verify: always log IO in the order they are issued
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
129 (unsigned long long) *b);
130
131 *b = axmap_next_free(f->io_axmap, *b);
132 if (*b == (uint64_t) -1ULL)
133 return 1;
134ret:
135 return 0;
136}
137
138static int __get_next_rand_offset_zipf(struct thread_data *td,
139 struct fio_file *f, enum fio_ddir ddir,
140 uint64_t *b)
141{
142 *b = zipf_next(&f->zipf);
143 return 0;
144}
145
146static int __get_next_rand_offset_pareto(struct thread_data *td,
147 struct fio_file *f, enum fio_ddir ddir,
148 uint64_t *b)
149{
150 *b = pareto_next(&f->zipf);
151 return 0;
152}
153
154static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
155{
156 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
157 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
158
159 return r1->off - r2->off;
160}
161
162static int get_off_from_method(struct thread_data *td, struct fio_file *f,
163 enum fio_ddir ddir, uint64_t *b)
164{
165 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
166 return __get_next_rand_offset(td, f, ddir, b);
167 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
168 return __get_next_rand_offset_zipf(td, f, ddir, b);
169 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
170 return __get_next_rand_offset_pareto(td, f, ddir, b);
171
172 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
173 return 1;
174}
175
176/*
177 * Sort the reads for a verify phase in batches of verifysort_nr, if
178 * specified.
179 */
180static inline int should_sort_io(struct thread_data *td)
181{
182 if (!td->o.verifysort_nr || !td->o.do_verify)
183 return 0;
184 if (!td_random(td))
185 return 0;
186 if (td->runstate != TD_VERIFYING)
187 return 0;
188 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
189 return 0;
190
191 return 1;
192}
193
194static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
195{
196 unsigned int v;
197 unsigned long r;
198
199 if (td->o.perc_rand[ddir] == 100)
200 return 1;
201
202 if (td->o.use_os_rand) {
203 r = os_random_long(&td->seq_rand_state[ddir]);
204 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
205 } else {
206 r = __rand(&td->__seq_rand_state[ddir]);
207 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
208 }
209
210 return v <= td->o.perc_rand[ddir];
211}
212
213static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
214 enum fio_ddir ddir, uint64_t *b)
215{
216 struct rand_off *r;
217 int i, ret = 1;
218
219 if (!should_sort_io(td))
220 return get_off_from_method(td, f, ddir, b);
221
222 if (!flist_empty(&td->next_rand_list)) {
223 struct rand_off *r;
224fetch:
225 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
226 flist_del(&r->list);
227 *b = r->off;
228 free(r);
229 return 0;
230 }
231
232 for (i = 0; i < td->o.verifysort_nr; i++) {
233 r = malloc(sizeof(*r));
234
235 ret = get_off_from_method(td, f, ddir, &r->off);
236 if (ret) {
237 free(r);
238 break;
239 }
240
241 flist_add(&r->list, &td->next_rand_list);
242 }
243
244 if (ret && !i)
245 return ret;
246
247 assert(!flist_empty(&td->next_rand_list));
248 flist_sort(NULL, &td->next_rand_list, flist_cmp);
249 goto fetch;
250}
251
252static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
253 enum fio_ddir ddir, uint64_t *b)
254{
255 if (!get_next_rand_offset(td, f, ddir, b))
256 return 0;
257
258 if (td->o.time_based) {
259 fio_file_reset(td, f);
260 if (!get_next_rand_offset(td, f, ddir, b))
261 return 0;
262 }
263
264 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
265 f->file_name, (unsigned long long) f->last_pos,
266 (unsigned long long) f->real_file_size);
267 return 1;
268}
269
270static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *offset)
272{
273 assert(ddir_rw(ddir));
274
275 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
276 f->last_pos = f->last_pos - f->io_size;
277
278 if (f->last_pos < f->real_file_size) {
279 uint64_t pos;
280
281 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
282 f->last_pos = f->real_file_size;
283
284 pos = f->last_pos - f->file_offset;
285 if (pos)
286 pos += td->o.ddir_seq_add;
287
288 *offset = pos;
289 return 0;
290 }
291
292 return 1;
293}
294
295static int get_next_block(struct thread_data *td, struct io_u *io_u,
296 enum fio_ddir ddir, int rw_seq,
297 unsigned int *is_random)
298{
299 struct fio_file *f = io_u->file;
300 uint64_t b, offset;
301 int ret;
302
303 assert(ddir_rw(ddir));
304
305 b = offset = -1ULL;
306
307 if (rw_seq) {
308 if (td_random(td)) {
309 if (should_do_random(td, ddir)) {
310 ret = get_next_rand_block(td, f, ddir, &b);
311 *is_random = 1;
312 } else {
313 *is_random = 0;
314 io_u->flags |= IO_U_F_BUSY_OK;
315 ret = get_next_seq_offset(td, f, ddir, &offset);
316 if (ret)
317 ret = get_next_rand_block(td, f, ddir, &b);
318 }
319 } else {
320 *is_random = 0;
321 ret = get_next_seq_offset(td, f, ddir, &offset);
322 }
323 } else {
324 io_u->flags |= IO_U_F_BUSY_OK;
325 *is_random = 0;
326
327 if (td->o.rw_seq == RW_SEQ_SEQ) {
328 ret = get_next_seq_offset(td, f, ddir, &offset);
329 if (ret) {
330 ret = get_next_rand_block(td, f, ddir, &b);
331 *is_random = 0;
332 }
333 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
334 if (f->last_start != -1ULL)
335 offset = f->last_start - f->file_offset;
336 else
337 offset = 0;
338 ret = 0;
339 } else {
340 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
341 ret = 1;
342 }
343 }
344
345 if (!ret) {
346 if (offset != -1ULL)
347 io_u->offset = offset;
348 else if (b != -1ULL)
349 io_u->offset = b * td->o.ba[ddir];
350 else {
351 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
352 ret = 1;
353 }
354 }
355
356 return ret;
357}
358
359/*
360 * For random io, generate a random new block and see if it's used. Repeat
361 * until we find a free one. For sequential io, just return the end of
362 * the last io issued.
