Work-around too large block count
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(f, block);
31 unsigned int bit = RAND_MAP_BIT(f, block);
32
33 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
34
35 return (f->file_map[idx] & (1UL << bit)) == 0;
36}
37
38/*
39 * Mark a given offset as used in the map.
40 */
41static void mark_random_map(struct thread_data *td, struct io_u *io_u)
42{
43 unsigned int min_bs = td->o.rw_min_bs;
44 struct fio_file *f = io_u->file;
45 unsigned long long block;
46 unsigned int blocks;
47 unsigned int nr_blocks;
48
49 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
50 blocks = 0;
51 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
52
53 while (blocks < nr_blocks) {
54 unsigned int idx, bit;
55
56 /*
57 * If we have a mixed random workload, we may
58 * encounter blocks we already did IO to.
59 */
60 if ((td->o.ddir_nr == 1) && !random_map_free(f, block))
61 break;
62
63 idx = RAND_MAP_IDX(f, block);
64 bit = RAND_MAP_BIT(f, block);
65
66 fio_assert(td, idx < f->num_maps);
67
68 f->file_map[idx] |= (1UL << bit);
69 block++;
70 blocks++;
71 }
72
73 if ((blocks * min_bs) < io_u->buflen)
74 io_u->buflen = blocks * min_bs;
75}
76
77static inline unsigned long long last_block(struct thread_data *td,
78 struct fio_file *f,
79 enum fio_ddir ddir)
80{
81 unsigned long long max_blocks;
82 unsigned long long max_size;
83
84 /*
85 * Hmm, should we make sure that ->io_size <= ->real_file_size?
86 */
87 max_size = f->io_size;
88 if (max_size > f->real_file_size)
89 max_size = f->real_file_size;
90
91 max_blocks = max_size / (unsigned long long) td->o.min_bs[ddir];
92 if (!max_blocks)
93 return 0;
94
95 return max_blocks;
96}
97
98/*
99 * Return the next free block in the map.
100 */
101static int get_next_free_block(struct thread_data *td, struct fio_file *f,
102 enum fio_ddir ddir, unsigned long long *b)
103{
104 unsigned long long min_bs = td->o.rw_min_bs;
105 int i;
106
107 i = f->last_free_lookup;
108 *b = (i * BLOCKS_PER_MAP);
109 while ((*b) * min_bs < f->real_file_size) {
110 if (f->file_map[i] != -1UL) {
111 *b += fio_ffz(f->file_map[i]);
112 if (*b > last_block(td, f, ddir))
113 break;
114 f->last_free_lookup = i;
115 return 0;
116 }
117
118 *b += BLOCKS_PER_MAP;
119 i++;
120 }
121
122 dprint(FD_IO, "failed finding a free block\n");
123 return 1;
124}
125
126static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
127 enum fio_ddir ddir, unsigned long long *b)
128{
129 unsigned long long r;
130 int loops = 5;
131
132 do {
133 r = os_random_long(&td->random_state);
134 dprint(FD_RANDOM, "off rand %llu\n", r);
135 *b = (last_block(td, f, ddir) - 1)
136 * (r / ((unsigned long long) RAND_MAX + 1.0));
137
138 /*
139 * if we are not maintaining a random map, we are done.
140 */
141 if (!file_randommap(td, f))
142 return 0;
143
144 /*
145 * calculate map offset and check if it's free
146 */
147 if (random_map_free(f, *b))
148 return 0;
149
150 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
151 *b);
152 } while (--loops);
153
154 /*
155 * we get here, if we didn't suceed in looking up a block. generate
156 * a random start offset into the filemap, and find the first free
157 * block from there.
158 */
159 loops = 10;
160 do {
161 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
162 if (!get_next_free_block(td, f, ddir, b))
163 return 0;
164
165 r = os_random_long(&td->random_state);
166 } while (--loops);
167
168 /*
169 * that didn't work either, try exhaustive search from the start
170 */
171 f->last_free_lookup = 0;
172 return get_next_free_block(td, f, ddir, b);
173}
174
175/*
176 * For random io, generate a random new block and see if it's used. Repeat
177 * until we find a free one. For sequential io, just return the end of
178 * the last io issued.
