Merge branch 'master' of https://github.com/ben-ihelputech/fio
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18#include "oslib/asprintf.h"
19
20#ifdef WIN32
21#define LOG_MSEC_SLACK 2
22#else
23#define LOG_MSEC_SLACK 1
24#endif
25
26struct fio_sem *stat_sem;
27
28void clear_rusage_stat(struct thread_data *td)
29{
30 struct thread_stat *ts = &td->ts;
31
32 fio_getrusage(&td->ru_start);
33 ts->usr_time = ts->sys_time = 0;
34 ts->ctx = 0;
35 ts->minf = ts->majf = 0;
36}
37
38void update_rusage_stat(struct thread_data *td)
39{
40 struct thread_stat *ts = &td->ts;
41
42 fio_getrusage(&td->ru_end);
43 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44 &td->ru_end.ru_utime);
45 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46 &td->ru_end.ru_stime);
47 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53}
54
55/*
56 * Given a latency, return the index of the corresponding bucket in
57 * the structure tracking percentiles.
58 *
59 * (1) find the group (and error bits) that the value (latency)
60 * belongs to by looking at its MSB. (2) find the bucket number in the
61 * group by looking at the index bits.
62 *
63 */
64static unsigned int plat_val_to_idx(unsigned long long val)
65{
66 unsigned int msb, error_bits, base, offset, idx;
67
68 /* Find MSB starting from bit 0 */
69 if (val == 0)
70 msb = 0;
71 else
72 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74 /*
75 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76 * all bits of the sample as index
77 */
78 if (msb <= FIO_IO_U_PLAT_BITS)
79 return val;
80
81 /* Compute the number of error bits to discard*/
82 error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84 /* Compute the number of buckets before the group */
85 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87 /*
88 * Discard the error bits and apply the mask to find the
89 * index for the buckets in the group
90 */
91 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93 /* Make sure the index does not exceed (array size - 1) */
94 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97 return idx;
98}
99
100/*
101 * Convert the given index of the bucket array to the value
102 * represented by the bucket
103 */
104static unsigned long long plat_idx_to_val(unsigned int idx)
105{
106 unsigned int error_bits;
107 unsigned long long k, base;
108
109 assert(idx < FIO_IO_U_PLAT_NR);
110
111 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112 * all bits of the sample as index */
113 if (idx < (FIO_IO_U_PLAT_VAL << 1))
114 return idx;
115
116 /* Find the group and compute the minimum value of that group */
117 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120 /* Find its bucket number of the group */
121 k = idx % FIO_IO_U_PLAT_VAL;
122
123 /* Return the mean of the range of the bucket */
124 return base + ((k + 0.5) * (1 << error_bits));
125}
126
127static int double_cmp(const void *a, const void *b)
128{
129 const fio_fp64_t fa = *(const fio_fp64_t *) a;
130 const fio_fp64_t fb = *(const fio_fp64_t *) b;
131 int cmp = 0;
132
133 if (fa.u.f > fb.u.f)
134 cmp = 1;
135 else if (fa.u.f < fb.u.f)
136 cmp = -1;
137
138 return cmp;
139}
140
141unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142 fio_fp64_t *plist, unsigned long long **output,
143 unsigned long long *maxv, unsigned long long *minv)
144{
145 unsigned long long sum = 0;
146 unsigned int len, i, j = 0;
147 unsigned long long *ovals = NULL;
148 bool is_last;
149
150 *minv = -1ULL;
151 *maxv = 0;
152
153 len = 0;
154 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155 len++;
156
157 if (!len)
158 return 0;
159
160 /*
161 * Sort the percentile list. Note that it may already be sorted if
162 * we are using the default values, but since it's a short list this
163 * isn't a worry. Also note that this does not work for NaN values.
164 */
165 if (len > 1)
166 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168 ovals = malloc(len * sizeof(*ovals));
169 if (!ovals)
170 return 0;
171
172 /*
173 * Calculate bucket values, note down max and min values
174 */
175 is_last = false;
176 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177 sum += io_u_plat[i];
178 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179 assert(plist[j].u.f <= 100.0);
180
181 ovals[j] = plat_idx_to_val(i);
182 if (ovals[j] < *minv)
183 *minv = ovals[j];
184 if (ovals[j] > *maxv)
185 *maxv = ovals[j];
186
187 is_last = (j == len - 1) != 0;
188 if (is_last)
189 break;
190
191 j++;
192 }
193 }
194
195 if (!is_last)
196 log_err("fio: error calculating latency percentiles\n");
197
198 *output = ovals;
199 return len;
200}
201
202/*
203 * Find and display the p-th percentile of clat
204 */
205static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206 fio_fp64_t *plist, unsigned int precision,
207 const char *pre, struct buf_output *out)
208{
209 unsigned int divisor, len, i, j = 0;
210 unsigned long long minv, maxv;
211 unsigned long long *ovals;
212 int per_line, scale_down, time_width;
213 bool is_last;
214 char fmt[32];
215
216 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217 if (!len || !ovals)
218 return;
219
220 /*
221 * We default to nsecs, but if the value range is such that we
222 * should scale down to usecs or msecs, do that.
223 */
224 if (minv > 2000000 && maxv > 99999999ULL) {
225 scale_down = 2;
226 divisor = 1000000;
227 log_buf(out, " %s percentiles (msec):\n |", pre);
228 } else if (minv > 2000 && maxv > 99999) {
229 scale_down = 1;
230 divisor = 1000;
231 log_buf(out, " %s percentiles (usec):\n |", pre);
232 } else {
233 scale_down = 0;
234 divisor = 1;
235 log_buf(out, " %s percentiles (nsec):\n |", pre);
236 }
237
238
239 time_width = max(5, (int) (log10(maxv / divisor) + 1));
240 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241 precision, time_width);
242 /* fmt will be something like " %5.2fth=[%4llu]%c" */
243 per_line = (80 - 7) / (precision + 10 + time_width);
244
245 for (j = 0; j < len; j++) {
246 /* for formatting */
247 if (j != 0 && (j % per_line) == 0)
248 log_buf(out, " |");
249
250 /* end of the list */
251 is_last = (j == len - 1) != 0;
252
253 for (i = 0; i < scale_down; i++)
254 ovals[j] = (ovals[j] + 999) / 1000;
255
256 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258 if (is_last)
259 break;
260
261 if ((j % per_line) == per_line - 1) /* for formatting */
262 log_buf(out, "\n");
263 }
264
265 free(ovals);
266}
267
268bool calc_lat(struct io_stat *is, unsigned long long *min,
269 unsigned long long *max, double *mean, double *dev)
270{
271 double n = (double) is->samples;
272
273 if (n == 0)
274 return false;
275
276 *min = is->min_val;
277 *max = is->max_val;
278 *mean = is->mean.u.f;
279
280 if (n > 1.0)
281 *dev = sqrt(is->S.u.f / (n - 1.0));
282 else
283 *dev = 0;
284
285 return true;
286}
287
288void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out)
289{
290 char *io, *agg, *min, *max;
291 char *ioalt, *aggalt, *minalt, *maxalt;
292 uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
293 uint64_t min_run = -1, max_run = 0;
294 const int i2p = is_power_of_2(rs->kb_base);
295 int i;
296
297 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
298 if (!rs->max_run[i])
299 continue;
300 io_mix += rs->iobytes[i];
301 agg_mix += rs->agg[i];
302 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
303 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
304 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
305 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
306 }
307 io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
308 ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
309 agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
310 aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
311 min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
312 minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
313 max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
314 maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
315 log_buf(out, " MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
316 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
317 (unsigned long long) min_run,
318 (unsigned long long) max_run);
319 free(io);
320 free(agg);
321 free(min);
322 free(max);
323 free(ioalt);
324 free(aggalt);
325 free(minalt);
326 free(maxalt);
327}
328
329void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
330{
331 char *io, *agg, *min, *max;
332 char *ioalt, *aggalt, *minalt, *maxalt;
333 const char *str[] = { " READ", " WRITE" , " TRIM"};
334 int i;
335
336 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
337
338 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
339 const int i2p = is_power_of_2(rs->kb_base);
340
341 if (!rs->max_run[i])
342 continue;
343
344 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
345 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
346 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
347 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
348 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
349 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
350 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
351 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
352 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
353 (rs->unified_rw_rep == UNIFIED_MIXED) ? " MIXED" : str[i],
354 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
355 (unsigned long long) rs->min_run[i],
356 (unsigned long long) rs->max_run[i]);
357
358 free(io);
359 free(agg);
360 free(min);
361 free(max);
362 free(ioalt);
363 free(aggalt);
364 free(minalt);
365 free(maxalt);
366 }
367
368 /* Need to aggregate statisitics to show mixed values */
369 if (rs->unified_rw_rep == UNIFIED_BOTH)
370 show_mixed_group_stats(rs, out);
371}
372
373void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
374{
375 int i;
376
377 /*
378 * Do depth distribution calculations
379 */
380 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
381 if (total) {
382 io_u_dist[i] = (double) map[i] / (double) total;
383 io_u_dist[i] *= 100.0;
384 if (io_u_dist[i] < 0.1 && map[i])
385 io_u_dist[i] = 0.1;
386 } else
387 io_u_dist[i] = 0.0;
388 }
389}
390
391static void stat_calc_lat(struct thread_stat *ts, double *dst,
392 uint64_t *src, int nr)
393{
394 unsigned long total = ddir_rw_sum(ts->total_io_u);
395 int i;
396
397 /*
398 * Do latency distribution calculations
399 */
400 for (i = 0; i < nr; i++) {
401 if (total) {
402 dst[i] = (double) src[i] / (double) total;
403 dst[i] *= 100.0;
404 if (dst[i] < 0.01 && src[i])
405 dst[i] = 0.01;
406 } else
407 dst[i] = 0.0;
408 }
409}
410
411/*
412 * To keep the terse format unaltered, add all of the ns latency
413 * buckets to the first us latency bucket
414 */
415static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
416{
417 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
418 int i;
419
420 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
421
422 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
423 ntotal += ts->io_u_lat_n[i];
424
425 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
426}
427
428void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
429{
430 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
431}
432
433void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
434{
435 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
436}
437
438void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
439{
440 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
441}
442
443static void display_lat(const char *name, unsigned long long min,
444 unsigned long long max, double mean, double dev,
445 struct buf_output *out)
446{
447 const char *base = "(nsec)";
448 char *minp, *maxp;
449
450 if (nsec_to_msec(&min, &max, &mean, &dev))
451 base = "(msec)";
452 else if (nsec_to_usec(&min, &max, &mean, &dev))
453 base = "(usec)";
454
455 minp = num2str(min, 6, 1, 0, N2S_NONE);
456 maxp = num2str(max, 6, 1, 0, N2S_NONE);
457
458 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
459 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460
461 free(minp);
462 free(maxp);
463}
464
465static struct thread_stat *gen_mixed_ddir_stats_from_ts(struct thread_stat *ts)
466{
467 struct thread_stat *ts_lcl;
468
469 /*
470 * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
471 * Trims (ddir = 2)
472 */
473 ts_lcl = malloc(sizeof(struct thread_stat));
474 if (!ts_lcl) {
475 log_err("fio: failed to allocate local thread stat\n");
476 return NULL;
477 }
478
479 init_thread_stat(ts_lcl);
480
481 /* calculate mixed stats */
482 ts_lcl->unified_rw_rep = UNIFIED_MIXED;
483 ts_lcl->lat_percentiles = ts->lat_percentiles;
484 ts_lcl->clat_percentiles = ts->clat_percentiles;
485 ts_lcl->slat_percentiles = ts->slat_percentiles;
486 ts_lcl->percentile_precision = ts->percentile_precision;
487 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
488
489 sum_thread_stats(ts_lcl, ts);
490
491 return ts_lcl;
492}
493
494static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
495{
496 double p_of_agg = 100.0;
497 if (rs && rs->agg[ddir] > 1024) {
498 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
499
500 if (p_of_agg > 100.0)
501 p_of_agg = 100.0;
502 }
503 return p_of_agg;
504}
505
506static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
507 int ddir, struct buf_output *out)
508{
509 unsigned long runt;
510 unsigned long long min, max, bw, iops;
511 double mean, dev;
512 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
513 int i2p;
514
515 if (ddir_sync(ddir)) {
516 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
517 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
518 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
519 show_clat_percentiles(ts->io_u_sync_plat,
520 ts->sync_stat.samples,
521 ts->percentile_list,