363 */
364static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
365 unsigned int *is_random)
366{
367 struct fio_file *f = io_u->file;
368 enum fio_ddir ddir = io_u->ddir;
369 int rw_seq_hit = 0;
370
371 assert(ddir_rw(ddir));
372
373 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
374 rw_seq_hit = 1;
375 td->ddir_seq_nr = td->o.ddir_seq_nr;
376 }
377
378 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
379 return 1;
380
381 if (io_u->offset >= f->io_size) {
382 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
383 (unsigned long long) io_u->offset,
384 (unsigned long long) f->io_size);
385 return 1;
386 }
387
388 io_u->offset += f->file_offset;
389 if (io_u->offset >= f->real_file_size) {
390 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
391 (unsigned long long) io_u->offset,
392 (unsigned long long) f->real_file_size);
393 return 1;
394 }
395
396 return 0;
397}
398
399static int get_next_offset(struct thread_data *td, struct io_u *io_u,
400 unsigned int *is_random)
401{
402 if (td->flags & TD_F_PROFILE_OPS) {
403 struct prof_io_ops *ops = &td->prof_io_ops;
404
405 if (ops->fill_io_u_off)
406 return ops->fill_io_u_off(td, io_u, is_random);
407 }
408
409 return __get_next_offset(td, io_u, is_random);
410}
411
412static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
413 unsigned int buflen)
414{
415 struct fio_file *f = io_u->file;
416
417 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
418}
419
420static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
421 unsigned int is_random)
422{
423 int ddir = io_u->ddir;
424 unsigned int buflen = 0;
425 unsigned int minbs, maxbs;
426 unsigned long r, rand_max;
427
428 assert(ddir_rw(io_u->ddir));
429
430 if (td->o.bs_is_seq_rand)
431 ddir = is_random ? DDIR_WRITE: DDIR_READ;
432 else
433 ddir = io_u->ddir;
434
435 minbs = td->o.min_bs[ddir];
436 maxbs = td->o.max_bs[ddir];
437
438 if (minbs == maxbs)
439 return minbs;
440
441 /*
442 * If we can't satisfy the min block size from here, then fail
443 */
444 if (!io_u_fits(td, io_u, minbs))
445 return 0;
446
447 if (td->o.use_os_rand)
448 rand_max = OS_RAND_MAX;
449 else
450 rand_max = FRAND_MAX;
451
452 do {
453 if (td->o.use_os_rand)
454 r = os_random_long(&td->bsrange_state);
455 else
456 r = __rand(&td->__bsrange_state);
457
458 if (!td->o.bssplit_nr[ddir]) {
459 buflen = 1 + (unsigned int) ((double) maxbs *
460 (r / (rand_max + 1.0)));
461 if (buflen < minbs)
462 buflen = minbs;
463 } else {
464 long perc = 0;
465 unsigned int i;
466
467 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
468 struct bssplit *bsp = &td->o.bssplit[ddir][i];
469
470 buflen = bsp->bs;
471 perc += bsp->perc;
472 if ((r <= ((rand_max / 100L) * perc)) &&
473 io_u_fits(td, io_u, buflen))
474 break;
475 }
476 }
477
478 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
479 buflen = (buflen + td->o.verify_interval - 1) &
480 ~(td->o.verify_interval - 1);
481
482 if (!td->o.bs_unaligned && is_power_of_2(minbs))
483 buflen = (buflen + minbs - 1) & ~(minbs - 1);
484
485 } while (!io_u_fits(td, io_u, buflen));
486
487 return buflen;
488}
489
490static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
491 unsigned int is_random)
492{
493 if (td->flags & TD_F_PROFILE_OPS) {
494 struct prof_io_ops *ops = &td->prof_io_ops;
495
496 if (ops->fill_io_u_size)
497 return ops->fill_io_u_size(td, io_u, is_random);
498 }
499
500 return __get_next_buflen(td, io_u, is_random);
501}
502
503static void set_rwmix_bytes(struct thread_data *td)
504{
505 unsigned int diff;
506
507 /*
508 * we do time or byte based switch. this is needed because
509 * buffered writes may issue a lot quicker than they complete,
510 * whereas reads do not.
511 */
512 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
513 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
514}
515
516static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
517{
518 unsigned int v;
519 unsigned long r;
520
521 if (td->o.use_os_rand) {
522 r = os_random_long(&td->rwmix_state);
523 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
524 } else {
525 r = __rand(&td->__rwmix_state);
526 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
527 }
528
529 if (v <= td->o.rwmix[DDIR_READ])
530 return DDIR_READ;
531
532 return DDIR_WRITE;
533}
534
535void io_u_quiesce(struct thread_data *td)
536{
537 /*
538 * We are going to sleep, ensure that we flush anything pending as
539 * not to skew our latency numbers.
540 *
541 * Changed to only monitor 'in flight' requests here instead of the
542 * td->cur_depth, b/c td->cur_depth does not accurately represent
543 * io's that have been actually submitted to an async engine,
544 * and cur_depth is meaningless for sync engines.
545 */
546 while (td->io_u_in_flight) {
547 int fio_unused ret;
548
549 ret = io_u_queued_complete(td, 1, NULL);
550 }
551}
552
553static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
554{
555 enum fio_ddir odir = ddir ^ 1;
556 struct timeval t;
557 long usec;
558
559 assert(ddir_rw(ddir));
560
561 if (td->rate_pending_usleep[ddir] <= 0)
562 return ddir;
563
564 /*
565 * We have too much pending sleep in this direction. See if we
566 * should switch.