179 */
180static int get_next_offset(struct thread_data *td, struct io_u *io_u)
181{
182 struct fio_file *f = io_u->file;
183 unsigned long long b;
184 enum fio_ddir ddir = io_u->ddir;
185
186 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
187 td->ddir_nr = td->o.ddir_nr;
188
189 if (get_next_rand_offset(td, f, ddir, &b))
190 return 1;
191 } else {
192 if (f->last_pos >= f->real_file_size) {
193 if (!td_random(td) ||
194 get_next_rand_offset(td, f, ddir, &b))
195 return 1;
196 } else
197 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
198 }
199
200 io_u->offset = b * td->o.min_bs[ddir];
201 if (io_u->offset >= f->io_size) {
202 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
203 io_u->offset, f->io_size);
204 return 1;
205 }
206
207 io_u->offset += f->file_offset;
208 if (io_u->offset >= f->real_file_size) {
209 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
210 io_u->offset, f->real_file_size);
211 return 1;
212 }
213
214 return 0;
215}
216
217static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
218{
219 const int ddir = io_u->ddir;
220 unsigned int buflen;
221 long r;
222
223 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
224 buflen = td->o.min_bs[ddir];
225 else {
226 r = os_random_long(&td->bsrange_state);
227 if (!td->o.bssplit_nr) {
228 buflen = (unsigned int)
229 (1 + (double) (td->o.max_bs[ddir] - 1)
230 * r / (RAND_MAX + 1.0));
231 } else {
232 long perc = 0;
233 unsigned int i;
234
235 for (i = 0; i < td->o.bssplit_nr; i++) {
236 struct bssplit *bsp = &td->o.bssplit[i];
237
238 buflen = bsp->bs;
239 perc += bsp->perc;
240 if (r <= ((LONG_MAX / 100L) * perc))
241 break;
242 }
243 }
244 if (!td->o.bs_unaligned) {
245 buflen = (buflen + td->o.min_bs[ddir] - 1)
246 & ~(td->o.min_bs[ddir] - 1);
247 }
248 }
249
250 if (io_u->offset + buflen > io_u->file->real_file_size) {
251 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
252 td->o.min_bs[ddir], ddir);
253 buflen = td->o.min_bs[ddir];
254 }
255
256 return buflen;
257}
258
259static void set_rwmix_bytes(struct thread_data *td)
260{
261 unsigned long issues;
262 unsigned int diff;
263
264 /*
265 * we do time or byte based switch. this is needed because
266 * buffered writes may issue a lot quicker than they complete,
267 * whereas reads do not.
268 */
269 issues = td->io_issues[td->rwmix_ddir] - td->rwmix_issues;
270 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
271
272 td->rwmix_issues = td->io_issues[td->rwmix_ddir]
273 + (issues * ((100 - diff)) / diff);
274}
275
276static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
277{
278 unsigned int v;
279 long r;
280
281 r = os_random_long(&td->rwmix_state);
282 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
283 if (v < td->o.rwmix[DDIR_READ])
284 return DDIR_READ;
285
286 return DDIR_WRITE;
287}
288
289/*
290 * Return the data direction for the next io_u. If the job is a
291 * mixed read/write workload, check the rwmix cycle and switch if
292 * necessary.
293 */
294static enum fio_ddir get_rw_ddir(struct thread_data *td)
295{
296 if (td_rw(td)) {
297 /*
298 * Check if it's time to seed a new data direction.