522 ts->percentile_precision,
523 io_ddir_name(ddir), out);
524 }
525 return;
526 }
527
528 assert(ddir_rw(ddir));
529
530 if (!ts->runtime[ddir])
531 return;
532
533 i2p = is_power_of_2(rs->kb_base);
534 runt = ts->runtime[ddir];
535
536 bw = (1000 * ts->io_bytes[ddir]) / runt;
537 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
538 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
539 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
540
541 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
542 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
543 if (ddir == DDIR_WRITE)
544 post_st = zbd_write_status(ts);
545 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
546 uint64_t total;
547 double hit;
548
549 total = ts->cachehit + ts->cachemiss;
550 hit = (double) ts->cachehit / (double) total;
551 hit *= 100.0;
552 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
553 post_st = NULL;
554 }
555
556 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
557 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
558 iops_p, bw_p, bw_p_alt, io_p,
559 (unsigned long long) ts->runtime[ddir],
560 post_st ? : "");
561
562 free(post_st);
563 free(io_p);
564 free(bw_p);
565 free(bw_p_alt);
566 free(iops_p);
567
568 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
569 display_lat("slat", min, max, mean, dev, out);
570 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
571 display_lat("clat", min, max, mean, dev, out);
572 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
573 display_lat(" lat", min, max, mean, dev, out);
574 if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
575 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
576 min, max, mean, dev, out);
577 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
578 display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
579 min, max, mean, dev, out);
580 }
581
582 if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
583 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
584 ts->slat_stat[ddir].samples,
585 ts->percentile_list,
586 ts->percentile_precision, "slat", out);
587 if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
588 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
589 ts->clat_stat[ddir].samples,
590 ts->percentile_list,
591 ts->percentile_precision, "clat", out);
592 if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
593 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
594 ts->lat_stat[ddir].samples,
595 ts->percentile_list,
596 ts->percentile_precision, "lat", out);
597
598 if (ts->clat_percentiles || ts->lat_percentiles) {
599 const char *name = ts->lat_percentiles ? "lat" : "clat";
600 char prio_name[32];
601 uint64_t samples;
602
603 if (ts->lat_percentiles)
604 samples = ts->lat_stat[ddir].samples;
605 else
606 samples = ts->clat_stat[ddir].samples;
607
608 /* Only print this if some high and low priority stats were collected */
609 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
610 ts->clat_low_prio_stat[ddir].samples > 0)
611 {
612 sprintf(prio_name, "high prio (%.2f%%) %s",
613 100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
614 name);
615 show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
616 ts->clat_high_prio_stat[ddir].samples,
617 ts->percentile_list,
618 ts->percentile_precision, prio_name, out);
619
620 sprintf(prio_name, "low prio (%.2f%%) %s",
621 100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
622 name);
623 show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
624 ts->clat_low_prio_stat[ddir].samples,
625 ts->percentile_list,
626 ts->percentile_precision, prio_name, out);
627 }
628 }
629
630 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
631 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
632 const char *bw_str;
633
634 if ((rs->unit_base == 1) && i2p)
635 bw_str = "Kibit";
636 else if (rs->unit_base == 1)
637 bw_str = "kbit";
638 else if (i2p)
639 bw_str = "KiB";
640 else
641 bw_str = "kB";
642
643 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
644
645 if (rs->unit_base == 1) {
646 min *= 8.0;
647 max *= 8.0;
648 mean *= 8.0;
649 dev *= 8.0;
650 }
651
652 if (mean > fkb_base * fkb_base) {
653 min /= fkb_base;
654 max /= fkb_base;
655 mean /= fkb_base;
656 dev /= fkb_base;
657 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
658 }
659
660 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
661 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
662 bw_str, min, max, p_of_agg, mean, dev,
663 (&ts->bw_stat[ddir])->samples);
664 }
665 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
666 log_buf(out, " iops : min=%5llu, max=%5llu, "
667 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
668 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
669 }
670}
671
672static void show_mixed_ddir_status(struct group_run_stats *rs,
673 struct thread_stat *ts,
674 struct buf_output *out)
675{
676 struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
677
678 if (ts_lcl)
679 show_ddir_status(rs, ts_lcl, DDIR_READ, out);
680
681 free(ts_lcl);
682}
683
684static bool show_lat(double *io_u_lat, int nr, const char **ranges,
685 const char *msg, struct buf_output *out)
686{
687 bool new_line = true, shown = false;
688 int i, line = 0;
689
690 for (i = 0; i < nr; i++) {
691 if (io_u_lat[i] <= 0.0)
692 continue;
693 shown = true;
694 if (new_line) {
695 if (line)
696 log_buf(out, "\n");
697 log_buf(out, " lat (%s) : ", msg);
698 new_line = false;
699 line = 0;
700 }
701 if (line)
702 log_buf(out, ", ");
703 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
704 line++;
705 if (line == 5)
706 new_line = true;
707 }
708
709 if (shown)
710 log_buf(out, "\n");
711
712 return true;
713}
714
715static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
716{
717 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
718 "250=", "500=", "750=", "1000=", };
719
720 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
721}
722
723static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
724{
725 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
726 "250=", "500=", "750=", "1000=", };
727
728 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
729}
730
731static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
732{
733 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
734 "250=", "500=", "750=", "1000=", "2000=",
735 ">=2000=", };
736
737 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
738}
739
740static void show_latencies(struct thread_stat *ts, struct buf_output *out)
741{
742 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
743 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
744 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
745
746 stat_calc_lat_n(ts, io_u_lat_n);
747 stat_calc_lat_u(ts, io_u_lat_u);
748 stat_calc_lat_m(ts, io_u_lat_m);
749
750 show_lat_n(io_u_lat_n, out);
751 show_lat_u(io_u_lat_u, out);
752 show_lat_m(io_u_lat_m, out);
753}
754
755static int block_state_category(int block_state)
756{
757 switch (block_state) {
758 case BLOCK_STATE_UNINIT:
759 return 0;
760 case BLOCK_STATE_TRIMMED:
761 case BLOCK_STATE_WRITTEN:
762 return 1;
763 case BLOCK_STATE_WRITE_FAILURE:
764 case BLOCK_STATE_TRIM_FAILURE:
765 return 2;
766 default:
767 /* Silence compile warning on some BSDs and have a return */
768 assert(0);
769 return -1;
770 }
771}
772
773static int compare_block_infos(const void *bs1, const void *bs2)
774{
775 uint64_t block1 = *(uint64_t *)bs1;
776 uint64_t block2 = *(uint64_t *)bs2;
777 int state1 = BLOCK_INFO_STATE(block1);
778 int state2 = BLOCK_INFO_STATE(block2);
779 int bscat1 = block_state_category(state1);
780 int bscat2 = block_state_category(state2);
781 int cycles1 = BLOCK_INFO_TRIMS(block1);
782 int cycles2 = BLOCK_INFO_TRIMS(block2);
783
784 if (bscat1 < bscat2)
785 return -1;
786 if (bscat1 > bscat2)
787 return 1;
788
789 if (cycles1 < cycles2)
790 return -1;
791 if (cycles1 > cycles2)
792 return 1;
793
794 if (state1 < state2)
795 return -1;
796 if (state1 > state2)
797 return 1;
798
799 assert(block1 == block2);
800 return 0;
801}
802
803static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
804 fio_fp64_t *plist, unsigned int **percentiles,
805 unsigned int *types)
806{
807 int len = 0;
808 int i, nr_uninit;
809
810 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
811
812 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
813 len++;
814
815 if (!len)
816 return 0;
817
818 /*
819 * Sort the percentile list. Note that it may already be sorted if
820 * we are using the default values, but since it's a short list this
821 * isn't a worry. Also note that this does not work for NaN values.
822 */
823 if (len > 1)
824 qsort(plist, len, sizeof(plist[0]), double_cmp);
825
826 /* Start only after the uninit entries end */
827 for (nr_uninit = 0;
828 nr_uninit < nr_block_infos
829 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
830 nr_uninit ++)
831 ;
832
833 if (nr_uninit == nr_block_infos)
834 return 0;
835
836 *percentiles = calloc(len, sizeof(**percentiles));
837
838 for (i = 0; i < len; i++) {
839 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
840 + nr_uninit;
841 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
842 }
843
844 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
845 for (i = 0; i < nr_block_infos; i++)
846 types[BLOCK_INFO_STATE(block_infos[i])]++;
847
848 return len;
849}
850
851static const char *block_state_names[] = {
852 [BLOCK_STATE_UNINIT] = "unwritten",
853 [BLOCK_STATE_TRIMMED] = "trimmed",
854 [BLOCK_STATE_WRITTEN] = "written",
855 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
856 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
857};
858
859static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
860 fio_fp64_t *plist, struct buf_output *out)
861{
862 int len, pos, i;
863 unsigned int *percentiles = NULL;
864 unsigned int block_state_counts[BLOCK_STATE_COUNT];
865
866 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
867 &percentiles, block_state_counts);
868
869 log_buf(out, " block lifetime percentiles :\n |");
870 pos = 0;
871 for (i = 0; i < len; i++) {
872 uint32_t block_info = percentiles[i];
873#define LINE_LENGTH 75
874 char str[LINE_LENGTH];
875 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
876 plist[i].u.f, block_info,
877 i == len - 1 ? '\n' : ',');
878 assert(strln < LINE_LENGTH);
879 if (pos + strln > LINE_LENGTH) {
880 pos = 0;
881 log_buf(out, "\n |");
882 }
883 log_buf(out, "%s", str);
884 pos += strln;
885#undef LINE_LENGTH
886 }
887 if (percentiles)
888 free(percentiles);
889
890 log_buf(out, " states :");
891 for (i = 0; i < BLOCK_STATE_COUNT; i++)
892 log_buf(out, " %s=%u%c",
893 block_state_names[i], block_state_counts[i],
894 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
895}
896
897static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
898{
899 char *p1, *p1alt, *p2;
900 unsigned long long bw_mean, iops_mean;
901 const int i2p = is_power_of_2(ts->kb_base);
902
903 if (!ts->ss_dur)
904 return;
905
906 bw_mean = steadystate_bw_mean(ts);
907 iops_mean = steadystate_iops_mean(ts);
908
909 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
910 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
911 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
912
913 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
914 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
915 p1, p1alt, p2,
916 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
917 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
918 ts->ss_criterion.u.f,
919 ts->ss_state & FIO_SS_PCT ? "%" : "");
920
921 free(p1);
922 free(p1alt);
923 free(p2);
924}
925
926static void show_agg_stats(struct disk_util_agg *agg, int terse,
927 struct buf_output *out)
928{
929 if (!agg->slavecount)
930 return;
931
932 if (!terse) {
933 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
934 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
935 "aggrutil=%3.2f%%",
936 (unsigned long long) agg->ios[0] / agg->slavecount,
937 (unsigned long long) agg->ios[1] / agg->slavecount,
938 (unsigned long long) agg->merges[0] / agg->slavecount,
939 (unsigned long long) agg->merges[1] / agg->slavecount,
940 (unsigned long long) agg->ticks[0] / agg->slavecount,
941 (unsigned long long) agg->ticks[1] / agg->slavecount,
942 (unsigned long long) agg->time_in_queue / agg->slavecount,
943 agg->max_util.u.f);
944 } else {
945 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
946 (unsigned long long) agg->ios[0] / agg->slavecount,
947 (unsigned long long) agg->ios[1] / agg->slavecount,
948 (unsigned long long) agg->merges[0] / agg->slavecount,
949 (unsigned long long) agg->merges[1] / agg->slavecount,
950 (unsigned long long) agg->ticks[0] / agg->slavecount,
951 (unsigned long long) agg->ticks[1] / agg->slavecount,
952 (unsigned long long) agg->time_in_queue / agg->slavecount,
953 agg->max_util.u.f);
954 }
955}
956
957static void aggregate_slaves_stats(struct disk_util *masterdu)
958{
959 struct disk_util_agg *agg = &masterdu->agg;
960 struct disk_util_stat *dus;
961 struct flist_head *entry;
962 struct disk_util *slavedu;
963 double util;
964
965 flist_for_each(entry, &masterdu->slaves) {
966 slavedu = flist_entry(entry, struct disk_util, slavelist);
967 dus = &slavedu->dus;
968 agg->ios[0] += dus->s.ios[0];
969 agg->ios[1] += dus->s.ios[1];
970 agg->merges[0] += dus->s.merges[0];
971 agg->merges[1] += dus->s.merges[1];
972 agg->sectors[0] += dus->s.sectors[0];
973 agg->sectors[1] += dus->s.sectors[1];
974 agg->ticks[0] += dus->s.ticks[0];
975 agg->ticks[1] += dus->s.ticks[1];
976 agg->time_in_queue += dus->s.time_in_queue;
977 agg->slavecount++;
978
979 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
980 /* System utilization is the utilization of the
981 * component with the highest utilization.