567 */
568 if (td_rw(td) && td->o.rwmix[odir]) {
569 /*
570 * Other direction does not have too much pending, switch
571 */
572 if (td->rate_pending_usleep[odir] < 100000)
573 return odir;
574
575 /*
576 * Both directions have pending sleep. Sleep the minimum time
577 * and deduct from both.
578 */
579 if (td->rate_pending_usleep[ddir] <=
580 td->rate_pending_usleep[odir]) {
581 usec = td->rate_pending_usleep[ddir];
582 } else {
583 usec = td->rate_pending_usleep[odir];
584 ddir = odir;
585 }
586 } else
587 usec = td->rate_pending_usleep[ddir];
588
589 io_u_quiesce(td);
590
591 fio_gettime(&t, NULL);
592 usec_sleep(td, usec);
593 usec = utime_since_now(&t);
594
595 td->rate_pending_usleep[ddir] -= usec;
596
597 odir = ddir ^ 1;
598 if (td_rw(td) && __should_check_rate(td, odir))
599 td->rate_pending_usleep[odir] -= usec;
600
601 if (ddir_trim(ddir))
602 return ddir;
603
604 return ddir;
605}
606
607/*
608 * Return the data direction for the next io_u. If the job is a
609 * mixed read/write workload, check the rwmix cycle and switch if
610 * necessary.
611 */
612static enum fio_ddir get_rw_ddir(struct thread_data *td)
613{
614 enum fio_ddir ddir;
615
616 /*
617 * see if it's time to fsync
618 */
619 if (td->o.fsync_blocks &&
620 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
621 td->io_issues[DDIR_WRITE] && should_fsync(td))
622 return DDIR_SYNC;
623
624 /*
625 * see if it's time to fdatasync
626 */
627 if (td->o.fdatasync_blocks &&
628 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
629 td->io_issues[DDIR_WRITE] && should_fsync(td))
630 return DDIR_DATASYNC;
631
632 /*
633 * see if it's time to sync_file_range
634 */
635 if (td->sync_file_range_nr &&
636 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
637 td->io_issues[DDIR_WRITE] && should_fsync(td))
638 return DDIR_SYNC_FILE_RANGE;
639
640 if (td_rw(td)) {
641 /*
642 * Check if it's time to seed a new data direction.
643 */
644 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
645 /*
646 * Put a top limit on how many bytes we do for
647 * one data direction, to avoid overflowing the
648 * ranges too much
649 */
650 ddir = get_rand_ddir(td);
651
652 if (ddir != td->rwmix_ddir)
653 set_rwmix_bytes(td);
654
655 td->rwmix_ddir = ddir;
656 }
657 ddir = td->rwmix_ddir;
658 } else if (td_read(td))
659 ddir = DDIR_READ;
660 else if (td_write(td))
661 ddir = DDIR_WRITE;
662 else
663 ddir = DDIR_TRIM;
664
665 td->rwmix_ddir = rate_ddir(td, ddir);
666 return td->rwmix_ddir;
667}
668
669static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
670{
671 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
672
673 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
674 td->o.barrier_blocks &&
675 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
676 td->io_issues[DDIR_WRITE])
677 io_u->flags |= IO_U_F_BARRIER;
678}
679
680void put_file_log(struct thread_data *td, struct fio_file *f)
681{
682 int ret = put_file(td, f);
683
684 if (ret)
685 td_verror(td, ret, "file close");
686}
687
688void put_io_u(struct thread_data *td, struct io_u *io_u)
689{
690 td_io_u_lock(td);
691
692 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
693 put_file_log(td, io_u->file);
694 io_u->file = NULL;
695 io_u->flags &= ~IO_U_F_FREE_DEF;
696 io_u->flags |= IO_U_F_FREE;
697
698 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
699 td->cur_depth--;
700 io_u_qpush(&td->io_u_freelist, io_u);
701 td_io_u_unlock(td);
702 td_io_u_free_notify(td);
703}
704
705void clear_io_u(struct thread_data *td, struct io_u *io_u)
706{
707 io_u->flags &= ~IO_U_F_FLIGHT;
708 put_io_u(td, io_u);
709}
710
711void requeue_io_u(struct thread_data *td, struct io_u **io_u)
712{
713 struct io_u *__io_u = *io_u;
714 enum fio_ddir ddir = acct_ddir(__io_u);
715
716 dprint(FD_IO, "requeue %p\n", __io_u);
717
718 td_io_u_lock(td);
719
720 __io_u->flags |= IO_U_F_FREE;
721 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
722 td->io_issues[ddir]--;
723
724 __io_u->flags &= ~IO_U_F_FLIGHT;
725 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
726 td->cur_depth--;
727
728 io_u_rpush(&td->io_u_requeues, __io_u);
729 td_io_u_unlock(td);
730 *io_u = NULL;
731}
732
733static int fill_io_u(struct thread_data *td, struct io_u *io_u)
734{
735 unsigned int is_random;
736
737 if (td->io_ops->flags & FIO_NOIO)
738 goto out;
739
740 set_rw_ddir(td, io_u);
741
742 /*
743 * fsync() or fdatasync() or trim etc, we are done
744 */
745 if (!ddir_rw(io_u->ddir))
746 goto out;
747
748 /*
749 * See if it's time to switch to a new zone
750 */
751 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
752 td->zone_bytes = 0;
753 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
754 io_u->file->last_pos = io_u->file->file_offset;
755 td->io_skip_bytes += td->o.zone_skip;
756 }
757
758 /*
759 * No log, let the seq/rand engine retrieve the next buflen and
760 * position.