299 */
300 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
301 unsigned long long max_bytes;
302 enum fio_ddir ddir;
303
304 /*
305 * Put a top limit on how many bytes we do for
306 * one data direction, to avoid overflowing the
307 * ranges too much
308 */
309 ddir = get_rand_ddir(td);
310 max_bytes = td->this_io_bytes[ddir];
311 if (max_bytes >=
312 (td->o.size * td->o.rwmix[ddir] / 100)) {
313 if (!td->rw_end_set[ddir])
314 td->rw_end_set[ddir] = 1;
315
316 ddir ^= 1;
317 }
318
319 if (ddir != td->rwmix_ddir)
320 set_rwmix_bytes(td);
321
322 td->rwmix_ddir = ddir;
323 }
324 return td->rwmix_ddir;
325 } else if (td_read(td))
326 return DDIR_READ;
327 else
328 return DDIR_WRITE;
329}
330
331static void put_file_log(struct thread_data *td, struct fio_file *f)
332{
333 int ret = put_file(td, f);
334
335 if (ret)
336 td_verror(td, ret, "file close");
337}
338
339void put_io_u(struct thread_data *td, struct io_u *io_u)
340{
341 assert((io_u->flags & IO_U_F_FREE) == 0);
342 io_u->flags |= IO_U_F_FREE;
343
344 if (io_u->file)
345 put_file_log(td, io_u->file);
346
347 io_u->file = NULL;
348 list_del(&io_u->list);
349 list_add(&io_u->list, &td->io_u_freelist);
350 td->cur_depth--;
351}
352
353void requeue_io_u(struct thread_data *td, struct io_u **io_u)
354{
355 struct io_u *__io_u = *io_u;
356
357 __io_u->flags |= IO_U_F_FREE;
358 if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC))
359 td->io_issues[__io_u->ddir]--;
360
361 __io_u->flags &= ~IO_U_F_FLIGHT;
362
363 list_del(&__io_u->list);
364 list_add_tail(&__io_u->list, &td->io_u_requeues);
365 td->cur_depth--;
366 *io_u = NULL;
367}
368
369static int fill_io_u(struct thread_data *td, struct io_u *io_u)
370{
371 if (td->io_ops->flags & FIO_NOIO)
372 goto out;
373
374 /*
375 * see if it's time to sync
376 */
377 if (td->o.fsync_blocks &&
378 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
379 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
380 io_u->ddir = DDIR_SYNC;
381 goto out;
382 }
383
384 io_u->ddir = get_rw_ddir(td);
385
386 /*
387 * See if it's time to switch to a new zone
388 */
389 if (td->zone_bytes >= td->o.zone_size) {
390 td->zone_bytes = 0;
391 io_u->file->last_pos += td->o.zone_skip;
392 td->io_skip_bytes += td->o.zone_skip;
393 }
394
395 /*
396 * No log, let the seq/rand engine retrieve the next buflen and
397 * position.
398 */
399 if (get_next_offset(td, io_u)) {
400 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
401 return 1;
402 }
403
404 io_u->buflen = get_next_buflen(td, io_u);
405 if (!io_u->buflen) {
406 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
407 return 1;
408 }
409
410 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
411 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
412 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
413 io_u->buflen, io_u->file->real_file_size);
414 return 1;
415 }
416
417 /*
418 * mark entry before potentially trimming io_u
419 */
420 if (td_random(td) && file_randommap(td, io_u->file))
421 mark_random_map(td, io_u);
422
423 /*
424 * If using a write iolog, store this entry.
