engines/nfs: fix the most egregious style violations
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13#include "zbd.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timespec time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static bool random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static uint64_t mark_random_map(struct thread_data *td, struct io_u *io_u,
36 uint64_t offset, uint64_t buflen)
37{
38 unsigned long long min_bs = td->o.min_bs[io_u->ddir];
39 struct fio_file *f = io_u->file;
40 unsigned long long nr_blocks;
41 uint64_t block;
42
43 block = (offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (buflen + min_bs - 1) / min_bs;
45 assert(nr_blocks > 0);
46
47 if (!(io_u->flags & IO_U_F_BUSY_OK)) {
48 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
49 assert(nr_blocks > 0);
50 }
51
52 if ((nr_blocks * min_bs) < buflen)
53 buflen = nr_blocks * min_bs;
54
55 return buflen;
56}
57
58static uint64_t last_block(struct thread_data *td, struct fio_file *f,
59 enum fio_ddir ddir)
60{
61 uint64_t max_blocks;
62 uint64_t max_size;
63
64 assert(ddir_rw(ddir));
65
66 /*
67 * Hmm, should we make sure that ->io_size <= ->real_file_size?
68 * -> not for now since there is code assuming it could go either.
69 */
70 max_size = f->io_size;
71 if (max_size > f->real_file_size)
72 max_size = f->real_file_size;
73
74 if (td->o.zone_mode == ZONE_MODE_STRIDED && td->o.zone_range)
75 max_size = td->o.zone_range;
76
77 if (td->o.min_bs[ddir] > td->o.ba[ddir])
78 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
79
80 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
81 if (!max_blocks)
82 return 0;
83
84 return max_blocks;
85}
86
87static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
88 enum fio_ddir ddir, uint64_t *b,
89 uint64_t lastb)
90{
91 uint64_t r;
92
93 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
94 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
95
96 r = __rand(&td->random_state);
97
98 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
99
100 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
101 } else {
102 uint64_t off = 0;
103
104 assert(fio_file_lfsr(f));
105
106 if (lfsr_next(&f->lfsr, &off))
107 return 1;
108
109 *b = off;
110 }
111
112 /*
113 * if we are not maintaining a random map, we are done.
114 */
115 if (!file_randommap(td, f))
116 goto ret;
117
118 /*
119 * calculate map offset and check if it's free
120 */
121 if (random_map_free(f, *b))
122 goto ret;
123
124 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
125 (unsigned long long) *b);
126
127 *b = axmap_next_free(f->io_axmap, *b);
128 if (*b == (uint64_t) -1ULL)
129 return 1;
130ret:
131 return 0;
132}
133
134static int __get_next_rand_offset_zipf(struct thread_data *td,
135 struct fio_file *f, enum fio_ddir ddir,
136 uint64_t *b)
137{
138 *b = zipf_next(&f->zipf);
139 return 0;
140}
141
142static int __get_next_rand_offset_pareto(struct thread_data *td,
143 struct fio_file *f, enum fio_ddir ddir,
144 uint64_t *b)
145{
146 *b = pareto_next(&f->zipf);
147 return 0;
148}
149
150static int __get_next_rand_offset_gauss(struct thread_data *td,
151 struct fio_file *f, enum fio_ddir ddir,
152 uint64_t *b)
153{
154 *b = gauss_next(&f->gauss);
155 return 0;
156}
157
158static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
159 struct fio_file *f,
160 enum fio_ddir ddir, uint64_t *b)
161{
162 struct zone_split_index *zsi;
163 uint64_t lastb, send, stotal;
164 unsigned int v;
165
166 lastb = last_block(td, f, ddir);
167 if (!lastb)
168 return 1;
169
170 if (!td->o.zone_split_nr[ddir]) {
171bail:
172 return __get_next_rand_offset(td, f, ddir, b, lastb);
173 }
174
175 /*
176 * Generate a value, v, between 1 and 100, both inclusive
177 */
178 v = rand_between(&td->zone_state, 1, 100);
179
180 /*
181 * Find our generated table. 'send' is the end block of this zone,
182 * 'stotal' is our start offset.
183 */
184 zsi = &td->zone_state_index[ddir][v - 1];
185 stotal = zsi->size_prev / td->o.ba[ddir];
186 send = zsi->size / td->o.ba[ddir];
187
188 /*
189 * Should never happen
190 */
191 if (send == -1U) {
192 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
193 log_err("fio: bug in zoned generation\n");
194 goto bail;
195 } else if (send > lastb) {
196 /*
197 * This happens if the user specifies ranges that exceed
198 * the file/device size. We can't handle that gracefully,
199 * so error and exit.
200 */
201 log_err("fio: zoned_abs sizes exceed file size\n");
202 return 1;
203 }
204
205 /*
206 * Generate index from 0..send-stotal
207 */
208 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
209 return 1;
210
211 *b += stotal;
212 return 0;
213}
214
215static int __get_next_rand_offset_zoned(struct thread_data *td,
216 struct fio_file *f, enum fio_ddir ddir,
217 uint64_t *b)
218{
219 unsigned int v, send, stotal;
220 uint64_t offset, lastb;
221 struct zone_split_index *zsi;
222
223 lastb = last_block(td, f, ddir);
224 if (!lastb)
225 return 1;
226
227 if (!td->o.zone_split_nr[ddir]) {
228bail:
229 return __get_next_rand_offset(td, f, ddir, b, lastb);
230 }
231
232 /*
233 * Generate a value, v, between 1 and 100, both inclusive
234 */
235 v = rand_between(&td->zone_state, 1, 100);
236
237 zsi = &td->zone_state_index[ddir][v - 1];
238 stotal = zsi->size_perc_prev;
239 send = zsi->size_perc;
240
241 /*
242 * Should never happen
243 */
244 if (send == -1U) {
245 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
246 log_err("fio: bug in zoned generation\n");
247 goto bail;
248 }
249
250 /*
251 * 'send' is some percentage below or equal to 100 that
252 * marks the end of the current IO range. 'stotal' marks
253 * the start, in percent.
254 */
255 if (stotal)
256 offset = stotal * lastb / 100ULL;
257 else
258 offset = 0;
259
260 lastb = lastb * (send - stotal) / 100ULL;
261
262 /*
263 * Generate index from 0..send-of-lastb
264 */
265 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
266 return 1;
267
268 /*
269 * Add our start offset, if any
270 */
271 if (offset)
272 *b += offset;
273
274 return 0;
275}
276
277static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
278 enum fio_ddir ddir, uint64_t *b)
279{
280 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
281 uint64_t lastb;
282
283 lastb = last_block(td, f, ddir);
284 if (!lastb)
285 return 1;
286
287 return __get_next_rand_offset(td, f, ddir, b, lastb);
288 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
289 return __get_next_rand_offset_zipf(td, f, ddir, b);
290 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
291 return __get_next_rand_offset_pareto(td, f, ddir, b);
292 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
293 return __get_next_rand_offset_gauss(td, f, ddir, b);
294 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
295 return __get_next_rand_offset_zoned(td, f, ddir, b);
296 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
297 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
298
299 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
300 return 1;
301}
302
303static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
304{
305 unsigned int v;
306
307 if (td->o.perc_rand[ddir] == 100)
308 return true;
309
310 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
311
312 return v <= td->o.perc_rand[ddir];
313}
314
315static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
316{
317 struct thread_options *o = &td->o;
318
319 if (o->invalidate_cache && !o->odirect) {
320 int fio_unused ret;
321
322 ret = file_invalidate_cache(td, f);
323 }
324}
325
326static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
327 enum fio_ddir ddir, uint64_t *b)
328{
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331
332 if (td->o.time_based ||
333 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
334 fio_file_reset(td, f);
335 loop_cache_invalidate(td, f);
336 if (!get_next_rand_offset(td, f, ddir, b))
337 return 0;
338 }
339
340 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
341 f->file_name, (unsigned long long) f->last_pos[ddir],
342 (unsigned long long) f->real_file_size);
343 return 1;
344}
345
346static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
347 enum fio_ddir ddir, uint64_t *offset)
348{
349 struct thread_options *o = &td->o;
350
351 assert(ddir_rw(ddir));
352
353 /*
354 * If we reach the end for a time based run, reset us back to 0
355 * and invalidate the cache, if we need to.