761 */
762 if (get_next_offset(td, io_u, &is_random)) {
763 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
764 return 1;
765 }
766
767 io_u->buflen = get_next_buflen(td, io_u, is_random);
768 if (!io_u->buflen) {
769 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
770 return 1;
771 }
772
773 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
774 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
775 dprint(FD_IO, " off=%llu/%lu > %llu\n",
776 (unsigned long long) io_u->offset, io_u->buflen,
777 (unsigned long long) io_u->file->real_file_size);
778 return 1;
779 }
780
781 /*
782 * mark entry before potentially trimming io_u
783 */
784 if (td_random(td) && file_randommap(td, io_u->file))
785 mark_random_map(td, io_u);
786
787out:
788 dprint_io_u(io_u, "fill_io_u");
789 td->zone_bytes += io_u->buflen;
790 return 0;
791}
792
793static void __io_u_mark_map(unsigned int *map, unsigned int nr)
794{
795 int idx = 0;
796
797 switch (nr) {
798 default:
799 idx = 6;
800 break;
801 case 33 ... 64:
802 idx = 5;
803 break;
804 case 17 ... 32:
805 idx = 4;
806 break;
807 case 9 ... 16:
808 idx = 3;
809 break;
810 case 5 ... 8:
811 idx = 2;
812 break;
813 case 1 ... 4:
814 idx = 1;
815 case 0:
816 break;
817 }
818
819 map[idx]++;
820}
821
822void io_u_mark_submit(struct thread_data *td, unsigned int nr)
823{
824 __io_u_mark_map(td->ts.io_u_submit, nr);
825 td->ts.total_submit++;
826}
827
828void io_u_mark_complete(struct thread_data *td, unsigned int nr)
829{
830 __io_u_mark_map(td->ts.io_u_complete, nr);
831 td->ts.total_complete++;
832}
833
834void io_u_mark_depth(struct thread_data *td, unsigned int nr)
835{
836 int idx = 0;
837
838 switch (td->cur_depth) {
839 default:
840 idx = 6;
841 break;
842 case 32 ... 63:
843 idx = 5;
844 break;
845 case 16 ... 31:
846 idx = 4;
847 break;
848 case 8 ... 15:
849 idx = 3;
850 break;
851 case 4 ... 7:
852 idx = 2;
853 break;
854 case 2 ... 3:
855 idx = 1;
856 case 1:
857 break;
858 }
859
860 td->ts.io_u_map[idx] += nr;
861}
862
863static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
864{
865 int idx = 0;
866
867 assert(usec < 1000);
868
869 switch (usec) {
870 case 750 ... 999:
871 idx = 9;
872 break;
873 case 500 ... 749:
874 idx = 8;
875 break;
876 case 250 ... 499:
877 idx = 7;
878 break;
879 case 100 ... 249:
880 idx = 6;
881 break;
882 case 50 ... 99:
883 idx = 5;
884 break;
885 case 20 ... 49:
886 idx = 4;
887 break;
888 case 10 ... 19:
889 idx = 3;
890 break;
891 case 4 ... 9:
892 idx = 2;
893 break;
894 case 2 ... 3:
895 idx = 1;
896 case 0 ... 1:
897 break;
898 }
899
900 assert(idx < FIO_IO_U_LAT_U_NR);
901 td->ts.io_u_lat_u[idx]++;
902}
903
904static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
905{
906 int idx = 0;
907
908 switch (msec) {
909 default:
910 idx = 11;
911 break;
912 case 1000 ... 1999:
913 idx = 10;
914 break;
915 case 750 ... 999:
916 idx = 9;
917 break;
918 case 500 ... 749:
919 idx = 8;
920 break;
921 case 250 ... 499:
922 idx = 7;
923 break;
924 case 100 ... 249:
925 idx = 6;
926 break;
927 case 50 ... 99:
928 idx = 5;
929 break;
930 case 20 ... 49:
931 idx = 4;
932 break;
933 case 10 ... 19:
934 idx = 3;
935 break;
936 case 4 ... 9:
937 idx = 2;
938 break;
939 case 2 ... 3:
940 idx = 1;
941 case 0 ... 1:
942 break;
943 }
944
945 assert(idx < FIO_IO_U_LAT_M_NR);
946 td->ts.io_u_lat_m[idx]++;
947}
948
949static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
950{
951 if (usec < 1000)
952 io_u_mark_lat_usec(td, usec);
953 else
954 io_u_mark_lat_msec(td, usec / 1000);
955}
956
957/*
958 * Get next file to service by choosing one at random
959 */
960static struct fio_file *get_next_file_rand(struct thread_data *td,
961 enum fio_file_flags goodf,
962 enum fio_file_flags badf)
963{
964 struct fio_file *f;
965 int fno;
966
967 do {
968 int opened = 0;
969 unsigned long r;
970
971 if (td->o.use_os_rand) {
972 r = os_random_long(&td->next_file_state);
973 fno = (unsigned int) ((double) td->o.nr_files
974 * (r / (OS_RAND_MAX + 1.0)));
975 } else {
976 r = __rand(&td->__next_file_state);
977 fno = (unsigned int) ((double) td->o.nr_files
978 * (r / (FRAND_MAX + 1.0)));
979 }
980
981 f = td->files[fno];
982 if (fio_file_done(f))
983 continue;
984
985 if (!fio_file_open(f)) {
986 int err;
987
988 err = td_io_open_file(td, f);
989 if (err)
990 continue;
991 opened = 1;
992 }
993
994 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
995 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
996 return f;
997 }
998 if (opened)
999 td_io_close_file(td, f);
1000 } while (1);
1001}
1002
1003/*
1004 * Get next file to service by doing round robin between all available ones
1005 */
1006static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1007 int badf)
1008{
1009 unsigned int old_next_file = td->next_file;
1010 struct fio_file *f;
1011
1012 do {
1013 int opened = 0;
1014
1015 f = td->files[td->next_file];
1016
1017 td->next_file++;
1018 if (td->next_file >= td->o.nr_files)
1019 td->next_file = 0;
1020
1021 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1022 if (fio_file_done(f)) {
1023 f = NULL;
1024 continue;
1025 }
1026
1027 if (!fio_file_open(f)) {
1028 int err;
1029
1030 err = td_io_open_file(td, f);
1031 if (err) {
1032 dprint(FD_FILE, "error %d on open of %s\n",
1033 err, f->file_name);
1034 f = NULL;
1035 continue;
1036 }
1037 opened = 1;
1038 }
1039
1040 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1041 f->flags);
