t/io_uring: verbose error for -95/-EOPNOTSUPP failure
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18
19#define LOG_MSEC_SLACK 1
20
21struct fio_sem *stat_sem;
22
23void clear_rusage_stat(struct thread_data *td)
24{
25 struct thread_stat *ts = &td->ts;
26
27 fio_getrusage(&td->ru_start);
28 ts->usr_time = ts->sys_time = 0;
29 ts->ctx = 0;
30 ts->minf = ts->majf = 0;
31}
32
33void update_rusage_stat(struct thread_data *td)
34{
35 struct thread_stat *ts = &td->ts;
36
37 fio_getrusage(&td->ru_end);
38 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39 &td->ru_end.ru_utime);
40 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41 &td->ru_end.ru_stime);
42 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48}
49
50/*
51 * Given a latency, return the index of the corresponding bucket in
52 * the structure tracking percentiles.
53 *
54 * (1) find the group (and error bits) that the value (latency)
55 * belongs to by looking at its MSB. (2) find the bucket number in the
56 * group by looking at the index bits.
57 *
58 */
59static unsigned int plat_val_to_idx(unsigned long long val)
60{
61 unsigned int msb, error_bits, base, offset, idx;
62
63 /* Find MSB starting from bit 0 */
64 if (val == 0)
65 msb = 0;
66 else
67 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69 /*
70 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71 * all bits of the sample as index
72 */
73 if (msb <= FIO_IO_U_PLAT_BITS)
74 return val;
75
76 /* Compute the number of error bits to discard*/
77 error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79 /* Compute the number of buckets before the group */
80 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82 /*
83 * Discard the error bits and apply the mask to find the
84 * index for the buckets in the group
85 */
86 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88 /* Make sure the index does not exceed (array size - 1) */
89 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92 return idx;
93}
94
95/*
96 * Convert the given index of the bucket array to the value
97 * represented by the bucket
98 */
99static unsigned long long plat_idx_to_val(unsigned int idx)
100{
101 unsigned int error_bits;
102 unsigned long long k, base;
103
104 assert(idx < FIO_IO_U_PLAT_NR);
105
106 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107 * all bits of the sample as index */
108 if (idx < (FIO_IO_U_PLAT_VAL << 1))
109 return idx;
110
111 /* Find the group and compute the minimum value of that group */
112 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115 /* Find its bucket number of the group */
116 k = idx % FIO_IO_U_PLAT_VAL;
117
118 /* Return the mean of the range of the bucket */
119 return base + ((k + 0.5) * (1 << error_bits));
120}
121
122static int double_cmp(const void *a, const void *b)
123{
124 const fio_fp64_t fa = *(const fio_fp64_t *) a;
125 const fio_fp64_t fb = *(const fio_fp64_t *) b;
126 int cmp = 0;
127
128 if (fa.u.f > fb.u.f)
129 cmp = 1;
130 else if (fa.u.f < fb.u.f)
131 cmp = -1;
132
133 return cmp;
134}
135
136unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137 fio_fp64_t *plist, unsigned long long **output,
138 unsigned long long *maxv, unsigned long long *minv)
139{
140 unsigned long long sum = 0;
141 unsigned int len, i, j = 0;
142 unsigned int oval_len = 0;
143 unsigned long long *ovals = NULL;
144 bool is_last;
145
146 *minv = -1ULL;
147 *maxv = 0;
148
149 len = 0;
150 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151 len++;
152
153 if (!len)
154 return 0;
155
156 /*
157 * Sort the percentile list. Note that it may already be sorted if
158 * we are using the default values, but since it's a short list this
159 * isn't a worry. Also note that this does not work for NaN values.
160 */
161 if (len > 1)
162 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
163
164 /*
165 * Calculate bucket values, note down max and min values
166 */
167 is_last = false;
168 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
169 sum += io_u_plat[i];
170 while (sum >= (plist[j].u.f / 100.0 * nr)) {
171 assert(plist[j].u.f <= 100.0);
172
173 if (j == oval_len) {
174 oval_len += 100;
175 ovals = realloc(ovals, oval_len * sizeof(*ovals));
176 }
177
178 ovals[j] = plat_idx_to_val(i);
179 if (ovals[j] < *minv)
180 *minv = ovals[j];
181 if (ovals[j] > *maxv)
182 *maxv = ovals[j];
183
184 is_last = (j == len - 1) != 0;
185 if (is_last)
186 break;
187
188 j++;
189 }
190 }
191
192 *output = ovals;
193 return len;
194}
195
196/*
197 * Find and display the p-th percentile of clat
198 */
199static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
200 fio_fp64_t *plist, unsigned int precision,
201 const char *pre, struct buf_output *out)
202{
203 unsigned int divisor, len, i, j = 0;
204 unsigned long long minv, maxv;
205 unsigned long long *ovals;
206 int per_line, scale_down, time_width;
207 bool is_last;
208 char fmt[32];
209
210 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211 if (!len || !ovals)
212 goto out;
213
214 /*
215 * We default to nsecs, but if the value range is such that we
216 * should scale down to usecs or msecs, do that.
217 */
218 if (minv > 2000000 && maxv > 99999999ULL) {
219 scale_down = 2;
220 divisor = 1000000;
221 log_buf(out, " %s percentiles (msec):\n |", pre);
222 } else if (minv > 2000 && maxv > 99999) {
223 scale_down = 1;
224 divisor = 1000;
225 log_buf(out, " %s percentiles (usec):\n |", pre);
226 } else {
227 scale_down = 0;
228 divisor = 1;
229 log_buf(out, " %s percentiles (nsec):\n |", pre);
230 }
231
232
233 time_width = max(5, (int) (log10(maxv / divisor) + 1));
234 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235 precision, time_width);
236 /* fmt will be something like " %5.2fth=[%4llu]%c" */
237 per_line = (80 - 7) / (precision + 10 + time_width);
238
239 for (j = 0; j < len; j++) {
240 /* for formatting */
241 if (j != 0 && (j % per_line) == 0)
242 log_buf(out, " |");
243
244 /* end of the list */
245 is_last = (j == len - 1) != 0;
246
247 for (i = 0; i < scale_down; i++)
248 ovals[j] = (ovals[j] + 999) / 1000;
249
250 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252 if (is_last)
253 break;
254
255 if ((j % per_line) == per_line - 1) /* for formatting */
256 log_buf(out, "\n");
257 }
258
259out:
260 if (ovals)
261 free(ovals);
262}
263
264bool calc_lat(struct io_stat *is, unsigned long long *min,
265 unsigned long long *max, double *mean, double *dev)
266{
267 double n = (double) is->samples;
268
269 if (n == 0)
270 return false;
271
272 *min = is->min_val;
273 *max = is->max_val;
274 *mean = is->mean.u.f;
275
276 if (n > 1.0)
277 *dev = sqrt(is->S.u.f / (n - 1.0));
278 else
279 *dev = 0;
280
281 return true;
282}
283
284void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285{
286 char *io, *agg, *min, *max;
287 char *ioalt, *aggalt, *minalt, *maxalt;
288 const char *str[] = { " READ", " WRITE" , " TRIM"};
289 int i;
290
291 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294 const int i2p = is_power_of_2(rs->kb_base);
295
296 if (!rs->max_run[i])
297 continue;
298
299 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
300 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
301 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
302 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
303 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
304 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308 rs->unified_rw_rep ? " MIXED" : str[i],
309 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310 (unsigned long long) rs->min_run[i],
311 (unsigned long long) rs->max_run[i]);
312
313 free(io);
314 free(agg);
315 free(min);
316 free(max);
317 free(ioalt);
318 free(aggalt);
319 free(minalt);
320 free(maxalt);
321 }
322}
323
324void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
325{
326 int i;
327
328 /*
329 * Do depth distribution calculations
330 */
331 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332 if (total) {
333 io_u_dist[i] = (double) map[i] / (double) total;
334 io_u_dist[i] *= 100.0;
335 if (io_u_dist[i] < 0.1 && map[i])
336 io_u_dist[i] = 0.1;
337 } else
338 io_u_dist[i] = 0.0;
339 }
340}
341
342static void stat_calc_lat(struct thread_stat *ts, double *dst,
343 uint64_t *src, int nr)
344{
345 unsigned long total = ddir_rw_sum(ts->total_io_u);
346 int i;
347
348 /*
349 * Do latency distribution calculations
350 */
351 for (i = 0; i < nr; i++) {
352 if (total) {
353 dst[i] = (double) src[i] / (double) total;
354 dst[i] *= 100.0;
355 if (dst[i] < 0.01 && src[i])
356 dst[i] = 0.01;
357 } else
358 dst[i] = 0.0;
359 }
360}
361
362/*
363 * To keep the terse format unaltered, add all of the ns latency
364 * buckets to the first us latency bucket
365 */
366static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367{
368 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369 int i;
370
371 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374 ntotal += ts->io_u_lat_n[i];
375
376 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377}
378
379void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380{
381 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382}
383
384void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385{
386 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387}
388
389void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390{
391 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392}
393
394static void display_lat(const char *name, unsigned long long min,
395 unsigned long long max, double mean, double dev,
396 struct buf_output *out)
397{
398 const char *base = "(nsec)";
399 char *minp, *maxp;
400
401 if (nsec_to_msec(&min, &max, &mean, &dev))
402 base = "(msec)";
403 else if (nsec_to_usec(&min, &max, &mean, &dev))
404 base = "(usec)";
405
406 minp = num2str(min, 6, 1, 0, N2S_NONE);
407 maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
410 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412 free(minp);
413 free(maxp);
414}
415
416static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417 int ddir, struct buf_output *out)
418{
419 unsigned long runt;
420 unsigned long long min, max, bw, iops;
421 double mean, dev;
422 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
423 int i2p;
424
425 if (ddir_sync(ddir)) {
426 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
427 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
428 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
429 show_clat_percentiles(ts->io_u_sync_plat,
430 ts->sync_stat.samples,
431 ts->percentile_list,
432 ts->percentile_precision,
433 io_ddir_name(ddir), out);
434 }
435 return;
436 }
437
438 assert(ddir_rw(ddir));
439
440 if (!ts->runtime[ddir])
441 return;
442
443 i2p = is_power_of_2(rs->kb_base);
444 runt = ts->runtime[ddir];
445
446 bw = (1000 * ts->io_bytes[ddir]) / runt;
447 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
448 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
449 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
450
