 0; j < len; j++) {
242 /* for formatting */
243 if (j != 0 && (j % per_line) == 0)
244 log_buf(out, " |");
245
246 /* end of the list */
247 is_last = (j == len - 1) != 0;
248
249 for (i = 0; i < scale_down; i++)
250 ovals[j] = (ovals[j] + 999) / 1000;
251
252 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
253
254 if (is_last)
255 break;
256
257 if ((j % per_line) == per_line - 1) /* for formatting */
258 log_buf(out, "\n");
259 }
260
261out:
262 free(ovals);
263}
264
265bool calc_lat(struct io_stat *is, unsigned long long *min,
266 unsigned long long *max, double *mean, double *dev)
267{
268 double n = (double) is->samples;
269
270 if (n == 0)
271 return false;
272
273 *min = is->min_val;
274 *max = is->max_val;
275 *mean = is->mean.u.f;
276
277 if (n > 1.0)
278 *dev = sqrt(is->S.u.f / (n - 1.0));
279 else
280 *dev = 0;
281
282 return true;
283}
284
285void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286{
287 char *io, *agg, *min, *max;
288 char *ioalt, *aggalt, *minalt, *maxalt;
289 const char *str[] = { " READ", " WRITE" , " TRIM"};
290 int i;
291
292 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295 const int i2p = is_power_of_2(rs->kb_base);
296
297 if (!rs->max_run[i])
298 continue;
299
300 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
301 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
302 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
303 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309 rs->unified_rw_rep ? " MIXED" : str[i],
310 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311 (unsigned long long) rs->min_run[i],
312 (unsigned long long) rs->max_run[i]);
313
314 free(io);
315 free(agg);
316 free(min);
317 free(max);
318 free(ioalt);
319 free(aggalt);
320 free(minalt);
321 free(maxalt);
322 }
323}
324
325void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
326{
327 int i;
328
329 /*
330 * Do depth distribution calculations
331 */
332 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333 if (total) {
334 io_u_dist[i] = (double) map[i] / (double) total;
335 io_u_dist[i] *= 100.0;
336 if (io_u_dist[i] < 0.1 && map[i])
337 io_u_dist[i] = 0.1;
338 } else
339 io_u_dist[i] = 0.0;
340 }
341}
342
343static void stat_calc_lat(struct thread_stat *ts, double *dst,
344 uint64_t *src, int nr)
345{
346 unsigned long total = ddir_rw_sum(ts->total_io_u);
347 int i;
348
349 /*
350 * Do latency distribution calculations
351 */
352 for (i = 0; i < nr; i++) {
353 if (total) {
354 dst[i] = (double) src[i] / (double) total;
355 dst[i] *= 100.0;
356 if (dst[i] < 0.01 && src[i])
357 dst[i] = 0.01;
358 } else
359 dst[i] = 0.0;
360 }
361}
362
363/*
364 * To keep the terse format unaltered, add all of the ns latency
365 * buckets to the first us latency bucket
366 */
367static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368{
369 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370 int i;
371
372 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375 ntotal += ts->io_u_lat_n[i];
376
377 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378}
379
380void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381{
382 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383}
384
385void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386{
387 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388}
389
390void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391{
392 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393}
394
395static void display_lat(const char *name, unsigned long long min,
396 unsigned long long max, double mean, double dev,
397 struct buf_output *out)
398{
399 const char *base = "(nsec)";
400 char *minp, *maxp;
401
402 if (nsec_to_msec(&min, &max, &mean, &dev))
403 base = "(msec)";
404 else if (nsec_to_usec(&min, &max, &mean, &dev))
405 base = "(usec)";
406
407 minp = num2str(min, 6, 1, 0, N2S_NONE);
408 maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
411 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413 free(minp);
414 free(maxp);
415}
416
417static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418 int ddir, struct buf_output *out)
419{
420 unsigned long runt;
421 unsigned long long min, max, bw, iops;
422 double mean, dev;
423 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
424 int i2p;
425
426 if (ddir_sync(ddir)) {
427 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
429 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
430 show_clat_percentiles(ts->io_u_sync_plat,
431 ts->sync_stat.samples,
432 ts->percentile_list,
433 ts->percentile_precision,
434 io_ddir_name(ddir), out);
435 }
436 return;
437 }
438
439 assert(ddir_rw(ddir));
440
441 if (!ts->runtime[ddir])
442 return;
443
444 i2p = is_power_of_2(rs->kb_base);
445 runt = ts->runtime[ddir];
446
447 bw = (1000 * ts->io_bytes[ddir]) / runt;
448 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454 if (ddir == DDIR_WRITE)
455 post_st = zbd_write_status(ts);
456 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
457 uint64_t total;
458 double hit;
459
460 total = ts->cachehit + ts->cachemiss;
461 hit = (double) ts->cachehit / (double) total;
462 hit *= 100.0;
463 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
464 post_st = NULL;
465 }
466
467 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
468 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
469 iops_p, bw_p, bw_p_alt, io_p,
470 (unsigned long long) ts->runtime[ddir],
471 post_st ? : "");
472
473 free(post_st);
474 free(io_p);
475 free(bw_p);
476 free(bw_p_alt);
477 free(iops_p);
478
479 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
480 display_lat("slat", min, max, mean, dev, out);
481 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
482 display_lat("clat", min, max, mean, dev, out);
483 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
484 display_lat(" lat", min, max, mean, dev, out);
485 if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
486 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
487 min, max, mean, dev, out);
488 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
489 display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
490 min, max, mean, dev, out);
491 }
492
493 if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
494 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
495 ts->slat_stat[ddir].samples,
496 ts->percentile_list,
497 ts->percentile_precision, "slat", out);
498 if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
499 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
500 ts->clat_stat[ddir].samples,
501 ts->percentile_list,
502 ts->percentile_precision, "clat", out);
503 if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
504 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
505 ts->lat_stat[ddir].samples,
506 ts->percentile_list,
507 ts->percentile_precision, "lat", out);
508
509 if (ts->clat_percentiles || ts->lat_percentiles) {
510 const char *name = ts->lat_percentiles ? "lat" : "clat";
511 char prio_name[32];
512 uint64_t samples;
513
514 if (ts->lat_percentiles)
515 samples = ts->lat_stat[ddir].samples;
516 else
517 samples = ts->clat_stat[ddir].samples;
518
519 /* Only print this if some high and low priority stats were collected */
520 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
521 ts->clat_low_prio_stat[ddir].samples > 0)
522 {
523 sprintf(prio_name, "high prio (%.2f%%) %s",
524 100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
525 name);
526 show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
527 ts->clat_high_prio_stat[ddir].samples,
528 ts->percentile_list,
529 ts->percentile_precision, prio_name, out);
530
531 sprintf(prio_name, "low prio (%.2f%%) %s",
532 100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
533 name);
534 show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
535 ts->clat_low_prio_stat[ddir].samples,
536 ts->percentile_list,
537 ts->percentile_precision, prio_name, out);
538 }
539 }
540
541 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
542 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
543 const char *bw_str;
544
545 if ((rs->unit_base == 1) && i2p)
546 bw_str = "Kibit";
547 else if (rs->unit_base == 1)
548 bw_str = "kbit";
549 else if (i2p)
550 bw_str = "KiB";
551 else
552 bw_str = "kB";
553
554 if (rs->agg[ddir]) {
555 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
556 if (p_of_agg > 100.0)
557 p_of_agg = 100.0;
558 }
559
560 if (rs->unit_base == 1) {
561 min *= 8.0;
562 max *= 8.0;
563 mean *= 8.0;
564 dev *= 8.0;
565 }
566
567 if (mean > fkb_base * fkb_base) {
568 min /= fkb_base;
569 max /= fkb_base;
570 mean /= fkb_base;
571 dev /= fkb_base;
572 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
573 }
574
575 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
576 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
577 bw_str, min, max, p_of_agg, mean, dev,
578 (&ts->bw_stat[ddir])->samples);
579 }
580 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
581 log_buf(out, " iops : min=%5llu, max=%5llu, "
582 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
583 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
584 }
585}
586
587static bool show_lat(double *io_u_lat, int nr, const char **ranges,
588 const char *msg, struct buf_output *out)
589{
590 bool new_line = true, shown = false;
591 int i, line = 0;
592
593 for (i = 0; i < nr; i++) {
594 if (io_u_lat[i] <= 0.0)
595 continue;
596 shown = true;
597 if (new_line) {
598 if (line)
599 log_buf(out, "\n");
600 log_buf(out, " lat (%s) : ", msg);
601 new_line = false;
602 line = 0;
603 }
604 if (line)
605 log_buf(out, ", ");
606 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
607 line++;
608 if (line == 5)
609 new_line = true;
610 }
611
612 if (shown)
613 log_buf(out, "\n");
614
615 return true;
616}
617
618static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
619{
620 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
621 "250=", "500=", "750=", "1000=", };
622
623 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
624}
625
626static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
627{
628 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
629 "250=", "500=", "750=", "1000=", };
630
631 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
632}
633
634static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
635{
636 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
637 "250=", "500=", "750=", "1000=", "2000=",
638 ">=2000=", };
639
640 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
641}
642
643static void show_latencies(struct thread_stat *ts, struct buf_output *out)
644{
645 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
646 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
647 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
648
649 stat_calc_lat_n(ts, io_u_lat_n);
650 stat_calc_lat_u(ts, io_u_lat_u);
651 stat_calc_lat_m(ts, io_u_lat_m);
652
653 show_lat_n(io_u_lat_n, out);
654 show_lat_u(io_u_lat_u, out);
655 show_lat_m(io_u_lat_m, out);
656}
657
658static int block_state_category(int block_state)
659{
660 switch (block_state) {
661 case BLOCK_STATE_UNINIT:
662 return 0;
663 case BLOCK_STATE_TRIMMED:
664 case BLOCK_STATE_WRITTEN:
665 return 1;
666 case BLOCK_STATE_WRITE_FAILURE:
667 case BLOCK_STATE_TRIM_FAILURE:
668 return 2;
669 default:
670 /* Silence compile warning on some BSDs and have a return */
671 assert(0);
672 return -1;
673 }
674}
675
676static int compare_block_infos(const void *bs1, const void *bs2)
677{
678 uint64_t block1 = *(uint64_t *)bs1;
679 uint64_t block2 = *(uint64_t *)bs2;
680 int state1 = BLOCK_INFO_STATE(block1);
681 int state2 = BLOCK_INFO_STATE(block2);
682 int bscat1 = block_state_category(state1);
683 int bscat2 = block_state_category(state2);
684 int cycles1 = BLOCK_INFO_TRIMS(block1);
685 int cycles2 = BLOCK_INFO_TRIMS(block2);
686
687 if (bscat1 < bscat2)
688 return -1;
689 if (bscat1 > bscat2)
690 return 1;
691
692 if (cycles1 < cycles2)
693 return -1;
694 if (cycles1 > cycles2)
695 return 1;
696
697 if (state1 < state2)
698 return -1;
699 if (state1 > state2)
700 return 1;
701
702 assert(block1 == block2);
703 return 0;
704}
705
706static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
707 fio_fp64_t *plist, unsigned int **percentiles,
708 unsigned int *types)
709{
710 int len = 0;
711 int i, nr_uninit;
712
713 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
714
715 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
716 len++;
717
718 if (!len)
719 return 0;
720
721 /*
722 * Sort the percentile list. Note that it may already be sorted if
723 * we are using the default values, but since it's a short list this
724 * isn't a worry. Also note that this does not work for NaN values.