425 */
426out:
427 dprint_io_u(io_u, "fill_io_u");
428 td->zone_bytes += io_u->buflen;
429 log_io_u(td, io_u);
430 return 0;
431}
432
433static void __io_u_mark_map(unsigned int *map, unsigned int nr)
434{
435 int index = 0;
436
437 switch (nr) {
438 default:
439 index = 6;
440 break;
441 case 33 ... 64:
442 index = 5;
443 break;
444 case 17 ... 32:
445 index = 4;
446 break;
447 case 9 ... 16:
448 index = 3;
449 break;
450 case 5 ... 8:
451 index = 2;
452 break;
453 case 1 ... 4:
454 index = 1;
455 case 0:
456 break;
457 }
458
459 map[index]++;
460}
461
462void io_u_mark_submit(struct thread_data *td, unsigned int nr)
463{
464 __io_u_mark_map(td->ts.io_u_submit, nr);
465 td->ts.total_submit++;
466}
467
468void io_u_mark_complete(struct thread_data *td, unsigned int nr)
469{
470 __io_u_mark_map(td->ts.io_u_complete, nr);
471 td->ts.total_complete++;
472}
473
474void io_u_mark_depth(struct thread_data *td, unsigned int nr)
475{
476 int index = 0;
477
478 switch (td->cur_depth) {
479 default:
480 index = 6;
481 break;
482 case 32 ... 63:
483 index = 5;
484 break;
485 case 16 ... 31:
486 index = 4;
487 break;
488 case 8 ... 15:
489 index = 3;
490 break;
491 case 4 ... 7:
492 index = 2;
493 break;
494 case 2 ... 3:
495 index = 1;
496 case 1:
497 break;
498 }
499
500 td->ts.io_u_map[index] += nr;
501}
502
503static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
504{
505 int index = 0;
506
507 assert(usec < 1000);
508
509 switch (usec) {
510 case 750 ... 999:
511 index = 9;
512 break;
513 case 500 ... 749:
514 index = 8;
515 break;
516 case 250 ... 499:
517 index = 7;
518 break;
519 case 100 ... 249:
520 index = 6;
521 break;
522 case 50 ... 99:
523 index = 5;
524 break;
525 case 20 ... 49:
526 index = 4;
527 break;
528 case 10 ... 19:
529 index = 3;
530 break;
531 case 4 ... 9:
532 index = 2;
533 break;
534 case 2 ... 3:
535 index = 1;
536 case 0 ... 1:
537 break;
538 }
539
540 assert(index < FIO_IO_U_LAT_U_NR);
541 td->ts.io_u_lat_u[index]++;
542}
543
544static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
545{
546 int index = 0;
547
548 switch (msec) {
549 default:
550 index = 11;
551 break;
552 case 1000 ... 1999:
553 index = 10;
554 break;
555 case 750 ... 999:
556 index = 9;
557 break;
558 case 500 ... 749:
559 index = 8;
560 break;
561 case 250 ... 499:
562 index = 7;
563 break;
564 case 100 ... 249:
565 index = 6;
566 break;
567 case 50 ... 99:
568 index = 5;
569 break;
570 case 20 ... 49:
571 index = 4;
572 break;
573 case 10 ... 19:
574 index = 3;
575 break;
576 case 4 ... 9:
577 index = 2;
578 break;
579 case 2 ... 3:
580 index = 1;
581 case 0 ... 1:
582 break;
583 }
584
585 assert(index < FIO_IO_U_LAT_M_NR);
586 td->ts.io_u_lat_m[index]++;
587}
588
589static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
590{
591 if (usec < 1000)
592 io_u_mark_lat_usec(td, usec);
593 else
594 io_u_mark_lat_msec(td, usec / 1000);
595}
596
597/*
598 * Get next file to service by choosing one at random
599 */
600static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
601 int badf)
602{
603 struct fio_file *f;
604 int fno;
605
606 do {
607 long r = os_random_long(&td->next_file_state);
608
609 fno = (unsigned int) ((double) td->o.nr_files
610 * (r / (RAND_MAX + 1.0)));
611 f = td->files[fno];
612 if (f->flags & FIO_FILE_DONE)
613 continue;
614
615 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
616 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
617 return f;
618 }
619 } while (1);
620}
621
622/*
623 * Get next file to service by doing round robin between all available ones
624 */
625static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
626 int badf)
627{
628 unsigned int old_next_file = td->next_file;
629 struct fio_file *f;
630
631 do {
632 f = td->files[td->next_file];
633
634 td->next_file++;