982 */
983 if (util > agg->max_util.u.f)
984 agg->max_util.u.f = util;
985
986 }
987
988 if (agg->max_util.u.f > 100.0)
989 agg->max_util.u.f = 100.0;
990}
991
992void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
993 int terse, struct buf_output *out)
994{
995 double util = 0;
996
997 if (dus->s.msec)
998 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
999 if (util > 100.0)
1000 util = 100.0;
1001
1002 if (!terse) {
1003 if (agg->slavecount)
1004 log_buf(out, " ");
1005
1006 log_buf(out, " %s: ios=%llu/%llu, merge=%llu/%llu, "
1007 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1008 dus->name,
1009 (unsigned long long) dus->s.ios[0],
1010 (unsigned long long) dus->s.ios[1],
1011 (unsigned long long) dus->s.merges[0],
1012 (unsigned long long) dus->s.merges[1],
1013 (unsigned long long) dus->s.ticks[0],
1014 (unsigned long long) dus->s.ticks[1],
1015 (unsigned long long) dus->s.time_in_queue,
1016 util);
1017 } else {
1018 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1019 dus->name,
1020 (unsigned long long) dus->s.ios[0],
1021 (unsigned long long) dus->s.ios[1],
1022 (unsigned long long) dus->s.merges[0],
1023 (unsigned long long) dus->s.merges[1],
1024 (unsigned long long) dus->s.ticks[0],
1025 (unsigned long long) dus->s.ticks[1],
1026 (unsigned long long) dus->s.time_in_queue,
1027 util);
1028 }
1029
1030 /*
1031 * If the device has slaves, aggregate the stats for
1032 * those slave devices also.
1033 */
1034 show_agg_stats(agg, terse, out);
1035
1036 if (!terse)
1037 log_buf(out, "\n");
1038}
1039
1040void json_array_add_disk_util(struct disk_util_stat *dus,
1041 struct disk_util_agg *agg, struct json_array *array)
1042{
1043 struct json_object *obj;
1044 double util = 0;
1045
1046 if (dus->s.msec)
1047 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1048 if (util > 100.0)
1049 util = 100.0;
1050
1051 obj = json_create_object();
1052 json_array_add_value_object(array, obj);
1053
1054 json_object_add_value_string(obj, "name", (const char *)dus->name);
1055 json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1056 json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1057 json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1058 json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1059 json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1060 json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1061 json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1062 json_object_add_value_float(obj, "util", util);
1063
1064 /*
1065 * If the device has slaves, aggregate the stats for
1066 * those slave devices also.
1067 */
1068 if (!agg->slavecount)
1069 return;
1070 json_object_add_value_int(obj, "aggr_read_ios",
1071 agg->ios[0] / agg->slavecount);
1072 json_object_add_value_int(obj, "aggr_write_ios",
1073 agg->ios[1] / agg->slavecount);
1074 json_object_add_value_int(obj, "aggr_read_merges",
1075 agg->merges[0] / agg->slavecount);
1076 json_object_add_value_int(obj, "aggr_write_merge",
1077 agg->merges[1] / agg->slavecount);
1078 json_object_add_value_int(obj, "aggr_read_ticks",
1079 agg->ticks[0] / agg->slavecount);
1080 json_object_add_value_int(obj, "aggr_write_ticks",
1081 agg->ticks[1] / agg->slavecount);
1082 json_object_add_value_int(obj, "aggr_in_queue",
1083 agg->time_in_queue / agg->slavecount);
1084 json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1085}
1086
1087static void json_object_add_disk_utils(struct json_object *obj,
1088 struct flist_head *head)
1089{
1090 struct json_array *array = json_create_array();
1091 struct flist_head *entry;
1092 struct disk_util *du;
1093
1094 json_object_add_value_array(obj, "disk_util", array);
1095
1096 flist_for_each(entry, head) {
1097 du = flist_entry(entry, struct disk_util, list);
1098
1099 aggregate_slaves_stats(du);
1100 json_array_add_disk_util(&du->dus, &du->agg, array);
1101 }
1102}
1103
1104void show_disk_util(int terse, struct json_object *parent,
1105 struct buf_output *out)
1106{
1107 struct flist_head *entry;
1108 struct disk_util *du;
1109 bool do_json;
1110
1111 if (!is_running_backend())
1112 return;
1113
1114 if (flist_empty(&disk_list))
1115 return;
1116
1117 if ((output_format & FIO_OUTPUT_JSON) && parent)
1118 do_json = true;
1119 else
1120 do_json = false;
1121
1122 if (!terse && !do_json)
1123 log_buf(out, "\nDisk stats (read/write):\n");
1124
1125 if (do_json) {
1126 json_object_add_disk_utils(parent, &disk_list);
1127 } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1128 flist_for_each(entry, &disk_list) {
1129 du = flist_entry(entry, struct disk_util, list);
1130
1131 aggregate_slaves_stats(du);
1132 print_disk_util(&du->dus, &du->agg, terse, out);
1133 }
1134 }
1135}
1136
1137static void show_thread_status_normal(struct thread_stat *ts,
1138 struct group_run_stats *rs,
1139 struct buf_output *out)
1140{
1141 double usr_cpu, sys_cpu;
1142 unsigned long runtime;
1143 double io_u_dist[FIO_IO_U_MAP_NR];
1144 time_t time_p;
1145 char time_buf[32];
1146
1147 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1148 return;
1149
1150 memset(time_buf, 0, sizeof(time_buf));
1151
1152 time(&time_p);
1153 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1154
1155 if (!ts->error) {
1156 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1157 ts->name, ts->groupid, ts->members,
1158 ts->error, (int) ts->pid, time_buf);
1159 } else {
1160 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1161 ts->name, ts->groupid, ts->members,
1162 ts->error, ts->verror, (int) ts->pid,
1163 time_buf);
1164 }
1165
1166 if (strlen(ts->description))
1167 log_buf(out, " Description : [%s]\n", ts->description);
1168
1169 for_each_rw_ddir(ddir) {
1170 if (ts->io_bytes[ddir])
1171 show_ddir_status(rs, ts, ddir, out);
1172 }
1173
1174 if (ts->unified_rw_rep == UNIFIED_BOTH)
1175 show_mixed_ddir_status(rs, ts, out);
1176
1177 show_latencies(ts, out);
1178
1179 if (ts->sync_stat.samples)
1180 show_ddir_status(rs, ts, DDIR_SYNC, out);
1181
1182 runtime = ts->total_run_time;
1183 if (runtime) {
1184 double runt = (double) runtime;
1185
1186 usr_cpu = (double) ts->usr_time * 100 / runt;
1187 sys_cpu = (double) ts->sys_time * 100 / runt;
1188 } else {
1189 usr_cpu = 0;
1190 sys_cpu = 0;
1191 }
1192
1193 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1194 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1195 (unsigned long long) ts->ctx,
1196 (unsigned long long) ts->majf,
1197 (unsigned long long) ts->minf);
1198
1199 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1200 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1201 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1202 io_u_dist[1], io_u_dist[2],
1203 io_u_dist[3], io_u_dist[4],
1204 io_u_dist[5], io_u_dist[6]);
1205
1206 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1207 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1208 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1209 io_u_dist[1], io_u_dist[2],
1210 io_u_dist[3], io_u_dist[4],
1211 io_u_dist[5], io_u_dist[6]);
1212 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1213 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1214 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1215 io_u_dist[1], io_u_dist[2],
1216 io_u_dist[3], io_u_dist[4],
1217 io_u_dist[5], io_u_dist[6]);
1218 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
1219 " short=%llu,%llu,%llu,0"
1220 " dropped=%llu,%llu,%llu,0\n",
1221 (unsigned long long) ts->total_io_u[0],
1222 (unsigned long long) ts->total_io_u[1],
1223 (unsigned long long) ts->total_io_u[2],
1224 (unsigned long long) ts->total_io_u[3],
1225 (unsigned long long) ts->short_io_u[0],
1226 (unsigned long long) ts->short_io_u[1],
1227 (unsigned long long) ts->short_io_u[2],
1228 (unsigned long long) ts->drop_io_u[0],
1229 (unsigned long long) ts->drop_io_u[1],
1230 (unsigned long long) ts->drop_io_u[2]);
1231 if (ts->continue_on_error) {
1232 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
1233 (unsigned long long)ts->total_err_count,
1234 ts->first_error,
1235 strerror(ts->first_error));
1236 }
1237 if (ts->latency_depth) {
1238 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1239 (unsigned long long)ts->latency_target,
1240 (unsigned long long)ts->latency_window,
1241 ts->latency_percentile.u.f,
1242 ts->latency_depth);
1243 }
1244
1245 if (ts->nr_block_infos)
1246 show_block_infos(ts->nr_block_infos, ts->block_infos,
1247 ts->percentile_list, out);
1248
1249 if (ts->ss_dur)
1250 show_ss_normal(ts, out);
1251}
1252
1253static void show_ddir_status_terse(struct thread_stat *ts,
1254 struct group_run_stats *rs, int ddir,
1255 int ver, struct buf_output *out)
1256{
1257 unsigned long long min, max, minv, maxv, bw, iops;
1258 unsigned long long *ovals = NULL;
1259 double mean, dev;
1260 unsigned int len;
1261 int i, bw_stat;
1262
1263 assert(ddir_rw(ddir));
1264
1265 iops = bw = 0;
1266 if (ts->runtime[ddir]) {
1267 uint64_t runt = ts->runtime[ddir];
1268
1269 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1270 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1271 }
1272
1273 log_buf(out, ";%llu;%llu;%llu;%llu",
1274 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1275 (unsigned long long) ts->runtime[ddir]);
1276
1277 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1278 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1279 else
1280 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1281
1282 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1283 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1284 else
1285 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1286
1287 if (ts->lat_percentiles) {
1288 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1289 ts->lat_stat[ddir].samples,
1290 ts->percentile_list, &ovals, &maxv,
1291 &minv);
1292 } else if (ts->clat_percentiles) {
1293 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1294 ts->clat_stat[ddir].samples,
1295 ts->percentile_list, &ovals, &maxv,
1296 &minv);
1297 } else {
1298 len = 0;
1299 }
1300
1301 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1302 if (i >= len) {
1303 log_buf(out, ";0%%=0");
1304 continue;
1305 }
1306 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1307 }
1308
1309 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1310 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1311 else
1312 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1313
1314 free(ovals);
1315
1316 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1317 if (bw_stat) {
1318 double p_of_agg = 100.0;
1319
1320 if (rs->agg[ddir]) {
1321 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1322 if (p_of_agg > 100.0)
1323 p_of_agg = 100.0;
1324 }
1325
1326 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1327 } else {
1328 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1329 }
1330
1331 if (ver == 5) {
1332 if (bw_stat)
1333 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1334 else
1335 log_buf(out, ";%lu", 0UL);
1336
1337 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1338 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1339 mean, dev, (&ts->iops_stat[ddir])->samples);
1340 else
1341 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1342 }
1343}
1344
1345static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1346 struct group_run_stats *rs,
1347 int ver, struct buf_output *out)
1348{
1349 struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1350
1351 if (ts_lcl)
1352 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1353
1354 free(ts_lcl);
1355}
1356
1357static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1358 uint32_t percentiles,
1359 struct io_stat *lat_stat,
1360 uint64_t *io_u_plat)
1361{
1362 char buf[120];
1363 double mean, dev;
1364 unsigned int i, len;
1365 struct json_object *lat_object, *percentile_object, *clat_bins_object;
1366 unsigned long long min, max, maxv, minv, *ovals = NULL;
1367
1368 if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1369 min = max = 0;
1370 mean = dev = 0.0;
1371 }
1372 lat_object = json_create_object();
1373 json_object_add_value_int(lat_object, "min", min);
1374 json_object_add_value_int(lat_object, "max", max);
1375 json_object_add_value_float(lat_object, "mean", mean);
1376 json_object_add_value_float(lat_object, "stddev", dev);
1377 json_object_add_value_int(lat_object, "N", lat_stat->samples);
1378
1379 if (percentiles && lat_stat->samples) {
1380 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1381 ts->percentile_list, &ovals, &maxv, &minv);
1382
1383 if (len > FIO_IO_U_LIST_MAX_LEN)
1384 len = FIO_IO_U_LIST_MAX_LEN;
1385
1386 percentile_object = json_create_object();
1387 json_object_add_value_object(lat_object, "percentile", percentile_object);
1388 for (i = 0; i < len; i++) {
1389 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1390 json_object_add_value_int(percentile_object, buf, ovals[i]);
1391 }
1392 free(ovals);
1393