725 */
726 if (len > 1)
727 qsort(plist, len, sizeof(plist[0]), double_cmp);
728
729 /* Start only after the uninit entries end */
730 for (nr_uninit = 0;
731 nr_uninit < nr_block_infos
732 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
733 nr_uninit ++)
734 ;
735
736 if (nr_uninit == nr_block_infos)
737 return 0;
738
739 *percentiles = calloc(len, sizeof(**percentiles));
740
741 for (i = 0; i < len; i++) {
742 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
743 + nr_uninit;
744 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
745 }
746
747 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
748 for (i = 0; i < nr_block_infos; i++)
749 types[BLOCK_INFO_STATE(block_infos[i])]++;
750
751 return len;
752}
753
754static const char *block_state_names[] = {
755 [BLOCK_STATE_UNINIT] = "unwritten",
756 [BLOCK_STATE_TRIMMED] = "trimmed",
757 [BLOCK_STATE_WRITTEN] = "written",
758 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
759 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
760};
761
762static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
763 fio_fp64_t *plist, struct buf_output *out)
764{
765 int len, pos, i;
766 unsigned int *percentiles = NULL;
767 unsigned int block_state_counts[BLOCK_STATE_COUNT];
768
769 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
770 &percentiles, block_state_counts);
771
772 log_buf(out, " block lifetime percentiles :\n |");
773 pos = 0;
774 for (i = 0; i < len; i++) {
775 uint32_t block_info = percentiles[i];
776#define LINE_LENGTH 75
777 char str[LINE_LENGTH];
778 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
779 plist[i].u.f, block_info,
780 i == len - 1 ? '\n' : ',');
781 assert(strln < LINE_LENGTH);
782 if (pos + strln > LINE_LENGTH) {
783 pos = 0;
784 log_buf(out, "\n |");
785 }
786 log_buf(out, "%s", str);
787 pos += strln;
788#undef LINE_LENGTH
789 }
790 if (percentiles)
791 free(percentiles);
792
793 log_buf(out, " states :");
794 for (i = 0; i < BLOCK_STATE_COUNT; i++)
795 log_buf(out, " %s=%u%c",
796 block_state_names[i], block_state_counts[i],
797 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
798}
799
800static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
801{
802 char *p1, *p1alt, *p2;
803 unsigned long long bw_mean, iops_mean;
804 const int i2p = is_power_of_2(ts->kb_base);
805
806 if (!ts->ss_dur)
807 return;
808
809 bw_mean = steadystate_bw_mean(ts);
810 iops_mean = steadystate_iops_mean(ts);
811
812 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
813 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
814 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
815
816 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
817 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
818 p1, p1alt, p2,
819 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
820 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
821 ts->ss_criterion.u.f,
822 ts->ss_state & FIO_SS_PCT ? "%" : "");
823
824 free(p1);
825 free(p1alt);
826 free(p2);
827}
828
829static void show_agg_stats(struct disk_util_agg *agg, int terse,
830 struct buf_output *out)
831{
832 if (!agg->slavecount)
833 return;
834
835 if (!terse) {
836 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
837 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
838 "aggrutil=%3.2f%%",
839 (unsigned long long) agg->ios[0] / agg->slavecount,
840 (unsigned long long) agg->ios[1] / agg->slavecount,
841 (unsigned long long) agg->merges[0] / agg->slavecount,
842 (unsigned long long) agg->merges[1] / agg->slavecount,
843 (unsigned long long) agg->ticks[0] / agg->slavecount,
844 (unsigned long long) agg->ticks[1] / agg->slavecount,
845 (unsigned long long) agg->time_in_queue / agg->slavecount,
846 agg->max_util.u.f);
847 } else {
848 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
849 (unsigned long long) agg->ios[0] / agg->slavecount,
850 (unsigned long long) agg->ios[1] / agg->slavecount,
851 (unsigned long long) agg->merges[0] / agg->slavecount,
852 (unsigned long long) agg->merges[1] / agg->slavecount,
853 (unsigned long long) agg->ticks[0] / agg->slavecount,
854 (unsigned long long) agg->ticks[1] / agg->slavecount,
855 (unsigned long long) agg->time_in_queue / agg->slavecount,
856 agg->max_util.u.f);
857 }
858}
859
860static void aggregate_slaves_stats(struct disk_util *masterdu)
861{
862 struct disk_util_agg *agg = &masterdu->agg;
863 struct disk_util_stat *dus;
864 struct flist_head *entry;
865 struct disk_util *slavedu;
866 double util;
867
868 flist_for_each(entry, &masterdu->slaves) {
869 slavedu = flist_entry(entry, struct disk_util, slavelist);
870 dus = &slavedu->dus;
871 agg->ios[0] += dus->s.ios[0];
872 agg->ios[1] += dus->s.ios[1];
873 agg->merges[0] += dus->s.merges[0];
874 agg->merges[1] += dus->s.merges[1];
875 agg->sectors[0] += dus->s.sectors[0];
876 agg->sectors[1] += dus->s.sectors[1];
877 agg->ticks[0] += dus->s.ticks[0];
878 agg->ticks[1] += dus->s.ticks[1];
879 agg->time_in_queue += dus->s.time_in_queue;
880 agg->slavecount++;
881
882 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
883 /* System utilization is the utilization of the
884 * component with the highest utilization.
885 */
886 if (util > agg->max_util.u.f)
887 agg->max_util.u.f = util;
888
889 }
890
891 if (agg->max_util.u.f > 100.0)
892 agg->max_util.u.f = 100.0;
893}
894
895void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
896 int terse, struct buf_output *out)
897{
898 double util = 0;
899
900 if (dus->s.msec)
901 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
902 if (util > 100.0)
903 util = 100.0;
904
905 if (!terse) {
906 if (agg->slavecount)
907 log_buf(out, " ");
908
909 log_buf(out, " %s: ios=%llu/%llu, merge=%llu/%llu, "
910 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
911 dus->name,
912 (unsigned long long) dus->s.ios[0],
913 (unsigned long long) dus->s.ios[1],
914 (unsigned long long) dus->s.merges[0],
915 (unsigned long long) dus->s.merges[1],
916 (unsigned long long) dus->s.ticks[0],
917 (unsigned long long) dus->s.ticks[1],
918 (unsigned long long) dus->s.time_in_queue,
919 util);
920 } else {
921 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
922 dus->name,
923 (unsigned long long) dus->s.ios[0],
924 (unsigned long long) dus->s.ios[1],
925 (unsigned long long) dus->s.merges[0],
926 (unsigned long long) dus->s.merges[1],
927 (unsigned long long) dus->s.ticks[0],
928 (unsigned long long) dus->s.ticks[1],
929 (unsigned long long) dus->s.time_in_queue,
930 util);
931 }
932
933 /*
934 * If the device has slaves, aggregate the stats for
935 * those slave devices also.
936 */
937 show_agg_stats(agg, terse, out);
938
939 if (!terse)
940 log_buf(out, "\n");
941}
942
943void json_array_add_disk_util(struct disk_util_stat *dus,
944 struct disk_util_agg *agg, struct json_array *array)
945{
946 struct json_object *obj;
947 double util = 0;
948
949 if (dus->s.msec)
950 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
951 if (util > 100.0)
952 util = 100.0;
953
954 obj = json_create_object();
955 json_array_add_value_object(array, obj);
956
957 json_object_add_value_string(obj, "name", (const char *)dus->name);
958 json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
959 json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
960 json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
961 json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
962 json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
963 json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
964 json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
965 json_object_add_value_float(obj, "util", util);
966
967 /*
968 * If the device has slaves, aggregate the stats for
969 * those slave devices also.