451 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
452 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
453 if (ddir == DDIR_WRITE)
454 post_st = zbd_write_status(ts);
455 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
456 uint64_t total;
457 double hit;
458
459 total = ts->cachehit + ts->cachemiss;
460 hit = (double) ts->cachehit / (double) total;
461 hit *= 100.0;
462 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
463 post_st = NULL;
464 }
465
466 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
467 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
468 iops_p, bw_p, bw_p_alt, io_p,
469 (unsigned long long) ts->runtime[ddir],
470 post_st ? : "");
471
472 free(post_st);
473 free(io_p);
474 free(bw_p);
475 free(bw_p_alt);
476 free(iops_p);
477
478 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
479 display_lat("slat", min, max, mean, dev, out);
480 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
481 display_lat("clat", min, max, mean, dev, out);
482 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
483 display_lat(" lat", min, max, mean, dev, out);
484
485 if (ts->clat_percentiles || ts->lat_percentiles) {
486 const char *name = ts->clat_percentiles ? "clat" : " lat";
487 uint64_t samples;
488
489 if (ts->clat_percentiles)
490 samples = ts->clat_stat[ddir].samples;
491 else
492 samples = ts->lat_stat[ddir].samples;
493
494 show_clat_percentiles(ts->io_u_plat[ddir],
495 samples,
496 ts->percentile_list,
497 ts->percentile_precision, name, out);
498 }
499 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
500 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
501 const char *bw_str;
502
503 if ((rs->unit_base == 1) && i2p)
504 bw_str = "Kibit";
505 else if (rs->unit_base == 1)
506 bw_str = "kbit";
507 else if (i2p)
508 bw_str = "KiB";
509 else
510 bw_str = "kB";
511
512 if (rs->agg[ddir]) {
513 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
514 if (p_of_agg > 100.0)
515 p_of_agg = 100.0;
516 }
517
518 if (rs->unit_base == 1) {
519 min *= 8.0;
520 max *= 8.0;
521 mean *= 8.0;
522 dev *= 8.0;
523 }
524
525 if (mean > fkb_base * fkb_base) {
526 min /= fkb_base;
527 max /= fkb_base;
528 mean /= fkb_base;
529 dev /= fkb_base;
530 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
531 }
532
533 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
534 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
535 bw_str, min, max, p_of_agg, mean, dev,
536 (&ts->bw_stat[ddir])->samples);
537 }
538 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
539 log_buf(out, " iops : min=%5llu, max=%5llu, "
540 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
541 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
542 }
543}
544
545static bool show_lat(double *io_u_lat, int nr, const char **ranges,
546 const char *msg, struct buf_output *out)
547{
548 bool new_line = true, shown = false;
549 int i, line = 0;
550
551 for (i = 0; i < nr; i++) {
552 if (io_u_lat[i] <= 0.0)
553 continue;
554 shown = true;
555 if (new_line) {
556 if (line)
557 log_buf(out, "\n");
558 log_buf(out, " lat (%s) : ", msg);
559 new_line = false;
560 line = 0;
561 }
562 if (line)
563 log_buf(out, ", ");
564 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
565 line++;
566 if (line == 5)
567 new_line = true;
568 }
569
570 if (shown)
571 log_buf(out, "\n");
572
573 return true;
574}
575
576static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
577{
578 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
579 "250=", "500=", "750=", "1000=", };
580
581 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
582}
583
584static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
585{
586 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
587 "250=", "500=", "750=", "1000=", };
588
589 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
590}
591
592static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
593{
594 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
595 "250=", "500=", "750=", "1000=", "2000=",
596 ">=2000=", };
597
598 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
599}
600
601static void show_latencies(struct thread_stat *ts, struct buf_output *out)
602{
603 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
604 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
605 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
606
607 stat_calc_lat_n(ts, io_u_lat_n);
608 stat_calc_lat_u(ts, io_u_lat_u);
609 stat_calc_lat_m(ts, io_u_lat_m);
610
611 show_lat_n(io_u_lat_n, out);
612 show_lat_u(io_u_lat_u, out);
613 show_lat_m(io_u_lat_m, out);
614}
615
616static int block_state_category(int block_state)
617{
618 switch (block_state) {
619 case BLOCK_STATE_UNINIT:
620 return 0;
621 case BLOCK_STATE_TRIMMED:
622 case BLOCK_STATE_WRITTEN:
623 return 1;
624 case BLOCK_STATE_WRITE_FAILURE:
625 case BLOCK_STATE_TRIM_FAILURE:
626 return 2;
627 default:
628 /* Silence compile warning on some BSDs and have a return */
629 assert(0);
630 return -1;
631 }
632}
633
634static int compare_block_infos(const void *bs1, const void *bs2)
635{
636 uint64_t block1 = *(uint64_t *)bs1;
637 uint64_t block2 = *(uint64_t *)bs2;
638 int state1 = BLOCK_INFO_STATE(block1);
639 int state2 = BLOCK_INFO_STATE(block2);
640 int bscat1 = block_state_category(state1);
641 int bscat2 = block_state_category(state2);
642 int cycles1 = BLOCK_INFO_TRIMS(block1);
643 int cycles2 = BLOCK_INFO_TRIMS(block2);
644
645 if (bscat1 < bscat2)
646 return -1;
647 if (bscat1 > bscat2)
648 return 1;
649
650 if (cycles1 < cycles2)
651 return -1;
652 if (cycles1 > cycles2)
653 return 1;
654
655 if (state1 < state2)
656 return -1;
657 if (state1 > state2)
658 return 1;
659
660 assert(block1 == block2);
661 return 0;
662}
663
664static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
665 fio_fp64_t *plist, unsigned int **percentiles,
666 unsigned int *types)
667{
668 int len = 0;
669 int i, nr_uninit;
670
671 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
672
673 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
674 len++;
675
676 if (!len)
677 return 0;
678
679 /*
680 * Sort the percentile list. Note that it may already be sorted if
681 * we are using the default values, but since it's a short list this
682 * isn't a worry. Also note that this does not work for NaN values.
683 */
684 if (len > 1)
685 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
686
687 /* Start only after the uninit entries end */
688 for (nr_uninit = 0;
689 nr_uninit < nr_block_infos
690 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
691 nr_uninit ++)
692 ;
693
694 if (nr_uninit == nr_block_infos)
695 return 0;
696
697 *percentiles = calloc(len, sizeof(**percentiles));
698
699 for (i = 0; i < len; i++) {
700 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
701 + nr_uninit;
702 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
703 }
704
705 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
706 for (i = 0; i < nr_block_infos; i++)
707 types[BLOCK_INFO_STATE(block_infos[i])]++;
708
709 return len;
710}
711
712static const char *block_state_names[] = {
713 [BLOCK_STATE_UNINIT] = "unwritten",
714 [BLOCK_STATE_TRIMMED] = "trimmed",
715 [BLOCK_STATE_WRITTEN] = "written",
716 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
717 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
718};
719
720static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
721 fio_fp64_t *plist, struct buf_output *out)
722{
723 int len, pos, i;
724 unsigned int *percentiles = NULL;
725 unsigned int block_state_counts[BLOCK_STATE_COUNT];
726
727 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
728 &percentiles, block_state_counts);
729
730 log_buf(out, " block lifetime percentiles :\n |");
731 pos = 0;
732 for (i = 0; i < len; i++) {
733 uint32_t block_info = percentiles[i];
734#define LINE_LENGTH 75
735 char str[LINE_LENGTH];
736 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
737 plist[i].u.f, block_info,
738 i == len - 1 ? '\n' : ',');
739 assert(strln < LINE_LENGTH);
740 if (pos + strln > LINE_LENGTH) {
741 pos = 0;
742 log_buf(out, "\n |");
743 }
744 log_buf(out, "%s", str);
745 pos += strln;
746#undef LINE_LENGTH
747 }
748 if (percentiles)
749 free(percentiles);
750
751 log_buf(out, " states :");
752 for (i = 0; i < BLOCK_STATE_COUNT; i++)
753 log_buf(out, " %s=%u%c",
754 block_state_names[i], block_state_counts[i],
755 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
756}
757
758static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
759{
760 char *p1, *p1alt, *p2;
761 unsigned long long bw_mean, iops_mean;
762 const int i2p = is_power_of_2(ts->kb_base);
763
764 if (!ts->ss_dur)
765 return;
766
767 bw_mean = steadystate_bw_mean(ts);
768 iops_mean = steadystate_iops_mean(ts);
769
770 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
771 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
772 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
773
774 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
775 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
776 p1, p1alt, p2,
777 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
778 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
779 ts->ss_criterion.u.f,
780 ts->ss_state & FIO_SS_PCT ? "%" : "");
781
782 free(p1);
783 free(p1alt);
784 free(p2);
785}
786
787static void show_thread_status_normal(struct thread_stat *ts,
788 struct group_run_stats *rs,
789 struct buf_output *out)
790{
791 double usr_cpu, sys_cpu;
792 unsigned long runtime;
793 double io_u_dist[FIO_IO_U_MAP_NR];
794 time_t time_p;
795 char time_buf[32];
796
797 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
798 return;
799
800 memset(time_buf, 0, sizeof(time_buf));
801
802 time(&time_p);
803 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
804
805 if (!ts->error) {
806 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
807 ts->name, ts->groupid, ts->members,
808 ts->error, (int) ts->pid, time_buf);
809 } else {
810 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
811 ts->name, ts->groupid, ts->members,
812 ts->error, ts->verror, (int) ts->pid,
813 time_buf);
814 }
815
816 if (strlen(ts->description))
817 log_buf(out, " Description : [%s]\n", ts->description);
818
819 if (ts->io_bytes[DDIR_READ])
820 show_ddir_status(rs, ts, DDIR_READ, out);
821 if (ts->io_bytes[DDIR_WRITE])
822 show_ddir_status(rs, ts, DDIR_WRITE, out);
823 if (ts->io_bytes[DDIR_TRIM])
824 show_ddir_status(rs, ts, DDIR_TRIM, out);
825
826 show_latencies(ts, out);
827
828 if (ts->sync_stat.samples)
829 show_ddir_status(rs, ts, DDIR_SYNC, out);
830
831 runtime = ts->total_run_time;
832 if (runtime) {
833 double runt = (double) runtime;
834
835 usr_cpu = (double) ts->usr_time * 100 / runt;
836 sys_cpu = (double) ts->sys_time * 100 / runt;
837 } else {
838 usr_cpu = 0;
839 sys_cpu = 0;
840 }
841
842 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
843 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
844 (unsigned long long) ts->ctx,
845 (unsigned long long) ts->majf,