635 if (td->next_file >= td->o.nr_files)
636 td->next_file = 0;
637
638 if (f->flags & FIO_FILE_DONE) {
639 f = NULL;
640 continue;
641 }
642
643 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
644 break;
645
646 f = NULL;
647 } while (td->next_file != old_next_file);
648
649 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
650 return f;
651}
652
653static struct fio_file *get_next_file(struct thread_data *td)
654{
655 struct fio_file *f;
656
657 assert(td->o.nr_files <= td->files_index);
658
659 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) {
660 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
661 " nr_files=%d\n", td->nr_open_files,
662 td->nr_done_files,
663 td->o.nr_files);
664 return NULL;
665 }
666
667 f = td->file_service_file;
668 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
669 goto out;
670
671 if (td->o.file_service_type == FIO_FSERVICE_RR)
672 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
673 else
674 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
675
676 td->file_service_file = f;
677 td->file_service_left = td->file_service_nr - 1;
678out:
679 dprint(FD_FILE, "get_next_file: %p\n", f);
680 return f;
681}
682
683static struct fio_file *find_next_new_file(struct thread_data *td)
684{
685 struct fio_file *f;
686
687 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
688 return NULL;
689
690 if (td->o.file_service_type == FIO_FSERVICE_RR)
691 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
692 else
693 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
694
695 return f;
696}
697
698static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
699{
700 struct fio_file *f;
701
702 do {
703 f = get_next_file(td);
704 if (!f)
705 return 1;
706
707set_file:
708 io_u->file = f;
709 get_file(f);
710
711 if (!fill_io_u(td, io_u))
712 break;
713
714 /*
715 * optimization to prevent close/open of the same file. This
716 * way we preserve queueing etc.
717 */
718 if (td->o.nr_files == 1 && td->o.time_based) {
719 put_file_log(td, f);
720 fio_file_reset(f);
721 goto set_file;
722 }
723
724 /*
725 * td_io_close() does a put_file() as well, so no need to
726 * do that here.
727 */
728 io_u->file = NULL;
729 td_io_close_file(td, f);
730 f->flags |= FIO_FILE_DONE;
731 td->nr_done_files++;
732
733 /*
734 * probably not the right place to do this, but see
735 * if we need to open a new file
736 */
737 if (td->nr_open_files < td->o.open_files &&
738 td->o.open_files != td->o.nr_files) {
739 f = find_next_new_file(td);
740
741 if (!f || td_io_open_file(td, f))
742 return 1;
743
744 goto set_file;
745 }
746 } while (1);
747
748 return 0;
749}
750
751
752struct io_u *__get_io_u(struct thread_data *td)
753{
754 struct io_u *io_u = NULL;
755
756 if (!list_empty(&td->io_u_requeues))
757 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
758 else if (!queue_full(td)) {
759 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
760
761 io_u->buflen = 0;
762 io_u->resid = 0;
763 io_u->file = NULL;
764 io_u->end_io = NULL;
765 }
766
767 if (io_u) {
768 assert(io_u->flags & IO_U_F_FREE);
769 io_u->flags &= ~IO_U_F_FREE;
770
771 io_u->error = 0;
772 list_del(&io_u->list);
773 list_add(&io_u->list, &td->io_u_busylist);
774 td->cur_depth++;
775 }
776
777 return io_u;
778}
779
780/*
781 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
782 * etc. The returned io_u is fully ready to be prepped and submitted.
783 */
784struct io_u *get_io_u(struct thread_data *td)
785{
786 struct fio_file *f;
787 struct io_u *io_u;
788
789 io_u = __get_io_u(td);
790 if (!io_u) {
791 dprint(FD_IO, "__get_io_u failed\n");
792 return NULL;
793 }
794
795 /*
796 * from a requeue, io_u already setup
797 */
798 if (io_u->file)
799 goto out;
800
801 /*
802 * If using an iolog, grab next piece if any available.