1042 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1043 break;
1044
1045 if (opened)
1046 td_io_close_file(td, f);
1047
1048 f = NULL;
1049 } while (td->next_file != old_next_file);
1050
1051 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1052 return f;
1053}
1054
1055static struct fio_file *__get_next_file(struct thread_data *td)
1056{
1057 struct fio_file *f;
1058
1059 assert(td->o.nr_files <= td->files_index);
1060
1061 if (td->nr_done_files >= td->o.nr_files) {
1062 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1063 " nr_files=%d\n", td->nr_open_files,
1064 td->nr_done_files,
1065 td->o.nr_files);
1066 return NULL;
1067 }
1068
1069 f = td->file_service_file;
1070 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1071 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1072 goto out;
1073 if (td->file_service_left--)
1074 goto out;
1075 }
1076
1077 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1078 td->o.file_service_type == FIO_FSERVICE_SEQ)
1079 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1080 else
1081 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1082
1083 td->file_service_file = f;
1084 td->file_service_left = td->file_service_nr - 1;
1085out:
1086 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1087 return f;
1088}
1089
1090static struct fio_file *get_next_file(struct thread_data *td)
1091{
1092 if (!(td->flags & TD_F_PROFILE_OPS)) {
1093 struct prof_io_ops *ops = &td->prof_io_ops;
1094
1095 if (ops->get_next_file)
1096 return ops->get_next_file(td);
1097 }
1098
1099 return __get_next_file(td);
1100}
1101
1102static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1103{
1104 struct fio_file *f;
1105
1106 do {
1107 f = get_next_file(td);
1108 if (!f)
1109 return 1;
1110
1111 io_u->file = f;
1112 get_file(f);
1113
1114 if (!fill_io_u(td, io_u))
1115 break;
1116
1117 put_file_log(td, f);
1118 td_io_close_file(td, f);
1119 io_u->file = NULL;
1120 fio_file_set_done(f);
1121 td->nr_done_files++;
1122 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1123 td->nr_done_files, td->o.nr_files);
1124 } while (1);
1125
1126 return 0;
1127}
1128
1129static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1130 unsigned long tusec, unsigned long max_usec)
1131{
1132 if (!td->error)
1133 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1134 td_verror(td, ETIMEDOUT, "max latency exceeded");
1135 icd->error = ETIMEDOUT;
1136}
1137
1138static void lat_new_cycle(struct thread_data *td)
1139{
1140 fio_gettime(&td->latency_ts, NULL);
1141 td->latency_ios = ddir_rw_sum(td->io_blocks);
1142 td->latency_failed = 0;
1143}
1144
1145/*
1146 * We had an IO outside the latency target. Reduce the queue depth. If we
1147 * are at QD=1, then it's time to give up.
1148 */
1149static int __lat_target_failed(struct thread_data *td)
1150{
1151 if (td->latency_qd == 1)
1152 return 1;
1153
1154 td->latency_qd_high = td->latency_qd;
1155 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1156
1157 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1158
1159 /*
1160 * When we ramp QD down, quiesce existing IO to prevent
1161 * a storm of ramp downs due to pending higher depth.
1162 */
1163 io_u_quiesce(td);
1164 lat_new_cycle(td);
1165 return 0;
1166}
1167
1168static int lat_target_failed(struct thread_data *td)
1169{
1170 if (td->o.latency_percentile.u.f == 100.0)
1171 return __lat_target_failed(td);
1172
1173 td->latency_failed++;
1174 return 0;
1175}
1176
1177void lat_target_init(struct thread_data *td)
1178{
1179 if (td->o.latency_target) {
1180 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1181 fio_gettime(&td->latency_ts, NULL);
1182 td->latency_qd = 1;
1183 td->latency_qd_high = td->o.iodepth;
1184 td->latency_qd_low = 1;
1185 td->latency_ios = ddir_rw_sum(td->io_blocks);
1186 } else
1187 td->latency_qd = td->o.iodepth;
1188}
1189
1190static void lat_target_success(struct thread_data *td)
1191{
1192 const unsigned int qd = td->latency_qd;
1193
1194 td->latency_qd_low = td->latency_qd;
1195
1196 /*
1197 * If we haven't failed yet, we double up to a failing value instead
1198 * of bisecting from highest possible queue depth. If we have set
1199 * a limit other than td->o.iodepth, bisect between that.
1200 */
1201 if (td->latency_qd_high != td->o.iodepth)
1202 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1203 else
1204 td->latency_qd *= 2;
1205
1206 if (td->latency_qd > td->o.iodepth)
1207 td->latency_qd = td->o.iodepth;
1208
1209 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1210 /*
1211 * Same as last one, we are done
1212 */
1213 if (td->latency_qd == qd)
1214 td->done = 1;
1215
1216 lat_new_cycle(td);
1217}
1218
1219/*
1220 * Check if we can bump the queue depth
1221 */
1222void lat_target_check(struct thread_data *td)
1223{
1224 uint64_t usec_window;
1225 uint64_t ios;
1226 double success_ios;
1227
1228 usec_window = utime_since_now(&td->latency_ts);
1229 if (usec_window < td->o.latency_window)
1230 return;
1231
1232 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1233 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1234 success_ios *= 100.0;
1235
1236 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1237
1238 if (success_ios >= td->o.latency_percentile.u.f)
1239 lat_target_success(td);
1240 else
1241 __lat_target_failed(td);
1242}
1243
1244/*
1245 * If latency target is enabled, we might be ramping up or down and not
1246 * using the full queue depth available.