1394 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1395 clat_bins_object = json_create_object();
1396 json_object_add_value_object(lat_object, "bins", clat_bins_object);
1397
1398 for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1399 if (io_u_plat[i]) {
1400 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1401 json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1402 }
1403 }
1404 }
1405
1406 return lat_object;
1407}
1408
1409static void add_ddir_status_json(struct thread_stat *ts,
1410 struct group_run_stats *rs, int ddir, struct json_object *parent)
1411{
1412 unsigned long long min, max;
1413 unsigned long long bw_bytes, bw;
1414 double mean, dev, iops;
1415 struct json_object *dir_object, *tmp_object;
1416 double p_of_agg = 100.0;
1417
1418 assert(ddir_rw(ddir) || ddir_sync(ddir));
1419
1420 if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1421 return;
1422
1423 dir_object = json_create_object();
1424 json_object_add_value_object(parent,
1425 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1426
1427 if (ddir_rw(ddir)) {
1428 bw_bytes = 0;
1429 bw = 0;
1430 iops = 0.0;
1431 if (ts->runtime[ddir]) {
1432 uint64_t runt = ts->runtime[ddir];
1433
1434 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1435 bw = bw_bytes / 1024; /* KiB/s */
1436 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1437 }
1438
1439 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1440 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1441 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1442 json_object_add_value_int(dir_object, "bw", bw);
1443 json_object_add_value_float(dir_object, "iops", iops);
1444 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1445 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1446 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1447 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1448
1449 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1450 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1451 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1452
1453 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1454 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1455 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1456
1457 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1458 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1459 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1460 } else {
1461 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1462 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1463 &ts->sync_stat, ts->io_u_sync_plat);
1464 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1465 }
1466
1467 if (!ddir_rw(ddir))
1468 return;
1469
1470 /* Only print PRIO latencies if some high priority samples were gathered */
1471 if (ts->clat_high_prio_stat[ddir].samples > 0) {
1472 const char *high, *low;
1473
1474 if (ts->lat_percentiles) {
1475 high = "lat_high_prio";
1476 low = "lat_low_prio";
1477 } else {
1478 high = "clat_high_prio";
1479 low = "clat_low_prio";
1480 }
1481
1482 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1483 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1484 json_object_add_value_object(dir_object, high, tmp_object);
1485
1486 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1487 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1488 json_object_add_value_object(dir_object, low, tmp_object);
1489 }
1490
1491 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1492 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1493 } else {
1494 min = max = 0;
1495 p_of_agg = mean = dev = 0.0;
1496 }
1497
1498 json_object_add_value_int(dir_object, "bw_min", min);
1499 json_object_add_value_int(dir_object, "bw_max", max);
1500 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1501 json_object_add_value_float(dir_object, "bw_mean", mean);
1502 json_object_add_value_float(dir_object, "bw_dev", dev);
1503 json_object_add_value_int(dir_object, "bw_samples",
1504 (&ts->bw_stat[ddir])->samples);
1505
1506 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1507 min = max = 0;
1508 mean = dev = 0.0;
1509 }
1510 json_object_add_value_int(dir_object, "iops_min", min);
1511 json_object_add_value_int(dir_object, "iops_max", max);
1512 json_object_add_value_float(dir_object, "iops_mean", mean);
1513 json_object_add_value_float(dir_object, "iops_stddev", dev);
1514 json_object_add_value_int(dir_object, "iops_samples",
1515 (&ts->iops_stat[ddir])->samples);
1516
1517 if (ts->cachehit + ts->cachemiss) {
1518 uint64_t total;
1519 double hit;
1520
1521 total = ts->cachehit + ts->cachemiss;
1522 hit = (double) ts->cachehit / (double) total;
1523 hit *= 100.0;
1524 json_object_add_value_float(dir_object, "cachehit", hit);
1525 }
1526}
1527
1528static void add_mixed_ddir_status_json(struct thread_stat *ts,
1529 struct group_run_stats *rs, struct json_object *parent)
1530{
1531 struct thread_stat *ts_lcl = gen_mixed_ddir_stats_from_ts(ts);
1532
1533 /* add the aggregated stats to json parent */
1534 if (ts_lcl)
1535 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1536
1537 free(ts_lcl);
1538}
1539
1540static void show_thread_status_terse_all(struct thread_stat *ts,
1541 struct group_run_stats *rs, int ver,
1542 struct buf_output *out)
1543{
1544 double io_u_dist[FIO_IO_U_MAP_NR];
1545 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1546 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1547 double usr_cpu, sys_cpu;
1548 int i;
1549
1550 /* General Info */
1551 if (ver == 2)
1552 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1553 else
1554 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1555 ts->name, ts->groupid, ts->error);
1556
1557 /* Log Read Status, or mixed if unified_rw_rep = 1 */
1558 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1559 if (ts->unified_rw_rep != UNIFIED_MIXED) {
1560 /* Log Write Status */
1561 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1562 /* Log Trim Status */
1563 if (ver == 2 || ver == 4 || ver == 5)
1564 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1565 }
1566 if (ts->unified_rw_rep == UNIFIED_BOTH)
1567 show_mixed_ddir_status_terse(ts, rs, ver, out);
1568 /* CPU Usage */
1569 if (ts->total_run_time) {
1570 double runt = (double) ts->total_run_time;
1571
1572 usr_cpu = (double) ts->usr_time * 100 / runt;
1573 sys_cpu = (double) ts->sys_time * 100 / runt;
1574 } else {
1575 usr_cpu = 0;
1576 sys_cpu = 0;
1577 }
1578
1579 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1580 (unsigned long long) ts->ctx,
1581 (unsigned long long) ts->majf,
1582 (unsigned long long) ts->minf);
1583
1584 /* Calc % distribution of IO depths, usecond, msecond latency */
1585 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1586 stat_calc_lat_nu(ts, io_u_lat_u);
1587 stat_calc_lat_m(ts, io_u_lat_m);
1588
1589 /* Only show fixed 7 I/O depth levels*/
1590 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1591 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1592 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1593
1594 /* Microsecond latency */
1595 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1596 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1597 /* Millisecond latency */
1598 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1599 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1600
1601 /* disk util stats, if any */
1602 if (ver >= 3 && is_running_backend())
1603 show_disk_util(1, NULL, out);
1604
1605 /* Additional output if continue_on_error set - default off*/
1606 if (ts->continue_on_error)
1607 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1608
1609 /* Additional output if description is set */
1610 if (strlen(ts->description)) {
1611 if (ver == 2)
1612 log_buf(out, "\n");
1613 log_buf(out, ";%s", ts->description);
1614 }
1615
1616 log_buf(out, "\n");
1617}
1618
1619static void json_add_job_opts(struct json_object *root, const char *name,
1620 struct flist_head *opt_list)
1621{
1622 struct json_object *dir_object;
1623 struct flist_head *entry;
1624 struct print_option *p;
1625
1626 if (flist_empty(opt_list))
1627 return;
1628
1629 dir_object = json_create_object();
1630 json_object_add_value_object(root, name, dir_object);
1631
1632 flist_for_each(entry, opt_list) {
1633 p = flist_entry(entry, struct print_option, list);
1634 json_object_add_value_string(dir_object, p->name, p->value);
1635 }
1636}
1637
1638static struct json_object *show_thread_status_json(struct thread_stat *ts,
1639 struct group_run_stats *rs,
1640 struct flist_head *opt_list)
1641{
1642 struct json_object *root, *tmp;
1643 struct jobs_eta *je;
1644 double io_u_dist[FIO_IO_U_MAP_NR];
1645 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1646 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1647 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1648 double usr_cpu, sys_cpu;
1649 int i;
1650 size_t size;
1651
1652 root = json_create_object();
1653 json_object_add_value_string(root, "jobname", ts->name);
1654 json_object_add_value_int(root, "groupid", ts->groupid);
1655 json_object_add_value_int(root, "error", ts->error);
1656
1657 /* ETA Info */
1658 je = get_jobs_eta(true, &size);
1659 if (je) {
1660 json_object_add_value_int(root, "eta", je->eta_sec);
1661 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1662 }
1663
1664 if (opt_list)
1665 json_add_job_opts(root, "job options", opt_list);
1666
1667 add_ddir_status_json(ts, rs, DDIR_READ, root);
1668 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1669 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1670 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1671
1672 if (ts->unified_rw_rep == UNIFIED_BOTH)
1673 add_mixed_ddir_status_json(ts, rs, root);
1674
1675 /* CPU Usage */
1676 if (ts->total_run_time) {
1677 double runt = (double) ts->total_run_time;
1678
1679 usr_cpu = (double) ts->usr_time * 100 / runt;
1680 sys_cpu = (double) ts->sys_time * 100 / runt;
1681 } else {
1682 usr_cpu = 0;
1683 sys_cpu = 0;
1684 }
1685 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1686 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1687 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1688 json_object_add_value_int(root, "ctx", ts->ctx);
1689 json_object_add_value_int(root, "majf", ts->majf);
1690 json_object_add_value_int(root, "minf", ts->minf);
1691
1692 /* Calc % distribution of IO depths */
1693 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1694 tmp = json_create_object();
1695 json_object_add_value_object(root, "iodepth_level", tmp);
1696 /* Only show fixed 7 I/O depth levels*/
1697 for (i = 0; i < 7; i++) {
1698 char name[20];
1699 if (i < 6)
1700 snprintf(name, 20, "%d", 1 << i);
1701 else
1702 snprintf(name, 20, ">=%d", 1 << i);
1703 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1704 }
1705
1706 /* Calc % distribution of submit IO depths */
1707 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1708 tmp = json_create_object();
1709 json_object_add_value_object(root, "iodepth_submit", tmp);
1710 /* Only show fixed 7 I/O depth levels*/
1711 for (i = 0; i < 7; i++) {
1712 char name[20];
1713 if (i == 0)
1714 snprintf(name, 20, "0");
1715 else if (i < 6)
1716 snprintf(name, 20, "%d", 1 << (i+1));
1717 else
1718 snprintf(name, 20, ">=%d", 1 << i);
1719 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1720 }
1721
1722 /* Calc % distribution of completion IO depths */
1723 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1724 tmp = json_create_object();
1725 json_object_add_value_object(root, "iodepth_complete", tmp);
1726 /* Only show fixed 7 I/O depth levels*/
1727 for (i = 0; i < 7; i++) {
1728 char name[20];
1729 if (i == 0)
1730 snprintf(name, 20, "0");
1731 else if (i < 6)
1732 snprintf(name, 20, "%d", 1 << (i+1));
1733 else
1734 snprintf(name, 20, ">=%d", 1 << i);
1735 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1736 }
1737
1738 /* Calc % distribution of nsecond, usecond, msecond latency */
1739 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1740 stat_calc_lat_n(ts, io_u_lat_n);
1741 stat_calc_lat_u(ts, io_u_lat_u);
1742 stat_calc_lat_m(ts, io_u_lat_m);
1743
1744 /* Nanosecond latency */
1745 tmp = json_create_object();
1746 json_object_add_value_object(root, "latency_ns", tmp);
1747 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1748 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1749 "250", "500", "750", "1000", };
1750 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1751 }
1752 /* Microsecond latency */
1753 tmp = json_create_object();
1754 json_object_add_value_object(root, "latency_us", tmp);
1755 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1756 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1757 "250", "500", "750", "1000", };
1758 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1759 }
1760 /* Millisecond latency */
1761 tmp = json_create_object();
1762 json_object_add_value_object(root, "latency_ms", tmp);