846 (unsigned long long) ts->minf);
847
848 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
849 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
850 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
851 io_u_dist[1], io_u_dist[2],
852 io_u_dist[3], io_u_dist[4],
853 io_u_dist[5], io_u_dist[6]);
854
855 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
856 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
857 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
858 io_u_dist[1], io_u_dist[2],
859 io_u_dist[3], io_u_dist[4],
860 io_u_dist[5], io_u_dist[6]);
861 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
862 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
863 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
864 io_u_dist[1], io_u_dist[2],
865 io_u_dist[3], io_u_dist[4],
866 io_u_dist[5], io_u_dist[6]);
867 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
868 " short=%llu,%llu,%llu,0"
869 " dropped=%llu,%llu,%llu,0\n",
870 (unsigned long long) ts->total_io_u[0],
871 (unsigned long long) ts->total_io_u[1],
872 (unsigned long long) ts->total_io_u[2],
873 (unsigned long long) ts->total_io_u[3],
874 (unsigned long long) ts->short_io_u[0],
875 (unsigned long long) ts->short_io_u[1],
876 (unsigned long long) ts->short_io_u[2],
877 (unsigned long long) ts->drop_io_u[0],
878 (unsigned long long) ts->drop_io_u[1],
879 (unsigned long long) ts->drop_io_u[2]);
880 if (ts->continue_on_error) {
881 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
882 (unsigned long long)ts->total_err_count,
883 ts->first_error,
884 strerror(ts->first_error));
885 }
886 if (ts->latency_depth) {
887 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
888 (unsigned long long)ts->latency_target,
889 (unsigned long long)ts->latency_window,
890 ts->latency_percentile.u.f,
891 ts->latency_depth);
892 }
893
894 if (ts->nr_block_infos)
895 show_block_infos(ts->nr_block_infos, ts->block_infos,
896 ts->percentile_list, out);
897
898 if (ts->ss_dur)
899 show_ss_normal(ts, out);
900}
901
902static void show_ddir_status_terse(struct thread_stat *ts,
903 struct group_run_stats *rs, int ddir,
904 int ver, struct buf_output *out)
905{
906 unsigned long long min, max, minv, maxv, bw, iops;
907 unsigned long long *ovals = NULL;
908 double mean, dev;
909 unsigned int len;
910 int i, bw_stat;
911
912 assert(ddir_rw(ddir));
913
914 iops = bw = 0;
915 if (ts->runtime[ddir]) {
916 uint64_t runt = ts->runtime[ddir];
917
918 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
919 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
920 }
921
922 log_buf(out, ";%llu;%llu;%llu;%llu",
923 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
924 (unsigned long long) ts->runtime[ddir]);
925
926 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
927 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
928 else
929 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
930
931 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
932 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
933 else
934 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
935
936 if (ts->clat_percentiles || ts->lat_percentiles) {
937 len = calc_clat_percentiles(ts->io_u_plat[ddir],
938 ts->clat_stat[ddir].samples,
939 ts->percentile_list, &ovals, &maxv,
940 &minv);
941 } else
942 len = 0;
943
944 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
945 if (i >= len) {
946 log_buf(out, ";0%%=0");
947 continue;
948 }
949 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
950 }
951
952 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
953 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
954 else
955 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
956
957 if (ovals)
958 free(ovals);
959
960 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
961 if (bw_stat) {
962 double p_of_agg = 100.0;
963
964 if (rs->agg[ddir]) {
965 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
966 if (p_of_agg > 100.0)
967 p_of_agg = 100.0;
968 }
969
970 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
971 } else
972 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
973
974 if (ver == 5) {
975 if (bw_stat)
976 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
977 else
978 log_buf(out, ";%lu", 0UL);
979
980 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
981 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
982 mean, dev, (&ts->iops_stat[ddir])->samples);
983 else
984 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
985 }
986}
987
988static void add_ddir_status_json(struct thread_stat *ts,
989 struct group_run_stats *rs, int ddir, struct json_object *parent)
990{
991 unsigned long long min, max, minv, maxv;
992 unsigned long long bw_bytes, bw;
993 unsigned long long *ovals = NULL;
994 double mean, dev, iops;
995 unsigned int len;
996 int i;
997 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
998 char buf[120];
999 double p_of_agg = 100.0;
1000
1001 assert(ddir_rw(ddir) || ddir_sync(ddir));
1002
1003 if (ts->unified_rw_rep && ddir != DDIR_READ)
1004 return;
1005
1006 dir_object = json_create_object();
1007 json_object_add_value_object(parent,
1008 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1009
1010 if (ddir_rw(ddir)) {
1011 bw_bytes = 0;
1012 bw = 0;
1013 iops = 0.0;
1014 if (ts->runtime[ddir]) {
1015 uint64_t runt = ts->runtime[ddir];
1016
1017 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1018 bw = bw_bytes / 1024; /* KiB/s */
1019 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1020 }
1021
1022 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1023 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1024 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1025 json_object_add_value_int(dir_object, "bw", bw);
1026 json_object_add_value_float(dir_object, "iops", iops);
1027 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1028 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1029 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1030 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1031
1032 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1033 min = max = 0;
1034 mean = dev = 0.0;
1035 }
1036 tmp_object = json_create_object();
1037 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1038 json_object_add_value_int(tmp_object, "min", min);
1039 json_object_add_value_int(tmp_object, "max", max);
1040 json_object_add_value_float(tmp_object, "mean", mean);
1041 json_object_add_value_float(tmp_object, "stddev", dev);
1042
1043 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1044 min = max = 0;
1045 mean = dev = 0.0;
1046 }
1047 tmp_object = json_create_object();
1048 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1049 json_object_add_value_int(tmp_object, "min", min);
1050 json_object_add_value_int(tmp_object, "max", max);
1051 json_object_add_value_float(tmp_object, "mean", mean);
1052 json_object_add_value_float(tmp_object, "stddev", dev);
1053 } else {
1054 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1055 min = max = 0;
1056 mean = dev = 0.0;
1057 }
1058
1059 tmp_object = json_create_object();
1060 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1061 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1062 json_object_add_value_int(tmp_object, "min", min);
1063 json_object_add_value_int(tmp_object, "max", max);
1064 json_object_add_value_float(tmp_object, "mean", mean);
1065 json_object_add_value_float(tmp_object, "stddev", dev);
1066 }
1067
1068 if (ts->clat_percentiles || ts->lat_percentiles) {
1069 if (ddir_rw(ddir)) {
1070 uint64_t samples;
1071
1072 if (ts->clat_percentiles)
1073 samples = ts->clat_stat[ddir].samples;
1074 else
1075 samples = ts->lat_stat[ddir].samples;
1076
1077 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1078 samples, ts->percentile_list, &ovals,
1079 &maxv, &minv);
1080 } else {
1081 len = calc_clat_percentiles(ts->io_u_sync_plat,
1082 ts->sync_stat.samples,
1083 ts->percentile_list, &ovals, &maxv,
1084 &minv);
1085 }
1086
1087 if (len > FIO_IO_U_LIST_MAX_LEN)
1088 len = FIO_IO_U_LIST_MAX_LEN;
1089 } else
1090 len = 0;
1091
1092 percentile_object = json_create_object();
1093 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1094 for (i = 0; i < len; i++) {
1095 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1096 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1097 }
1098
1099 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1100 clat_bins_object = json_create_object();
1101 if (ts->clat_percentiles)
1102 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1103
1104 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1105 if (ddir_rw(ddir)) {
1106 if (ts->io_u_plat[ddir][i]) {
1107 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1108 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1109 }
1110 } else {
1111 if (ts->io_u_sync_plat[i]) {
1112 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1113 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1114 }
1115 }
1116 }
1117 }
1118
1119 if (!ddir_rw(ddir))
1120 return;
1121
1122 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1123 min = max = 0;
1124 mean = dev = 0.0;
1125 }
1126 tmp_object = json_create_object();
1127 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1128 json_object_add_value_int(tmp_object, "min", min);
1129 json_object_add_value_int(tmp_object, "max", max);
1130 json_object_add_value_float(tmp_object, "mean", mean);
1131 json_object_add_value_float(tmp_object, "stddev", dev);
1132 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1133 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1134
1135 if (ovals)
1136 free(ovals);
1137
1138 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1139 if (rs->agg[ddir]) {
1140 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1141 if (p_of_agg > 100.0)
1142 p_of_agg = 100.0;
1143 }
1144 } else {
1145 min = max = 0;
1146 p_of_agg = mean = dev = 0.0;
1147 }
1148 json_object_add_value_int(dir_object, "bw_min", min);
1149 json_object_add_value_int(dir_object, "bw_max", max);
1150 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1151 json_object_add_value_float(dir_object, "bw_mean", mean);
1152 json_object_add_value_float(dir_object, "bw_dev", dev);
1153 json_object_add_value_int(dir_object, "bw_samples",
1154 (&ts->bw_stat[ddir])->samples);
1155
1156 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1157 min = max = 0;
1158 mean = dev = 0.0;
1159 }
1160 json_object_add_value_int(dir_object, "iops_min", min);
1161 json_object_add_value_int(dir_object, "iops_max", max);
1162 json_object_add_value_float(dir_object, "iops_mean", mean);
1163 json_object_add_value_float(dir_object, "iops_stddev", dev);
1164 json_object_add_value_int(dir_object, "iops_samples",
1165 (&ts->iops_stat[ddir])->samples);
1166
1167 if (ts->cachehit + ts->cachemiss) {
1168 uint64_t total;
1169 double hit;
1170
1171 total = ts->cachehit + ts->cachemiss;
1172 hit = (double) ts->cachehit / (double) total;
1173 hit *= 100.0;