356 */
357 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
358 o->time_based && o->nr_files == 1) {
359 f->last_pos[ddir] = f->file_offset;
360 loop_cache_invalidate(td, f);
361 }
362
363 if (f->last_pos[ddir] < f->real_file_size) {
364 uint64_t pos;
365
366 /*
367 * Only rewind if we already hit the end
368 */
369 if (f->last_pos[ddir] == f->file_offset &&
370 f->file_offset && o->ddir_seq_add < 0) {
371 if (f->real_file_size > f->io_size)
372 f->last_pos[ddir] = f->io_size;
373 else
374 f->last_pos[ddir] = f->real_file_size;
375 }
376
377 pos = f->last_pos[ddir] - f->file_offset;
378 if (pos && o->ddir_seq_add) {
379 pos += o->ddir_seq_add;
380
381 /*
382 * If we reach beyond the end of the file
383 * with holed IO, wrap around to the
384 * beginning again. If we're doing backwards IO,
385 * wrap to the end.
386 */
387 if (pos >= f->real_file_size) {
388 if (o->ddir_seq_add > 0)
389 pos = f->file_offset;
390 else {
391 if (f->real_file_size > f->io_size)
392 pos = f->io_size;
393 else
394 pos = f->real_file_size;
395
396 pos += o->ddir_seq_add;
397 }
398 }
399 }
400
401 *offset = pos;
402 return 0;
403 }
404
405 return 1;
406}
407
408static int get_next_block(struct thread_data *td, struct io_u *io_u,
409 enum fio_ddir ddir, int rw_seq,
410 bool *is_random)
411{
412 struct fio_file *f = io_u->file;
413 uint64_t b, offset;
414 int ret;
415
416 assert(ddir_rw(ddir));
417
418 b = offset = -1ULL;
419
420 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
421 /* don't mark randommap for these writes */
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 offset = f->last_start[DDIR_TRIM];
424 *is_random = true;
425 ret = 0;
426 } else if (rw_seq) {
427 if (td_random(td)) {
428 if (should_do_random(td, ddir)) {
429 ret = get_next_rand_block(td, f, ddir, &b);
430 *is_random = true;
431 } else {
432 *is_random = false;
433 io_u_set(td, io_u, IO_U_F_BUSY_OK);
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret)
436 ret = get_next_rand_block(td, f, ddir, &b);
437 }
438 } else {
439 *is_random = false;
440 ret = get_next_seq_offset(td, f, ddir, &offset);
441 }
442 } else {
443 io_u_set(td, io_u, IO_U_F_BUSY_OK);
444 *is_random = false;
445
446 if (td->o.rw_seq == RW_SEQ_SEQ) {
447 ret = get_next_seq_offset(td, f, ddir, &offset);
448 if (ret) {
449 ret = get_next_rand_block(td, f, ddir, &b);
450 *is_random = false;
451 }
452 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
453 if (f->last_start[ddir] != -1ULL)
454 offset = f->last_start[ddir] - f->file_offset;
455 else
456 offset = 0;
457 ret = 0;
458 } else {
459 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
460 ret = 1;
461 }
462 }
463
464 if (!ret) {
465 if (offset != -1ULL)
466 io_u->offset = offset;
467 else if (b != -1ULL)
468 io_u->offset = b * td->o.ba[ddir];
469 else {
470 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
471 ret = 1;
472 }
473 io_u->verify_offset = io_u->offset;
474 }
475
476 return ret;
477}
478
479/*
480 * For random io, generate a random new block and see if it's used. Repeat
481 * until we find a free one. For sequential io, just return the end of
482 * the last io issued.
483 */
484static int get_next_offset(struct thread_data *td, struct io_u *io_u,
485 bool *is_random)
486{
487 struct fio_file *f = io_u->file;
488 enum fio_ddir ddir = io_u->ddir;
489 int rw_seq_hit = 0;
490
491 assert(ddir_rw(ddir));
492
493 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
494 rw_seq_hit = 1;
495 td->ddir_seq_nr = td->o.ddir_seq_nr;
496 }
497
498 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
499 return 1;
500
501 if (io_u->offset >= f->io_size) {
502 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
503 (unsigned long long) io_u->offset,
504 (unsigned long long) f->io_size);
505 return 1;
506 }
507
508 io_u->offset += f->file_offset;
509 if (io_u->offset >= f->real_file_size) {
510 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
511 (unsigned long long) io_u->offset,
512 (unsigned long long) f->real_file_size);
513 return 1;
514 }
515
516 /*
517 * For randtrimwrite, we decide whether to issue a trim or a write
518 * based on whether the offsets for the most recent trim and write
519 * operations match. If they don't match that means we just issued a
520 * new trim and the next operation should be a write. If they *do*
521 * match that means we just completed a trim+write pair and the next
522 * command should be a trim.
523 *
524 * This works fine for sequential workloads but for random workloads
525 * it's possible to complete a trim+write pair and then have the next
526 * randomly generated offset match the previous offset. If that happens
527 * we need to alter the offset for the last write operation in order
528 * to ensure that we issue a write operation the next time through.
529 */
530 if (td_randtrimwrite(td) && ddir == DDIR_TRIM &&
531 f->last_start[DDIR_TRIM] == io_u->offset)
532 f->last_start[DDIR_WRITE]--;
533
534 io_u->verify_offset = io_u->offset;
535 return 0;
536}
537
538static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
539 unsigned long long buflen)
540{
541 struct fio_file *f = io_u->file;
542
543 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
544}
545
546static unsigned long long get_next_buflen(struct thread_data *td, struct io_u *io_u,
547 bool is_random)
548{
549 int ddir = io_u->ddir;
550 unsigned long long buflen = 0;
551 unsigned long long minbs, maxbs;
552 uint64_t frand_max, r;
553 bool power_2;
554
555 assert(ddir_rw(ddir));
556
557 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
558 struct fio_file *f = io_u->file;
559
560 return f->last_pos[DDIR_TRIM] - f->last_start[DDIR_TRIM];
561 }
562
563 if (td->o.bs_is_seq_rand)
564 ddir = is_random ? DDIR_WRITE : DDIR_READ;
565
566 minbs = td->o.min_bs[ddir];
567 maxbs = td->o.max_bs[ddir];
568
569 if (minbs == maxbs)
570 return minbs;
571
572 /*
573 * If we can't satisfy the min block size from here, then fail
574 */
575 if (!io_u_fits(td, io_u, minbs))
576 return 0;
577
578 frand_max = rand_max(&td->bsrange_state[ddir]);
579 do {
580 r = __rand(&td->bsrange_state[ddir]);
581
582 if (!td->o.bssplit_nr[ddir]) {
583 buflen = minbs + (unsigned long long) ((double) maxbs *
584 (r / (frand_max + 1.0)));
585 } else {
586 long long perc = 0;
587 unsigned int i;
588
589 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
590 struct bssplit *bsp = &td->o.bssplit[ddir][i];
591
592 if (!bsp->perc)
593 continue;
594 buflen = bsp->bs;
595 perc += bsp->perc;
596 if ((r / perc <= frand_max / 100ULL) &&
597 io_u_fits(td, io_u, buflen))
598 break;
599 }
600 }
601
602 power_2 = is_power_of_2(minbs);
603 if (!td->o.bs_unaligned && power_2)
604 buflen &= ~(minbs - 1);
605 else if (!td->o.bs_unaligned && !power_2)
606 buflen -= buflen % minbs;
607 if (buflen > maxbs)
608 buflen = maxbs;
609 } while (!io_u_fits(td, io_u, buflen));
610
611 return buflen;
612}
613
614static void set_rwmix_bytes(struct thread_data *td)
615{
616 unsigned int diff;
617
618 /*
619 * we do time or byte based switch. this is needed because
620 * buffered writes may issue a lot quicker than they complete,
621 * whereas reads do not.
622 */
623 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
624 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
625}
626
627static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
628{
629 unsigned int v;
630
631 v = rand_between(&td->rwmix_state, 1, 100);
632
633 if (v <= td->o.rwmix[DDIR_READ])
634 return DDIR_READ;
635
636 return DDIR_WRITE;
637}
638
639int io_u_quiesce(struct thread_data *td)
640{
641 int ret = 0, completed = 0, err = 0;
642
643 /*
644 * We are going to sleep, ensure that we flush anything pending as
645 * not to skew our latency numbers.
646 *
647 * Changed to only monitor 'in flight' requests here instead of the
648 * td->cur_depth, b/c td->cur_depth does not accurately represent
649 * io's that have been actually submitted to an async engine,
650 * and cur_depth is meaningless for sync engines.