970 */
971 if (!agg->slavecount)
972 return;
973 json_object_add_value_int(obj, "aggr_read_ios",
974 agg->ios[0] / agg->slavecount);
975 json_object_add_value_int(obj, "aggr_write_ios",
976 agg->ios[1] / agg->slavecount);
977 json_object_add_value_int(obj, "aggr_read_merges",
978 agg->merges[0] / agg->slavecount);
979 json_object_add_value_int(obj, "aggr_write_merge",
980 agg->merges[1] / agg->slavecount);
981 json_object_add_value_int(obj, "aggr_read_ticks",
982 agg->ticks[0] / agg->slavecount);
983 json_object_add_value_int(obj, "aggr_write_ticks",
984 agg->ticks[1] / agg->slavecount);
985 json_object_add_value_int(obj, "aggr_in_queue",
986 agg->time_in_queue / agg->slavecount);
987 json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
988}
989
990static void json_object_add_disk_utils(struct json_object *obj,
991 struct flist_head *head)
992{
993 struct json_array *array = json_create_array();
994 struct flist_head *entry;
995 struct disk_util *du;
996
997 json_object_add_value_array(obj, "disk_util", array);
998
999 flist_for_each(entry, head) {
1000 du = flist_entry(entry, struct disk_util, list);
1001
1002 aggregate_slaves_stats(du);
1003 json_array_add_disk_util(&du->dus, &du->agg, array);
1004 }
1005}
1006
1007void show_disk_util(int terse, struct json_object *parent,
1008 struct buf_output *out)
1009{
1010 struct flist_head *entry;
1011 struct disk_util *du;
1012 bool do_json;
1013
1014 if (!is_running_backend())
1015 return;
1016
1017 if (flist_empty(&disk_list)) {
1018 return;
1019 }
1020
1021 if ((output_format & FIO_OUTPUT_JSON) && parent)
1022 do_json = true;
1023 else
1024 do_json = false;
1025
1026 if (!terse && !do_json)
1027 log_buf(out, "\nDisk stats (read/write):\n");
1028
1029 if (do_json)
1030 json_object_add_disk_utils(parent, &disk_list);
1031 else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1032 flist_for_each(entry, &disk_list) {
1033 du = flist_entry(entry, struct disk_util, list);
1034
1035 aggregate_slaves_stats(du);
1036 print_disk_util(&du->dus, &du->agg, terse, out);
1037 }
1038 }
1039}
1040
1041static void show_thread_status_normal(struct thread_stat *ts,
1042 struct group_run_stats *rs,
1043 struct buf_output *out)
1044{
1045 double usr_cpu, sys_cpu;
1046 unsigned long runtime;
1047 double io_u_dist[FIO_IO_U_MAP_NR];
1048 time_t time_p;
1049 char time_buf[32];
1050
1051 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1052 return;
1053
1054 memset(time_buf, 0, sizeof(time_buf));
1055
1056 time(&time_p);
1057 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1058
1059 if (!ts->error) {
1060 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1061 ts->name, ts->groupid, ts->members,
1062 ts->error, (int) ts->pid, time_buf);
1063 } else {
1064 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1065 ts->name, ts->groupid, ts->members,
1066 ts->error, ts->verror, (int) ts->pid,
1067 time_buf);
1068 }
1069
1070 if (strlen(ts->description))
1071 log_buf(out, " Description : [%s]\n", ts->description);
1072
1073 if (ts->io_bytes[DDIR_READ])
1074 show_ddir_status(rs, ts, DDIR_READ, out);
1075 if (ts->io_bytes[DDIR_WRITE])
1076 show_ddir_status(rs, ts, DDIR_WRITE, out);
1077 if (ts->io_bytes[DDIR_TRIM])
1078 show_ddir_status(rs, ts, DDIR_TRIM, out);
1079
1080 show_latencies(ts, out);
1081
1082 if (ts->sync_stat.samples)
1083 show_ddir_status(rs, ts, DDIR_SYNC, out);
1084
1085 runtime = ts->total_run_time;
1086 if (runtime) {
1087 double runt = (double) runtime;
1088
1089 usr_cpu = (double) ts->usr_time * 100 / runt;
1090 sys_cpu = (double) ts->sys_time * 100 / runt;
1091 } else {
1092 usr_cpu = 0;
1093 sys_cpu = 0;
1094 }
1095
1096 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1097 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1098 (unsigned long long) ts->ctx,
1099 (unsigned long long) ts->majf,
1100 (unsigned long long) ts->minf);
1101
1102 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1103 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1104 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1105 io_u_dist[1], io_u_dist[2],
1106 io_u_dist[3], io_u_dist[4],
1107 io_u_dist[5], io_u_dist[6]);
1108
1109 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1110 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1111 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1112 io_u_dist[1], io_u_dist[2],
1113 io_u_dist[3], io_u_dist[4],
1114 io_u_dist[5], io_u_dist[6]);
1115 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1116 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1117 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1118 io_u_dist[1], io_u_dist[2],
1119 io_u_dist[3], io_u_dist[4],
1120 io_u_dist[5], io_u_dist[6]);
1121 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
1122 " short=%llu,%llu,%llu,0"
1123 " dropped=%llu,%llu,%llu,0\n",
1124 (unsigned long long) ts->total_io_u[0],
1125 (unsigned long long) ts->total_io_u[1],
1126 (unsigned long long) ts->total_io_u[2],
1127 (unsigned long long) ts->total_io_u[3],
1128 (unsigned long long) ts->short_io_u[0],
1129 (unsigned long long) ts->short_io_u[1],
1130 (unsigned long long) ts->short_io_u[2],
1131 (unsigned long long) ts->drop_io_u[0],
1132 (unsigned long long) ts->drop_io_u[1],
1133 (unsigned long long) ts->drop_io_u[2]);
1134 if (ts->continue_on_error) {
1135 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
1136 (unsigned long long)ts->total_err_count,
1137 ts->first_error,
1138 strerror(ts->first_error));
1139 }
1140 if (ts->latency_depth) {
1141 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1142 (unsigned long long)ts->latency_target,
1143 (unsigned long long)ts->latency_window,
1144 ts->latency_percentile.u.f,
1145 ts->latency_depth);
1146 }
1147
1148 if (ts->nr_block_infos)
1149 show_block_infos(ts->nr_block_infos, ts->block_infos,
1150 ts->percentile_list, out);
1151
1152 if (ts->ss_dur)
1153 show_ss_normal(ts, out);
1154}
1155
1156static void show_ddir_status_terse(struct thread_stat *ts,
1157 struct group_run_stats *rs, int ddir,
1158 int ver, struct buf_output *out)
1159{
1160 unsigned long long min, max, minv, maxv, bw, iops;
1161 unsigned long long *ovals = NULL;
1162 double mean, dev;
1163 unsigned int len;
1164 int i, bw_stat;
1165
1166 assert(ddir_rw(ddir));
1167
1168 iops = bw = 0;
1169 if (ts->runtime[ddir]) {
1170 uint64_t runt = ts->runtime[ddir];
1171
1172 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1173 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1174 }
1175
1176 log_buf(out, ";%llu;%llu;%llu;%llu",
1177 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1178 (unsigned long long) ts->runtime[ddir]);
1179
1180 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1181 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1182 else
1183 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1184
1185 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1186 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1187 else
1188 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1189
1190 if (ts->lat_percentiles)
1191 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1192 ts->lat_stat[ddir].samples,
1193 ts->percentile_list, &ovals, &maxv,
1194 &minv);
1195 else if (ts->clat_percentiles)
1196 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1197 ts->clat_stat[ddir].samples,
1198 ts->percentile_list, &ovals, &maxv,
1199 &minv);
1200 else
1201 len = 0;
1202
1203 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1204 if (i >= len) {
1205 log_buf(out, ";0%%=0");
1206 continue;
1207 }
1208 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1209 }
1210
1211 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1212 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1213 else
1214 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1215
1216 free(ovals);
1217
1218 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1219 if (bw_stat) {
1220 double p_of_agg = 100.0;
1221
1222 if (rs->agg[ddir]) {
1223 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1224 if (p_of_agg > 100.0)
1225 p_of_agg = 100.0;
1226 }
1227
1228 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1229 } else
1230 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1231
1232 if (ver == 5) {
1233 if (bw_stat)
1234 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1235 else
1236 log_buf(out, ";%lu", 0UL);
1237
1238 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1239 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1240 mean, dev, (&ts->iops_stat[ddir])->samples);
1241 else
1242 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1243 }
1244}
1245
1246static struct json_object *add_ddir_lat_json(struct thread_stat *ts, uint32_t percentiles,
1247 struct io_stat *lat_stat, uint64_t *io_u_plat)
1248{
1249 char buf[120];
1250 double mean, dev;
1251 unsigned int i, len;
1252 struct json_object *lat_object, *percentile_object, *clat_bins_object;
1253 unsigned long long min, max, maxv, minv, *ovals = NULL;
1254
1255 if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1256 min = max = 0;
1257 mean = dev = 0.0;
1258 }
1259 lat_object = json_create_object();
1260 json_object_add_value_int(lat_object, "min", min);
1261 json_object_add_value_int(lat_object, "max", max);
1262 json_object_add_value_float(lat_object, "mean", mean);
1263 json_object_add_value_float(lat_object, "stddev", dev);
1264 json_object_add_value_int(lat_object, "N", lat_stat->samples);
1265
1266 if (percentiles && lat_stat->samples) {
1267 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1268 ts->percentile_list, &ovals, &maxv, &minv);
1269
1270 if (len > FIO_IO_U_LIST_MAX_LEN)
1271 len = FIO_IO_U_LIST_MAX_LEN;
1272
1273 percentile_object = json_create_object();
1274 json_object_add_value_object(lat_object, "percentile", percentile_object);
1275 for (i = 0; i < len; i++) {
1276 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1277 json_object_add_value_int(percentile_object, buf, ovals[i]);
1278 }
1279 free(ovals);
1280
1281 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1282 clat_bins_object = json_create_object();
1283 json_object_add_value_object(lat_object, "bins", clat_bins_object);
1284
1285 for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1286 if (io_u_plat[i]) {
1287 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1288 json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1289 }
1290 }
1291 }
1292
1293 return lat_object;
1294}
1295
1296static void add_ddir_status_json(struct thread_stat *ts,
1297 struct group_run_stats *rs, int ddir, struct json_object *parent)
1298{
1299 unsigned long long min, max;
1300 unsigned long long bw_bytes, bw;
1301 double mean, dev, iops;
1302 struct json_object *dir_object, *tmp_object;
1303 double p_of_agg = 100.0;
1304
1305 assert(ddir_rw(ddir) || ddir_sync(ddir));
1306
1307 if (ts->unified_rw_rep && ddir != DDIR_READ)
1308 return;
1309
1310 dir_object = json_create_object();
1311 json_object_add_value_object(parent,
1312 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1313
1314 if (ddir_rw(ddir)) {
1315 bw_bytes = 0;
1316 bw = 0;
1317 iops = 0.0;
1318 if (ts->runtime[ddir]) {
1319 uint64_t runt = ts->runtime[ddir];
1320
1321 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1322 bw = bw_bytes / 1024; /* KiB/s */
1323 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1324 }
1325
1326 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1327 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1328 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1329 json_object_add_value_int(dir_object, "bw", bw);
1330 json_object_add_value_float(dir_object, "iops", iops);
1331 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1332 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1333 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1334 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1335
1336 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1337 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1338 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1339
1340 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1341 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1342 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1343
1344 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1345 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1346 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1347 } else {
1348 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1349 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1350 &ts->sync_stat, ts->io_u_sync_plat);
1351 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1352 }
1353
1354 if (!ddir_rw(ddir))
1355 return;
1356
1357 /* Only print PRIO latencies if some high priority samples were gathered */
1358 if (ts->clat_high_prio_stat[ddir].samples > 0) {
1359 const char *high, *low;
1360
1361 if (ts->lat_percentiles) {