1763 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1764 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1765 "250", "500", "750", "1000", "2000",
1766 ">=2000", };
1767 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1768 }
1769
1770 /* Additional output if continue_on_error set - default off*/
1771 if (ts->continue_on_error) {
1772 json_object_add_value_int(root, "total_err", ts->total_err_count);
1773 json_object_add_value_int(root, "first_error", ts->first_error);
1774 }
1775
1776 if (ts->latency_depth) {
1777 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1778 json_object_add_value_int(root, "latency_target", ts->latency_target);
1779 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1780 json_object_add_value_int(root, "latency_window", ts->latency_window);
1781 }
1782
1783 /* Additional output if description is set */
1784 if (strlen(ts->description))
1785 json_object_add_value_string(root, "desc", ts->description);
1786
1787 if (ts->nr_block_infos) {
1788 /* Block error histogram and types */
1789 int len;
1790 unsigned int *percentiles = NULL;
1791 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1792
1793 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1794 ts->percentile_list,
1795 &percentiles, block_state_counts);
1796
1797 if (len) {
1798 struct json_object *block, *percentile_object, *states;
1799 int state;
1800 block = json_create_object();
1801 json_object_add_value_object(root, "block", block);
1802
1803 percentile_object = json_create_object();
1804 json_object_add_value_object(block, "percentiles",
1805 percentile_object);
1806 for (i = 0; i < len; i++) {
1807 char buf[20];
1808 snprintf(buf, sizeof(buf), "%f",
1809 ts->percentile_list[i].u.f);
1810 json_object_add_value_int(percentile_object,
1811 buf,
1812 percentiles[i]);
1813 }
1814
1815 states = json_create_object();
1816 json_object_add_value_object(block, "states", states);
1817 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1818 json_object_add_value_int(states,
1819 block_state_names[state],
1820 block_state_counts[state]);
1821 }
1822 free(percentiles);
1823 }
1824 }
1825
1826 if (ts->ss_dur) {
1827 struct json_object *data;
1828 struct json_array *iops, *bw;
1829 int j, k, l;
1830 char ss_buf[64];
1831
1832 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1833 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1834 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1835 (float) ts->ss_limit.u.f,
1836 ts->ss_state & FIO_SS_PCT ? "%" : "");
1837
1838 tmp = json_create_object();
1839 json_object_add_value_object(root, "steadystate", tmp);
1840 json_object_add_value_string(tmp, "ss", ss_buf);
1841 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1842 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1843
1844 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1845 ts->ss_state & FIO_SS_PCT ? "%" : "");
1846 json_object_add_value_string(tmp, "criterion", ss_buf);
1847 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1848 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1849
1850 data = json_create_object();
1851 json_object_add_value_object(tmp, "data", data);
1852 bw = json_create_array();
1853 iops = json_create_array();
1854
1855 /*
1856 ** if ss was attained or the buffer is not full,
1857 ** ss->head points to the first element in the list.
1858 ** otherwise it actually points to the second element
1859 ** in the list
1860 */
1861 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1862 j = ts->ss_head;
1863 else
1864 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1865 for (l = 0; l < ts->ss_dur; l++) {
1866 k = (j + l) % ts->ss_dur;
1867 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1868 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1869 }
1870 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1871 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1872 json_object_add_value_array(data, "iops", iops);
1873 json_object_add_value_array(data, "bw", bw);
1874 }
1875
1876 return root;
1877}
1878
1879static void show_thread_status_terse(struct thread_stat *ts,
1880 struct group_run_stats *rs,
1881 struct buf_output *out)
1882{
1883 if (terse_version >= 2 && terse_version <= 5)
1884 show_thread_status_terse_all(ts, rs, terse_version, out);
1885 else
1886 log_err("fio: bad terse version!? %d\n", terse_version);
1887}
1888
1889struct json_object *show_thread_status(struct thread_stat *ts,
1890 struct group_run_stats *rs,
1891 struct flist_head *opt_list,
1892 struct buf_output *out)
1893{
1894 struct json_object *ret = NULL;
1895
1896 if (output_format & FIO_OUTPUT_TERSE)
1897 show_thread_status_terse(ts, rs, out);
1898 if (output_format & FIO_OUTPUT_JSON)
1899 ret = show_thread_status_json(ts, rs, opt_list);
1900 if (output_format & FIO_OUTPUT_NORMAL)
1901 show_thread_status_normal(ts, rs, out);
1902
1903 return ret;
1904}
1905
1906static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1907{
1908 double mean, S;
1909
1910 dst->min_val = min(dst->min_val, src->min_val);
1911 dst->max_val = max(dst->max_val, src->max_val);
1912
1913 /*
1914 * Compute new mean and S after the merge
1915 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1916 * #Parallel_algorithm>
1917 */
1918 if (first) {
1919 mean = src->mean.u.f;
1920 S = src->S.u.f;
1921 } else {
1922 double delta = src->mean.u.f - dst->mean.u.f;
1923
1924 mean = ((src->mean.u.f * src->samples) +
1925 (dst->mean.u.f * dst->samples)) /
1926 (dst->samples + src->samples);
1927
1928 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1929 (dst->samples * src->samples) /
1930 (dst->samples + src->samples);
1931 }
1932
1933 dst->samples += src->samples;
1934 dst->mean.u.f = mean;
1935 dst->S.u.f = S;
1936
1937}
1938
1939/*
1940 * We sum two kinds of stats - one that is time based, in which case we
1941 * apply the proper summing technique, and then one that is iops/bw
1942 * numbers. For group_reporting, we should just add those up, not make
1943 * them the mean of everything.
1944 */
1945static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
1946{
1947 bool first = dst->samples == 0;
1948
1949 if (src->samples == 0)
1950 return;
1951
1952 if (!pure_sum) {
1953 __sum_stat(dst, src, first);
1954 return;
1955 }
1956
1957 if (first) {
1958 dst->min_val = src->min_val;
1959 dst->max_val = src->max_val;
1960 dst->samples = src->samples;
1961 dst->mean.u.f = src->mean.u.f;
1962 dst->S.u.f = src->S.u.f;
1963 } else {
1964 dst->min_val += src->min_val;
1965 dst->max_val += src->max_val;
1966 dst->samples += src->samples;
1967 dst->mean.u.f += src->mean.u.f;
1968 dst->S.u.f += src->S.u.f;
1969 }
1970}
1971
1972void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1973{
1974 int i;
1975
1976 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1977 if (dst->max_run[i] < src->max_run[i])
1978 dst->max_run[i] = src->max_run[i];
1979 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1980 dst->min_run[i] = src->min_run[i];
1981 if (dst->max_bw[i] < src->max_bw[i])
1982 dst->max_bw[i] = src->max_bw[i];
1983 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1984 dst->min_bw[i] = src->min_bw[i];
1985
1986 dst->iobytes[i] += src->iobytes[i];
1987 dst->agg[i] += src->agg[i];
1988 }
1989
1990 if (!dst->kb_base)
1991 dst->kb_base = src->kb_base;
1992 if (!dst->unit_base)
1993 dst->unit_base = src->unit_base;
1994 if (!dst->sig_figs)
1995 dst->sig_figs = src->sig_figs;
1996}
1997
1998void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
1999{
2000 int k, l, m;
2001
2002 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2003 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2004 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2005 sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], false);
2006 sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], false);
2007 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2008 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2009 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2010 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2011
2012 dst->io_bytes[l] += src->io_bytes[l];
2013
2014 if (dst->runtime[l] < src->runtime[l])
2015 dst->runtime[l] = src->runtime[l];
2016 } else {
2017 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2018 sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], false);
2019 sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], false);
2020 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2021 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2022 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2023 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2024
2025 dst->io_bytes[0] += src->io_bytes[l];
2026
2027 if (dst->runtime[0] < src->runtime[l])
2028 dst->runtime[0] = src->runtime[l];
2029 }
2030 }
2031
2032 sum_stat(&dst->sync_stat, &src->sync_stat, false);
2033 dst->usr_time += src->usr_time;
2034 dst->sys_time += src->sys_time;
2035 dst->ctx += src->ctx;
2036 dst->majf += src->majf;
2037 dst->minf += src->minf;
2038
2039 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2040 dst->io_u_map[k] += src->io_u_map[k];
2041 dst->io_u_submit[k] += src->io_u_submit[k];
2042 dst->io_u_complete[k] += src->io_u_complete[k];
2043 }
2044
2045 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2046 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2047 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2048 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2049 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2050 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2051
2052 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2053 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2054 dst->total_io_u[k] += src->total_io_u[k];
2055 dst->short_io_u[k] += src->short_io_u[k];
2056 dst->drop_io_u[k] += src->drop_io_u[k];
2057 } else {
2058 dst->total_io_u[0] += src->total_io_u[k];
2059 dst->short_io_u[0] += src->short_io_u[k];
2060 dst->drop_io_u[0] += src->drop_io_u[k];
2061 }
2062 }
2063
2064 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2065
2066 for (k = 0; k < FIO_LAT_CNT; k++)
2067 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2068 for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2069 if (dst->unified_rw_rep != UNIFIED_MIXED)
2070 dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2071 else
2072 dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2073
2074 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2075 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2076
2077 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2078 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2079 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2080 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2081 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2082 } else {
2083 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2084 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2085 }
2086
2087 }
2088 }
2089
2090 dst->total_run_time += src->total_run_time;
2091 dst->total_submit += src->total_submit;
2092 dst->total_complete += src->total_complete;
2093 dst->nr_zone_resets += src->nr_zone_resets;
2094 dst->cachehit += src->cachehit;
2095 dst->cachemiss += src->cachemiss;
2096}
2097
2098void init_group_run_stat(struct group_run_stats *gs)
2099{
2100 int i;
2101 memset(gs, 0, sizeof(*gs));
2102
2103 for (i = 0; i < DDIR_RWDIR_CNT; i++)
2104 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2105}
2106
2107void init_thread_stat_min_vals(struct thread_stat *ts)
2108{
2109 int i;
2110
2111 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2112 ts->clat_stat[i].min_val = ULONG_MAX;
2113 ts->slat_stat[i].min_val = ULONG_MAX;
2114 ts->lat_stat[i].min_val = ULONG_MAX;
2115 ts->bw_stat[i].min_val = ULONG_MAX;
2116 ts->iops_stat[i].min_val = ULONG_MAX;
2117 ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2118 ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2119 }
2120 ts->sync_stat.min_val = ULONG_MAX;
2121}
2122
2123void init_thread_stat(struct thread_stat *ts)
2124{
2125 memset(ts, 0, sizeof(*ts));
2126
2127 init_thread_stat_min_vals(ts);
2128 ts->groupid = -1;
2129}
2130
2131void __show_run_stats(void)
2132{
2133 struct group_run_stats *runstats, *rs;
2134 struct thread_data *td;
2135 struct thread_stat *threadstats, *ts;
2136 int i, j, k, nr_ts, last_ts, idx;
2137 bool kb_base_warned = false;
2138 bool unit_base_warned = false;
2139 struct json_object *root = NULL;
2140 struct json_array *array = NULL;
2141 struct buf_output output[FIO_OUTPUT_NR];
2142 struct flist_head **opt_lists;
2143
2144 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2145
2146 for (i = 0; i < groupid + 1; i++)
2147 init_group_run_stat(&runstats[i]);
2148
2149 /*
2150 * find out how many threads stats we need. if group reporting isn't
2151 * enabled, it's one-per-td.