651 */
652 if (td->io_u_queued || td->cur_depth)
653 td_io_commit(td);
654
655 while (td->io_u_in_flight) {
656 ret = io_u_queued_complete(td, 1);
657 if (ret > 0)
658 completed += ret;
659 else if (ret < 0)
660 err = ret;
661 }
662
663 if (td->flags & TD_F_REGROW_LOGS)
664 regrow_logs(td);
665
666 if (completed)
667 return completed;
668
669 return err;
670}
671
672static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
673{
674 enum fio_ddir odir = ddir ^ 1;
675 uint64_t usec;
676 uint64_t now;
677
678 assert(ddir_rw(ddir));
679 now = utime_since_now(&td->epoch);
680
681 /*
682 * if rate_next_io_time is in the past, need to catch up to rate
683 */
684 if (td->rate_next_io_time[ddir] <= now)
685 return ddir;
686
687 /*
688 * We are ahead of rate in this direction. See if we
689 * should switch.
690 */
691 if (td_rw(td) && td->o.rwmix[odir]) {
692 /*
693 * Other direction is behind rate, switch
694 */
695 if (td->rate_next_io_time[odir] <= now)
696 return odir;
697
698 /*
699 * Both directions are ahead of rate. sleep the min,
700 * switch if necessary
701 */
702 if (td->rate_next_io_time[ddir] <=
703 td->rate_next_io_time[odir]) {
704 usec = td->rate_next_io_time[ddir] - now;
705 } else {
706 usec = td->rate_next_io_time[odir] - now;
707 ddir = odir;
708 }
709 } else
710 usec = td->rate_next_io_time[ddir] - now;
711
712 if (td->o.io_submit_mode == IO_MODE_INLINE)
713 io_u_quiesce(td);
714
715 if (td->o.timeout && ((usec + now) > td->o.timeout)) {
716 /*
717 * check if the usec is capable of taking negative values
718 */
719 if (now > td->o.timeout) {
720 ddir = DDIR_INVAL;
721 return ddir;
722 }
723 usec = td->o.timeout - now;
724 }
725 usec_sleep(td, usec);
726
727 now = utime_since_now(&td->epoch);
728 if ((td->o.timeout && (now > td->o.timeout)) || td->terminate)
729 ddir = DDIR_INVAL;
730
731 return ddir;
732}
733
734/*
735 * Return the data direction for the next io_u. If the job is a
736 * mixed read/write workload, check the rwmix cycle and switch if
737 * necessary.
738 */
739static enum fio_ddir get_rw_ddir(struct thread_data *td)
740{
741 enum fio_ddir ddir;
742
743 /*
744 * See if it's time to fsync/fdatasync/sync_file_range first,
745 * and if not then move on to check regular I/Os.
746 */
747 if (should_fsync(td)) {
748 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
749 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
750 return DDIR_SYNC;
751
752 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
753 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
754 return DDIR_DATASYNC;
755
756 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
757 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
758 return DDIR_SYNC_FILE_RANGE;
759 }
760
761 if (td_rw(td)) {
762 /*
763 * Check if it's time to seed a new data direction.
764 */
765 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
766 /*
767 * Put a top limit on how many bytes we do for
768 * one data direction, to avoid overflowing the
769 * ranges too much
770 */
771 ddir = get_rand_ddir(td);
772
773 if (ddir != td->rwmix_ddir)
774 set_rwmix_bytes(td);
775
776 td->rwmix_ddir = ddir;
777 }
778 ddir = td->rwmix_ddir;
779 } else if (td_read(td))
780 ddir = DDIR_READ;
781 else if (td_write(td))
782 ddir = DDIR_WRITE;
783 else if (td_trim(td))
784 ddir = DDIR_TRIM;
785 else
786 ddir = DDIR_INVAL;
787
788 if (!should_check_rate(td)) {
789 /*
790 * avoid time-consuming call to utime_since_now() if rate checking
791 * isn't being used. this imrpoves IOPs 50%. See:
792 * https://github.com/axboe/fio/issues/1501#issuecomment-1418327049
793 */
794 td->rwmix_ddir = ddir;
795 } else
796 td->rwmix_ddir = rate_ddir(td, ddir);
797 return td->rwmix_ddir;
798}
799
800static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
801{
802 enum fio_ddir ddir = get_rw_ddir(td);
803
804 if (td->o.zone_mode == ZONE_MODE_ZBD)
805 ddir = zbd_adjust_ddir(td, io_u, ddir);
806
807 if (td_trimwrite(td)) {
808 struct fio_file *f = io_u->file;
809 if (f->last_start[DDIR_WRITE] == f->last_start[DDIR_TRIM])
810 ddir = DDIR_TRIM;
811 else
812 ddir = DDIR_WRITE;
813 }
814
815 io_u->ddir = io_u->acct_ddir = ddir;
816
817 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
818 td->o.barrier_blocks &&
819 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
820 td->io_issues[DDIR_WRITE])
821 io_u_set(td, io_u, IO_U_F_BARRIER);
822}
823
824void put_file_log(struct thread_data *td, struct fio_file *f)
825{
826 unsigned int ret = put_file(td, f);
827
828 if (ret)
829 td_verror(td, ret, "file close");
830}
831
832void put_io_u(struct thread_data *td, struct io_u *io_u)
833{
834 const bool needs_lock = td_async_processing(td);
835
836 zbd_put_io_u(td, io_u);
837
838 if (td->parent)
839 td = td->parent;
840
841 if (needs_lock)
842 __td_io_u_lock(td);
843
844 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
845 put_file_log(td, io_u->file);
846
847 io_u->file = NULL;
848 io_u_set(td, io_u, IO_U_F_FREE);
849
850 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
851 td->cur_depth--;
852 assert(!(td->flags & TD_F_CHILD));
853 }
854 io_u_qpush(&td->io_u_freelist, io_u);
855 td_io_u_free_notify(td);
856
857 if (needs_lock)
858 __td_io_u_unlock(td);
859}
860
861void clear_io_u(struct thread_data *td, struct io_u *io_u)
862{
863 io_u_clear(td, io_u, IO_U_F_FLIGHT);
864 put_io_u(td, io_u);
865}
866
867void requeue_io_u(struct thread_data *td, struct io_u **io_u)
868{
869 const bool needs_lock = td_async_processing(td);
870 struct io_u *__io_u = *io_u;
871 enum fio_ddir ddir = acct_ddir(__io_u);
872
873 dprint(FD_IO, "requeue %p\n", __io_u);
874
875 if (td->parent)
876 td = td->parent;
877
878 if (needs_lock)
879 __td_io_u_lock(td);
880
881 io_u_set(td, __io_u, IO_U_F_FREE);
882 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
883 td->io_issues[ddir]--;
884
885 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
886 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
887 td->cur_depth--;
888 assert(!(td->flags & TD_F_CHILD));
889 }
890
891 io_u_rpush(&td->io_u_requeues, __io_u);
892 td_io_u_free_notify(td);
893
894 if (needs_lock)
895 __td_io_u_unlock(td);
896
897 *io_u = NULL;
898}
899
900static void setup_strided_zone_mode(struct thread_data *td, struct io_u *io_u)
901{
902 struct fio_file *f = io_u->file;
903
904 assert(td->o.zone_mode == ZONE_MODE_STRIDED);
905 assert(td->o.zone_size);
906 assert(td->o.zone_range);
907
908 /*
909 * See if it's time to switch to a new zone
910 */
911 if (td->zone_bytes >= td->o.zone_size) {
912 td->zone_bytes = 0;
913 f->file_offset += td->o.zone_range + td->o.zone_skip;
914
915 /*
916 * Wrap from the beginning, if we exceed the file size
917 */
918 if (f->file_offset >= f->real_file_size)
919 f->file_offset = get_start_offset(td, f);
920
921 f->last_pos[io_u->ddir] = f->file_offset;
922 td->io_skip_bytes += td->o.zone_skip;
923 }
924
925 /*
926 * If zone_size > zone_range, then maintain the same zone until
927 * zone_bytes >= zone_size.
928 */
929 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
930 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
931 f->file_offset, f->last_pos[io_u->ddir]);
932 f->last_pos[io_u->ddir] = f->file_offset;
933 }
934
935 /*
936 * For random: if 'norandommap' is not set and zone_size > zone_range,
937 * map needs to be reset as it's done with zone_range everytime.