1362 high = "lat_high_prio";
1363 low = "lat_low_prio";
1364 } else {
1365 high = "clat_high_prio";
1366 low = "clat_low_prio";
1367 }
1368
1369 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1370 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1371 json_object_add_value_object(dir_object, high, tmp_object);
1372
1373 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1374 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1375 json_object_add_value_object(dir_object, low, tmp_object);
1376 }
1377
1378 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1379 if (rs->agg[ddir]) {
1380 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1381 if (p_of_agg > 100.0)
1382 p_of_agg = 100.0;
1383 }
1384 } else {
1385 min = max = 0;
1386 p_of_agg = mean = dev = 0.0;
1387 }
1388
1389 json_object_add_value_int(dir_object, "bw_min", min);
1390 json_object_add_value_int(dir_object, "bw_max", max);
1391 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1392 json_object_add_value_float(dir_object, "bw_mean", mean);
1393 json_object_add_value_float(dir_object, "bw_dev", dev);
1394 json_object_add_value_int(dir_object, "bw_samples",
1395 (&ts->bw_stat[ddir])->samples);
1396
1397 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1398 min = max = 0;
1399 mean = dev = 0.0;
1400 }
1401 json_object_add_value_int(dir_object, "iops_min", min);
1402 json_object_add_value_int(dir_object, "iops_max", max);
1403 json_object_add_value_float(dir_object, "iops_mean", mean);
1404 json_object_add_value_float(dir_object, "iops_stddev", dev);
1405 json_object_add_value_int(dir_object, "iops_samples",
1406 (&ts->iops_stat[ddir])->samples);
1407
1408 if (ts->cachehit + ts->cachemiss) {
1409 uint64_t total;
1410 double hit;
1411
1412 total = ts->cachehit + ts->cachemiss;
1413 hit = (double) ts->cachehit / (double) total;
1414 hit *= 100.0;
1415 json_object_add_value_float(dir_object, "cachehit", hit);
1416 }
1417}
1418
1419static void show_thread_status_terse_all(struct thread_stat *ts,
1420 struct group_run_stats *rs, int ver,
1421 struct buf_output *out)
1422{
1423 double io_u_dist[FIO_IO_U_MAP_NR];
1424 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1425 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1426 double usr_cpu, sys_cpu;
1427 int i;
1428
1429 /* General Info */
1430 if (ver == 2)
1431 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1432 else
1433 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1434 ts->name, ts->groupid, ts->error);
1435
1436 /* Log Read Status */
1437 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1438 /* Log Write Status */
1439 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1440 /* Log Trim Status */
1441 if (ver == 2 || ver == 4 || ver == 5)
1442 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1443
1444 /* CPU Usage */
1445 if (ts->total_run_time) {
1446 double runt = (double) ts->total_run_time;
1447
1448 usr_cpu = (double) ts->usr_time * 100 / runt;
1449 sys_cpu = (double) ts->sys_time * 100 / runt;
1450 } else {
1451 usr_cpu = 0;
1452 sys_cpu = 0;
1453 }
1454
1455 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1456 (unsigned long long) ts->ctx,
1457 (unsigned long long) ts->majf,
1458 (unsigned long long) ts->minf);
1459
1460 /* Calc % distribution of IO depths, usecond, msecond latency */
1461 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1462 stat_calc_lat_nu(ts, io_u_lat_u);
1463 stat_calc_lat_m(ts, io_u_lat_m);
1464
1465 /* Only show fixed 7 I/O depth levels*/
1466 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1467 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1468 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1469
1470 /* Microsecond latency */
1471 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1472 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1473 /* Millisecond latency */
1474 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1475 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1476
1477 /* disk util stats, if any */
1478 if (ver >= 3 && is_running_backend())
1479 show_disk_util(1, NULL, out);
1480
1481 /* Additional output if continue_on_error set - default off*/
1482 if (ts->continue_on_error)
1483 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1484
1485 /* Additional output if description is set */
1486 if (strlen(ts->description)) {
1487 if (ver == 2)
1488 log_buf(out, "\n");
1489 log_buf(out, ";%s", ts->description);
1490 }
1491
1492 log_buf(out, "\n");
1493}
1494
1495static void json_add_job_opts(struct json_object *root, const char *name,
1496 struct flist_head *opt_list)
1497{
1498 struct json_object *dir_object;
1499 struct flist_head *entry;
1500 struct print_option *p;
1501
1502 if (flist_empty(opt_list))
1503 return;
1504
1505 dir_object = json_create_object();
1506 json_object_add_value_object(root, name, dir_object);
1507
1508 flist_for_each(entry, opt_list) {
1509 const char *pos = "";
1510
1511 p = flist_entry(entry, struct print_option, list);
1512 if (p->value)
1513 pos = p->value;
1514 json_object_add_value_string(dir_object, p->name, pos);
1515 }
1516}
1517
1518static struct json_object *show_thread_status_json(struct thread_stat *ts,
1519 struct group_run_stats *rs,
1520 struct flist_head *opt_list)
1521{
1522 struct json_object *root, *tmp;
1523 struct jobs_eta *je;
1524 double io_u_dist[FIO_IO_U_MAP_NR];
1525 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1526 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1527 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1528 double usr_cpu, sys_cpu;
1529 int i;
1530 size_t size;
1531
1532 root = json_create_object();
1533 json_object_add_value_string(root, "jobname", ts->name);
1534 json_object_add_value_int(root, "groupid", ts->groupid);
1535 json_object_add_value_int(root, "error", ts->error);
1536
1537 /* ETA Info */
1538 je = get_jobs_eta(true, &size);
1539 if (je) {
1540 json_object_add_value_int(root, "eta", je->eta_sec);
1541 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1542 }
1543
1544 if (opt_list)
1545 json_add_job_opts(root, "job options", opt_list);
1546
1547 add_ddir_status_json(ts, rs, DDIR_READ, root);
1548 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1549 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1550 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1551
1552 /* CPU Usage */
1553 if (ts->total_run_time) {
1554 double runt = (double) ts->total_run_time;
1555
1556 usr_cpu = (double) ts->usr_time * 100 / runt;
1557 sys_cpu = (double) ts->sys_time * 100 / runt;
1558 } else {
1559 usr_cpu = 0;
1560 sys_cpu = 0;
1561 }
1562 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1563 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1564 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1565 json_object_add_value_int(root, "ctx", ts->ctx);
1566 json_object_add_value_int(root, "majf", ts->majf);
1567 json_object_add_value_int(root, "minf", ts->minf);
1568
1569 /* Calc % distribution of IO depths */
1570 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1571 tmp = json_create_object();
1572 json_object_add_value_object(root, "iodepth_level", tmp);
1573 /* Only show fixed 7 I/O depth levels*/
1574 for (i = 0; i < 7; i++) {
1575 char name[20];
1576 if (i < 6)
1577 snprintf(name, 20, "%d", 1 << i);
1578 else
1579 snprintf(name, 20, ">=%d", 1 << i);
1580 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1581 }
1582
1583 /* Calc % distribution of submit IO depths */
1584 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1585 tmp = json_create_object();
1586 json_object_add_value_object(root, "iodepth_submit", tmp);
1587 /* Only show fixed 7 I/O depth levels*/
1588 for (i = 0; i < 7; i++) {
1589 char name[20];
1590 if (i == 0)
1591 snprintf(name, 20, "0");
1592 else if (i < 6)
1593 snprintf(name, 20, "%d", 1 << (i+1));
1594 else
1595 snprintf(name, 20, ">=%d", 1 << i);
1596 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1597 }
1598
1599 /* Calc % distribution of completion IO depths */
1600 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1601 tmp = json_create_object();
1602 json_object_add_value_object(root, "iodepth_complete", tmp);
1603 /* Only show fixed 7 I/O depth levels*/
1604 for (i = 0; i < 7; i++) {
1605 char name[20];
1606 if (i == 0)
1607 snprintf(name, 20, "0");
1608 else if (i < 6)
1609 snprintf(name, 20, "%d", 1 << (i+1));
1610 else
1611 snprintf(name, 20, ">=%d", 1 << i);
1612 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1613 }
1614
1615 /* Calc % distribution of nsecond, usecond, msecond latency */
1616 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1617 stat_calc_lat_n(ts, io_u_lat_n);
1618 stat_calc_lat_u(ts, io_u_lat_u);
1619 stat_calc_lat_m(ts, io_u_lat_m);
1620
1621 /* Nanosecond latency */
1622 tmp = json_create_object();
1623 json_object_add_value_object(root, "latency_ns", tmp);
1624 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1625 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1626 "250", "500", "750", "1000", };
1627 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1628 }
1629 /* Microsecond latency */
1630 tmp = json_create_object();
1631 json_object_add_value_object(root, "latency_us", tmp);
1632 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1633 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1634 "250", "500", "750", "1000", };
1635 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1636 }
1637 /* Millisecond latency */
1638 tmp = json_create_object();
1639 json_object_add_value_object(root, "latency_ms", tmp);
1640 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1641 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1642 "250", "500", "750", "1000", "2000",
1643 ">=2000", };
1644 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1645 }
1646
1647 /* Additional output if continue_on_error set - default off*/
1648 if (ts->continue_on_error) {
1649 json_object_add_value_int(root, "total_err", ts->total_err_count);
1650 json_object_add_value_int(root, "first_error", ts->first_error);
1651 }
1652
1653 if (ts->latency_depth) {
1654 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1655 json_object_add_value_int(root, "latency_target", ts->latency_target);
1656 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1657 json_object_add_value_int(root, "latency_window", ts->latency_window);
1658 }
1659
1660 /* Additional output if description is set */
1661 if (strlen(ts->description))
1662 json_object_add_value_string(root, "desc", ts->description);
1663
1664 if (ts->nr_block_infos) {
1665 /* Block error histogram and types */
1666 int len;
1667 unsigned int *percentiles = NULL;
1668 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1669
1670 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1671 ts->percentile_list,
1672 &percentiles, block_state_counts);
1673
1674 if (len) {
1675 struct json_object *block, *percentile_object, *states;
1676 int state;
1677 block = json_create_object();
1678 json_object_add_value_object(root, "block", block);
1679
1680 percentile_object = json_create_object();
1681 json_object_add_value_object(block, "percentiles",
1682 percentile_object);
1683 for (i = 0; i < len; i++) {
1684 char buf[20];
1685 snprintf(buf, sizeof(buf), "%f",
1686 ts->percentile_list[i].u.f);
1687 json_object_add_value_int(percentile_object,
1688 buf,
1689 percentiles[i]);
1690 }
1691
1692 states = json_create_object();
1693 json_object_add_value_object(block, "states", states);
1694 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1695 json_object_add_value_int(states,
1696 block_state_names[state],
1697 block_state_counts[state]);
1698 }
1699 free(percentiles);
1700 }
1701 }
1702
1703 if (ts->ss_dur) {
1704 struct json_object *data;
1705 struct json_array *iops, *bw;
1706 int j, k, l;
1707 char ss_buf[64];
1708
1709 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1710 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1711 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1712 (float) ts->ss_limit.u.f,
1713 ts->ss_state & FIO_SS_PCT ? "%" : "");
1714
1715 tmp = json_create_object();
1716 json_object_add_value_object(root, "steadystate", tmp);
1717 json_object_add_value_string(tmp, "ss", ss_buf);
1718 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1719 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1720
1721 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1722 ts->ss_state & FIO_SS_PCT ? "%" : "");
1723 json_object_add_value_string(tmp, "criterion", ss_buf);
1724 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1725 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1726
1727 data = json_create_object();
1728 json_object_add_value_object(tmp, "data", data);
1729 bw = json_create_array();
1730 iops = json_create_array();
1731
1732 /*
1733 ** if ss was attained or the buffer is not full,
1734 ** ss->head points to the first element in the list.