2152 */
2153 nr_ts = 0;
2154 last_ts = -1;
2155 for_each_td(td, i) {
2156 if (!td->o.group_reporting) {
2157 nr_ts++;
2158 continue;
2159 }
2160 if (last_ts == td->groupid)
2161 continue;
2162 if (!td->o.stats)
2163 continue;
2164
2165 last_ts = td->groupid;
2166 nr_ts++;
2167 }
2168
2169 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2170 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2171
2172 for (i = 0; i < nr_ts; i++) {
2173 init_thread_stat(&threadstats[i]);
2174 opt_lists[i] = NULL;
2175 }
2176
2177 j = 0;
2178 last_ts = -1;
2179 idx = 0;
2180 for_each_td(td, i) {
2181 if (!td->o.stats)
2182 continue;
2183 if (idx && (!td->o.group_reporting ||
2184 (td->o.group_reporting && last_ts != td->groupid))) {
2185 idx = 0;
2186 j++;
2187 }
2188
2189 last_ts = td->groupid;
2190
2191 ts = &threadstats[j];
2192
2193 ts->clat_percentiles = td->o.clat_percentiles;
2194 ts->lat_percentiles = td->o.lat_percentiles;
2195 ts->slat_percentiles = td->o.slat_percentiles;
2196 ts->percentile_precision = td->o.percentile_precision;
2197 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2198 opt_lists[j] = &td->opt_list;
2199
2200 idx++;
2201 ts->members++;
2202
2203 if (ts->groupid == -1) {
2204 /*
2205 * These are per-group shared already
2206 */
2207 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2208 if (td->o.description)
2209 snprintf(ts->description,
2210 sizeof(ts->description), "%s",
2211 td->o.description);
2212 else
2213 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2214
2215 /*
2216 * If multiple entries in this group, this is
2217 * the first member.
2218 */
2219 ts->thread_number = td->thread_number;
2220 ts->groupid = td->groupid;
2221
2222 /*
2223 * first pid in group, not very useful...
2224 */
2225 ts->pid = td->pid;
2226
2227 ts->kb_base = td->o.kb_base;
2228 ts->unit_base = td->o.unit_base;
2229 ts->sig_figs = td->o.sig_figs;
2230 ts->unified_rw_rep = td->o.unified_rw_rep;
2231 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2232 log_info("fio: kb_base differs for jobs in group, using"
2233 " %u as the base\n", ts->kb_base);
2234 kb_base_warned = true;
2235 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2236 log_info("fio: unit_base differs for jobs in group, using"
2237 " %u as the base\n", ts->unit_base);
2238 unit_base_warned = true;
2239 }
2240
2241 ts->continue_on_error = td->o.continue_on_error;
2242 ts->total_err_count += td->total_err_count;
2243 ts->first_error = td->first_error;
2244 if (!ts->error) {
2245 if (!td->error && td->o.continue_on_error &&
2246 td->first_error) {
2247 ts->error = td->first_error;
2248 snprintf(ts->verror, sizeof(ts->verror), "%s",
2249 td->verror);
2250 } else if (td->error) {
2251 ts->error = td->error;
2252 snprintf(ts->verror, sizeof(ts->verror), "%s",
2253 td->verror);
2254 }
2255 }
2256
2257 ts->latency_depth = td->latency_qd;
2258 ts->latency_target = td->o.latency_target;
2259 ts->latency_percentile = td->o.latency_percentile;
2260 ts->latency_window = td->o.latency_window;
2261
2262 ts->nr_block_infos = td->ts.nr_block_infos;
2263 for (k = 0; k < ts->nr_block_infos; k++)
2264 ts->block_infos[k] = td->ts.block_infos[k];
2265
2266 sum_thread_stats(ts, &td->ts);
2267
2268 if (td->o.ss_dur) {
2269 ts->ss_state = td->ss.state;
2270 ts->ss_dur = td->ss.dur;
2271 ts->ss_head = td->ss.head;
2272 ts->ss_bw_data = td->ss.bw_data;
2273 ts->ss_iops_data = td->ss.iops_data;
2274 ts->ss_limit.u.f = td->ss.limit;
2275 ts->ss_slope.u.f = td->ss.slope;
2276 ts->ss_deviation.u.f = td->ss.deviation;
2277 ts->ss_criterion.u.f = td->ss.criterion;
2278 }
2279 else
2280 ts->ss_dur = ts->ss_state = 0;
2281 }
2282
2283 for (i = 0; i < nr_ts; i++) {
2284 unsigned long long bw;
2285
2286 ts = &threadstats[i];
2287 if (ts->groupid == -1)
2288 continue;
2289 rs = &runstats[ts->groupid];
2290 rs->kb_base = ts->kb_base;
2291 rs->unit_base = ts->unit_base;
2292 rs->sig_figs = ts->sig_figs;
2293 rs->unified_rw_rep |= ts->unified_rw_rep;
2294
2295 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2296 if (!ts->runtime[j])
2297 continue;
2298 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2299 rs->min_run[j] = ts->runtime[j];
2300 if (ts->runtime[j] > rs->max_run[j])
2301 rs->max_run[j] = ts->runtime[j];
2302
2303 bw = 0;
2304 if (ts->runtime[j])
2305 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2306 if (bw < rs->min_bw[j])
2307 rs->min_bw[j] = bw;
2308 if (bw > rs->max_bw[j])
2309 rs->max_bw[j] = bw;
2310
2311 rs->iobytes[j] += ts->io_bytes[j];
2312 }
2313 }
2314
2315 for (i = 0; i < groupid + 1; i++) {
2316 int ddir;
2317
2318 rs = &runstats[i];
2319
2320 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2321 if (rs->max_run[ddir])
2322 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2323 rs->max_run[ddir];
2324 }
2325 }
2326
2327 for (i = 0; i < FIO_OUTPUT_NR; i++)
2328 buf_output_init(&output[i]);
2329
2330 /*
2331 * don't overwrite last signal output
2332 */
2333 if (output_format & FIO_OUTPUT_NORMAL)
2334 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2335 if (output_format & FIO_OUTPUT_JSON) {
2336 struct thread_data *global;
2337 char time_buf[32];
2338 struct timeval now;
2339 unsigned long long ms_since_epoch;
2340 time_t tv_sec;
2341
2342 gettimeofday(&now, NULL);
2343 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2344 (unsigned long long)(now.tv_usec) / 1000;
2345
2346 tv_sec = now.tv_sec;
2347 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2348 if (time_buf[strlen(time_buf) - 1] == '\n')
2349 time_buf[strlen(time_buf) - 1] = '\0';
2350
2351 root = json_create_object();
2352 json_object_add_value_string(root, "fio version", fio_version_string);
2353 json_object_add_value_int(root, "timestamp", now.tv_sec);
2354 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2355 json_object_add_value_string(root, "time", time_buf);
2356 global = get_global_options();
2357 json_add_job_opts(root, "global options", &global->opt_list);
2358 array = json_create_array();
2359 json_object_add_value_array(root, "jobs", array);
2360 }
2361
2362 if (is_backend)
2363 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2364
2365 for (i = 0; i < nr_ts; i++) {
2366 ts = &threadstats[i];
2367 rs = &runstats[ts->groupid];
2368
2369 if (is_backend) {
2370 fio_server_send_job_options(opt_lists[i], i);
2371 fio_server_send_ts(ts, rs);
2372 } else {
2373 if (output_format & FIO_OUTPUT_TERSE)
2374 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2375 if (output_format & FIO_OUTPUT_JSON) {
2376 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2377 json_array_add_value_object(array, tmp);
2378 }
2379 if (output_format & FIO_OUTPUT_NORMAL)
2380 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2381 }
2382 }
2383 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2384 /* disk util stats, if any */
2385 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2386
2387 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2388
2389 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2390 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2391 json_free_object(root);
2392 }
2393
2394 for (i = 0; i < groupid + 1; i++) {
2395 rs = &runstats[i];
2396
2397 rs->groupid = i;
2398 if (is_backend)
2399 fio_server_send_gs(rs);
2400 else if (output_format & FIO_OUTPUT_NORMAL)
2401 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2402 }
2403
2404 if (is_backend)
2405 fio_server_send_du();
2406 else if (output_format & FIO_OUTPUT_NORMAL) {
2407 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2408 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2409 }
2410
2411 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2412 struct buf_output *out = &output[i];
2413
2414 log_info_buf(out->buf, out->buflen);
2415 buf_output_free(out);
2416 }
2417
2418 fio_idle_prof_cleanup();
2419
2420 log_info_flush();
2421 free(runstats);
2422 free(threadstats);
2423 free(opt_lists);
2424}
2425
2426int __show_running_run_stats(void)
2427{
2428 struct thread_data *td;
2429 unsigned long long *rt;
2430 struct timespec ts;
2431 int i;
2432
2433 fio_sem_down(stat_sem);
2434
2435 rt = malloc(thread_number * sizeof(unsigned long long));
2436 fio_gettime(&ts, NULL);
2437
2438 for_each_td(td, i) {
2439 td->update_rusage = 1;
2440 for_each_rw_ddir(ddir) {
2441 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2442 }
2443 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2444
2445 rt[i] = mtime_since(&td->start, &ts);
2446 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2447 td->ts.runtime[DDIR_READ] += rt[i];
2448 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2449 td->ts.runtime[DDIR_WRITE] += rt[i];
2450 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2451 td->ts.runtime[DDIR_TRIM] += rt[i];
2452 }
2453
2454 for_each_td(td, i) {
2455 if (td->runstate >= TD_EXITED)
2456 continue;
2457 if (td->rusage_sem) {
2458 td->update_rusage = 1;
2459 fio_sem_down(td->rusage_sem);
2460 }
2461 td->update_rusage = 0;
2462 }
2463
2464 __show_run_stats();
2465
2466 for_each_td(td, i) {
2467 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2468 td->ts.runtime[DDIR_READ] -= rt[i];
2469 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2470 td->ts.runtime[DDIR_WRITE] -= rt[i];
2471 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2472 td->ts.runtime[DDIR_TRIM] -= rt[i];
2473 }
2474
2475 free(rt);
2476 fio_sem_up(stat_sem);
2477
2478 return 0;
2479}
2480
2481static bool status_file_disabled;
2482
2483#define FIO_STATUS_FILE "fio-dump-status"
2484
2485static int check_status_file(void)
2486{
2487 struct stat sb;
2488 const char *temp_dir;
2489 char fio_status_file_path[PATH_MAX];
2490
2491 if (status_file_disabled)
2492 return 0;
2493
2494 temp_dir = getenv("TMPDIR");
2495 if (temp_dir == NULL) {
2496 temp_dir = getenv("TEMP");
2497 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2498 temp_dir = NULL;
2499 }
2500 if (temp_dir == NULL)
2501 temp_dir = "/tmp";
2502#ifdef __COVERITY__
2503 __coverity_tainted_data_sanitize__(temp_dir);
2504#endif
2505
2506 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2507
2508 if (stat(fio_status_file_path, &sb))
2509 return 0;
2510
2511 if (unlink(fio_status_file_path) < 0) {
2512 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2513 strerror(errno));
2514 log_err("fio: disabling status file updates\n");
2515 status_file_disabled = true;
2516 }
2517
2518 return 1;
2519}
2520
2521void check_for_running_stats(void)
2522{
2523 if (check_status_file()) {
2524 show_running_run_stats();
2525 return;
2526 }
2527}
2528
2529static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2530{
2531 double val = data;
2532 double delta;
2533
2534 if (data > is->max_val)
2535 is->max_val = data;
2536 if (data < is->min_val)
2537 is->min_val = data;
2538
2539 delta = val - is->mean.u.f;
2540 if (delta) {
2541 is->mean.u.f += delta / (is->samples + 1.0);
2542 is->S.u.f += delta * (val - is->mean.u.f);
2543 }
2544
2545 is->samples++;
2546}
2547
2548/*
2549 * Return a struct io_logs, which is added to the tail of the log
2550 * list for 'iolog'.