1247 */
1248int queue_full(struct thread_data *td)
1249{
1250 const int qempty = io_u_qempty(&td->io_u_freelist);
1251
1252 if (qempty)
1253 return 1;
1254 if (!td->o.latency_target)
1255 return 0;
1256
1257 return td->cur_depth >= td->latency_qd;
1258}
1259
1260struct io_u *__get_io_u(struct thread_data *td)
1261{
1262 struct io_u *io_u;
1263
1264 td_io_u_lock(td);
1265
1266again:
1267 if (!io_u_rempty(&td->io_u_requeues))
1268 io_u = io_u_rpop(&td->io_u_requeues);
1269 else if (!queue_full(td)) {
1270 io_u = io_u_qpop(&td->io_u_freelist);
1271
1272 io_u->buflen = 0;
1273 io_u->resid = 0;
1274 io_u->file = NULL;
1275 io_u->end_io = NULL;
1276 }
1277
1278 if (io_u) {
1279 assert(io_u->flags & IO_U_F_FREE);
1280 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1281 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1282 io_u->flags &= ~IO_U_F_VER_LIST;
1283
1284 io_u->error = 0;
1285 io_u->acct_ddir = -1;
1286 td->cur_depth++;
1287 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1288 io_u->ipo = NULL;
1289 } else if (td->o.verify_async) {
1290 /*
1291 * We ran out, wait for async verify threads to finish and
1292 * return one
1293 */
1294 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1295 goto again;
1296 }
1297
1298 td_io_u_unlock(td);
1299 return io_u;
1300}
1301
1302static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1303{
1304 if (!(td->flags & TD_F_TRIM_BACKLOG))
1305 return 0;
1306
1307 if (td->trim_entries) {
1308 int get_trim = 0;
1309
1310 if (td->trim_batch) {
1311 td->trim_batch--;
1312 get_trim = 1;
1313 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1314 td->last_ddir != DDIR_READ) {
1315 td->trim_batch = td->o.trim_batch;
1316 if (!td->trim_batch)
1317 td->trim_batch = td->o.trim_backlog;
1318 get_trim = 1;
1319 }
1320
1321 if (get_trim && !get_next_trim(td, io_u))
1322 return 1;
1323 }
1324
1325 return 0;
1326}
1327
1328static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1329{
1330 if (!(td->flags & TD_F_VER_BACKLOG))
1331 return 0;
1332
1333 if (td->io_hist_len) {
1334 int get_verify = 0;
1335
1336 if (td->verify_batch)
1337 get_verify = 1;
1338 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1339 td->last_ddir != DDIR_READ) {
1340 td->verify_batch = td->o.verify_batch;
1341 if (!td->verify_batch)
1342 td->verify_batch = td->o.verify_backlog;
1343 get_verify = 1;
1344 }
1345
1346 if (get_verify && !get_next_verify(td, io_u)) {
1347 td->verify_batch--;
1348 return 1;
1349 }
1350 }
1351
1352 return 0;
1353}
1354
1355/*
1356 * Fill offset and start time into the buffer content, to prevent too
1357 * easy compressible data for simple de-dupe attempts. Do this for every
1358 * 512b block in the range, since that should be the smallest block size
1359 * we can expect from a device.
1360 */
1361static void small_content_scramble(struct io_u *io_u)
1362{
1363 unsigned int i, nr_blocks = io_u->buflen / 512;
1364 uint64_t boffset;
1365 unsigned int offset;
1366 void *p, *end;
1367
1368 if (!nr_blocks)
1369 return;
1370
1371 p = io_u->xfer_buf;
1372 boffset = io_u->offset;
1373 io_u->buf_filled_len = 0;
1374
1375 for (i = 0; i < nr_blocks; i++) {
1376 /*
1377 * Fill the byte offset into a "random" start offset of
1378 * the buffer, given by the product of the usec time
1379 * and the actual offset.
1380 */
1381 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1382 offset &= ~(sizeof(uint64_t) - 1);
1383 if (offset >= 512 - sizeof(uint64_t))
1384 offset -= sizeof(uint64_t);
1385 memcpy(p + offset, &boffset, sizeof(boffset));
1386
1387 end = p + 512 - sizeof(io_u->start_time);
1388 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1389 p += 512;
1390 boffset += 512;
1391 }
1392}
1393
1394/*
1395 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1396 * etc. The returned io_u is fully ready to be prepped and submitted.
1397 */
1398struct io_u *get_io_u(struct thread_data *td)
1399{
1400 struct fio_file *f;
1401 struct io_u *io_u;
1402 int do_scramble = 0;
1403
1404 io_u = __get_io_u(td);
1405 if (!io_u) {
1406 dprint(FD_IO, "__get_io_u failed\n");
1407 return NULL;
1408 }
1409
1410 if (check_get_verify(td, io_u))
1411 goto out;
1412 if (check_get_trim(td, io_u))
1413 goto out;
1414
1415 /*
1416 * from a requeue, io_u already setup
1417 */
1418 if (io_u->file)
1419 goto out;
1420
1421 /*
1422 * If using an iolog, grab next piece if any available.