938 */
939 if ((td->zone_bytes % td->o.zone_range) == 0)
940 fio_file_reset(td, f);
941}
942
943static int fill_io_u(struct thread_data *td, struct io_u *io_u)
944{
945 bool is_random;
946 uint64_t offset;
947 enum io_u_action ret;
948
949 if (td_ioengine_flagged(td, FIO_NOIO))
950 goto out;
951
952 set_rw_ddir(td, io_u);
953
954 if (io_u->ddir == DDIR_INVAL) {
955 dprint(FD_IO, "invalid direction received ddir = %d", io_u->ddir);
956 return 1;
957 }
958 /*
959 * fsync() or fdatasync() or trim etc, we are done
960 */
961 if (!ddir_rw(io_u->ddir))
962 goto out;
963
964 if (td->o.zone_mode == ZONE_MODE_STRIDED)
965 setup_strided_zone_mode(td, io_u);
966 else if (td->o.zone_mode == ZONE_MODE_ZBD)
967 setup_zbd_zone_mode(td, io_u);
968
969 /*
970 * No log, let the seq/rand engine retrieve the next buflen and
971 * position.
972 */
973 if (get_next_offset(td, io_u, &is_random)) {
974 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
975 return 1;
976 }
977
978 io_u->buflen = get_next_buflen(td, io_u, is_random);
979 if (!io_u->buflen) {
980 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
981 return 1;
982 }
983
984 offset = io_u->offset;
985 if (td->o.zone_mode == ZONE_MODE_ZBD) {
986 ret = zbd_adjust_block(td, io_u);
987 if (ret == io_u_eof) {
988 dprint(FD_IO, "zbd_adjust_block() returned io_u_eof\n");
989 return 1;
990 }
991 }
992
993 if (td->o.fdp)
994 fdp_fill_dspec_data(td, io_u);
995
996 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
997 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%llx exceeds file size=0x%llx\n",
998 io_u,
999 (unsigned long long) io_u->offset, io_u->buflen,
1000 (unsigned long long) io_u->file->real_file_size);
1001 return 1;
1002 }
1003
1004 /*
1005 * mark entry before potentially trimming io_u
1006 */
1007 if (td_random(td) && file_randommap(td, io_u->file))
1008 io_u->buflen = mark_random_map(td, io_u, offset, io_u->buflen);
1009
1010out:
1011 dprint_io_u(io_u, "fill");
1012 io_u->verify_offset = io_u->offset;
1013 td->zone_bytes += io_u->buflen;
1014 return 0;
1015}
1016
1017static void __io_u_mark_map(uint64_t *map, unsigned int nr)
1018{
1019 int idx = 0;
1020
1021 switch (nr) {
1022 default:
1023 idx = 6;
1024 break;
1025 case 33 ... 64:
1026 idx = 5;
1027 break;
1028 case 17 ... 32:
1029 idx = 4;
1030 break;
1031 case 9 ... 16:
1032 idx = 3;
1033 break;
1034 case 5 ... 8:
1035 idx = 2;
1036 break;
1037 case 1 ... 4:
1038 idx = 1;
1039 fio_fallthrough;
1040 case 0:
1041 break;
1042 }
1043
1044 map[idx]++;
1045}
1046
1047void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1048{
1049 __io_u_mark_map(td->ts.io_u_submit, nr);
1050 td->ts.total_submit++;
1051}
1052
1053void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1054{
1055 __io_u_mark_map(td->ts.io_u_complete, nr);
1056 td->ts.total_complete++;
1057}
1058
1059void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1060{
1061 int idx = 0;
1062
1063 switch (td->cur_depth) {
1064 default:
1065 idx = 6;
1066 break;
1067 case 32 ... 63:
1068 idx = 5;
1069 break;
1070 case 16 ... 31:
1071 idx = 4;
1072 break;
1073 case 8 ... 15:
1074 idx = 3;
1075 break;
1076 case 4 ... 7:
1077 idx = 2;
1078 break;
1079 case 2 ... 3:
1080 idx = 1;
1081 fio_fallthrough;
1082 case 1:
1083 break;
1084 }
1085
1086 td->ts.io_u_map[idx] += nr;
1087}
1088
1089static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1090{
1091 int idx = 0;
1092
1093 assert(nsec < 1000);
1094
1095 switch (nsec) {
1096 case 750 ... 999:
1097 idx = 9;
1098 break;
1099 case 500 ... 749:
1100 idx = 8;
1101 break;
1102 case 250 ... 499:
1103 idx = 7;
1104 break;
1105 case 100 ... 249:
1106 idx = 6;
1107 break;
1108 case 50 ... 99:
1109 idx = 5;
1110 break;
1111 case 20 ... 49:
1112 idx = 4;
1113 break;
1114 case 10 ... 19:
1115 idx = 3;
1116 break;
1117 case 4 ... 9:
1118 idx = 2;
1119 break;
1120 case 2 ... 3:
1121 idx = 1;
1122 fio_fallthrough;
1123 case 0 ... 1:
1124 break;
1125 }
1126
1127 assert(idx < FIO_IO_U_LAT_N_NR);
1128 td->ts.io_u_lat_n[idx]++;
1129}
1130
1131static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1132{
1133 int idx = 0;
1134
1135 assert(usec < 1000 && usec >= 1);
1136
1137 switch (usec) {
1138 case 750 ... 999:
1139 idx = 9;
1140 break;
1141 case 500 ... 749:
1142 idx = 8;
1143 break;
1144 case 250 ... 499:
1145 idx = 7;
1146 break;
1147 case 100 ... 249:
1148 idx = 6;
1149 break;
1150 case 50 ... 99:
1151 idx = 5;
1152 break;
1153 case 20 ... 49:
1154 idx = 4;
1155 break;
1156 case 10 ... 19:
1157 idx = 3;
1158 break;
1159 case 4 ... 9:
1160 idx = 2;
1161 break;
1162 case 2 ... 3:
1163 idx = 1;
1164 fio_fallthrough;
1165 case 0 ... 1:
1166 break;
1167 }
1168
1169 assert(idx < FIO_IO_U_LAT_U_NR);
1170 td->ts.io_u_lat_u[idx]++;
1171}
1172
1173static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1174{
1175 int idx = 0;
1176
1177 assert(msec >= 1);
1178
1179 switch (msec) {
1180 default:
1181 idx = 11;
1182 break;
1183 case 1000 ... 1999:
1184 idx = 10;
1185 break;
1186 case 750 ... 999:
1187 idx = 9;
1188 break;
1189 case 500 ... 749:
1190 idx = 8;
1191 break;
1192 case 250 ... 499:
1193 idx = 7;
1194 break;
1195 case 100 ... 249:
1196 idx = 6;
1197 break;
1198 case 50 ... 99:
1199 idx = 5;
1200 break;
1201 case 20 ... 49:
1202 idx = 4;
1203 break;
1204 case 10 ... 19:
1205 idx = 3;
1206 break;
1207 case 4 ... 9:
1208 idx = 2;
1209 break;
1210 case 2 ... 3:
1211 idx = 1;
1212 fio_fallthrough;
1213 case 0 ... 1:
1214 break;
1215 }
1216
1217 assert(idx < FIO_IO_U_LAT_M_NR);
1218 td->ts.io_u_lat_m[idx]++;
1219}
1220
1221static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1222{
1223 if (nsec < 1000)
1224 io_u_mark_lat_nsec(td, nsec);
1225 else if (nsec < 1000000)
1226 io_u_mark_lat_usec(td, nsec / 1000);
1227 else
1228 io_u_mark_lat_msec(td, nsec / 1000000);
1229}
1230
1231static unsigned int __get_next_fileno_rand(struct thread_data *td)
1232{
1233 unsigned long fileno;
1234
1235 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1236 uint64_t frand_max = rand_max(&td->next_file_state);
1237 unsigned long r;
1238
1239 r = __rand(&td->next_file_state);
1240 return (unsigned int) ((double) td->o.nr_files
1241 * (r / (frand_max + 1.0)));
1242 }
1243
1244 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1245 fileno = zipf_next(&td->next_file_zipf);
1246 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1247 fileno = pareto_next(&td->next_file_zipf);
1248 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1249 fileno = gauss_next(&td->next_file_gauss);
1250 else {
1251 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1252 assert(0);
1253 return 0;
1254 }
1255
1256 return fileno >> FIO_FSERVICE_SHIFT;
1257}
1258
1259/*
1260 * Get next file to service by choosing one at random
1261 */
1262static struct fio_file *get_next_file_rand(struct thread_data *td,
1263 enum fio_file_flags goodf,
1264 enum fio_file_flags badf)
1265{
1266 struct fio_file *f;
1267 int fno;
1268
1269 do {
1270 int opened = 0;
1271
1272 fno = __get_next_fileno_rand(td);
1273
1274 f = td->files[fno];
1275 if (fio_file_done(f))
1276 continue;
1277
1278 if (!fio_file_open(f)) {
1279 int err;
1280
1281 if (td->nr_open_files >= td->o.open_files)