1735 ** otherwise it actually points to the second element
1736 ** in the list
1737 */
1738 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1739 j = ts->ss_head;
1740 else
1741 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1742 for (l = 0; l < ts->ss_dur; l++) {
1743 k = (j + l) % ts->ss_dur;
1744 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1745 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1746 }
1747 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1748 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1749 json_object_add_value_array(data, "iops", iops);
1750 json_object_add_value_array(data, "bw", bw);
1751 }
1752
1753 return root;
1754}
1755
1756static void show_thread_status_terse(struct thread_stat *ts,
1757 struct group_run_stats *rs,
1758 struct buf_output *out)
1759{
1760 if (terse_version >= 2 && terse_version <= 5)
1761 show_thread_status_terse_all(ts, rs, terse_version, out);
1762 else
1763 log_err("fio: bad terse version!? %d\n", terse_version);
1764}
1765
1766struct json_object *show_thread_status(struct thread_stat *ts,
1767 struct group_run_stats *rs,
1768 struct flist_head *opt_list,
1769 struct buf_output *out)
1770{
1771 struct json_object *ret = NULL;
1772
1773 if (output_format & FIO_OUTPUT_TERSE)
1774 show_thread_status_terse(ts, rs, out);
1775 if (output_format & FIO_OUTPUT_JSON)
1776 ret = show_thread_status_json(ts, rs, opt_list);
1777 if (output_format & FIO_OUTPUT_NORMAL)
1778 show_thread_status_normal(ts, rs, out);
1779
1780 return ret;
1781}
1782
1783static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1784{
1785 double mean, S;
1786
1787 dst->min_val = min(dst->min_val, src->min_val);
1788 dst->max_val = max(dst->max_val, src->max_val);
1789
1790 /*
1791 * Compute new mean and S after the merge
1792 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1793 * #Parallel_algorithm>
1794 */
1795 if (first) {
1796 mean = src->mean.u.f;
1797 S = src->S.u.f;
1798 } else {
1799 double delta = src->mean.u.f - dst->mean.u.f;
1800
1801 mean = ((src->mean.u.f * src->samples) +
1802 (dst->mean.u.f * dst->samples)) /
1803 (dst->samples + src->samples);
1804
1805 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1806 (dst->samples * src->samples) /
1807 (dst->samples + src->samples);
1808 }
1809
1810 dst->samples += src->samples;
1811 dst->mean.u.f = mean;
1812 dst->S.u.f = S;
1813
1814}
1815
1816/*
1817 * We sum two kinds of stats - one that is time based, in which case we
1818 * apply the proper summing technique, and then one that is iops/bw
1819 * numbers. For group_reporting, we should just add those up, not make
1820 * them the mean of everything.
1821 */
1822static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1823 bool pure_sum)
1824{
1825 if (src->samples == 0)
1826 return;
1827
1828 if (!pure_sum) {
1829 __sum_stat(dst, src, first);
1830 return;
1831 }
1832
1833 if (first) {
1834 dst->min_val = src->min_val;
1835 dst->max_val = src->max_val;
1836 dst->samples = src->samples;
1837 dst->mean.u.f = src->mean.u.f;
1838 dst->S.u.f = src->S.u.f;
1839 } else {
1840 dst->min_val += src->min_val;
1841 dst->max_val += src->max_val;
1842 dst->samples += src->samples;
1843 dst->mean.u.f += src->mean.u.f;
1844 dst->S.u.f += src->S.u.f;
1845 }
1846}
1847
1848void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1849{
1850 int i;
1851
1852 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1853 if (dst->max_run[i] < src->max_run[i])
1854 dst->max_run[i] = src->max_run[i];
1855 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1856 dst->min_run[i] = src->min_run[i];
1857 if (dst->max_bw[i] < src->max_bw[i])
1858 dst->max_bw[i] = src->max_bw[i];
1859 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1860 dst->min_bw[i] = src->min_bw[i];
1861
1862 dst->iobytes[i] += src->iobytes[i];
1863 dst->agg[i] += src->agg[i];
1864 }
1865
1866 if (!dst->kb_base)
1867 dst->kb_base = src->kb_base;
1868 if (!dst->unit_base)
1869 dst->unit_base = src->unit_base;
1870 if (!dst->sig_figs)
1871 dst->sig_figs = src->sig_figs;
1872}
1873
1874void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1875 bool first)
1876{
1877 int k, l, m;
1878
1879 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1880 if (!dst->unified_rw_rep) {
1881 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1882 sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
1883 sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
1884 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1885 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1886 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1887 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1888
1889 dst->io_bytes[l] += src->io_bytes[l];
1890
1891 if (dst->runtime[l] < src->runtime[l])
1892 dst->runtime[l] = src->runtime[l];
1893 } else {
1894 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1895 sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
1896 sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
1897 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1898 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1899 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1900 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1901
1902 dst->io_bytes[0] += src->io_bytes[l];
1903
1904 if (dst->runtime[0] < src->runtime[l])
1905 dst->runtime[0] = src->runtime[l];
1906
1907 /*
1908 * We're summing to the same destination, so override
1909 * 'first' after the first iteration of the loop
1910 */
1911 first = false;
1912 }
1913 }
1914
1915 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1916 dst->usr_time += src->usr_time;
1917 dst->sys_time += src->sys_time;
1918 dst->ctx += src->ctx;
1919 dst->majf += src->majf;
1920 dst->minf += src->minf;
1921
1922 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1923 dst->io_u_map[k] += src->io_u_map[k];
1924 dst->io_u_submit[k] += src->io_u_submit[k];
1925 dst->io_u_complete[k] += src->io_u_complete[k];
1926 }
1927
1928 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1929 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1930 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1931 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1932 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1933 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1934
1935 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1936 if (!dst->unified_rw_rep) {
1937 dst->total_io_u[k] += src->total_io_u[k];
1938 dst->short_io_u[k] += src->short_io_u[k];
1939 dst->drop_io_u[k] += src->drop_io_u[k];
1940 } else {
1941 dst->total_io_u[0] += src->total_io_u[k];
1942 dst->short_io_u[0] += src->short_io_u[k];
1943 dst->drop_io_u[0] += src->drop_io_u[k];
1944 }
1945 }
1946
1947 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1948
1949 for (k = 0; k < FIO_LAT_CNT; k++)
1950 for (l = 0; l < DDIR_RWDIR_CNT; l++)
1951 for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
1952 if (!dst->unified_rw_rep)
1953 dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
1954 else
1955 dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
1956
1957 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1958 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1959
1960 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1961 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1962 if (!dst->unified_rw_rep) {
1963 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
1964 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
1965 } else {
1966 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
1967 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
1968 }
1969
1970 }
1971 }
1972
1973 dst->total_run_time += src->total_run_time;
1974 dst->total_submit += src->total_submit;
1975 dst->total_complete += src->total_complete;
1976 dst->nr_zone_resets += src->nr_zone_resets;
1977 dst->cachehit += src->cachehit;
1978 dst->cachemiss += src->cachemiss;
1979}
1980
1981void init_group_run_stat(struct group_run_stats *gs)
1982{
1983 int i;
1984 memset(gs, 0, sizeof(*gs));
1985
1986 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1987 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1988}
1989
1990void init_thread_stat(struct thread_stat *ts)
1991{
1992 int j;
1993
1994 memset(ts, 0, sizeof(*ts));
1995
1996 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1997 ts->lat_stat[j].min_val = -1UL;
1998 ts->clat_stat[j].min_val = -1UL;
1999 ts->slat_stat[j].min_val = -1UL;
2000 ts->bw_stat[j].min_val = -1UL;
2001 ts->iops_stat[j].min_val = -1UL;
2002 ts->clat_high_prio_stat[j].min_val = -1UL;
2003 ts->clat_low_prio_stat[j].min_val = -1UL;
2004 }
2005 ts->sync_stat.min_val = -1UL;
2006 ts->groupid = -1;
2007}
2008
2009void __show_run_stats(void)
2010{
2011 struct group_run_stats *runstats, *rs;
2012 struct thread_data *td;
2013 struct thread_stat *threadstats, *ts;
2014 int i, j, k, nr_ts, last_ts, idx;
2015 bool kb_base_warned = false;
2016 bool unit_base_warned = false;
2017 struct json_object *root = NULL;
2018 struct json_array *array = NULL;
2019 struct buf_output output[FIO_OUTPUT_NR];
2020 struct flist_head **opt_lists;
2021
2022 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2023
2024 for (i = 0; i < groupid + 1; i++)
2025 init_group_run_stat(&runstats[i]);
2026
2027 /*
2028 * find out how many threads stats we need. if group reporting isn't
2029 * enabled, it's one-per-td.
2030 */
2031 nr_ts = 0;
2032 last_ts = -1;
2033 for_each_td(td, i) {
2034 if (!td->o.group_reporting) {
2035 nr_ts++;
2036 continue;
2037 }
2038 if (last_ts == td->groupid)
2039 continue;
2040 if (!td->o.stats)
2041 continue;
2042
2043 last_ts = td->groupid;
2044 nr_ts++;
2045 }
2046
2047 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2048 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2049
2050 for (i = 0; i < nr_ts; i++) {
2051 init_thread_stat(&threadstats[i]);
2052 opt_lists[i] = NULL;
2053 }
2054
2055 j = 0;
2056 last_ts = -1;
2057 idx = 0;
2058 for_each_td(td, i) {
2059 if (!td->o.stats)
2060 continue;
2061 if (idx && (!td->o.group_reporting ||
2062 (td->o.group_reporting && last_ts != td->groupid))) {
2063 idx = 0;
2064 j++;
2065 }
2066
2067 last_ts = td->groupid;
2068
2069 ts = &threadstats[j];
2070
2071 ts->clat_percentiles = td->o.clat_percentiles;
2072 ts->lat_percentiles = td->o.lat_percentiles;
2073 ts->slat_percentiles = td->o.slat_percentiles;
2074 ts->percentile_precision = td->o.percentile_precision;
2075 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2076 opt_lists[j] = &td->opt_list;
2077
2078 idx++;
2079 ts->members++;
2080
2081 if (ts->groupid == -1) {
2082 /*
2083 * These are per-group shared already
2084 */
2085 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2086 if (td->o.description)
2087 snprintf(ts->description,
2088 sizeof(ts->description), "%s",
2089 td->o.description);
2090 else
2091 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2092
2093 /*
2094 * If multiple entries in this group, this is
2095 * the first member.