2551 */
2552static struct io_logs *get_new_log(struct io_log *iolog)
2553{
2554 size_t new_samples;
2555 struct io_logs *cur_log;
2556
2557 /*
2558 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2559 * forever
2560 */
2561 if (!iolog->cur_log_max) {
2562 new_samples = iolog->td->o.log_entries;
2563 } else {
2564 new_samples = iolog->cur_log_max * 2;
2565 if (new_samples > MAX_LOG_ENTRIES)
2566 new_samples = MAX_LOG_ENTRIES;
2567 }
2568
2569 cur_log = smalloc(sizeof(*cur_log));
2570 if (cur_log) {
2571 INIT_FLIST_HEAD(&cur_log->list);
2572 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2573 if (cur_log->log) {
2574 cur_log->nr_samples = 0;
2575 cur_log->max_samples = new_samples;
2576 flist_add_tail(&cur_log->list, &iolog->io_logs);
2577 iolog->cur_log_max = new_samples;
2578 return cur_log;
2579 }
2580 sfree(cur_log);
2581 }
2582
2583 return NULL;
2584}
2585
2586/*
2587 * Add and return a new log chunk, or return current log if big enough
2588 */
2589static struct io_logs *regrow_log(struct io_log *iolog)
2590{
2591 struct io_logs *cur_log;
2592 int i;
2593
2594 if (!iolog || iolog->disabled)
2595 goto disable;
2596
2597 cur_log = iolog_cur_log(iolog);
2598 if (!cur_log) {
2599 cur_log = get_new_log(iolog);
2600 if (!cur_log)
2601 return NULL;
2602 }
2603
2604 if (cur_log->nr_samples < cur_log->max_samples)
2605 return cur_log;
2606
2607 /*
2608 * No room for a new sample. If we're compressing on the fly, flush
2609 * out the current chunk
2610 */
2611 if (iolog->log_gz) {
2612 if (iolog_cur_flush(iolog, cur_log)) {
2613 log_err("fio: failed flushing iolog! Will stop logging.\n");
2614 return NULL;
2615 }
2616 }
2617
2618 /*
2619 * Get a new log array, and add to our list
2620 */
2621 cur_log = get_new_log(iolog);
2622 if (!cur_log) {
2623 log_err("fio: failed extending iolog! Will stop logging.\n");
2624 return NULL;
2625 }
2626
2627 if (!iolog->pending || !iolog->pending->nr_samples)
2628 return cur_log;
2629
2630 /*
2631 * Flush pending items to new log
2632 */
2633 for (i = 0; i < iolog->pending->nr_samples; i++) {
2634 struct io_sample *src, *dst;
2635
2636 src = get_sample(iolog, iolog->pending, i);
2637 dst = get_sample(iolog, cur_log, i);
2638 memcpy(dst, src, log_entry_sz(iolog));
2639 }
2640 cur_log->nr_samples = iolog->pending->nr_samples;
2641
2642 iolog->pending->nr_samples = 0;
2643 return cur_log;
2644disable:
2645 if (iolog)
2646 iolog->disabled = true;
2647 return NULL;
2648}
2649
2650void regrow_logs(struct thread_data *td)
2651{
2652 regrow_log(td->slat_log);
2653 regrow_log(td->clat_log);
2654 regrow_log(td->clat_hist_log);
2655 regrow_log(td->lat_log);
2656 regrow_log(td->bw_log);
2657 regrow_log(td->iops_log);
2658 td->flags &= ~TD_F_REGROW_LOGS;
2659}
2660
2661void regrow_agg_logs(void)
2662{
2663 enum fio_ddir ddir;
2664
2665 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2666 regrow_log(agg_io_log[ddir]);
2667}
2668
2669static struct io_logs *get_cur_log(struct io_log *iolog)
2670{
2671 struct io_logs *cur_log;
2672
2673 cur_log = iolog_cur_log(iolog);
2674 if (!cur_log) {
2675 cur_log = get_new_log(iolog);
2676 if (!cur_log)
2677 return NULL;
2678 }
2679
2680 if (cur_log->nr_samples < cur_log->max_samples)
2681 return cur_log;
2682
2683 /*
2684 * Out of space. If we're in IO offload mode, or we're not doing
2685 * per unit logging (hence logging happens outside of the IO thread
2686 * as well), add a new log chunk inline. If we're doing inline
2687 * submissions, flag 'td' as needing a log regrow and we'll take
2688 * care of it on the submission side.
2689 */
2690 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2691 !per_unit_log(iolog))
2692 return regrow_log(iolog);
2693
2694 if (iolog->td)
2695 iolog->td->flags |= TD_F_REGROW_LOGS;
2696 if (iolog->pending)
2697 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2698 return iolog->pending;
2699}
2700
2701static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2702 enum fio_ddir ddir, unsigned long long bs,
2703 unsigned long t, uint64_t offset,
2704 unsigned int priority)
2705{
2706 struct io_logs *cur_log;
2707
2708 if (iolog->disabled)
2709 return;
2710 if (flist_empty(&iolog->io_logs))
2711 iolog->avg_last[ddir] = t;
2712
2713 cur_log = get_cur_log(iolog);
2714 if (cur_log) {
2715 struct io_sample *s;
2716
2717 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2718
2719 s->data = data;
2720 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2721 io_sample_set_ddir(iolog, s, ddir);
2722 s->bs = bs;
2723 s->priority = priority;
2724
2725 if (iolog->log_offset) {
2726 struct io_sample_offset *so = (void *) s;
2727
2728 so->offset = offset;
2729 }
2730
2731 cur_log->nr_samples++;
2732 return;
2733 }
2734
2735 iolog->disabled = true;
2736}
2737
2738static inline void reset_io_stat(struct io_stat *ios)
2739{
2740 ios->min_val = -1ULL;
2741 ios->max_val = ios->samples = 0;
2742 ios->mean.u.f = ios->S.u.f = 0;
2743}
2744
2745void reset_io_stats(struct thread_data *td)
2746{
2747 struct thread_stat *ts = &td->ts;
2748 int i, j, k;
2749
2750 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2751 reset_io_stat(&ts->clat_high_prio_stat[i]);
2752 reset_io_stat(&ts->clat_low_prio_stat[i]);
2753 reset_io_stat(&ts->clat_stat[i]);
2754 reset_io_stat(&ts->slat_stat[i]);
2755 reset_io_stat(&ts->lat_stat[i]);
2756 reset_io_stat(&ts->bw_stat[i]);
2757 reset_io_stat(&ts->iops_stat[i]);
2758
2759 ts->io_bytes[i] = 0;
2760 ts->runtime[i] = 0;
2761 ts->total_io_u[i] = 0;
2762 ts->short_io_u[i] = 0;
2763 ts->drop_io_u[i] = 0;
2764
2765 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2766 ts->io_u_plat_high_prio[i][j] = 0;
2767 ts->io_u_plat_low_prio[i][j] = 0;
2768 if (!i)
2769 ts->io_u_sync_plat[j] = 0;
2770 }
2771 }
2772
2773 for (i = 0; i < FIO_LAT_CNT; i++)
2774 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2775 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2776 ts->io_u_plat[i][j][k] = 0;
2777
2778 ts->total_io_u[DDIR_SYNC] = 0;
2779
2780 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2781 ts->io_u_map[i] = 0;
2782 ts->io_u_submit[i] = 0;
2783 ts->io_u_complete[i] = 0;
2784 }
2785
2786 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2787 ts->io_u_lat_n[i] = 0;
2788 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2789 ts->io_u_lat_u[i] = 0;
2790 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2791 ts->io_u_lat_m[i] = 0;
2792
2793 ts->total_submit = 0;
2794 ts->total_complete = 0;
2795 ts->nr_zone_resets = 0;
2796 ts->cachehit = ts->cachemiss = 0;
2797}
2798
2799static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2800 unsigned long elapsed, bool log_max)
2801{
2802 /*
2803 * Note an entry in the log. Use the mean from the logged samples,
2804 * making sure to properly round up. Only write a log entry if we
2805 * had actual samples done.
2806 */
2807 if (iolog->avg_window[ddir].samples) {
2808 union io_sample_data data;
2809
2810 if (log_max)
2811 data.val = iolog->avg_window[ddir].max_val;
2812 else
2813 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2814
2815 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2816 }
2817
2818 reset_io_stat(&iolog->avg_window[ddir]);
2819}
2820
2821static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2822 bool log_max)
2823{
2824 int ddir;
2825
2826 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2827 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2828}
2829
2830static unsigned long add_log_sample(struct thread_data *td,
2831 struct io_log *iolog,
2832 union io_sample_data data,
2833 enum fio_ddir ddir, unsigned long long bs,
2834 uint64_t offset, unsigned int ioprio)
2835{
2836 unsigned long elapsed, this_window;
2837
2838 if (!ddir_rw(ddir))
2839 return 0;
2840
2841 elapsed = mtime_since_now(&td->epoch);
2842
2843 /*
2844 * If no time averaging, just add the log sample.
2845 */
2846 if (!iolog->avg_msec) {
2847 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
2848 ioprio);
2849 return 0;
2850 }
2851
2852 /*
2853 * Add the sample. If the time period has passed, then
2854 * add that entry to the log and clear.
2855 */
2856 add_stat_sample(&iolog->avg_window[ddir], data.val);
2857
2858 /*
2859 * If period hasn't passed, adding the above sample is all we
2860 * need to do.