1282 return ERR_PTR(-EBUSY);
1283
1284 err = td_io_open_file(td, f);
1285 if (err)
1286 continue;
1287 opened = 1;
1288 }
1289
1290 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1291 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1292 return f;
1293 }
1294 if (opened)
1295 td_io_close_file(td, f);
1296 } while (1);
1297}
1298
1299/*
1300 * Get next file to service by doing round robin between all available ones
1301 */
1302static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1303 int badf)
1304{
1305 unsigned int old_next_file = td->next_file;
1306 struct fio_file *f;
1307
1308 do {
1309 int opened = 0;
1310
1311 f = td->files[td->next_file];
1312
1313 td->next_file++;
1314 if (td->next_file >= td->o.nr_files)
1315 td->next_file = 0;
1316
1317 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1318 if (fio_file_done(f)) {
1319 f = NULL;
1320 continue;
1321 }
1322
1323 if (!fio_file_open(f)) {
1324 int err;
1325
1326 if (td->nr_open_files >= td->o.open_files)
1327 return ERR_PTR(-EBUSY);
1328
1329 err = td_io_open_file(td, f);
1330 if (err) {
1331 dprint(FD_FILE, "error %d on open of %s\n",
1332 err, f->file_name);
1333 f = NULL;
1334 continue;
1335 }
1336 opened = 1;
1337 }
1338
1339 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1340 f->flags);
1341 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1342 break;
1343
1344 if (opened)
1345 td_io_close_file(td, f);
1346
1347 f = NULL;
1348 } while (td->next_file != old_next_file);
1349
1350 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1351 return f;
1352}
1353
1354static struct fio_file *__get_next_file(struct thread_data *td)
1355{
1356 struct fio_file *f;
1357
1358 assert(td->o.nr_files <= td->files_index);
1359
1360 if (td->nr_done_files >= td->o.nr_files) {
1361 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1362 " nr_files=%d\n", td->nr_open_files,
1363 td->nr_done_files,
1364 td->o.nr_files);
1365 return NULL;
1366 }
1367
1368 f = td->file_service_file;
1369 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1370 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1371 goto out;
1372 if (td->file_service_left) {
1373 td->file_service_left--;
1374 goto out;
1375 }
1376 }
1377
1378 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1379 td->o.file_service_type == FIO_FSERVICE_SEQ)
1380 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1381 else
1382 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1383
1384 if (IS_ERR(f))
1385 return f;
1386
1387 td->file_service_file = f;
1388 td->file_service_left = td->file_service_nr - 1;
1389out:
1390 if (f)
1391 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1392 else
1393 dprint(FD_FILE, "get_next_file: NULL\n");
1394 return f;
1395}
1396
1397static struct fio_file *get_next_file(struct thread_data *td)
1398{
1399 return __get_next_file(td);
1400}
1401
1402static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1403{
1404 struct fio_file *f;
1405
1406 do {
1407 f = get_next_file(td);
1408 if (IS_ERR_OR_NULL(f))
1409 return PTR_ERR(f);
1410
1411 io_u->file = f;
1412 get_file(f);
1413
1414 if (!fill_io_u(td, io_u))
1415 break;
1416
1417 zbd_put_io_u(td, io_u);
1418
1419 put_file_log(td, f);
1420 td_io_close_file(td, f);
1421 io_u->file = NULL;
1422 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1423 fio_file_reset(td, f);
1424 else {
1425 fio_file_set_done(f);
1426 td->nr_done_files++;
1427 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1428 td->nr_done_files, td->o.nr_files);
1429 }
1430 } while (1);
1431
1432 return 0;
1433}
1434
1435static void lat_fatal(struct thread_data *td, struct io_u *io_u, struct io_completion_data *icd,
1436 unsigned long long tnsec, unsigned long long max_nsec)
1437{
1438 if (!td->error) {
1439 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec): %s %s %llu %llu\n",
1440 tnsec, max_nsec,
1441 io_u->file->file_name,
1442 io_ddir_name(io_u->ddir),
1443 io_u->offset, io_u->buflen);
1444 }
1445 td_verror(td, ETIMEDOUT, "max latency exceeded");
1446 icd->error = ETIMEDOUT;
1447}
1448
1449static void lat_new_cycle(struct thread_data *td)
1450{
1451 fio_gettime(&td->latency_ts, NULL);
1452 td->latency_ios = ddir_rw_sum(td->io_blocks);
1453 td->latency_failed = 0;
1454}
1455
1456/*
1457 * We had an IO outside the latency target. Reduce the queue depth. If we
1458 * are at QD=1, then it's time to give up.
1459 */
1460static bool __lat_target_failed(struct thread_data *td)
1461{
1462 if (td->latency_qd == 1)
1463 return true;
1464
1465 td->latency_qd_high = td->latency_qd;
1466
1467 if (td->latency_qd == td->latency_qd_low)
1468 td->latency_qd_low--;
1469
1470 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1471 td->latency_stable_count = 0;
1472
1473 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1474
1475 /*
1476 * When we ramp QD down, quiesce existing IO to prevent
1477 * a storm of ramp downs due to pending higher depth.
1478 */
1479 io_u_quiesce(td);
1480 lat_new_cycle(td);
1481 return false;
1482}
1483
1484static bool lat_target_failed(struct thread_data *td)
1485{
1486 if (td->o.latency_percentile.u.f == 100.0)
1487 return __lat_target_failed(td);
1488
1489 td->latency_failed++;
1490 return false;
1491}
1492
1493void lat_target_init(struct thread_data *td)
1494{
1495 td->latency_end_run = 0;
1496
1497 if (td->o.latency_target) {
1498 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1499 fio_gettime(&td->latency_ts, NULL);
1500 td->latency_qd = 1;
1501 td->latency_qd_high = td->o.iodepth;
1502 td->latency_qd_low = 1;
1503 td->latency_ios = ddir_rw_sum(td->io_blocks);
1504 } else
1505 td->latency_qd = td->o.iodepth;
1506}
1507
1508void lat_target_reset(struct thread_data *td)
1509{
1510 if (!td->latency_end_run)
1511 lat_target_init(td);
1512}
1513
1514static void lat_target_success(struct thread_data *td)
1515{
1516 const unsigned int qd = td->latency_qd;
1517 struct thread_options *o = &td->o;
1518
1519 td->latency_qd_low = td->latency_qd;
1520
1521 if (td->latency_qd + 1 == td->latency_qd_high) {
1522 /*
1523 * latency_qd will not incease on lat_target_success(), so
1524 * called stable. If we stick with this queue depth, the
1525 * final latency is likely lower than latency_target. Fix
1526 * this by increasing latency_qd_high slowly. Use a naive
1527 * heuristic here. If we get lat_target_success() 3 times
1528 * in a row, increase latency_qd_high by 1.
1529 */
1530 if (++td->latency_stable_count >= 3) {
1531 td->latency_qd_high++;
1532 td->latency_stable_count = 0;
1533 }
1534 }
1535
1536 /*
1537 * If we haven't failed yet, we double up to a failing value instead
1538 * of bisecting from highest possible queue depth. If we have set
1539 * a limit other than td->o.iodepth, bisect between that.
1540 */
1541 if (td->latency_qd_high != o->iodepth)
1542 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1543 else
1544 td->latency_qd *= 2;
1545
1546 if (td->latency_qd > o->iodepth)
1547 td->latency_qd = o->iodepth;
1548
1549 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1550
1551 /*
1552 * Same as last one, we are done. Let it run a latency cycle, so
1553 * we get only the results from the targeted depth.