1174 json_object_add_value_float(dir_object, "cachehit", hit);
1175 }
1176}
1177
1178static void show_thread_status_terse_all(struct thread_stat *ts,
1179 struct group_run_stats *rs, int ver,
1180 struct buf_output *out)
1181{
1182 double io_u_dist[FIO_IO_U_MAP_NR];
1183 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1184 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1185 double usr_cpu, sys_cpu;
1186 int i;
1187
1188 /* General Info */
1189 if (ver == 2)
1190 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1191 else
1192 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1193 ts->name, ts->groupid, ts->error);
1194
1195 /* Log Read Status */
1196 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1197 /* Log Write Status */
1198 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1199 /* Log Trim Status */
1200 if (ver == 2 || ver == 4 || ver == 5)
1201 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1202
1203 /* CPU Usage */
1204 if (ts->total_run_time) {
1205 double runt = (double) ts->total_run_time;
1206
1207 usr_cpu = (double) ts->usr_time * 100 / runt;
1208 sys_cpu = (double) ts->sys_time * 100 / runt;
1209 } else {
1210 usr_cpu = 0;
1211 sys_cpu = 0;
1212 }
1213
1214 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1215 (unsigned long long) ts->ctx,
1216 (unsigned long long) ts->majf,
1217 (unsigned long long) ts->minf);
1218
1219 /* Calc % distribution of IO depths, usecond, msecond latency */
1220 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1221 stat_calc_lat_nu(ts, io_u_lat_u);
1222 stat_calc_lat_m(ts, io_u_lat_m);
1223
1224 /* Only show fixed 7 I/O depth levels*/
1225 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1226 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1227 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1228
1229 /* Microsecond latency */
1230 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1231 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1232 /* Millisecond latency */
1233 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1234 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1235
1236 /* disk util stats, if any */
1237 if (ver >= 3 && is_running_backend())
1238 show_disk_util(1, NULL, out);
1239
1240 /* Additional output if continue_on_error set - default off*/
1241 if (ts->continue_on_error)
1242 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1243 if (ver == 2)
1244 log_buf(out, "\n");
1245
1246 /* Additional output if description is set */
1247 if (strlen(ts->description))
1248 log_buf(out, ";%s", ts->description);
1249
1250 log_buf(out, "\n");
1251}
1252
1253static void json_add_job_opts(struct json_object *root, const char *name,
1254 struct flist_head *opt_list)
1255{
1256 struct json_object *dir_object;
1257 struct flist_head *entry;
1258 struct print_option *p;
1259
1260 if (flist_empty(opt_list))
1261 return;
1262
1263 dir_object = json_create_object();
1264 json_object_add_value_object(root, name, dir_object);
1265
1266 flist_for_each(entry, opt_list) {
1267 const char *pos = "";
1268
1269 p = flist_entry(entry, struct print_option, list);
1270 if (p->value)
1271 pos = p->value;
1272 json_object_add_value_string(dir_object, p->name, pos);
1273 }
1274}
1275
1276static struct json_object *show_thread_status_json(struct thread_stat *ts,
1277 struct group_run_stats *rs,
1278 struct flist_head *opt_list)
1279{
1280 struct json_object *root, *tmp;
1281 struct jobs_eta *je;
1282 double io_u_dist[FIO_IO_U_MAP_NR];
1283 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1284 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1285 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1286 double usr_cpu, sys_cpu;
1287 int i;
1288 size_t size;
1289
1290 root = json_create_object();
1291 json_object_add_value_string(root, "jobname", ts->name);
1292 json_object_add_value_int(root, "groupid", ts->groupid);
1293 json_object_add_value_int(root, "error", ts->error);
1294
1295 /* ETA Info */
1296 je = get_jobs_eta(true, &size);
1297 if (je) {
1298 json_object_add_value_int(root, "eta", je->eta_sec);
1299 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1300 }
1301
1302 if (opt_list)
1303 json_add_job_opts(root, "job options", opt_list);
1304
1305 add_ddir_status_json(ts, rs, DDIR_READ, root);
1306 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1307 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1308 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1309
1310 /* CPU Usage */
1311 if (ts->total_run_time) {
1312 double runt = (double) ts->total_run_time;
1313
1314 usr_cpu = (double) ts->usr_time * 100 / runt;
1315 sys_cpu = (double) ts->sys_time * 100 / runt;
1316 } else {
1317 usr_cpu = 0;
1318 sys_cpu = 0;
1319 }
1320 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1321 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1322 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1323 json_object_add_value_int(root, "ctx", ts->ctx);
1324 json_object_add_value_int(root, "majf", ts->majf);
1325 json_object_add_value_int(root, "minf", ts->minf);
1326
1327 /* Calc % distribution of IO depths */
1328 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1329 tmp = json_create_object();
1330 json_object_add_value_object(root, "iodepth_level", tmp);
1331 /* Only show fixed 7 I/O depth levels*/
1332 for (i = 0; i < 7; i++) {
1333 char name[20];
1334 if (i < 6)
1335 snprintf(name, 20, "%d", 1 << i);
1336 else
1337 snprintf(name, 20, ">=%d", 1 << i);
1338 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1339 }
1340
1341 /* Calc % distribution of submit IO depths */
1342 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1343 tmp = json_create_object();
1344 json_object_add_value_object(root, "iodepth_submit", tmp);
1345 /* Only show fixed 7 I/O depth levels*/
1346 for (i = 0; i < 7; i++) {
1347 char name[20];
1348 if (i == 0)
1349 snprintf(name, 20, "0");
1350 else if (i < 6)
1351 snprintf(name, 20, "%d", 1 << (i+1));
1352 else
1353 snprintf(name, 20, ">=%d", 1 << i);
1354 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1355 }
1356
1357 /* Calc % distribution of completion IO depths */
1358 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1359 tmp = json_create_object();
1360 json_object_add_value_object(root, "iodepth_complete", tmp);
1361 /* Only show fixed 7 I/O depth levels*/
1362 for (i = 0; i < 7; i++) {
1363 char name[20];
1364 if (i == 0)
1365 snprintf(name, 20, "0");
1366 else if (i < 6)
1367 snprintf(name, 20, "%d", 1 << (i+1));
1368 else
1369 snprintf(name, 20, ">=%d", 1 << i);
1370 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1371 }
1372
1373 /* Calc % distribution of nsecond, usecond, msecond latency */
1374 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1375 stat_calc_lat_n(ts, io_u_lat_n);
1376 stat_calc_lat_u(ts, io_u_lat_u);
1377 stat_calc_lat_m(ts, io_u_lat_m);
1378
1379 /* Nanosecond latency */
1380 tmp = json_create_object();
1381 json_object_add_value_object(root, "latency_ns", tmp);
1382 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1383 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1384 "250", "500", "750", "1000", };
1385 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1386 }
1387 /* Microsecond latency */
1388 tmp = json_create_object();
1389 json_object_add_value_object(root, "latency_us", tmp);
1390 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1391 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1392 "250", "500", "750", "1000", };
1393 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1394 }
1395 /* Millisecond latency */
1396 tmp = json_create_object();
1397 json_object_add_value_object(root, "latency_ms", tmp);
1398 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1399 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1400 "250", "500", "750", "1000", "2000",
1401 ">=2000", };
1402 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1403 }
1404
1405 /* Additional output if continue_on_error set - default off*/
1406 if (ts->continue_on_error) {
1407 json_object_add_value_int(root, "total_err", ts->total_err_count);
1408 json_object_add_value_int(root, "first_error", ts->first_error);
1409 }
1410
1411 if (ts->latency_depth) {
1412 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1413 json_object_add_value_int(root, "latency_target", ts->latency_target);
1414 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1415 json_object_add_value_int(root, "latency_window", ts->latency_window);
1416 }
1417
1418 /* Additional output if description is set */
1419 if (strlen(ts->description))
1420 json_object_add_value_string(root, "desc", ts->description);
1421
1422 if (ts->nr_block_infos) {
1423 /* Block error histogram and types */
1424 int len;
1425 unsigned int *percentiles = NULL;
1426 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1427
1428 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1429 ts->percentile_list,
1430 &percentiles, block_state_counts);
1431
1432 if (len) {
1433 struct json_object *block, *percentile_object, *states;
1434 int state;
1435 block = json_create_object();
1436 json_object_add_value_object(root, "block", block);
1437
1438 percentile_object = json_create_object();
1439 json_object_add_value_object(block, "percentiles",
1440 percentile_object);
1441 for (i = 0; i < len; i++) {
1442 char buf[20];
1443 snprintf(buf, sizeof(buf), "%f",
1444 ts->percentile_list[i].u.f);
1445 json_object_add_value_int(percentile_object,
1446 (const char *)buf,
1447 percentiles[i]);
1448 }
1449
1450 states = json_create_object();
1451 json_object_add_value_object(block, "states", states);
1452 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1453 json_object_add_value_int(states,
1454 block_state_names[state],
1455 block_state_counts[state]);
1456 }
1457 free(percentiles);
1458 }
1459 }
1460
1461 if (ts->ss_dur) {
1462 struct json_object *data;
1463 struct json_array *iops, *bw;
1464 int j, k, l;
1465 char ss_buf[64];
1466
1467 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1468 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1469 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1470 (float) ts->ss_limit.u.f,
1471 ts->ss_state & FIO_SS_PCT ? "%" : "");
1472
1473 tmp = json_create_object();
1474 json_object_add_value_object(root, "steadystate", tmp);
1475 json_object_add_value_string(tmp, "ss", ss_buf);
1476 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1477 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1478
1479 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1480 ts->ss_state & FIO_SS_PCT ? "%" : "");
1481 json_object_add_value_string(tmp, "criterion", ss_buf);
1482 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1483 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1484
1485 data = json_create_object();
1486 json_object_add_value_object(tmp, "data", data);
1487 bw = json_create_array();
1488 iops = json_create_array();
1489
1490 /*
1491 ** if ss was attained or the buffer is not full,
1492 ** ss->head points to the first element in the list.