2096 */
2097 ts->thread_number = td->thread_number;
2098 ts->groupid = td->groupid;
2099
2100 /*
2101 * first pid in group, not very useful...
2102 */
2103 ts->pid = td->pid;
2104
2105 ts->kb_base = td->o.kb_base;
2106 ts->unit_base = td->o.unit_base;
2107 ts->sig_figs = td->o.sig_figs;
2108 ts->unified_rw_rep = td->o.unified_rw_rep;
2109 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2110 log_info("fio: kb_base differs for jobs in group, using"
2111 " %u as the base\n", ts->kb_base);
2112 kb_base_warned = true;
2113 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2114 log_info("fio: unit_base differs for jobs in group, using"
2115 " %u as the base\n", ts->unit_base);
2116 unit_base_warned = true;
2117 }
2118
2119 ts->continue_on_error = td->o.continue_on_error;
2120 ts->total_err_count += td->total_err_count;
2121 ts->first_error = td->first_error;
2122 if (!ts->error) {
2123 if (!td->error && td->o.continue_on_error &&
2124 td->first_error) {
2125 ts->error = td->first_error;
2126 snprintf(ts->verror, sizeof(ts->verror), "%s",
2127 td->verror);
2128 } else if (td->error) {
2129 ts->error = td->error;
2130 snprintf(ts->verror, sizeof(ts->verror), "%s",
2131 td->verror);
2132 }
2133 }
2134
2135 ts->latency_depth = td->latency_qd;
2136 ts->latency_target = td->o.latency_target;
2137 ts->latency_percentile = td->o.latency_percentile;
2138 ts->latency_window = td->o.latency_window;
2139
2140 ts->nr_block_infos = td->ts.nr_block_infos;
2141 for (k = 0; k < ts->nr_block_infos; k++)
2142 ts->block_infos[k] = td->ts.block_infos[k];
2143
2144 sum_thread_stats(ts, &td->ts, idx == 1);
2145
2146 if (td->o.ss_dur) {
2147 ts->ss_state = td->ss.state;
2148 ts->ss_dur = td->ss.dur;
2149 ts->ss_head = td->ss.head;
2150 ts->ss_bw_data = td->ss.bw_data;
2151 ts->ss_iops_data = td->ss.iops_data;
2152 ts->ss_limit.u.f = td->ss.limit;
2153 ts->ss_slope.u.f = td->ss.slope;
2154 ts->ss_deviation.u.f = td->ss.deviation;
2155 ts->ss_criterion.u.f = td->ss.criterion;
2156 }
2157 else
2158 ts->ss_dur = ts->ss_state = 0;
2159 }
2160
2161 for (i = 0; i < nr_ts; i++) {
2162 unsigned long long bw;
2163
2164 ts = &threadstats[i];
2165 if (ts->groupid == -1)
2166 continue;
2167 rs = &runstats[ts->groupid];
2168 rs->kb_base = ts->kb_base;
2169 rs->unit_base = ts->unit_base;
2170 rs->sig_figs = ts->sig_figs;
2171 rs->unified_rw_rep += ts->unified_rw_rep;
2172
2173 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2174 if (!ts->runtime[j])
2175 continue;
2176 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2177 rs->min_run[j] = ts->runtime[j];
2178 if (ts->runtime[j] > rs->max_run[j])
2179 rs->max_run[j] = ts->runtime[j];
2180
2181 bw = 0;
2182 if (ts->runtime[j])
2183 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2184 if (bw < rs->min_bw[j])
2185 rs->min_bw[j] = bw;
2186 if (bw > rs->max_bw[j])
2187 rs->max_bw[j] = bw;
2188
2189 rs->iobytes[j] += ts->io_bytes[j];
2190 }
2191 }
2192
2193 for (i = 0; i < groupid + 1; i++) {
2194 int ddir;
2195
2196 rs = &runstats[i];
2197
2198 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2199 if (rs->max_run[ddir])
2200 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2201 rs->max_run[ddir];
2202 }
2203 }
2204
2205 for (i = 0; i < FIO_OUTPUT_NR; i++)
2206 buf_output_init(&output[i]);
2207
2208 /*
2209 * don't overwrite last signal output
2210 */
2211 if (output_format & FIO_OUTPUT_NORMAL)
2212 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2213 if (output_format & FIO_OUTPUT_JSON) {
2214 struct thread_data *global;
2215 char time_buf[32];
2216 struct timeval now;
2217 unsigned long long ms_since_epoch;
2218 time_t tv_sec;
2219
2220 gettimeofday(&now, NULL);
2221 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2222 (unsigned long long)(now.tv_usec) / 1000;
2223
2224 tv_sec = now.tv_sec;
2225 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2226 if (time_buf[strlen(time_buf) - 1] == '\n')
2227 time_buf[strlen(time_buf) - 1] = '\0';
2228
2229 root = json_create_object();
2230 json_object_add_value_string(root, "fio version", fio_version_string);
2231 json_object_add_value_int(root, "timestamp", now.tv_sec);
2232 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2233 json_object_add_value_string(root, "time", time_buf);
2234 global = get_global_options();
2235 json_add_job_opts(root, "global options", &global->opt_list);
2236 array = json_create_array();
2237 json_object_add_value_array(root, "jobs", array);
2238 }
2239
2240 if (is_backend)
2241 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2242
2243 for (i = 0; i < nr_ts; i++) {
2244 ts = &threadstats[i];
2245 rs = &runstats[ts->groupid];
2246
2247 if (is_backend) {
2248 fio_server_send_job_options(opt_lists[i], i);
2249 fio_server_send_ts(ts, rs);
2250 } else {
2251 if (output_format & FIO_OUTPUT_TERSE)
2252 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2253 if (output_format & FIO_OUTPUT_JSON) {
2254 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2255 json_array_add_value_object(array, tmp);
2256 }
2257 if (output_format & FIO_OUTPUT_NORMAL)
2258 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2259 }
2260 }
2261 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2262 /* disk util stats, if any */
2263 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2264
2265 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2266
2267 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2268 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2269 json_free_object(root);
2270 }
2271
2272 for (i = 0; i < groupid + 1; i++) {
2273 rs = &runstats[i];
2274
2275 rs->groupid = i;
2276 if (is_backend)
2277 fio_server_send_gs(rs);
2278 else if (output_format & FIO_OUTPUT_NORMAL)
2279 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2280 }
2281
2282 if (is_backend)
2283 fio_server_send_du();
2284 else if (output_format & FIO_OUTPUT_NORMAL) {
2285 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2286 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2287 }
2288
2289 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2290 struct buf_output *out = &output[i];
2291
2292 log_info_buf(out->buf, out->buflen);
2293 buf_output_free(out);
2294 }
2295
2296 fio_idle_prof_cleanup();
2297
2298 log_info_flush();
2299 free(runstats);
2300 free(threadstats);
2301 free(opt_lists);
2302}
2303
2304void __show_running_run_stats(void)
2305{
2306 struct thread_data *td;
2307 unsigned long long *rt;
2308 struct timespec ts;
2309 int i;
2310
2311 fio_sem_down(stat_sem);
2312
2313 rt = malloc(thread_number * sizeof(unsigned long long));
2314 fio_gettime(&ts, NULL);
2315
2316 for_each_td(td, i) {
2317 td->update_rusage = 1;
2318 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2319 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2320 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2321 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2322
2323 rt[i] = mtime_since(&td->start, &ts);
2324 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2325 td->ts.runtime[DDIR_READ] += rt[i];
2326 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2327 td->ts.runtime[DDIR_WRITE] += rt[i];
2328 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2329 td->ts.runtime[DDIR_TRIM] += rt[i];
2330 }
2331
2332 for_each_td(td, i) {
2333 if (td->runstate >= TD_EXITED)
2334 continue;
2335 if (td->rusage_sem) {
2336 td->update_rusage = 1;
2337 fio_sem_down(td->rusage_sem);
2338 }
2339 td->update_rusage = 0;
2340 }
2341
2342 __show_run_stats();
2343
2344 for_each_td(td, i) {
2345 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2346 td->ts.runtime[DDIR_READ] -= rt[i];
2347 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2348 td->ts.runtime[DDIR_WRITE] -= rt[i];
2349 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2350 td->ts.runtime[DDIR_TRIM] -= rt[i];
2351 }
2352
2353 free(rt);
2354 fio_sem_up(stat_sem);
2355}
2356
2357static bool status_interval_init;
2358static struct timespec status_time;
2359static bool status_file_disabled;
2360
2361#define FIO_STATUS_FILE "fio-dump-status"
2362
2363static int check_status_file(void)
2364{
2365 struct stat sb;
2366 const char *temp_dir;
2367 char fio_status_file_path[PATH_MAX];
2368
2369 if (status_file_disabled)
2370 return 0;
2371
2372 temp_dir = getenv("TMPDIR");
2373 if (temp_dir == NULL) {
2374 temp_dir = getenv("TEMP");
2375 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2376 temp_dir = NULL;
2377 }
2378 if (temp_dir == NULL)
2379 temp_dir = "/tmp";
2380#ifdef __COVERITY__
2381 __coverity_tainted_data_sanitize__(temp_dir);
2382#endif
2383
2384 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2385
2386 if (stat(fio_status_file_path, &sb))
2387 return 0;
2388
2389 if (unlink(fio_status_file_path) < 0) {
2390 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2391 strerror(errno));
2392 log_err("fio: disabling status file updates\n");
2393 status_file_disabled = true;
2394 }
2395
2396 return 1;
2397}
2398
2399void check_for_running_stats(void)
2400{
2401 if (status_interval) {
2402 if (!status_interval_init) {
2403 fio_gettime(&status_time, NULL);
2404 status_interval_init = true;
2405 } else if (mtime_since_now(&status_time) >= status_interval) {
2406 show_running_run_stats();
2407 fio_gettime(&status_time, NULL);
2408 return;
2409 }
2410 }
2411 if (check_status_file()) {
2412 show_running_run_stats();
2413 return;
2414 }
2415}
2416
2417static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2418{
2419 double val = data;
2420 double delta;
2421
2422 if (data > is->max_val)
2423 is->max_val = data;
2424 if (data < is->min_val)
2425 is->min_val = data;
2426
2427 delta = val - is->mean.u.f;
2428 if (delta) {
2429 is->mean.u.f += delta / (is->samples + 1.0);
2430 is->S.u.f += delta * (val - is->mean.u.f);
2431 }
2432
2433 is->samples++;
2434}
2435
2436/*
2437 * Return a struct io_logs, which is added to the tail of the log
2438 * list for 'iolog'.