1554 */
1555 if (!o->latency_run && td->latency_qd == qd) {
1556 if (td->latency_end_run) {
1557 dprint(FD_RATE, "We are done\n");
1558 td->done = 1;
1559 } else {
1560 dprint(FD_RATE, "Quiesce and final run\n");
1561 io_u_quiesce(td);
1562 td->latency_end_run = 1;
1563 reset_all_stats(td);
1564 reset_io_stats(td);
1565 }
1566 }
1567
1568 lat_new_cycle(td);
1569}
1570
1571/*
1572 * Check if we can bump the queue depth
1573 */
1574void lat_target_check(struct thread_data *td)
1575{
1576 uint64_t usec_window;
1577 uint64_t ios;
1578 double success_ios;
1579
1580 usec_window = utime_since_now(&td->latency_ts);
1581 if (usec_window < td->o.latency_window)
1582 return;
1583
1584 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1585 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1586 success_ios *= 100.0;
1587
1588 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1589
1590 if (success_ios >= td->o.latency_percentile.u.f)
1591 lat_target_success(td);
1592 else
1593 __lat_target_failed(td);
1594}
1595
1596/*
1597 * If latency target is enabled, we might be ramping up or down and not
1598 * using the full queue depth available.
1599 */
1600bool queue_full(const struct thread_data *td)
1601{
1602 const int qempty = io_u_qempty(&td->io_u_freelist);
1603
1604 if (qempty)
1605 return true;
1606 if (!td->o.latency_target)
1607 return false;
1608
1609 return td->cur_depth >= td->latency_qd;
1610}
1611
1612struct io_u *__get_io_u(struct thread_data *td)
1613{
1614 const bool needs_lock = td_async_processing(td);
1615 struct io_u *io_u = NULL;
1616 int ret;
1617
1618 if (td->stop_io)
1619 return NULL;
1620
1621 if (needs_lock)
1622 __td_io_u_lock(td);
1623
1624again:
1625 if (!io_u_rempty(&td->io_u_requeues)) {
1626 io_u = io_u_rpop(&td->io_u_requeues);
1627 io_u->resid = 0;
1628 } else if (!queue_full(td)) {
1629 io_u = io_u_qpop(&td->io_u_freelist);
1630
1631 io_u->file = NULL;
1632 io_u->buflen = 0;
1633 io_u->resid = 0;
1634 io_u->end_io = NULL;
1635 }
1636
1637 if (io_u) {
1638 assert(io_u->flags & IO_U_F_FREE);
1639 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1640 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1641 IO_U_F_VER_LIST);
1642
1643 io_u->error = 0;
1644 io_u->acct_ddir = -1;
1645 td->cur_depth++;
1646 assert(!(td->flags & TD_F_CHILD));
1647 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1648 io_u->ipo = NULL;
1649 } else if (td_async_processing(td)) {
1650 /*
1651 * We ran out, wait for async verify threads to finish and
1652 * return one
1653 */
1654 assert(!(td->flags & TD_F_CHILD));
1655 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1656 assert(ret == 0);
1657 if (!td->error)
1658 goto again;
1659 }
1660
1661 if (needs_lock)
1662 __td_io_u_unlock(td);
1663
1664 return io_u;
1665}
1666
1667static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1668{
1669 if (!(td->flags & TD_F_TRIM_BACKLOG))
1670 return false;
1671 if (!td->trim_entries)
1672 return false;
1673
1674 if (td->trim_batch) {
1675 td->trim_batch--;
1676 if (get_next_trim(td, io_u))
1677 return true;
1678 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1679 td->last_ddir != DDIR_READ) {
1680 td->trim_batch = td->o.trim_batch;
1681 if (!td->trim_batch)
1682 td->trim_batch = td->o.trim_backlog;
1683 if (get_next_trim(td, io_u))
1684 return true;
1685 }
1686
1687 return false;
1688}
1689
1690static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1691{
1692 if (!(td->flags & TD_F_VER_BACKLOG))
1693 return false;
1694
1695 if (td->io_hist_len) {
1696 int get_verify = 0;
1697
1698 if (td->verify_batch)
1699 get_verify = 1;
1700 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1701 td->last_ddir != DDIR_READ) {
1702 td->verify_batch = td->o.verify_batch;
1703 if (!td->verify_batch)
1704 td->verify_batch = td->o.verify_backlog;
1705 get_verify = 1;
1706 }
1707
1708 if (get_verify && !get_next_verify(td, io_u)) {
1709 td->verify_batch--;
1710 return true;
1711 }
1712 }
1713
1714 return false;
1715}
1716
1717/*
1718 * Fill offset and start time into the buffer content, to prevent too
1719 * easy compressible data for simple de-dupe attempts. Do this for every
1720 * 512b block in the range, since that should be the smallest block size
1721 * we can expect from a device.
1722 */
1723static void small_content_scramble(struct io_u *io_u)
1724{
1725 unsigned long long i, nr_blocks = io_u->buflen >> 9;
1726 unsigned int offset;
1727 uint64_t boffset, *iptr;
1728 char *p;
1729
1730 if (!nr_blocks)
1731 return;
1732
1733 p = io_u->xfer_buf;
1734 boffset = io_u->offset;
1735
1736 if (io_u->buf_filled_len)
1737 io_u->buf_filled_len = 0;
1738
1739 /*
1740 * Generate random index between 0..7. We do chunks of 512b, if
1741 * we assume a cacheline is 64 bytes, then we have 8 of those.
1742 * Scramble content within the blocks in the same cacheline to
1743 * speed things up.
1744 */
1745 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1746
1747 for (i = 0; i < nr_blocks; i++) {
1748 /*
1749 * Fill offset into start of cacheline, time into end
1750 * of cacheline
1751 */
1752 iptr = (void *) p + (offset << 6);
1753 *iptr = boffset;
1754
1755 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1756 iptr[0] = io_u->start_time.tv_sec;
1757 iptr[1] = io_u->start_time.tv_nsec;
1758
1759 p += 512;
1760 boffset += 512;
1761 }
1762}
1763
1764/*
1765 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1766 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1767 */
1768struct io_u *get_io_u(struct thread_data *td)
1769{
1770 struct fio_file *f;
1771 struct io_u *io_u;
1772 int do_scramble = 0;
1773 long ret = 0;
1774
1775 io_u = __get_io_u(td);
1776 if (!io_u) {
1777 dprint(FD_IO, "__get_io_u failed\n");
1778 return NULL;
1779 }
1780
1781 if (check_get_verify(td, io_u))
1782 goto out;
1783 if (check_get_trim(td, io_u))
1784 goto out;
1785
1786 /*
1787 * from a requeue, io_u already setup
1788 */
1789 if (io_u->file)
1790 goto out;
1791
1792 /*
1793 * If using an iolog, grab next piece if any available.
1794 */
1795 if (td->flags & TD_F_READ_IOLOG) {
1796 if (read_iolog_get(td, io_u))
1797 goto err_put;
1798 } else if (set_io_u_file(td, io_u)) {
1799 ret = -EBUSY;
1800 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1801 goto err_put;
1802 }
1803
1804 f = io_u->file;
1805 if (!f) {
1806 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1807 goto err_put;
1808 }
1809
1810 assert(fio_file_open(f));
1811
1812 if (ddir_rw(io_u->ddir)) {
1813 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1814 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1815 goto err_put;
1816 }
1817
1818 f->last_start[io_u->ddir] = io_u->offset;
1819 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1820
1821 if (io_u->ddir == DDIR_WRITE) {
1822 if (td->flags & TD_F_REFILL_BUFFERS) {
1823 io_u_fill_buffer(td, io_u,
1824 td->o.min_bs[DDIR_WRITE],
1825 io_u->buflen);
1826 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1827 !(td->flags & TD_F_COMPRESS) &&
1828 !(td->flags & TD_F_DO_VERIFY))
1829 do_scramble = 1;
1830 } else if (io_u->ddir == DDIR_READ) {
1831 /*
1832 * Reset the buf_filled parameters so next time if the
1833 * buffer is used for writes it is refilled.
1834 */
1835 io_u->buf_filled_len = 0;
1836 }
1837 }
1838
1839 /*
1840 * Set io data pointers.
1841 */
1842 io_u->xfer_buf = io_u->buf;
1843 io_u->xfer_buflen = io_u->buflen;
1844
1845 /*
1846 * Remember the issuing context priority. The IO engine may change this.