1493 ** otherwise it actually points to the second element
1494 ** in the list
1495 */
1496 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1497 j = ts->ss_head;
1498 else
1499 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1500 for (l = 0; l < ts->ss_dur; l++) {
1501 k = (j + l) % ts->ss_dur;
1502 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1503 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1504 }
1505 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1506 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1507 json_object_add_value_array(data, "iops", iops);
1508 json_object_add_value_array(data, "bw", bw);
1509 }
1510
1511 return root;
1512}
1513
1514static void show_thread_status_terse(struct thread_stat *ts,
1515 struct group_run_stats *rs,
1516 struct buf_output *out)
1517{
1518 if (terse_version >= 2 && terse_version <= 5)
1519 show_thread_status_terse_all(ts, rs, terse_version, out);
1520 else
1521 log_err("fio: bad terse version!? %d\n", terse_version);
1522}
1523
1524struct json_object *show_thread_status(struct thread_stat *ts,
1525 struct group_run_stats *rs,
1526 struct flist_head *opt_list,
1527 struct buf_output *out)
1528{
1529 struct json_object *ret = NULL;
1530
1531 if (output_format & FIO_OUTPUT_TERSE)
1532 show_thread_status_terse(ts, rs, out);
1533 if (output_format & FIO_OUTPUT_JSON)
1534 ret = show_thread_status_json(ts, rs, opt_list);
1535 if (output_format & FIO_OUTPUT_NORMAL)
1536 show_thread_status_normal(ts, rs, out);
1537
1538 return ret;
1539}
1540
1541static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1542{
1543 double mean, S;
1544
1545 dst->min_val = min(dst->min_val, src->min_val);
1546 dst->max_val = max(dst->max_val, src->max_val);
1547
1548 /*
1549 * Compute new mean and S after the merge
1550 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1551 * #Parallel_algorithm>
1552 */
1553 if (first) {
1554 mean = src->mean.u.f;
1555 S = src->S.u.f;
1556 } else {
1557 double delta = src->mean.u.f - dst->mean.u.f;
1558
1559 mean = ((src->mean.u.f * src->samples) +
1560 (dst->mean.u.f * dst->samples)) /
1561 (dst->samples + src->samples);
1562
1563 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1564 (dst->samples * src->samples) /
1565 (dst->samples + src->samples);
1566 }
1567
1568 dst->samples += src->samples;
1569 dst->mean.u.f = mean;
1570 dst->S.u.f = S;
1571
1572}
1573
1574/*
1575 * We sum two kinds of stats - one that is time based, in which case we
1576 * apply the proper summing technique, and then one that is iops/bw
1577 * numbers. For group_reporting, we should just add those up, not make
1578 * them the mean of everything.
1579 */
1580static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1581 bool pure_sum)
1582{
1583 if (src->samples == 0)
1584 return;
1585
1586 if (!pure_sum) {
1587 __sum_stat(dst, src, first);
1588 return;
1589 }
1590
1591 if (first) {
1592 dst->min_val = src->min_val;
1593 dst->max_val = src->max_val;
1594 dst->samples = src->samples;
1595 dst->mean.u.f = src->mean.u.f;
1596 dst->S.u.f = src->S.u.f;
1597 } else {
1598 dst->min_val += src->min_val;
1599 dst->max_val += src->max_val;
1600 dst->samples += src->samples;
1601 dst->mean.u.f += src->mean.u.f;
1602 dst->S.u.f += src->S.u.f;
1603 }
1604}
1605
1606void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1607{
1608 int i;
1609
1610 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1611 if (dst->max_run[i] < src->max_run[i])
1612 dst->max_run[i] = src->max_run[i];
1613 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1614 dst->min_run[i] = src->min_run[i];
1615 if (dst->max_bw[i] < src->max_bw[i])
1616 dst->max_bw[i] = src->max_bw[i];
1617 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1618 dst->min_bw[i] = src->min_bw[i];
1619
1620 dst->iobytes[i] += src->iobytes[i];
1621 dst->agg[i] += src->agg[i];
1622 }
1623
1624 if (!dst->kb_base)
1625 dst->kb_base = src->kb_base;
1626 if (!dst->unit_base)
1627 dst->unit_base = src->unit_base;
1628 if (!dst->sig_figs)
1629 dst->sig_figs = src->sig_figs;
1630}
1631
1632void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1633 bool first)
1634{
1635 int l, k;
1636
1637 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1638 if (!dst->unified_rw_rep) {
1639 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1640 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1641 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1642 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1643 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1644
1645 dst->io_bytes[l] += src->io_bytes[l];
1646
1647 if (dst->runtime[l] < src->runtime[l])
1648 dst->runtime[l] = src->runtime[l];
1649 } else {
1650 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1651 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1652 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1653 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1654 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1655
1656 dst->io_bytes[0] += src->io_bytes[l];
1657
1658 if (dst->runtime[0] < src->runtime[l])
1659 dst->runtime[0] = src->runtime[l];
1660
1661 /*
1662 * We're summing to the same destination, so override
1663 * 'first' after the first iteration of the loop
1664 */
1665 first = false;
1666 }
1667 }
1668
1669 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1670 dst->usr_time += src->usr_time;
1671 dst->sys_time += src->sys_time;
1672 dst->ctx += src->ctx;
1673 dst->majf += src->majf;
1674 dst->minf += src->minf;
1675
1676 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1677 dst->io_u_map[k] += src->io_u_map[k];
1678 dst->io_u_submit[k] += src->io_u_submit[k];
1679 dst->io_u_complete[k] += src->io_u_complete[k];
1680 }
1681 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1682 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1683 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1684 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1685 }
1686 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1687 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1688
1689 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1690 if (!dst->unified_rw_rep) {
1691 dst->total_io_u[k] += src->total_io_u[k];
1692 dst->short_io_u[k] += src->short_io_u[k];
1693 dst->drop_io_u[k] += src->drop_io_u[k];
1694 } else {
1695 dst->total_io_u[0] += src->total_io_u[k];
1696 dst->short_io_u[0] += src->short_io_u[k];
1697 dst->drop_io_u[0] += src->drop_io_u[k];
1698 }
1699 }
1700
1701 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1702
1703 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1704 int m;
1705
1706 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1707 if (!dst->unified_rw_rep)
1708 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1709 else
1710 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1711 }
1712 }
1713
1714 dst->total_run_time += src->total_run_time;
1715 dst->total_submit += src->total_submit;
1716 dst->total_complete += src->total_complete;
1717 dst->nr_zone_resets += src->nr_zone_resets;
1718 dst->cachehit += src->cachehit;
1719 dst->cachemiss += src->cachemiss;
1720}
1721
1722void init_group_run_stat(struct group_run_stats *gs)
1723{
1724 int i;
1725 memset(gs, 0, sizeof(*gs));
1726
1727 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1728 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1729}
1730
1731void init_thread_stat(struct thread_stat *ts)
1732{
1733 int j;
1734
1735 memset(ts, 0, sizeof(*ts));
1736
1737 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1738 ts->lat_stat[j].min_val = -1UL;
1739 ts->clat_stat[j].min_val = -1UL;
1740 ts->slat_stat[j].min_val = -1UL;
1741 ts->bw_stat[j].min_val = -1UL;
1742 ts->iops_stat[j].min_val = -1UL;
1743 }
1744 ts->sync_stat.min_val = -1UL;
1745 ts->groupid = -1;
1746}
1747
1748void __show_run_stats(void)
1749{
1750 struct group_run_stats *runstats, *rs;
1751 struct thread_data *td;
1752 struct thread_stat *threadstats, *ts;
1753 int i, j, k, nr_ts, last_ts, idx;
1754 bool kb_base_warned = false;
1755 bool unit_base_warned = false;
1756 struct json_object *root = NULL;
1757 struct json_array *array = NULL;
1758 struct buf_output output[FIO_OUTPUT_NR];
1759 struct flist_head **opt_lists;
1760
1761 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1762
1763 for (i = 0; i < groupid + 1; i++)
1764 init_group_run_stat(&runstats[i]);
1765
1766 /*
1767 * find out how many threads stats we need. if group reporting isn't
1768 * enabled, it's one-per-td.
1769 */
1770 nr_ts = 0;
1771 last_ts = -1;
1772 for_each_td(td, i) {
1773 if (!td->o.group_reporting) {
1774 nr_ts++;
1775 continue;
1776 }
1777 if (last_ts == td->groupid)
1778 continue;
1779 if (!td->o.stats)
1780 continue;
1781
1782 last_ts = td->groupid;
1783 nr_ts++;
1784 }
1785
1786 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1787 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1788
1789 for (i = 0; i < nr_ts; i++) {
1790 init_thread_stat(&threadstats[i]);
1791 opt_lists[i] = NULL;
1792 }
1793
1794 j = 0;
1795 last_ts = -1;
1796 idx = 0;
1797 for_each_td(td, i) {
1798 if (!td->o.stats)
1799 continue;
1800 if (idx && (!td->o.group_reporting ||
1801 (td->o.group_reporting && last_ts != td->groupid))) {
1802 idx = 0;
1803 j++;
1804 }
1805
1806 last_ts = td->groupid;
1807
1808 ts = &threadstats[j];
1809
1810 ts->clat_percentiles = td->o.clat_percentiles;
1811 ts->lat_percentiles = td->o.lat_percentiles;
1812 ts->percentile_precision = td->o.percentile_precision;
1813 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1814 opt_lists[j] = &td->opt_list;
1815
1816 idx++;
1817 ts->members++;
1818
1819 if (ts->groupid == -1) {
1820 /*
1821 * These are per-group shared already
1822 */
1823 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1824 if (td->o.description)
1825 strncpy(ts->description, td->o.description,
1826 FIO_JOBDESC_SIZE - 1);
1827 else
1828 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1829
1830 /*
1831 * If multiple entries in this group, this is
1832 * the first member.