2439 */
2440static struct io_logs *get_new_log(struct io_log *iolog)
2441{
2442 size_t new_size, new_samples;
2443 struct io_logs *cur_log;
2444
2445 /*
2446 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2447 * forever
2448 */
2449 if (!iolog->cur_log_max)
2450 new_samples = DEF_LOG_ENTRIES;
2451 else {
2452 new_samples = iolog->cur_log_max * 2;
2453 if (new_samples > MAX_LOG_ENTRIES)
2454 new_samples = MAX_LOG_ENTRIES;
2455 }
2456
2457 new_size = new_samples * log_entry_sz(iolog);
2458
2459 cur_log = smalloc(sizeof(*cur_log));
2460 if (cur_log) {
2461 INIT_FLIST_HEAD(&cur_log->list);
2462 cur_log->log = malloc(new_size);
2463 if (cur_log->log) {
2464 cur_log->nr_samples = 0;
2465 cur_log->max_samples = new_samples;
2466 flist_add_tail(&cur_log->list, &iolog->io_logs);
2467 iolog->cur_log_max = new_samples;
2468 return cur_log;
2469 }
2470 sfree(cur_log);
2471 }
2472
2473 return NULL;
2474}
2475
2476/*
2477 * Add and return a new log chunk, or return current log if big enough
2478 */
2479static struct io_logs *regrow_log(struct io_log *iolog)
2480{
2481 struct io_logs *cur_log;
2482 int i;
2483
2484 if (!iolog || iolog->disabled)
2485 goto disable;
2486
2487 cur_log = iolog_cur_log(iolog);
2488 if (!cur_log) {
2489 cur_log = get_new_log(iolog);
2490 if (!cur_log)
2491 return NULL;
2492 }
2493
2494 if (cur_log->nr_samples < cur_log->max_samples)
2495 return cur_log;
2496
2497 /*
2498 * No room for a new sample. If we're compressing on the fly, flush
2499 * out the current chunk
2500 */
2501 if (iolog->log_gz) {
2502 if (iolog_cur_flush(iolog, cur_log)) {
2503 log_err("fio: failed flushing iolog! Will stop logging.\n");
2504 return NULL;
2505 }
2506 }
2507
2508 /*
2509 * Get a new log array, and add to our list
2510 */
2511 cur_log = get_new_log(iolog);
2512 if (!cur_log) {
2513 log_err("fio: failed extending iolog! Will stop logging.\n");
2514 return NULL;
2515 }
2516
2517 if (!iolog->pending || !iolog->pending->nr_samples)
2518 return cur_log;
2519
2520 /*
2521 * Flush pending items to new log
2522 */
2523 for (i = 0; i < iolog->pending->nr_samples; i++) {
2524 struct io_sample *src, *dst;
2525
2526 src = get_sample(iolog, iolog->pending, i);
2527 dst = get_sample(iolog, cur_log, i);
2528 memcpy(dst, src, log_entry_sz(iolog));
2529 }
2530 cur_log->nr_samples = iolog->pending->nr_samples;
2531
2532 iolog->pending->nr_samples = 0;
2533 return cur_log;
2534disable:
2535 if (iolog)
2536 iolog->disabled = true;
2537 return NULL;
2538}
2539
2540void regrow_logs(struct thread_data *td)
2541{
2542 regrow_log(td->slat_log);
2543 regrow_log(td->clat_log);
2544 regrow_log(td->clat_hist_log);
2545 regrow_log(td->lat_log);
2546 regrow_log(td->bw_log);
2547 regrow_log(td->iops_log);
2548 td->flags &= ~TD_F_REGROW_LOGS;
2549}
2550
2551static struct io_logs *get_cur_log(struct io_log *iolog)
2552{
2553 struct io_logs *cur_log;
2554
2555 cur_log = iolog_cur_log(iolog);
2556 if (!cur_log) {
2557 cur_log = get_new_log(iolog);
2558 if (!cur_log)
2559 return NULL;
2560 }
2561
2562 if (cur_log->nr_samples < cur_log->max_samples)
2563 return cur_log;
2564
2565 /*
2566 * Out of space. If we're in IO offload mode, or we're not doing
2567 * per unit logging (hence logging happens outside of the IO thread
2568 * as well), add a new log chunk inline. If we're doing inline
2569 * submissions, flag 'td' as needing a log regrow and we'll take
2570 * care of it on the submission side.
2571 */
2572 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2573 !per_unit_log(iolog))
2574 return regrow_log(iolog);
2575
2576 if (iolog->td)
2577 iolog->td->flags |= TD_F_REGROW_LOGS;
2578 if (iolog->pending)
2579 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2580 return iolog->pending;
2581}
2582
2583static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2584 enum fio_ddir ddir, unsigned long long bs,
2585 unsigned long t, uint64_t offset, uint8_t priority_bit)
2586{
2587 struct io_logs *cur_log;
2588
2589 if (iolog->disabled)
2590 return;
2591 if (flist_empty(&iolog->io_logs))
2592 iolog->avg_last[ddir] = t;
2593
2594 cur_log = get_cur_log(iolog);
2595 if (cur_log) {
2596 struct io_sample *s;
2597
2598 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2599
2600 s->data = data;
2601 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2602 io_sample_set_ddir(iolog, s, ddir);
2603 s->bs = bs;
2604 s->priority_bit = priority_bit;
2605
2606 if (iolog->log_offset) {
2607 struct io_sample_offset *so = (void *) s;
2608
2609 so->offset = offset;
2610 }
2611
2612 cur_log->nr_samples++;
2613 return;
2614 }
2615
2616 iolog->disabled = true;
2617}
2618
2619static inline void reset_io_stat(struct io_stat *ios)
2620{
2621 ios->min_val = -1ULL;
2622 ios->max_val = ios->samples = 0;
2623 ios->mean.u.f = ios->S.u.f = 0;
2624}
2625
2626void reset_io_stats(struct thread_data *td)
2627{
2628 struct thread_stat *ts = &td->ts;
2629 int i, j, k;
2630
2631 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2632 reset_io_stat(&ts->clat_high_prio_stat[i]);
2633 reset_io_stat(&ts->clat_low_prio_stat[i]);
2634 reset_io_stat(&ts->clat_stat[i]);
2635 reset_io_stat(&ts->slat_stat[i]);
2636 reset_io_stat(&ts->lat_stat[i]);
2637 reset_io_stat(&ts->bw_stat[i]);
2638 reset_io_stat(&ts->iops_stat[i]);
2639
2640 ts->io_bytes[i] = 0;
2641 ts->runtime[i] = 0;
2642 ts->total_io_u[i] = 0;
2643 ts->short_io_u[i] = 0;
2644 ts->drop_io_u[i] = 0;
2645
2646 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2647 ts->io_u_plat_high_prio[i][j] = 0;
2648 ts->io_u_plat_low_prio[i][j] = 0;
2649 if (!i)
2650 ts->io_u_sync_plat[j] = 0;
2651 }
2652 }
2653
2654 for (i = 0; i < FIO_LAT_CNT; i++)
2655 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2656 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2657 ts->io_u_plat[i][j][k] = 0;
2658
2659 ts->total_io_u[DDIR_SYNC] = 0;
2660
2661 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2662 ts->io_u_map[i] = 0;
2663 ts->io_u_submit[i] = 0;
2664 ts->io_u_complete[i] = 0;
2665 }
2666
2667 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2668 ts->io_u_lat_n[i] = 0;
2669 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2670 ts->io_u_lat_u[i] = 0;
2671 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2672 ts->io_u_lat_m[i] = 0;
2673
2674 ts->total_submit = 0;
2675 ts->total_complete = 0;
2676 ts->nr_zone_resets = 0;
2677 ts->cachehit = ts->cachemiss = 0;
2678}
2679
2680static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2681 unsigned long elapsed, bool log_max, uint8_t priority_bit)
2682{
2683 /*
2684 * Note an entry in the log. Use the mean from the logged samples,
2685 * making sure to properly round up. Only write a log entry if we
2686 * had actual samples done.
2687 */
2688 if (iolog->avg_window[ddir].samples) {
2689 union io_sample_data data;
2690
2691 if (log_max)
2692 data.val = iolog->avg_window[ddir].max_val;
2693 else
2694 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2695
2696 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, priority_bit);
2697 }
2698
2699 reset_io_stat(&iolog->avg_window[ddir]);
2700}
2701
2702static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2703 bool log_max, uint8_t priority_bit)
2704{
2705 int ddir;
2706
2707 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2708 __add_stat_to_log(iolog, ddir, elapsed, log_max, priority_bit);
2709}
2710
2711static unsigned long add_log_sample(struct thread_data *td,
2712 struct io_log *iolog,
2713 union io_sample_data data,
2714 enum fio_ddir ddir, unsigned long long bs,
2715 uint64_t offset, uint8_t priority_bit)
2716{
2717 unsigned long elapsed, this_window;
2718
2719 if (!ddir_rw(ddir))
2720 return 0;
2721
2722 elapsed = mtime_since_now(&td->epoch);
2723
2724 /*
2725 * If no time averaging, just add the log sample.
2726 */
2727 if (!iolog->avg_msec) {
2728 __add_log_sample(iolog, data, ddir, bs, elapsed, offset, priority_bit);
2729 return 0;
2730 }
2731
2732 /*
2733 * Add the sample. If the time period has passed, then
2734 * add that entry to the log and clear.
2735 */
2736 add_stat_sample(&iolog->avg_window[ddir], data.val);
2737
2738 /*
2739 * If period hasn't passed, adding the above sample is all we
2740 * need to do.