1423 */
1424 if (td->flags & TD_F_READ_IOLOG) {
1425 if (read_iolog_get(td, io_u))
1426 goto err_put;
1427 } else if (set_io_u_file(td, io_u)) {
1428 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1429 goto err_put;
1430 }
1431
1432 f = io_u->file;
1433 assert(fio_file_open(f));
1434
1435 if (ddir_rw(io_u->ddir)) {
1436 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1437 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1438 goto err_put;
1439 }
1440
1441 f->last_start = io_u->offset;
1442 f->last_pos = io_u->offset + io_u->buflen;
1443
1444 if (io_u->ddir == DDIR_WRITE) {
1445 if (td->flags & TD_F_REFILL_BUFFERS) {
1446 io_u_fill_buffer(td, io_u,
1447 io_u->xfer_buflen, io_u->xfer_buflen);
1448 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1449 do_scramble = 1;
1450 if (td->flags & TD_F_VER_NONE) {
1451 populate_verify_io_u(td, io_u);
1452 do_scramble = 0;
1453 }
1454 } else if (io_u->ddir == DDIR_READ) {
1455 /*
1456 * Reset the buf_filled parameters so next time if the
1457 * buffer is used for writes it is refilled.
1458 */
1459 io_u->buf_filled_len = 0;
1460 }
1461 }
1462
1463 /*
1464 * Set io data pointers.
1465 */
1466 io_u->xfer_buf = io_u->buf;
1467 io_u->xfer_buflen = io_u->buflen;
1468
1469out:
1470 assert(io_u->file);
1471 if (!td_io_prep(td, io_u)) {
1472 if (!td->o.disable_slat)
1473 fio_gettime(&io_u->start_time, NULL);
1474 if (do_scramble)
1475 small_content_scramble(io_u);
1476 return io_u;
1477 }
1478err_put:
1479 dprint(FD_IO, "get_io_u failed\n");
1480 put_io_u(td, io_u);
1481 return NULL;
1482}
1483
1484void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1485{
1486 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1487 const char *msg[] = { "read", "write", "sync", "datasync",
1488 "sync_file_range", "wait", "trim" };
1489
1490 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1491 return;
1492
1493 log_err("fio: io_u error");
1494
1495 if (io_u->file)
1496 log_err(" on file %s", io_u->file->file_name);
1497
1498 log_err(": %s\n", strerror(io_u->error));
1499
1500 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1501 io_u->offset, io_u->xfer_buflen);
1502
1503 if (!td->error)
1504 td_verror(td, io_u->error, "io_u error");
1505}
1506
1507static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1508 struct io_completion_data *icd,
1509 const enum fio_ddir idx, unsigned int bytes)
1510{
1511 unsigned long lusec = 0;
1512
1513 if (!td->o.disable_clat || !td->o.disable_bw)
1514 lusec = utime_since(&io_u->issue_time, &icd->time);
1515
1516 if (!td->o.disable_lat) {
1517 unsigned long tusec;
1518
1519 tusec = utime_since(&io_u->start_time, &icd->time);
1520 add_lat_sample(td, idx, tusec, bytes);
1521
1522 if (td->flags & TD_F_PROFILE_OPS) {
1523 struct prof_io_ops *ops = &td->prof_io_ops;
1524
1525 if (ops->io_u_lat)
1526 icd->error = ops->io_u_lat(td, tusec);
1527 }
1528
1529 if (td->o.max_latency && tusec > td->o.max_latency)
1530 lat_fatal(td, icd, tusec, td->o.max_latency);
1531 if (td->o.latency_target && tusec > td->o.latency_target) {
1532 if (lat_target_failed(td))
1533 lat_fatal(td, icd, tusec, td->o.latency_target);
1534 }
1535 }
1536
1537 if (!td->o.disable_clat) {
1538 add_clat_sample(td, idx, lusec, bytes);
1539 io_u_mark_latency(td, lusec);
1540 }
1541
1542 if (!td->o.disable_bw)
1543 add_bw_sample(td, idx, bytes, &icd->time);
1544
1545 add_iops_sample(td, idx, bytes, &icd->time);
1546
1547 if (td->o.number_ios && !--td->o.number_ios)
1548 td->done = 1;
1549}
1550
1551static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1552{
1553 uint64_t secs, remainder, bps, bytes;
1554
1555 bytes = td->this_io_bytes[ddir];
1556 bps = td->rate_bps[ddir];
1557 secs = bytes / bps;
1558 remainder = bytes % bps;
1559 return remainder * 1000000 / bps + secs * 1000000;
1560}
1561
1562static void io_completed(struct thread_data *td, struct io_u *io_u,
1563 struct io_completion_data *icd)
1564{
1565 struct fio_file *f;
1566
1567 dprint_io_u(io_u, "io complete");
1568
1569 td_io_u_lock(td);
1570 assert(io_u->flags & IO_U_F_FLIGHT);
1571 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1572
1573 /*
1574 * Mark IO ok to verify
1575 */
1576 if (io_u->ipo) {
1577 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1578 write_barrier();
1579 }
1580
1581 td_io_u_unlock(td);
1582
1583 if (ddir_sync(io_u->ddir)) {
1584 td->last_was_sync = 1;
1585 f = io_u->file;
1586 if (f) {
1587 f->first_write = -1ULL;
1588 f->last_write = -1ULL;
1589 }
1590 return;
1591 }
1592
1593 td->last_was_sync = 0;
1594 td->last_ddir = io_u->ddir;
1595
1596 if (!io_u->error && ddir_rw(io_u->ddir)) {
1597 unsigned int bytes = io_u->buflen - io_u->resid;
1598 const enum fio_ddir idx = io_u->ddir;
1599 const enum fio_ddir odx = io_u->ddir ^ 1;
1600 int ret;
1601
1602 td->io_blocks[idx]++;
1603 td->this_io_blocks[idx]++;
1604 td->io_bytes[idx] += bytes;
1605
1606 if (!(io_u->flags & IO_U_F_VER_LIST))
1607 td->this_io_bytes[idx] += bytes;