1833 */
1834 ts->thread_number = td->thread_number;
1835 ts->groupid = td->groupid;
1836
1837 /*
1838 * first pid in group, not very useful...
1839 */
1840 ts->pid = td->pid;
1841
1842 ts->kb_base = td->o.kb_base;
1843 ts->unit_base = td->o.unit_base;
1844 ts->sig_figs = td->o.sig_figs;
1845 ts->unified_rw_rep = td->o.unified_rw_rep;
1846 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1847 log_info("fio: kb_base differs for jobs in group, using"
1848 " %u as the base\n", ts->kb_base);
1849 kb_base_warned = true;
1850 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1851 log_info("fio: unit_base differs for jobs in group, using"
1852 " %u as the base\n", ts->unit_base);
1853 unit_base_warned = true;
1854 }
1855
1856 ts->continue_on_error = td->o.continue_on_error;
1857 ts->total_err_count += td->total_err_count;
1858 ts->first_error = td->first_error;
1859 if (!ts->error) {
1860 if (!td->error && td->o.continue_on_error &&
1861 td->first_error) {
1862 ts->error = td->first_error;
1863 ts->verror[sizeof(ts->verror) - 1] = '\0';
1864 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1865 } else if (td->error) {
1866 ts->error = td->error;
1867 ts->verror[sizeof(ts->verror) - 1] = '\0';
1868 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1869 }
1870 }
1871
1872 ts->latency_depth = td->latency_qd;
1873 ts->latency_target = td->o.latency_target;
1874 ts->latency_percentile = td->o.latency_percentile;
1875 ts->latency_window = td->o.latency_window;
1876
1877 ts->nr_block_infos = td->ts.nr_block_infos;
1878 for (k = 0; k < ts->nr_block_infos; k++)
1879 ts->block_infos[k] = td->ts.block_infos[k];
1880
1881 sum_thread_stats(ts, &td->ts, idx == 1);
1882
1883 if (td->o.ss_dur) {
1884 ts->ss_state = td->ss.state;
1885 ts->ss_dur = td->ss.dur;
1886 ts->ss_head = td->ss.head;
1887 ts->ss_bw_data = td->ss.bw_data;
1888 ts->ss_iops_data = td->ss.iops_data;
1889 ts->ss_limit.u.f = td->ss.limit;
1890 ts->ss_slope.u.f = td->ss.slope;
1891 ts->ss_deviation.u.f = td->ss.deviation;
1892 ts->ss_criterion.u.f = td->ss.criterion;
1893 }
1894 else
1895 ts->ss_dur = ts->ss_state = 0;
1896 }
1897
1898 for (i = 0; i < nr_ts; i++) {
1899 unsigned long long bw;
1900
1901 ts = &threadstats[i];
1902 if (ts->groupid == -1)
1903 continue;
1904 rs = &runstats[ts->groupid];
1905 rs->kb_base = ts->kb_base;
1906 rs->unit_base = ts->unit_base;
1907 rs->sig_figs = ts->sig_figs;
1908 rs->unified_rw_rep += ts->unified_rw_rep;
1909
1910 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1911 if (!ts->runtime[j])
1912 continue;
1913 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1914 rs->min_run[j] = ts->runtime[j];
1915 if (ts->runtime[j] > rs->max_run[j])
1916 rs->max_run[j] = ts->runtime[j];
1917
1918 bw = 0;
1919 if (ts->runtime[j])
1920 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1921 if (bw < rs->min_bw[j])
1922 rs->min_bw[j] = bw;
1923 if (bw > rs->max_bw[j])
1924 rs->max_bw[j] = bw;
1925
1926 rs->iobytes[j] += ts->io_bytes[j];
1927 }
1928 }
1929
1930 for (i = 0; i < groupid + 1; i++) {
1931 int ddir;
1932
1933 rs = &runstats[i];
1934
1935 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1936 if (rs->max_run[ddir])
1937 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1938 rs->max_run[ddir];
1939 }
1940 }
1941
1942 for (i = 0; i < FIO_OUTPUT_NR; i++)
1943 buf_output_init(&output[i]);
1944
1945 /*
1946 * don't overwrite last signal output
1947 */
1948 if (output_format & FIO_OUTPUT_NORMAL)
1949 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1950 if (output_format & FIO_OUTPUT_JSON) {
1951 struct thread_data *global;
1952 char time_buf[32];
1953 struct timeval now;
1954 unsigned long long ms_since_epoch;
1955 time_t tv_sec;
1956
1957 gettimeofday(&now, NULL);
1958 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1959 (unsigned long long)(now.tv_usec) / 1000;
1960
1961 tv_sec = now.tv_sec;
1962 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1963 if (time_buf[strlen(time_buf) - 1] == '\n')
1964 time_buf[strlen(time_buf) - 1] = '\0';
1965
1966 root = json_create_object();
1967 json_object_add_value_string(root, "fio version", fio_version_string);
1968 json_object_add_value_int(root, "timestamp", now.tv_sec);
1969 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1970 json_object_add_value_string(root, "time", time_buf);
1971 global = get_global_options();
1972 json_add_job_opts(root, "global options", &global->opt_list);
1973 array = json_create_array();
1974 json_object_add_value_array(root, "jobs", array);
1975 }
1976
1977 if (is_backend)
1978 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1979
1980 for (i = 0; i < nr_ts; i++) {
1981 ts = &threadstats[i];
1982 rs = &runstats[ts->groupid];
1983
1984 if (is_backend) {
1985 fio_server_send_job_options(opt_lists[i], i);
1986 fio_server_send_ts(ts, rs);
1987 } else {
1988 if (output_format & FIO_OUTPUT_TERSE)
1989 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1990 if (output_format & FIO_OUTPUT_JSON) {
1991 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1992 json_array_add_value_object(array, tmp);
1993 }
1994 if (output_format & FIO_OUTPUT_NORMAL)
1995 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1996 }
1997 }
1998 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1999 /* disk util stats, if any */
2000 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2001
2002 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2003
2004 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2005 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2006 json_free_object(root);
2007 }
2008
2009 for (i = 0; i < groupid + 1; i++) {
2010 rs = &runstats[i];
2011
2012 rs->groupid = i;
2013 if (is_backend)
2014 fio_server_send_gs(rs);
2015 else if (output_format & FIO_OUTPUT_NORMAL)
2016 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2017 }
2018
2019 if (is_backend)
2020 fio_server_send_du();
2021 else if (output_format & FIO_OUTPUT_NORMAL) {
2022 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2023 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2024 }
2025
2026 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2027 struct buf_output *out = &output[i];
2028
2029 log_info_buf(out->buf, out->buflen);
2030 buf_output_free(out);
2031 }
2032
2033 fio_idle_prof_cleanup();
2034
2035 log_info_flush();
2036 free(runstats);
2037 free(threadstats);
2038 free(opt_lists);
2039}
2040
2041void __show_running_run_stats(void)
2042{
2043 struct thread_data *td;
2044 unsigned long long *rt;
2045 struct timespec ts;
2046 int i;
2047
2048 fio_sem_down(stat_sem);
2049
2050 rt = malloc(thread_number * sizeof(unsigned long long));
2051 fio_gettime(&ts, NULL);
2052
2053 for_each_td(td, i) {
2054 td->update_rusage = 1;
2055 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2056 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2057 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2058 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2059
2060 rt[i] = mtime_since(&td->start, &ts);
2061 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2062 td->ts.runtime[DDIR_READ] += rt[i];
2063 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2064 td->ts.runtime[DDIR_WRITE] += rt[i];
2065 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2066 td->ts.runtime[DDIR_TRIM] += rt[i];
2067 }
2068
2069 for_each_td(td, i) {
2070 if (td->runstate >= TD_EXITED)
2071 continue;
2072 if (td->rusage_sem) {
2073 td->update_rusage = 1;
2074 fio_sem_down(td->rusage_sem);
2075 }
2076 td->update_rusage = 0;
2077 }
2078
2079 __show_run_stats();
2080
2081 for_each_td(td, i) {
2082 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2083 td->ts.runtime[DDIR_READ] -= rt[i];
2084 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2085 td->ts.runtime[DDIR_WRITE] -= rt[i];
2086 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2087 td->ts.runtime[DDIR_TRIM] -= rt[i];
2088 }
2089
2090 free(rt);
2091 fio_sem_up(stat_sem);
2092}
2093
2094static bool status_interval_init;
2095static struct timespec status_time;
2096static bool status_file_disabled;
2097
2098#define FIO_STATUS_FILE "fio-dump-status"
2099
2100static int check_status_file(void)
2101{
2102 struct stat sb;
2103 const char *temp_dir;
2104 char fio_status_file_path[PATH_MAX];
2105
2106 if (status_file_disabled)
2107 return 0;
2108
2109 temp_dir = getenv("TMPDIR");
2110 if (temp_dir == NULL) {
2111 temp_dir = getenv("TEMP");
2112 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2113 temp_dir = NULL;
2114 }
2115 if (temp_dir == NULL)
2116 temp_dir = "/tmp";
2117
2118 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2119
2120 if (stat(fio_status_file_path, &sb))
2121 return 0;
2122
2123 if (unlink(fio_status_file_path) < 0) {
2124 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2125 strerror(errno));
2126 log_err("fio: disabling status file updates\n");
2127 status_file_disabled = true;
2128 }
2129
2130 return 1;
2131}
2132
2133void check_for_running_stats(void)
2134{
2135 if (status_interval) {
2136 if (!status_interval_init) {
2137 fio_gettime(&status_time, NULL);
2138 status_interval_init = true;
2139 } else if (mtime_since_now(&status_time) >= status_interval) {
2140 show_running_run_stats();
2141 fio_gettime(&status_time, NULL);
2142 return;
2143 }
2144 }
2145 if (check_status_file()) {
2146 show_running_run_stats();
2147 return;
2148 }
2149}
2150
2151static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2152{
2153 double val = data;
2154 double delta;
2155
2156 if (data > is->max_val)
2157 is->max_val = data;
2158 if (data < is->min_val)
2159 is->min_val = data;
2160
2161 delta = val - is->mean.u.f;
2162 if (delta) {
2163 is->mean.u.f += delta / (is->samples + 1.0);
2164 is->S.u.f += delta * (val - is->mean.u.f);
2165 }
2166
2167 is->samples++;
2168}
2169
2170/*
2171 * Return a struct io_logs, which is added to the tail of the log
2172 * list for 'iolog'.