2741 */
2742 this_window = elapsed - iolog->avg_last[ddir];
2743 if (elapsed < iolog->avg_last[ddir])
2744 return iolog->avg_last[ddir] - elapsed;
2745 else if (this_window < iolog->avg_msec) {
2746 unsigned long diff = iolog->avg_msec - this_window;
2747
2748 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2749 return diff;
2750 }
2751
2752 _add_stat_to_log(iolog, elapsed, td->o.log_max != 0, priority_bit);
2753
2754 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2755 return iolog->avg_msec;
2756}
2757
2758void finalize_logs(struct thread_data *td, bool unit_logs)
2759{
2760 unsigned long elapsed;
2761
2762 elapsed = mtime_since_now(&td->epoch);
2763
2764 if (td->clat_log && unit_logs)
2765 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0, 0);
2766 if (td->slat_log && unit_logs)
2767 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0, 0);
2768 if (td->lat_log && unit_logs)
2769 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0, 0);
2770 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2771 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0, 0);
2772 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2773 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0, 0);
2774}
2775
2776void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs,
2777 uint8_t priority_bit)
2778{
2779 struct io_log *iolog;
2780
2781 if (!ddir_rw(ddir))
2782 return;
2783
2784 iolog = agg_io_log[ddir];
2785 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, priority_bit);
2786}
2787
2788void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2789{
2790 unsigned int idx = plat_val_to_idx(nsec);
2791 assert(idx < FIO_IO_U_PLAT_NR);
2792
2793 ts->io_u_sync_plat[idx]++;
2794 add_stat_sample(&ts->sync_stat, nsec);
2795}
2796
2797static void add_lat_percentile_sample_noprio(struct thread_stat *ts,
2798 unsigned long long nsec, enum fio_ddir ddir, enum fio_lat lat)
2799{
2800 unsigned int idx = plat_val_to_idx(nsec);
2801 assert(idx < FIO_IO_U_PLAT_NR);
2802
2803 ts->io_u_plat[lat][ddir][idx]++;
2804}
2805
2806static void add_lat_percentile_sample(struct thread_stat *ts,
2807 unsigned long long nsec, enum fio_ddir ddir, uint8_t priority_bit,
2808 enum fio_lat lat)
2809{
2810 unsigned int idx = plat_val_to_idx(nsec);
2811
2812 add_lat_percentile_sample_noprio(ts, nsec, ddir, lat);
2813
2814 if (!priority_bit)
2815 ts->io_u_plat_low_prio[ddir][idx]++;
2816 else
2817 ts->io_u_plat_high_prio[ddir][idx]++;
2818}
2819
2820void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2821 unsigned long long nsec, unsigned long long bs,
2822 uint64_t offset, uint8_t priority_bit)
2823{
2824 const bool needs_lock = td_async_processing(td);
2825 unsigned long elapsed, this_window;
2826 struct thread_stat *ts = &td->ts;
2827 struct io_log *iolog = td->clat_hist_log;
2828
2829 if (needs_lock)
2830 __td_io_u_lock(td);
2831
2832 add_stat_sample(&ts->clat_stat[ddir], nsec);
2833
2834 if (!ts->lat_percentiles) {
2835 if (priority_bit)
2836 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2837 else
2838 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2839 }
2840
2841 if (td->clat_log)
2842 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2843 offset, priority_bit);
2844
2845 if (ts->clat_percentiles) {
2846 if (ts->lat_percentiles)
2847 add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_CLAT);
2848 else
2849 add_lat_percentile_sample(ts, nsec, ddir, priority_bit, FIO_CLAT);
2850 }
2851
2852 if (iolog && iolog->hist_msec) {
2853 struct io_hist *hw = &iolog->hist_window[ddir];
2854
2855 hw->samples++;
2856 elapsed = mtime_since_now(&td->epoch);
2857 if (!hw->hist_last)
2858 hw->hist_last = elapsed;
2859 this_window = elapsed - hw->hist_last;
2860
2861 if (this_window >= iolog->hist_msec) {
2862 uint64_t *io_u_plat;
2863 struct io_u_plat_entry *dst;
2864
2865 /*
2866 * Make a byte-for-byte copy of the latency histogram
2867 * stored in td->ts.io_u_plat[ddir], recording it in a
2868 * log sample. Note that the matching call to free() is
2869 * located in iolog.c after printing this sample to the
2870 * log file.
2871 */
2872 io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
2873 dst = malloc(sizeof(struct io_u_plat_entry));
2874 memcpy(&(dst->io_u_plat), io_u_plat,
2875 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
2876 flist_add(&dst->list, &hw->list);
2877 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2878 elapsed, offset, priority_bit);
2879
2880 /*
2881 * Update the last time we recorded as being now, minus
2882 * any drift in time we encountered before actually
2883 * making the record.
2884 */
2885 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2886 hw->samples = 0;
2887 }
2888 }
2889
2890 if (needs_lock)
2891 __td_io_u_unlock(td);
2892}
2893
2894void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2895 unsigned long long nsec, unsigned long long bs, uint64_t offset,
2896 uint8_t priority_bit)
2897{
2898 const bool needs_lock = td_async_processing(td);
2899 struct thread_stat *ts = &td->ts;
2900
2901 if (!ddir_rw(ddir))
2902 return;
2903
2904 if (needs_lock)
2905 __td_io_u_lock(td);
2906
2907 add_stat_sample(&ts->slat_stat[ddir], nsec);
2908
2909 if (td->slat_log)
2910 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs, offset,
2911 priority_bit);
2912
2913 if (ts->slat_percentiles)
2914 add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_SLAT);
2915
2916 if (needs_lock)
2917 __td_io_u_unlock(td);
2918}
2919
2920void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2921 unsigned long long nsec, unsigned long long bs,
2922 uint64_t offset, uint8_t priority_bit)
2923{
2924 const bool needs_lock = td_async_processing(td);
2925 struct thread_stat *ts = &td->ts;
2926
2927 if (!ddir_rw(ddir))
2928 return;
2929
2930 if (needs_lock)
2931 __td_io_u_lock(td);
2932
2933 add_stat_sample(&ts->lat_stat[ddir], nsec);
2934
2935 if (td->lat_log)
2936 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2937 offset, priority_bit);
2938
2939 if (ts->lat_percentiles) {
2940 add_lat_percentile_sample(ts, nsec, ddir, priority_bit, FIO_LAT);
2941 if (priority_bit)
2942 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2943 else
2944 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2945
2946 }
2947 if (needs_lock)
2948 __td_io_u_unlock(td);
2949}
2950
2951void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2952 unsigned int bytes, unsigned long long spent)
2953{
2954 const bool needs_lock = td_async_processing(td);
2955 struct thread_stat *ts = &td->ts;
2956 unsigned long rate;
2957
2958 if (spent)
2959 rate = (unsigned long) (bytes * 1000000ULL / spent);
2960 else
2961 rate = 0;
2962
2963 if (needs_lock)
2964 __td_io_u_lock(td);
2965
2966 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2967
2968 if (td->bw_log)
2969 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2970 bytes, io_u->offset, io_u_is_prio(io_u));
2971
2972 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2973
2974 if (needs_lock)
2975 __td_io_u_unlock(td);
2976}
2977
2978static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2979 struct timespec *t, unsigned int avg_time,
2980 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2981 struct io_stat *stat, struct io_log *log,
2982 bool is_kb)
2983{
2984 const bool needs_lock = td_async_processing(td);
2985 unsigned long spent, rate;
2986 enum fio_ddir ddir;
2987 unsigned long next, next_log;
2988
2989 next_log = avg_time;
2990
2991 spent = mtime_since(parent_tv, t);
2992 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2993 return avg_time - spent;
2994
2995 if (needs_lock)
2996 __td_io_u_lock(td);
2997
2998 /*
2999 * Compute both read and write rates for the interval.
3000 */
3001 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3002 uint64_t delta;
3003
3004 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3005 if (!delta)
3006 continue; /* No entries for interval */
3007
3008 if (spent) {
3009 if (is_kb)
3010 rate = delta * 1000 / spent / 1024; /* KiB/s */
3011 else
3012 rate = (delta * 1000) / spent;
3013 } else
3014 rate = 0;
3015
3016 add_stat_sample(&stat[ddir], rate);
3017
3018 if (log) {
3019 unsigned long long bs = 0;
3020
3021 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3022 bs = td->o.min_bs[ddir];
3023
3024 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0, 0);
3025 next_log = min(next_log, next);
3026 }
3027
3028 stat_io_bytes[ddir] = this_io_bytes[ddir];
3029 }
3030
3031 *parent_tv = *t;
3032
3033 if (needs_lock)
3034 __td_io_u_unlock(td);
3035
3036 if (spent <= avg_time)
3037 next = avg_time;
3038 else
3039 next = avg_time - (1 + spent - avg_time);
3040
3041 return min(next, next_log);
3042}
3043
3044static int add_bw_samples(struct thread_data *td, struct timespec *t)
3045{
3046 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3047 td->this_io_bytes, td->stat_io_bytes,
3048 td->ts.bw_stat, td->bw_log, true);
3049}
3050
3051void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3052 unsigned int bytes)
3053{
3054 const bool needs_lock = td_async_processing(td);
3055 struct thread_stat *ts = &td->ts;
3056
3057 if (needs_lock)
3058 __td_io_u_lock(td);
3059
3060 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3061
3062 if (td->iops_log)
3063 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3064 bytes, io_u->offset, io_u_is_prio(io_u));
3065
3066 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3067
3068 if (needs_lock)
3069 __td_io_u_unlock(td);
3070}
3071
3072static int add_iops_samples(struct thread_data *td, struct timespec *t)
3073{
3074 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3075 td->this_io_blocks, td->stat_io_blocks,
3076 td->ts.iops_stat, td->iops_log, false);
3077}
3078
3079/*
3080 * Returns msecs to next event
3081 */
3082int calc_log_samples(void)
3083{
3084 struct thread_data *td;
3085 unsigned int next = ~0U, tmp;
3086 struct timespec now;
3087 int i;
3088
3089 fio_gettime(&now, NULL);
3090
3091 for_each_td(td, i) {
3092 if (!td->o.stats)
3093 continue;
3094 if (in_ramp_time(td) ||
3095 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3096 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3097 continue;
3098 }
3099 if (!td->bw_log ||
3100 (td->bw_log && !per_unit_log(td->bw_log))) {
3101 tmp = add_bw_samples(td, &now);
3102 if (tmp < next)
3103 next = tmp;
3104 }
3105 if (!td->iops_log ||
3106 (td->iops_log && !per_unit_log(td->iops_log))) {
3107 tmp = add_iops_samples(td, &now);
3108 if (tmp < next)
3109 next = tmp;
3110 }
3111 }
3112
3113 return next == ~0U ? 0 : next;
3114}
3115
3116void stat_init(void)
3117{
3118 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3119}
3120
3121void stat_exit(void)
3122{
3123 /*
3124 * When we have the mutex, we know out-of-band access to it
3125 * have ended.
3126 */
3127 fio_sem_down(stat_sem);
3128 fio_sem_remove(stat_sem);
3129}
3130
3131/*
3132 * Called from signal handler. Wake up status thread.
3133 */
3134void show_running_run_stats(void)
3135{
3136 helper_do_stat();
3137}
3138
3139uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3140{
3141 /* Ignore io_u's which span multiple blocks--they will just get
3142 * inaccurate counts. */
3143 int idx = (io_u->offset - io_u->file->file_offset)
3144 / td->o.bs[DDIR_TRIM];
3145 uint32_t *info = &td->ts.block_infos[idx];
3146 assert(idx < td->ts.nr_block_infos);
3147 return info;
3148}