803 */
804 if (td->o.read_iolog_file) {
805 if (read_iolog_get(td, io_u))
806 goto err_put;
807 } else if (set_io_u_file(td, io_u)) {
808 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
809 goto err_put;
810 }
811
812 f = io_u->file;
813 assert(f->flags & FIO_FILE_OPEN);
814
815 if (io_u->ddir != DDIR_SYNC) {
816 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
817 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
818 goto err_put;
819 }
820
821 f->last_pos = io_u->offset + io_u->buflen;
822
823 if (td->o.verify != VERIFY_NONE)
824 populate_verify_io_u(td, io_u);
825 }
826
827 /*
828 * Set io data pointers.
829 */
830 io_u->endpos = io_u->offset + io_u->buflen;
831 io_u->xfer_buf = io_u->buf;
832 io_u->xfer_buflen = io_u->buflen;
833
834 if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
835 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
836out:
837 if (!td_io_prep(td, io_u)) {
838 fio_gettime(&io_u->start_time, NULL);
839 return io_u;
840 }
841err_put:
842 dprint(FD_IO, "get_io_u failed\n");
843 put_io_u(td, io_u);
844 return NULL;
845}
846
847void io_u_log_error(struct thread_data *td, struct io_u *io_u)
848{
849 const char *msg[] = { "read", "write", "sync" };
850
851 log_err("fio: io_u error");
852
853 if (io_u->file)
854 log_err(" on file %s", io_u->file->file_name);
855
856 log_err(": %s\n", strerror(io_u->error));
857
858 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
859 io_u->offset, io_u->xfer_buflen);
860
861 if (!td->error)
862 td_verror(td, io_u->error, "io_u error");
863}
864
865static void io_completed(struct thread_data *td, struct io_u *io_u,
866 struct io_completion_data *icd)
867{
868 unsigned long usec;
869
870 dprint_io_u(io_u, "io complete");
871
872 assert(io_u->flags & IO_U_F_FLIGHT);
873 io_u->flags &= ~IO_U_F_FLIGHT;
874
875 if (io_u->ddir == DDIR_SYNC) {
876 td->last_was_sync = 1;
877 return;
878 }
879
880 td->last_was_sync = 0;
881
882 if (!io_u->error) {
883 unsigned int bytes = io_u->buflen - io_u->resid;
884 const enum fio_ddir idx = io_u->ddir;
885 int ret;
886
887 td->io_blocks[idx]++;
888 td->io_bytes[idx] += bytes;
889 td->this_io_bytes[idx] += bytes;
890
891 usec = utime_since(&io_u->issue_time, &icd->time);
892
893 add_clat_sample(td, idx, usec);
894 add_bw_sample(td, idx, &icd->time);
895 io_u_mark_latency(td, usec);
896
897 if (td_write(td) && idx == DDIR_WRITE &&
898 td->o.do_verify &&
899 td->o.verify != VERIFY_NONE)
900 log_io_piece(td, io_u);
901
902 icd->bytes_done[idx] += bytes;
903
904 if (io_u->end_io) {
905 ret = io_u->end_io(td, io_u);
906 if (ret && !icd->error)
907 icd->error = ret;
908 }
909 } else {
910 icd->error = io_u->error;
911 io_u_log_error(td, io_u);
912 }
913}
914
915static void init_icd(struct io_completion_data *icd, int nr)
916{
917 fio_gettime(&icd->time, NULL);
918
919 icd->nr = nr;
920
921 icd->error = 0;
922 icd->bytes_done[0] = icd->bytes_done[1] = 0;
923}
924
925static void ios_completed(struct thread_data *td,
926 struct io_completion_data *icd)
927{
928 struct io_u *io_u;
929 int i;
930
931 for (i = 0; i < icd->nr; i++) {
932 io_u = td->io_ops->event(td, i);
933
934 io_completed(td, io_u, icd);
935 put_io_u(td, io_u);
936 }
937}
938
939/*
940 * Complete a single io_u for the sync engines.
941 */
942long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
943{
944 struct io_completion_data icd;
945
946 init_icd(&icd, 1);
947 io_completed(td, io_u, &icd);
948 put_io_u(td, io_u);
949
950 if (!icd.error)
951 return icd.bytes_done[0] + icd.bytes_done[1];
952
953 td_verror(td, icd.error, "io_u_sync_complete");
954 return -1;
955}
956
957/*
958 * Called to complete min_events number of io for the async engines.