2173 */
2174static struct io_logs *get_new_log(struct io_log *iolog)
2175{
2176 size_t new_size, new_samples;
2177 struct io_logs *cur_log;
2178
2179 /*
2180 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2181 * forever
2182 */
2183 if (!iolog->cur_log_max)
2184 new_samples = DEF_LOG_ENTRIES;
2185 else {
2186 new_samples = iolog->cur_log_max * 2;
2187 if (new_samples > MAX_LOG_ENTRIES)
2188 new_samples = MAX_LOG_ENTRIES;
2189 }
2190
2191 new_size = new_samples * log_entry_sz(iolog);
2192
2193 cur_log = smalloc(sizeof(*cur_log));
2194 if (cur_log) {
2195 INIT_FLIST_HEAD(&cur_log->list);
2196 cur_log->log = malloc(new_size);
2197 if (cur_log->log) {
2198 cur_log->nr_samples = 0;
2199 cur_log->max_samples = new_samples;
2200 flist_add_tail(&cur_log->list, &iolog->io_logs);
2201 iolog->cur_log_max = new_samples;
2202 return cur_log;
2203 }
2204 sfree(cur_log);
2205 }
2206
2207 return NULL;
2208}
2209
2210/*
2211 * Add and return a new log chunk, or return current log if big enough
2212 */
2213static struct io_logs *regrow_log(struct io_log *iolog)
2214{
2215 struct io_logs *cur_log;
2216 int i;
2217
2218 if (!iolog || iolog->disabled)
2219 goto disable;
2220
2221 cur_log = iolog_cur_log(iolog);
2222 if (!cur_log) {
2223 cur_log = get_new_log(iolog);
2224 if (!cur_log)
2225 return NULL;
2226 }
2227
2228 if (cur_log->nr_samples < cur_log->max_samples)
2229 return cur_log;
2230
2231 /*
2232 * No room for a new sample. If we're compressing on the fly, flush
2233 * out the current chunk
2234 */
2235 if (iolog->log_gz) {
2236 if (iolog_cur_flush(iolog, cur_log)) {
2237 log_err("fio: failed flushing iolog! Will stop logging.\n");
2238 return NULL;
2239 }
2240 }
2241
2242 /*
2243 * Get a new log array, and add to our list
2244 */
2245 cur_log = get_new_log(iolog);
2246 if (!cur_log) {
2247 log_err("fio: failed extending iolog! Will stop logging.\n");
2248 return NULL;
2249 }
2250
2251 if (!iolog->pending || !iolog->pending->nr_samples)
2252 return cur_log;
2253
2254 /*
2255 * Flush pending items to new log
2256 */
2257 for (i = 0; i < iolog->pending->nr_samples; i++) {
2258 struct io_sample *src, *dst;
2259
2260 src = get_sample(iolog, iolog->pending, i);
2261 dst = get_sample(iolog, cur_log, i);
2262 memcpy(dst, src, log_entry_sz(iolog));
2263 }
2264 cur_log->nr_samples = iolog->pending->nr_samples;
2265
2266 iolog->pending->nr_samples = 0;
2267 return cur_log;
2268disable:
2269 if (iolog)
2270 iolog->disabled = true;
2271 return NULL;
2272}
2273
2274void regrow_logs(struct thread_data *td)
2275{
2276 regrow_log(td->slat_log);
2277 regrow_log(td->clat_log);
2278 regrow_log(td->clat_hist_log);
2279 regrow_log(td->lat_log);
2280 regrow_log(td->bw_log);
2281 regrow_log(td->iops_log);
2282 td->flags &= ~TD_F_REGROW_LOGS;
2283}
2284
2285static struct io_logs *get_cur_log(struct io_log *iolog)
2286{
2287 struct io_logs *cur_log;
2288
2289 cur_log = iolog_cur_log(iolog);
2290 if (!cur_log) {
2291 cur_log = get_new_log(iolog);
2292 if (!cur_log)
2293 return NULL;
2294 }
2295
2296 if (cur_log->nr_samples < cur_log->max_samples)
2297 return cur_log;
2298
2299 /*
2300 * Out of space. If we're in IO offload mode, or we're not doing
2301 * per unit logging (hence logging happens outside of the IO thread
2302 * as well), add a new log chunk inline. If we're doing inline
2303 * submissions, flag 'td' as needing a log regrow and we'll take
2304 * care of it on the submission side.
2305 */
2306 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2307 !per_unit_log(iolog))
2308 return regrow_log(iolog);
2309
2310 if (iolog->td)
2311 iolog->td->flags |= TD_F_REGROW_LOGS;
2312 if (iolog->pending)
2313 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2314 return iolog->pending;
2315}
2316
2317static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2318 enum fio_ddir ddir, unsigned long long bs,
2319 unsigned long t, uint64_t offset)
2320{
2321 struct io_logs *cur_log;
2322
2323 if (iolog->disabled)
2324 return;
2325 if (flist_empty(&iolog->io_logs))
2326 iolog->avg_last[ddir] = t;
2327
2328 cur_log = get_cur_log(iolog);
2329 if (cur_log) {
2330 struct io_sample *s;
2331
2332 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2333
2334 s->data = data;
2335 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2336 io_sample_set_ddir(iolog, s, ddir);
2337 s->bs = bs;
2338
2339 if (iolog->log_offset) {
2340 struct io_sample_offset *so = (void *) s;
2341
2342 so->offset = offset;
2343 }
2344
2345 cur_log->nr_samples++;
2346 return;
2347 }
2348
2349 iolog->disabled = true;
2350}
2351
2352static inline void reset_io_stat(struct io_stat *ios)
2353{
2354 ios->min_val = -1ULL;
2355 ios->max_val = ios->samples = 0;
2356 ios->mean.u.f = ios->S.u.f = 0;
2357}
2358
2359void reset_io_stats(struct thread_data *td)
2360{
2361 struct thread_stat *ts = &td->ts;
2362 int i, j;
2363
2364 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2365 reset_io_stat(&ts->clat_stat[i]);
2366 reset_io_stat(&ts->slat_stat[i]);
2367 reset_io_stat(&ts->lat_stat[i]);
2368 reset_io_stat(&ts->bw_stat[i]);
2369 reset_io_stat(&ts->iops_stat[i]);
2370
2371 ts->io_bytes[i] = 0;
2372 ts->runtime[i] = 0;
2373 ts->total_io_u[i] = 0;
2374 ts->short_io_u[i] = 0;
2375 ts->drop_io_u[i] = 0;
2376
2377 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2378 ts->io_u_plat[i][j] = 0;
2379 if (!i)
2380 ts->io_u_sync_plat[j] = 0;
2381 }
2382 }
2383
2384 ts->total_io_u[DDIR_SYNC] = 0;
2385
2386 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2387 ts->io_u_map[i] = 0;
2388 ts->io_u_submit[i] = 0;
2389 ts->io_u_complete[i] = 0;
2390 }
2391
2392 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2393 ts->io_u_lat_n[i] = 0;
2394 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2395 ts->io_u_lat_u[i] = 0;
2396 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2397 ts->io_u_lat_m[i] = 0;
2398
2399 ts->total_submit = 0;
2400 ts->total_complete = 0;
2401 ts->nr_zone_resets = 0;
2402 ts->cachehit = ts->cachemiss = 0;
2403}
2404
2405static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2406 unsigned long elapsed, bool log_max)
2407{
2408 /*
2409 * Note an entry in the log. Use the mean from the logged samples,
2410 * making sure to properly round up. Only write a log entry if we
2411 * had actual samples done.
2412 */
2413 if (iolog->avg_window[ddir].samples) {
2414 union io_sample_data data;
2415
2416 if (log_max)
2417 data.val = iolog->avg_window[ddir].max_val;
2418 else
2419 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2420
2421 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2422 }
2423
2424 reset_io_stat(&iolog->avg_window[ddir]);
2425}
2426
2427static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2428 bool log_max)
2429{
2430 int ddir;
2431
2432 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2433 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2434}
2435
2436static unsigned long add_log_sample(struct thread_data *td,
2437 struct io_log *iolog,
2438 union io_sample_data data,
2439 enum fio_ddir ddir, unsigned long long bs,
2440 uint64_t offset)
2441{
2442 unsigned long elapsed, this_window;
2443
2444 if (!ddir_rw(ddir))
2445 return 0;
2446
2447 elapsed = mtime_since_now(&td->epoch);
2448
2449 /*
2450 * If no time averaging, just add the log sample.
2451 */
2452 if (!iolog->avg_msec) {
2453 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2454 return 0;
2455 }
2456
2457 /*
2458 * Add the sample. If the time period has passed, then
2459 * add that entry to the log and clear.
2460 */
2461 add_stat_sample(&iolog->avg_window[ddir], data.val);
2462
2463 /*
2464 * If period hasn't passed, adding the above sample is all we
2465 * need to do.