1608
1609 if (idx == DDIR_WRITE) {
1610 f = io_u->file;
1611 if (f) {
1612 if (f->first_write == -1ULL ||
1613 io_u->offset < f->first_write)
1614 f->first_write = io_u->offset;
1615 if (f->last_write == -1ULL ||
1616 ((io_u->offset + bytes) > f->last_write))
1617 f->last_write = io_u->offset + bytes;
1618 }
1619 }
1620
1621 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1622 td->runstate == TD_VERIFYING)) {
1623 account_io_completion(td, io_u, icd, idx, bytes);
1624
1625 if (__should_check_rate(td, idx)) {
1626 td->rate_pending_usleep[idx] =
1627 (usec_for_io(td, idx) -
1628 utime_since_now(&td->start));
1629 }
1630 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1631 td->rate_pending_usleep[odx] =
1632 (usec_for_io(td, odx) -
1633 utime_since_now(&td->start));
1634 }
1635
1636 icd->bytes_done[idx] += bytes;
1637
1638 if (io_u->end_io) {
1639 ret = io_u->end_io(td, io_u);
1640 if (ret && !icd->error)
1641 icd->error = ret;
1642 }
1643 } else if (io_u->error) {
1644 icd->error = io_u->error;
1645 io_u_log_error(td, io_u);
1646 }
1647 if (icd->error) {
1648 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1649 if (!td_non_fatal_error(td, eb, icd->error))
1650 return;
1651 /*
1652 * If there is a non_fatal error, then add to the error count
1653 * and clear all the errors.
1654 */
1655 update_error_count(td, icd->error);
1656 td_clear_error(td);
1657 icd->error = 0;
1658 io_u->error = 0;
1659 }
1660}
1661
1662static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1663 int nr)
1664{
1665 int ddir;
1666 if (!td->o.disable_clat || !td->o.disable_bw)
1667 fio_gettime(&icd->time, NULL);
1668
1669 icd->nr = nr;
1670
1671 icd->error = 0;
1672 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1673 icd->bytes_done[ddir] = 0;
1674}
1675
1676static void ios_completed(struct thread_data *td,
1677 struct io_completion_data *icd)
1678{
1679 struct io_u *io_u;
1680 int i;
1681
1682 for (i = 0; i < icd->nr; i++) {
1683 io_u = td->io_ops->event(td, i);
1684
1685 io_completed(td, io_u, icd);
1686
1687 if (!(io_u->flags & IO_U_F_FREE_DEF))
1688 put_io_u(td, io_u);
1689 }
1690}
1691
1692/*
1693 * Complete a single io_u for the sync engines.
1694 */
1695int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1696 uint64_t *bytes)
1697{
1698 struct io_completion_data icd;
1699
1700 init_icd(td, &icd, 1);
1701 io_completed(td, io_u, &icd);
1702
1703 if (!(io_u->flags & IO_U_F_FREE_DEF))
1704 put_io_u(td, io_u);
1705
1706 if (icd.error) {
1707 td_verror(td, icd.error, "io_u_sync_complete");
1708 return -1;
1709 }
1710
1711 if (bytes) {
1712 int ddir;
1713
1714 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1715 bytes[ddir] += icd.bytes_done[ddir];
1716 }
1717
1718 return 0;
1719}
1720
1721/*
1722 * Called to complete min_events number of io for the async engines.
1723 */
1724int io_u_queued_complete(struct thread_data *td, int min_evts,
1725 uint64_t *bytes)
1726{
1727 struct io_completion_data icd;
1728 struct timespec *tvp = NULL;
1729 int ret;
1730 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1731
1732 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1733
1734 if (!min_evts)
1735 tvp = &ts;
1736
1737 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1738 if (ret < 0) {
1739 td_verror(td, -ret, "td_io_getevents");
1740 return ret;
1741 } else if (!ret)
1742 return ret;
1743
1744 init_icd(td, &icd, ret);
1745 ios_completed(td, &icd);
1746 if (icd.error) {
1747 td_verror(td, icd.error, "io_u_queued_complete");
1748 return -1;
1749 }
1750
1751 if (bytes) {
1752 int ddir;
1753
1754 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1755 bytes[ddir] += icd.bytes_done[ddir];
1756 }
1757
1758 return 0;
1759}
1760
1761/*
1762 * Call when io_u is really queued, to update the submission latency.
1763 */
1764void io_u_queued(struct thread_data *td, struct io_u *io_u)
1765{
1766 if (!td->o.disable_slat) {
1767 unsigned long slat_time;
1768
1769 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1770 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1771 }
1772}
1773
1774void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1775 unsigned int max_bs)
1776{
1777 if (td->o.buffer_pattern_bytes)
1778 fill_buffer_pattern(td, buf, max_bs);
1779 else if (!td->o.zero_buffers) {
1780 unsigned int perc = td->o.compress_percentage;
1781
1782 if (perc) {
1783 unsigned int seg = min_write;
1784
1785 seg = min(min_write, td->o.compress_chunk);
1786 if (!seg)
1787 seg = min_write;
1788
1789 fill_random_buf_percentage(&td->buf_state, buf,
1790 perc, seg, max_bs);
1791 } else
1792 fill_random_buf(&td->buf_state, buf, max_bs);
1793 } else
1794 memset(buf, 0, max_bs);
1795}
1796
1797/*
1798 * "randomly" fill the buffer contents
1799 */
1800void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1801 unsigned int min_write, unsigned int max_bs)
1802{
1803 io_u->buf_filled_len = 0;
1804 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1805}