959 */
960long io_u_queued_complete(struct thread_data *td, int min_events)
961{
962 struct io_completion_data icd;
963 struct timespec *tvp = NULL;
964 int ret;
965 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
966
967 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_events);
968
969 if (!min_events)
970 tvp = &ts;
971
972 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
973 if (ret < 0) {
974 td_verror(td, -ret, "td_io_getevents");
975 return ret;
976 } else if (!ret)
977 return ret;
978
979 init_icd(&icd, ret);
980 ios_completed(td, &icd);
981 if (!icd.error)
982 return icd.bytes_done[0] + icd.bytes_done[1];
983
984 td_verror(td, icd.error, "io_u_queued_complete");
985 return -1;
986}
987
988/*
989 * Call when io_u is really queued, to update the submission latency.
990 */
991void io_u_queued(struct thread_data *td, struct io_u *io_u)
992{
993 unsigned long slat_time;
994
995 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
996 add_slat_sample(td, io_u->ddir, slat_time);
997}
998
999/*
1000 * "randomly" fill the buffer contents
1001 */
1002void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1003 unsigned int max_bs)
1004{
1005 long *ptr = io_u->buf;
1006
1007 if (!td->o.zero_buffers) {
1008 while ((void *) ptr - io_u->buf < max_bs) {
1009 *ptr = rand() * GOLDEN_RATIO_PRIME;
1010 ptr++;
1011 }
1012 } else
1013 memset(ptr, 0, max_bs);
1014}
1015
1016#ifdef FIO_USE_TIMEOUT
1017void io_u_set_timeout(struct thread_data *td)
1018{
1019 assert(td->cur_depth);
1020
1021 td->timer.it_interval.tv_sec = 0;
1022 td->timer.it_interval.tv_usec = 0;
1023 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
1024 td->timer.it_value.tv_usec = 0;
1025 setitimer(ITIMER_REAL, &td->timer, NULL);
1026 fio_gettime(&td->timeout_end, NULL);
1027}
1028
1029static void io_u_dump(struct io_u *io_u)
1030{
1031 unsigned long t_start = mtime_since_now(&io_u->start_time);
1032 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
1033
1034 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
1035 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf,
1036 io_u->xfer_buf, io_u->buflen,
1037 io_u->xfer_buflen,
1038 io_u->offset);
1039 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
1040}
1041#else
1042void io_u_set_timeout(struct thread_data fio_unused *td)
1043{
1044}
1045#endif
1046
1047#ifdef FIO_USE_TIMEOUT
1048static void io_u_timeout_handler(int fio_unused sig)
1049{
1050 struct thread_data *td, *__td;
1051 pid_t pid = getpid();
1052 struct list_head *entry;
1053 struct io_u *io_u;
1054 int i;
1055
1056 log_err("fio: io_u timeout\n");
1057
1058 /*
1059 * TLS would be nice...
1060 */
1061 td = NULL;
1062 for_each_td(__td, i) {
1063 if (__td->pid == pid) {
1064 td = __td;
1065 break;
1066 }
1067 }
1068
1069 if (!td) {
1070 log_err("fio: io_u timeout, can't find job\n");
1071 exit(1);
1072 }
1073
1074 if (!td->cur_depth) {
1075 log_err("fio: timeout without pending work?\n");
1076 return;
1077 }
1078
1079 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
1080
1081 list_for_each(entry, &td->io_u_busylist) {
1082 io_u = list_entry(entry, struct io_u, list);
1083
1084 io_u_dump(io_u);
1085 }
1086
1087 td_verror(td, ETIMEDOUT, "io_u timeout");
1088 exit(1);
1089}
1090#endif
1091
1092void io_u_init_timeout(void)
1093{
1094#ifdef FIO_USE_TIMEOUT
1095 signal(SIGALRM, io_u_timeout_handler);
1096#endif
1097}