1847 */
1848 io_u->ioprio = td->ioprio;
1849 io_u->clat_prio_index = 0;
1850out:
1851 assert(io_u->file);
1852 if (!td_io_prep(td, io_u)) {
1853 if (!td->o.disable_lat)
1854 fio_gettime(&io_u->start_time, NULL);
1855
1856 if (do_scramble)
1857 small_content_scramble(io_u);
1858
1859 return io_u;
1860 }
1861err_put:
1862 dprint(FD_IO, "get_io_u failed\n");
1863 put_io_u(td, io_u);
1864 return ERR_PTR(ret);
1865}
1866
1867static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1868{
1869 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1870
1871 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1872 return;
1873
1874 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%llu\n",
1875 io_u->file ? " on file " : "",
1876 io_u->file ? io_u->file->file_name : "",
1877 strerror(io_u->error),
1878 io_ddir_name(io_u->ddir),
1879 io_u->offset, io_u->xfer_buflen);
1880
1881 if (td->io_ops->errdetails) {
1882 char *err = td->io_ops->errdetails(io_u);
1883
1884 log_err("fio: %s\n", err);
1885 free(err);
1886 }
1887
1888 if (!td->error)
1889 td_verror(td, io_u->error, "io_u error");
1890}
1891
1892void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1893{
1894 __io_u_log_error(td, io_u);
1895 if (td->parent)
1896 __io_u_log_error(td->parent, io_u);
1897}
1898
1899static inline bool gtod_reduce(struct thread_data *td)
1900{
1901 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1902 || td->o.gtod_reduce;
1903}
1904
1905static void trim_block_info(struct thread_data *td, struct io_u *io_u)
1906{
1907 uint32_t *info = io_u_block_info(td, io_u);
1908
1909 if (BLOCK_INFO_STATE(*info) >= BLOCK_STATE_TRIM_FAILURE)
1910 return;
1911
1912 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED, BLOCK_INFO_TRIMS(*info) + 1);
1913}
1914
1915static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1916 struct io_completion_data *icd,
1917 const enum fio_ddir idx, unsigned int bytes)
1918{
1919 const int no_reduce = !gtod_reduce(td);
1920 unsigned long long llnsec = 0;
1921
1922 if (td->parent)
1923 td = td->parent;
1924
1925 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1926 return;
1927
1928 if (no_reduce)
1929 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1930
1931 if (!td->o.disable_lat) {
1932 unsigned long long tnsec;
1933
1934 tnsec = ntime_since(&io_u->start_time, &icd->time);
1935 add_lat_sample(td, idx, tnsec, bytes, io_u->offset,
1936 io_u->ioprio, io_u->clat_prio_index);
1937
1938 if (td->flags & TD_F_PROFILE_OPS) {
1939 struct prof_io_ops *ops = &td->prof_io_ops;
1940
1941 if (ops->io_u_lat)
1942 icd->error = ops->io_u_lat(td, tnsec);
1943 }
1944
1945 if (ddir_rw(idx)) {
1946 if (td->o.max_latency[idx] && tnsec > td->o.max_latency[idx])
1947 lat_fatal(td, io_u, icd, tnsec, td->o.max_latency[idx]);
1948 if (td->o.latency_target && tnsec > td->o.latency_target) {
1949 if (lat_target_failed(td))
1950 lat_fatal(td, io_u, icd, tnsec, td->o.latency_target);
1951 }
1952 }
1953 }
1954
1955 if (ddir_rw(idx)) {
1956 if (!td->o.disable_clat) {
1957 add_clat_sample(td, idx, llnsec, bytes, io_u->offset,
1958 io_u->ioprio, io_u->clat_prio_index);
1959 io_u_mark_latency(td, llnsec);
1960 }
1961
1962 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1963 add_bw_sample(td, io_u, bytes, llnsec);
1964
1965 if (no_reduce && per_unit_log(td->iops_log))
1966 add_iops_sample(td, io_u, bytes);
1967 } else if (ddir_sync(idx) && !td->o.disable_clat)
1968 add_sync_clat_sample(&td->ts, llnsec);
1969
1970 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM)
1971 trim_block_info(td, io_u);
1972}
1973
1974static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1975 uint64_t offset, unsigned int bytes)
1976{
1977 int idx;
1978
1979 if (!f)
1980 return;
1981
1982 if (f->first_write == -1ULL || offset < f->first_write)
1983 f->first_write = offset;
1984 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1985 f->last_write = offset + bytes;
1986
1987 if (!f->last_write_comp)
1988 return;
1989
1990 idx = f->last_write_idx++;
1991 f->last_write_comp[idx] = offset;
1992 if (f->last_write_idx == td->o.iodepth)
1993 f->last_write_idx = 0;
1994}
1995
1996static bool should_account(struct thread_data *td)
1997{
1998 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1999 td->runstate == TD_VERIFYING);
2000}
2001
2002static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
2003 struct io_completion_data *icd)
2004{
2005 struct io_u *io_u = *io_u_ptr;
2006 enum fio_ddir ddir = io_u->ddir;
2007 struct fio_file *f = io_u->file;
2008
2009 dprint_io_u(io_u, "complete");
2010
2011 assert(io_u->flags & IO_U_F_FLIGHT);
2012 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK | IO_U_F_PATTERN_DONE);
2013
2014 /*
2015 * Mark IO ok to verify
2016 */
2017 if (io_u->ipo) {
2018 /*
2019 * Remove errored entry from the verification list
2020 */
2021 if (io_u->error)
2022 unlog_io_piece(td, io_u);
2023 else {
2024 atomic_store_release(&io_u->ipo->flags,
2025 io_u->ipo->flags & ~IP_F_IN_FLIGHT);
2026 }
2027 }
2028
2029 if (ddir_sync(ddir)) {
2030 td->last_was_sync = true;
2031 if (f) {
2032 f->first_write = -1ULL;
2033 f->last_write = -1ULL;
2034 }
2035 if (should_account(td))
2036 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
2037 return;
2038 }
2039
2040 td->last_was_sync = false;
2041 td->last_ddir = ddir;
2042
2043 if (!io_u->error && ddir_rw(ddir)) {
2044 unsigned long long bytes = io_u->xfer_buflen - io_u->resid;
2045 int ret;
2046
2047 /*
2048 * Make sure we notice short IO from here, and requeue them
2049 * appropriately!
2050 */
2051 if (bytes && io_u->resid) {
2052 io_u->xfer_buflen = io_u->resid;
2053 io_u->xfer_buf += bytes;
2054 io_u->offset += bytes;
2055 td->ts.short_io_u[io_u->ddir]++;
2056 if (io_u->offset < io_u->file->real_file_size) {
2057 requeue_io_u(td, io_u_ptr);
2058 return;
2059 }
2060 }
2061
2062 td->io_blocks[ddir]++;
2063 td->io_bytes[ddir] += bytes;
2064
2065 if (!(io_u->flags & IO_U_F_VER_LIST)) {
2066 td->this_io_blocks[ddir]++;
2067 td->this_io_bytes[ddir] += bytes;
2068 }
2069
2070 if (ddir == DDIR_WRITE)
2071 file_log_write_comp(td, f, io_u->offset, bytes);
2072
2073 if (should_account(td))
2074 account_io_completion(td, io_u, icd, ddir, bytes);
2075
2076 icd->bytes_done[ddir] += bytes;
2077
2078 if (io_u->end_io) {
2079 ret = io_u->end_io(td, io_u_ptr);
2080 io_u = *io_u_ptr;
2081 if (ret && !icd->error)
2082 icd->error = ret;
2083 }
2084 } else if (io_u->error) {
2085 icd->error = io_u->error;
2086 io_u_log_error(td, io_u);
2087 }
2088 if (icd->error) {
2089 enum error_type_bit eb = td_error_type(ddir, icd->error);
2090
2091 if (!td_non_fatal_error(td, eb, icd->error))
2092 return;
2093
2094 /*
2095 * If there is a non_fatal error, then add to the error count
2096 * and clear all the errors.