2466 */
2467 this_window = elapsed - iolog->avg_last[ddir];
2468 if (elapsed < iolog->avg_last[ddir])
2469 return iolog->avg_last[ddir] - elapsed;
2470 else if (this_window < iolog->avg_msec) {
2471 unsigned long diff = iolog->avg_msec - this_window;
2472
2473 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2474 return diff;
2475 }
2476
2477 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2478
2479 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2480 return iolog->avg_msec;
2481}
2482
2483void finalize_logs(struct thread_data *td, bool unit_logs)
2484{
2485 unsigned long elapsed;
2486
2487 elapsed = mtime_since_now(&td->epoch);
2488
2489 if (td->clat_log && unit_logs)
2490 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2491 if (td->slat_log && unit_logs)
2492 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2493 if (td->lat_log && unit_logs)
2494 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2495 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2496 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2497 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2498 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2499}
2500
2501void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2502{
2503 struct io_log *iolog;
2504
2505 if (!ddir_rw(ddir))
2506 return;
2507
2508 iolog = agg_io_log[ddir];
2509 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2510}
2511
2512void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2513{
2514 unsigned int idx = plat_val_to_idx(nsec);
2515 assert(idx < FIO_IO_U_PLAT_NR);
2516
2517 ts->io_u_sync_plat[idx]++;
2518 add_stat_sample(&ts->sync_stat, nsec);
2519}
2520
2521static void add_clat_percentile_sample(struct thread_stat *ts,
2522 unsigned long long nsec, enum fio_ddir ddir)
2523{
2524 unsigned int idx = plat_val_to_idx(nsec);
2525 assert(idx < FIO_IO_U_PLAT_NR);
2526
2527 ts->io_u_plat[ddir][idx]++;
2528}
2529
2530void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2531 unsigned long long nsec, unsigned long long bs,
2532 uint64_t offset)
2533{
2534 const bool needs_lock = td_async_processing(td);
2535 unsigned long elapsed, this_window;
2536 struct thread_stat *ts = &td->ts;
2537 struct io_log *iolog = td->clat_hist_log;
2538
2539 if (needs_lock)
2540 __td_io_u_lock(td);
2541
2542 add_stat_sample(&ts->clat_stat[ddir], nsec);
2543
2544 if (td->clat_log)
2545 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2546 offset);
2547
2548 if (ts->clat_percentiles)
2549 add_clat_percentile_sample(ts, nsec, ddir);
2550
2551 if (iolog && iolog->hist_msec) {
2552 struct io_hist *hw = &iolog->hist_window[ddir];
2553
2554 hw->samples++;
2555 elapsed = mtime_since_now(&td->epoch);
2556 if (!hw->hist_last)
2557 hw->hist_last = elapsed;
2558 this_window = elapsed - hw->hist_last;
2559
2560 if (this_window >= iolog->hist_msec) {
2561 uint64_t *io_u_plat;
2562 struct io_u_plat_entry *dst;
2563
2564 /*
2565 * Make a byte-for-byte copy of the latency histogram
2566 * stored in td->ts.io_u_plat[ddir], recording it in a
2567 * log sample. Note that the matching call to free() is
2568 * located in iolog.c after printing this sample to the
2569 * log file.
2570 */
2571 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2572 dst = malloc(sizeof(struct io_u_plat_entry));
2573 memcpy(&(dst->io_u_plat), io_u_plat,
2574 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2575 flist_add(&dst->list, &hw->list);
2576 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2577 elapsed, offset);
2578
2579 /*
2580 * Update the last time we recorded as being now, minus
2581 * any drift in time we encountered before actually
2582 * making the record.
2583 */
2584 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2585 hw->samples = 0;
2586 }
2587 }
2588
2589 if (needs_lock)
2590 __td_io_u_unlock(td);
2591}
2592
2593void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2594 unsigned long usec, unsigned long long bs, uint64_t offset)
2595{
2596 const bool needs_lock = td_async_processing(td);
2597 struct thread_stat *ts = &td->ts;
2598
2599 if (!ddir_rw(ddir))
2600 return;
2601
2602 if (needs_lock)
2603 __td_io_u_lock(td);
2604
2605 add_stat_sample(&ts->slat_stat[ddir], usec);
2606
2607 if (td->slat_log)
2608 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2609
2610 if (needs_lock)
2611 __td_io_u_unlock(td);
2612}
2613
2614void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2615 unsigned long long nsec, unsigned long long bs,
2616 uint64_t offset)
2617{
2618 const bool needs_lock = td_async_processing(td);
2619 struct thread_stat *ts = &td->ts;
2620
2621 if (!ddir_rw(ddir))
2622 return;
2623
2624 if (needs_lock)
2625 __td_io_u_lock(td);
2626
2627 add_stat_sample(&ts->lat_stat[ddir], nsec);
2628
2629 if (td->lat_log)
2630 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2631 offset);
2632
2633 if (ts->lat_percentiles)
2634 add_clat_percentile_sample(ts, nsec, ddir);
2635
2636 if (needs_lock)
2637 __td_io_u_unlock(td);
2638}
2639
2640void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2641 unsigned int bytes, unsigned long long spent)
2642{
2643 const bool needs_lock = td_async_processing(td);
2644 struct thread_stat *ts = &td->ts;
2645 unsigned long rate;
2646
2647 if (spent)
2648 rate = (unsigned long) (bytes * 1000000ULL / spent);
2649 else
2650 rate = 0;
2651
2652 if (needs_lock)
2653 __td_io_u_lock(td);
2654
2655 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2656
2657 if (td->bw_log)
2658 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2659 bytes, io_u->offset);
2660
2661 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2662
2663 if (needs_lock)
2664 __td_io_u_unlock(td);
2665}
2666
2667static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2668 struct timespec *t, unsigned int avg_time,
2669 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2670 struct io_stat *stat, struct io_log *log,
2671 bool is_kb)
2672{
2673 const bool needs_lock = td_async_processing(td);
2674 unsigned long spent, rate;
2675 enum fio_ddir ddir;
2676 unsigned long next, next_log;
2677
2678 next_log = avg_time;
2679
2680 spent = mtime_since(parent_tv, t);
2681 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2682 return avg_time - spent;
2683
2684 if (needs_lock)
2685 __td_io_u_lock(td);
2686
2687 /*
2688 * Compute both read and write rates for the interval.
2689 */
2690 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2691 uint64_t delta;
2692
2693 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2694 if (!delta)
2695 continue; /* No entries for interval */
2696
2697 if (spent) {
2698 if (is_kb)
2699 rate = delta * 1000 / spent / 1024; /* KiB/s */
2700 else
2701 rate = (delta * 1000) / spent;
2702 } else
2703 rate = 0;
2704
2705 add_stat_sample(&stat[ddir], rate);
2706
2707 if (log) {
2708 unsigned long long bs = 0;
2709
2710 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2711 bs = td->o.min_bs[ddir];
2712
2713 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2714 next_log = min(next_log, next);
2715 }
2716
2717 stat_io_bytes[ddir] = this_io_bytes[ddir];
2718 }
2719
2720 timespec_add_msec(parent_tv, avg_time);
2721
2722 if (needs_lock)
2723 __td_io_u_unlock(td);
2724
2725 if (spent <= avg_time)
2726 next = avg_time;
2727 else
2728 next = avg_time - (1 + spent - avg_time);
2729
2730 return min(next, next_log);
2731}
2732
2733static int add_bw_samples(struct thread_data *td, struct timespec *t)
2734{
2735 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2736 td->this_io_bytes, td->stat_io_bytes,
2737 td->ts.bw_stat, td->bw_log, true);
2738}
2739
2740void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2741 unsigned int bytes)
2742{
2743 const bool needs_lock = td_async_processing(td);
2744 struct thread_stat *ts = &td->ts;
2745
2746 if (needs_lock)
2747 __td_io_u_lock(td);
2748
2749 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2750
2751 if (td->iops_log)
2752 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2753 bytes, io_u->offset);
2754
2755 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2756
2757 if (needs_lock)
2758 __td_io_u_unlock(td);
2759}
2760
2761static int add_iops_samples(struct thread_data *td, struct timespec *t)
2762{
2763 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2764 td->this_io_blocks, td->stat_io_blocks,
2765 td->ts.iops_stat, td->iops_log, false);
2766}
2767
2768/*
2769 * Returns msecs to next event
2770 */
2771int calc_log_samples(void)
2772{
2773 struct thread_data *td;
2774 unsigned int next = ~0U, tmp;
2775 struct timespec now;
2776 int i;
2777
2778 fio_gettime(&now, NULL);
2779
2780 for_each_td(td, i) {
2781 if (!td->o.stats)
2782 continue;
2783 if (in_ramp_time(td) ||
2784 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2785 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2786 continue;
2787 }
2788 if (!td->bw_log ||
2789 (td->bw_log && !per_unit_log(td->bw_log))) {
2790 tmp = add_bw_samples(td, &now);
2791 if (tmp < next)
2792 next = tmp;
2793 }
2794 if (!td->iops_log ||
2795 (td->iops_log && !per_unit_log(td->iops_log))) {
2796 tmp = add_iops_samples(td, &now);
2797 if (tmp < next)
2798 next = tmp;
2799 }
2800 }
2801
2802 return next == ~0U ? 0 : next;
2803}
2804
2805void stat_init(void)
2806{
2807 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2808}
2809
2810void stat_exit(void)
2811{
2812 /*
2813 * When we have the mutex, we know out-of-band access to it
2814 * have ended.
2815 */
2816 fio_sem_down(stat_sem);
2817 fio_sem_remove(stat_sem);
2818}
2819
2820/*
2821 * Called from signal handler. Wake up status thread.
2822 */
2823void show_running_run_stats(void)
2824{
2825 helper_do_stat();
2826}
2827
2828uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2829{
2830 /* Ignore io_u's which span multiple blocks--they will just get
2831 * inaccurate counts. */
2832 int idx = (io_u->offset - io_u->file->file_offset)
2833 / td->o.bs[DDIR_TRIM];
2834 uint32_t *info = &td->ts.block_infos[idx];
2835 assert(idx < td->ts.nr_block_infos);
2836 return info;
2837}