2861 */
2862 this_window = elapsed - iolog->avg_last[ddir];
2863 if (elapsed < iolog->avg_last[ddir])
2864 return iolog->avg_last[ddir] - elapsed;
2865 else if (this_window < iolog->avg_msec) {
2866 unsigned long diff = iolog->avg_msec - this_window;
2867
2868 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2869 return diff;
2870 }
2871
2872 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2873
2874 iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
2875
2876 return iolog->avg_msec;
2877}
2878
2879void finalize_logs(struct thread_data *td, bool unit_logs)
2880{
2881 unsigned long elapsed;
2882
2883 elapsed = mtime_since_now(&td->epoch);
2884
2885 if (td->clat_log && unit_logs)
2886 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2887 if (td->slat_log && unit_logs)
2888 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2889 if (td->lat_log && unit_logs)
2890 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2891 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2892 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2893 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2894 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2895}
2896
2897void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
2898 unsigned long long bs)
2899{
2900 struct io_log *iolog;
2901
2902 if (!ddir_rw(ddir))
2903 return;
2904
2905 iolog = agg_io_log[ddir];
2906 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
2907}
2908
2909void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2910{
2911 unsigned int idx = plat_val_to_idx(nsec);
2912 assert(idx < FIO_IO_U_PLAT_NR);
2913
2914 ts->io_u_sync_plat[idx]++;
2915 add_stat_sample(&ts->sync_stat, nsec);
2916}
2917
2918static inline void add_lat_percentile_sample(struct thread_stat *ts,
2919 unsigned long long nsec,
2920 enum fio_ddir ddir,
2921 enum fio_lat lat)
2922{
2923 unsigned int idx = plat_val_to_idx(nsec);
2924 assert(idx < FIO_IO_U_PLAT_NR);
2925
2926 ts->io_u_plat[lat][ddir][idx]++;
2927}
2928
2929static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
2930 unsigned long long nsec,
2931 enum fio_ddir ddir,
2932 bool high_prio)
2933{
2934 unsigned int idx = plat_val_to_idx(nsec);
2935
2936 if (!high_prio)
2937 ts->io_u_plat_low_prio[ddir][idx]++;
2938 else
2939 ts->io_u_plat_high_prio[ddir][idx]++;
2940}
2941
2942void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2943 unsigned long long nsec, unsigned long long bs,
2944 uint64_t offset, unsigned int ioprio, bool high_prio)
2945{
2946 const bool needs_lock = td_async_processing(td);
2947 unsigned long elapsed, this_window;
2948 struct thread_stat *ts = &td->ts;
2949 struct io_log *iolog = td->clat_hist_log;
2950
2951 if (needs_lock)
2952 __td_io_u_lock(td);
2953
2954 add_stat_sample(&ts->clat_stat[ddir], nsec);
2955
2956 /*
2957 * When lat_percentiles=1 (default 0), the reported high/low priority
2958 * percentiles and stats are used for describing total latency values,
2959 * even though the variable names themselves start with clat_.
2960 *
2961 * Because of the above definition, add a prio stat sample only when
2962 * lat_percentiles=0. add_lat_sample() will add the prio stat sample
2963 * when lat_percentiles=1.
2964 */
2965 if (!ts->lat_percentiles) {
2966 if (high_prio)
2967 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2968 else
2969 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2970 }
2971
2972 if (td->clat_log)
2973 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2974 offset, ioprio);
2975
2976 if (ts->clat_percentiles) {
2977 /*
2978 * Because of the above definition, add a prio lat percentile
2979 * sample only when lat_percentiles=0. add_lat_sample() will add
2980 * the prio lat percentile sample when lat_percentiles=1.
2981 */
2982 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
2983 if (!ts->lat_percentiles)
2984 add_lat_percentile_prio_sample(ts, nsec, ddir,
2985 high_prio);
2986 }
2987
2988 if (iolog && iolog->hist_msec) {
2989 struct io_hist *hw = &iolog->hist_window[ddir];
2990
2991 hw->samples++;
2992 elapsed = mtime_since_now(&td->epoch);
2993 if (!hw->hist_last)
2994 hw->hist_last = elapsed;
2995 this_window = elapsed - hw->hist_last;
2996
2997 if (this_window >= iolog->hist_msec) {
2998 uint64_t *io_u_plat;
2999 struct io_u_plat_entry *dst;
3000
3001 /*
3002 * Make a byte-for-byte copy of the latency histogram
3003 * stored in td->ts.io_u_plat[ddir], recording it in a
3004 * log sample. Note that the matching call to free() is
3005 * located in iolog.c after printing this sample to the
3006 * log file.
3007 */
3008 io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3009 dst = malloc(sizeof(struct io_u_plat_entry));
3010 memcpy(&(dst->io_u_plat), io_u_plat,
3011 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3012 flist_add(&dst->list, &hw->list);
3013 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3014 elapsed, offset, ioprio);
3015
3016 /*
3017 * Update the last time we recorded as being now, minus
3018 * any drift in time we encountered before actually
3019 * making the record.
3020 */
3021 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3022 hw->samples = 0;
3023 }
3024 }
3025
3026 if (needs_lock)
3027 __td_io_u_unlock(td);
3028}
3029
3030void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3031 unsigned long long nsec, unsigned long long bs,
3032 uint64_t offset, unsigned int ioprio)
3033{
3034 const bool needs_lock = td_async_processing(td);
3035 struct thread_stat *ts = &td->ts;
3036
3037 if (!ddir_rw(ddir))
3038 return;
3039
3040 if (needs_lock)
3041 __td_io_u_lock(td);
3042
3043 add_stat_sample(&ts->slat_stat[ddir], nsec);
3044
3045 if (td->slat_log)
3046 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3047 offset, ioprio);
3048
3049 if (ts->slat_percentiles)
3050 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3051
3052 if (needs_lock)
3053 __td_io_u_unlock(td);
3054}
3055
3056void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3057 unsigned long long nsec, unsigned long long bs,
3058 uint64_t offset, unsigned int ioprio, bool high_prio)
3059{
3060 const bool needs_lock = td_async_processing(td);
3061 struct thread_stat *ts = &td->ts;
3062
3063 if (!ddir_rw(ddir))
3064 return;
3065
3066 if (needs_lock)
3067 __td_io_u_lock(td);
3068
3069 add_stat_sample(&ts->lat_stat[ddir], nsec);
3070
3071 if (td->lat_log)
3072 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3073 offset, ioprio);
3074
3075 /*
3076 * When lat_percentiles=1 (default 0), the reported high/low priority
3077 * percentiles and stats are used for describing total latency values,
3078 * even though the variable names themselves start with clat_.
3079 *
3080 * Because of the above definition, add a prio stat and prio lat
3081 * percentile sample only when lat_percentiles=1. add_clat_sample() will
3082 * add the prio stat and prio lat percentile sample when
3083 * lat_percentiles=0.
3084 */
3085 if (ts->lat_percentiles) {
3086 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3087 add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3088 if (high_prio)
3089 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3090 else
3091 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3092
3093 }
3094 if (needs_lock)
3095 __td_io_u_unlock(td);
3096}
3097
3098void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3099 unsigned int bytes, unsigned long long spent)
3100{
3101 const bool needs_lock = td_async_processing(td);
3102 struct thread_stat *ts = &td->ts;
3103 unsigned long rate;
3104
3105 if (spent)
3106 rate = (unsigned long) (bytes * 1000000ULL / spent);
3107 else
3108 rate = 0;
3109
3110 if (needs_lock)
3111 __td_io_u_lock(td);
3112
3113 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3114
3115 if (td->bw_log)
3116 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3117 bytes, io_u->offset, io_u->ioprio);
3118
3119 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3120
3121 if (needs_lock)
3122 __td_io_u_unlock(td);
3123}
3124
3125static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3126 struct timespec *t, unsigned int avg_time,
3127 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3128 struct io_stat *stat, struct io_log *log,
3129 bool is_kb)
3130{
3131 const bool needs_lock = td_async_processing(td);
3132 unsigned long spent, rate;
3133 enum fio_ddir ddir;
3134 unsigned long next, next_log;
3135
3136 next_log = avg_time;
3137
3138 spent = mtime_since(parent_tv, t);
3139 if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3140 return avg_time - spent;
3141
3142 if (needs_lock)
3143 __td_io_u_lock(td);
3144
3145 /*
3146 * Compute both read and write rates for the interval.
3147 */
3148 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3149 uint64_t delta;
3150
3151 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3152 if (!delta)
3153 continue; /* No entries for interval */
3154
3155 if (spent) {
3156 if (is_kb)
3157 rate = delta * 1000 / spent / 1024; /* KiB/s */
3158 else
3159 rate = (delta * 1000) / spent;
3160 } else
3161 rate = 0;
3162
3163 add_stat_sample(&stat[ddir], rate);
3164
3165 if (log) {
3166 unsigned long long bs = 0;
3167
3168 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3169 bs = td->o.min_bs[ddir];
3170
3171 next = add_log_sample(td, log, sample_val(rate), ddir,
3172 bs, 0, 0);
3173 next_log = min(next_log, next);
3174 }
3175
3176 stat_io_bytes[ddir] = this_io_bytes[ddir];
3177 }
3178
3179 *parent_tv = *t;
3180
3181 if (needs_lock)
3182 __td_io_u_unlock(td);
3183
3184 if (spent <= avg_time)
3185 next = avg_time;
3186 else
3187 next = avg_time - (1 + spent - avg_time);
3188
3189 return min(next, next_log);
3190}
3191
3192static int add_bw_samples(struct thread_data *td, struct timespec *t)
3193{
3194 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3195 td->this_io_bytes, td->stat_io_bytes,
3196 td->ts.bw_stat, td->bw_log, true);
3197}
3198
3199void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3200 unsigned int bytes)
3201{
3202 const bool needs_lock = td_async_processing(td);
3203 struct thread_stat *ts = &td->ts;
3204
3205 if (needs_lock)
3206 __td_io_u_lock(td);
3207
3208 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3209
3210 if (td->iops_log)
3211 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3212 bytes, io_u->offset, io_u->ioprio);
3213
3214 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3215
3216 if (needs_lock)
3217 __td_io_u_unlock(td);
3218}
3219
3220static int add_iops_samples(struct thread_data *td, struct timespec *t)
3221{
3222 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3223 td->this_io_blocks, td->stat_io_blocks,
3224 td->ts.iops_stat, td->iops_log, false);
3225}
3226
3227/*
3228 * Returns msecs to next event
3229 */
3230int calc_log_samples(void)
3231{
3232 struct thread_data *td;
3233 unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3234 struct timespec now;
3235 int i;
3236 long elapsed_time = 0;
3237
3238 fio_gettime(&now, NULL);
3239
3240 for_each_td(td, i) {
3241 elapsed_time = mtime_since_now(&td->epoch);
3242
3243 if (!td->o.stats)
3244 continue;
3245 if (in_ramp_time(td) ||
3246 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3247 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3248 continue;
3249 }
3250 if (!td->bw_log ||
3251 (td->bw_log && !per_unit_log(td->bw_log))) {
3252 tmp = add_bw_samples(td, &now);
3253
3254 if (td->bw_log)
3255 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3256 }
3257 if (!td->iops_log ||
3258 (td->iops_log && !per_unit_log(td->iops_log))) {
3259 tmp = add_iops_samples(td, &now);
3260
3261 if (td->iops_log)
3262 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3263 }
3264
3265 if (tmp < next)
3266 next = tmp;
3267 }
3268
3269 /* if log_avg_msec_min has not been changed, set it to 0 */
3270 if (log_avg_msec_min == -1U)
3271 log_avg_msec_min = 0;
3272
3273 if (log_avg_msec_min == 0)
3274 next_mod = elapsed_time;
3275 else
3276 next_mod = elapsed_time % log_avg_msec_min;
3277
3278 /* correction to keep the time on the log avg msec boundary */
3279 next = min(next, (log_avg_msec_min - next_mod));
3280
3281 return next == ~0U ? 0 : next;
3282}
3283
3284void stat_init(void)
3285{
3286 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3287}
3288
3289void stat_exit(void)
3290{
3291 /*
3292 * When we have the mutex, we know out-of-band access to it
3293 * have ended.
3294 */
3295 fio_sem_down(stat_sem);
3296 fio_sem_remove(stat_sem);
3297}
3298
3299/*
3300 * Called from signal handler. Wake up status thread.
3301 */
3302void show_running_run_stats(void)
3303{
3304 helper_do_stat();
3305}
3306
3307uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3308{
3309 /* Ignore io_u's which span multiple blocks--they will just get
3310 * inaccurate counts. */
3311 int idx = (io_u->offset - io_u->file->file_offset)
3312 / td->o.bs[DDIR_TRIM];
3313 uint32_t *info = &td->ts.block_infos[idx];
3314 assert(idx < td->ts.nr_block_infos);
3315 return info;
3316}
3317