2097 */
2098 update_error_count(td, icd->error);
2099 td_clear_error(td);
2100 icd->error = 0;
2101 if (io_u)
2102 io_u->error = 0;
2103 }
2104}
2105
2106static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2107 int nr)
2108{
2109 int ddir;
2110
2111 if (!gtod_reduce(td))
2112 fio_gettime(&icd->time, NULL);
2113
2114 icd->nr = nr;
2115
2116 icd->error = 0;
2117 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2118 icd->bytes_done[ddir] = 0;
2119}
2120
2121static void ios_completed(struct thread_data *td,
2122 struct io_completion_data *icd)
2123{
2124 struct io_u *io_u;
2125 int i;
2126
2127 for (i = 0; i < icd->nr; i++) {
2128 io_u = td->io_ops->event(td, i);
2129
2130 io_completed(td, &io_u, icd);
2131
2132 if (io_u)
2133 put_io_u(td, io_u);
2134 }
2135}
2136
2137static void io_u_update_bytes_done(struct thread_data *td,
2138 struct io_completion_data *icd)
2139{
2140 int ddir;
2141
2142 if (td->runstate == TD_VERIFYING) {
2143 td->bytes_verified += icd->bytes_done[DDIR_READ];
2144 return;
2145 }
2146
2147 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2148 td->bytes_done[ddir] += icd->bytes_done[ddir];
2149}
2150
2151/*
2152 * Complete a single io_u for the sync engines.
2153 */
2154int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2155{
2156 struct io_completion_data icd;
2157
2158 init_icd(td, &icd, 1);
2159 io_completed(td, &io_u, &icd);
2160
2161 if (io_u)
2162 put_io_u(td, io_u);
2163
2164 if (icd.error) {
2165 td_verror(td, icd.error, "io_u_sync_complete");
2166 return -1;
2167 }
2168
2169 io_u_update_bytes_done(td, &icd);
2170
2171 return 0;
2172}
2173
2174/*
2175 * Called to complete min_events number of io for the async engines.
2176 */
2177int io_u_queued_complete(struct thread_data *td, int min_evts)
2178{
2179 struct io_completion_data icd;
2180 struct timespec *tvp = NULL;
2181 int ret;
2182 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2183
2184 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2185
2186 if (!min_evts)
2187 tvp = &ts;
2188 else if (min_evts > td->cur_depth)
2189 min_evts = td->cur_depth;
2190
2191 /* No worries, td_io_getevents fixes min and max if they are
2192 * set incorrectly */
2193 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2194 if (ret < 0) {
2195 td_verror(td, -ret, "td_io_getevents");
2196 return ret;
2197 } else if (!ret)
2198 return ret;
2199
2200 init_icd(td, &icd, ret);
2201 ios_completed(td, &icd);
2202 if (icd.error) {
2203 td_verror(td, icd.error, "io_u_queued_complete");
2204 return -1;
2205 }
2206
2207 io_u_update_bytes_done(td, &icd);
2208
2209 return ret;
2210}
2211
2212/*
2213 * Call when io_u is really queued, to update the submission latency.
2214 */
2215void io_u_queued(struct thread_data *td, struct io_u *io_u)
2216{
2217 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2218 unsigned long slat_time;
2219
2220 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2221
2222 if (td->parent)
2223 td = td->parent;
2224
2225 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2226 io_u->offset, io_u->ioprio);
2227 }
2228}
2229
2230/*
2231 * See if we should reuse the last seed, if dedupe is enabled
2232 */
2233static struct frand_state *get_buf_state(struct thread_data *td)
2234{
2235 unsigned int v;
2236 unsigned long long i;
2237
2238 if (!td->o.dedupe_percentage)
2239 return &td->buf_state;
2240 else if (td->o.dedupe_percentage == 100) {
2241 frand_copy(&td->buf_state_prev, &td->buf_state);
2242 return &td->buf_state;
2243 }
2244
2245 v = rand_between(&td->dedupe_state, 1, 100);
2246
2247 if (v <= td->o.dedupe_percentage)
2248 switch (td->o.dedupe_mode) {
2249 case DEDUPE_MODE_REPEAT:
2250 /*
2251 * The caller advances the returned frand_state.
2252 * A copy of prev should be returned instead since
2253 * a subsequent intention to generate a deduped buffer
2254 * might result in generating a unique one
2255 */
2256 frand_copy(&td->buf_state_ret, &td->buf_state_prev);
2257 return &td->buf_state_ret;
2258 case DEDUPE_MODE_WORKING_SET:
2259 i = rand_between(&td->dedupe_working_set_index_state, 0, td->num_unique_pages - 1);
2260 frand_copy(&td->buf_state_ret, &td->dedupe_working_set_states[i]);
2261 return &td->buf_state_ret;
2262 default:
2263 log_err("unexpected dedupe mode %u\n", td->o.dedupe_mode);
2264 assert(0);
2265 }
2266
2267 return &td->buf_state;
2268}
2269
2270static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2271{
2272 if (td->o.dedupe_percentage == 100)
2273 frand_copy(rs, &td->buf_state_prev);
2274 else if (rs == &td->buf_state)
2275 frand_copy(&td->buf_state_prev, rs);
2276}
2277
2278void fill_io_buffer(struct thread_data *td, void *buf, unsigned long long min_write,
2279 unsigned long long max_bs)
2280{
2281 struct thread_options *o = &td->o;
2282
2283 if (o->mem_type == MEM_CUDA_MALLOC)
2284 return;
2285
2286 if (o->compress_percentage || o->dedupe_percentage) {
2287 unsigned int perc = td->o.compress_percentage;
2288 struct frand_state *rs = NULL;
2289 unsigned long long left = max_bs;
2290 unsigned long long this_write;
2291
2292 do {
2293 /*
2294 * Buffers are either entirely dedupe-able or not.
2295 * If we choose to dedup, the buffer should undergo
2296 * the same manipulation as the original write. Which
2297 * means we should retrack the steps we took for compression
2298 * as well.
2299 */
2300 if (!rs)
2301 rs = get_buf_state(td);
2302
2303 min_write = min(min_write, left);
2304
2305 this_write = min_not_zero(min_write,
2306 (unsigned long long) td->o.compress_chunk);
2307
2308 fill_random_buf_percentage(rs, buf, perc,
2309 this_write, this_write,
2310 o->buffer_pattern,
2311 o->buffer_pattern_bytes);
2312
2313 buf += this_write;
2314 left -= this_write;
2315 save_buf_state(td, rs);
2316 } while (left);
2317 } else if (o->buffer_pattern_bytes)
2318 fill_buffer_pattern(td, buf, max_bs);
2319 else if (o->zero_buffers)
2320 memset(buf, 0, max_bs);
2321 else
2322 fill_random_buf(get_buf_state(td), buf, max_bs);
2323}
2324
2325/*
2326 * "randomly" fill the buffer contents
2327 */
2328void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2329 unsigned long long min_write, unsigned long long max_bs)
2330{
2331 io_u->buf_filled_len = 0;
2332 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2333}
2334
2335static int do_sync_file_range(const struct thread_data *td,
2336 struct fio_file *f)
2337{
2338 uint64_t offset, nbytes;
2339
2340 offset = f->first_write;
2341 nbytes = f->last_write - f->first_write;
2342
2343 if (!nbytes)
2344 return 0;
2345
2346 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2347}
2348
2349int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2350{
2351 int ret;
2352
2353 if (io_u->ddir == DDIR_SYNC) {
2354#ifdef CONFIG_FCNTL_SYNC
2355 ret = fcntl(io_u->file->fd, F_FULLFSYNC);
2356#else
2357 ret = fsync(io_u->file->fd);
2358#endif
2359 } else if (io_u->ddir == DDIR_DATASYNC) {
2360#ifdef CONFIG_FDATASYNC
2361 ret = fdatasync(io_u->file->fd);
2362#else
2363 ret = io_u->xfer_buflen;
2364 io_u->error = EINVAL;
2365#endif
2366 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2367 ret = do_sync_file_range(td, io_u->file);
2368 else {
2369 ret = io_u->xfer_buflen;
2370 io_u->error = EINVAL;
2371 }
2372
2373 if (ret < 0)
2374 io_u->error = errno;
2375
2376 return ret;
2377}
2378
2379int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2380{
2381#ifndef FIO_HAVE_TRIM
2382 io_u->error = EINVAL;
2383 return 0;
2384#else
2385 struct fio_file *f = io_u->file;
2386 int ret;
2387
2388 if (td->o.zone_mode == ZONE_MODE_ZBD) {
2389 ret = zbd_do_io_u_trim(td, io_u);
2390 if (ret == io_u_completed)
2391 return io_u->xfer_buflen;
2392 if (ret)
2393 goto err;
2394 }
2395
2396 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2397 if (!ret)
2398 return io_u->xfer_buflen;
2399
2400err:
2401 io_u->error = ret;
2402 return 0;
2403#endif
2404}