Simplify num2str()
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13
14struct io_completion_data {
15 int nr; /* input */
16
17 int error; /* output */
18 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
19 struct timespec time; /* output */
20};
21
22/*
23 * The ->io_axmap contains a map of blocks we have or have not done io
24 * to yet. Used to make sure we cover the entire range in a fair fashion.
25 */
26static bool random_map_free(struct fio_file *f, const uint64_t block)
27{
28 return !axmap_isset(f->io_axmap, block);
29}
30
31/*
32 * Mark a given offset as used in the map.
33 */
34static void mark_random_map(struct thread_data *td, struct io_u *io_u)
35{
36 unsigned int min_bs = td->o.min_bs[io_u->ddir];
37 struct fio_file *f = io_u->file;
38 unsigned int nr_blocks;
39 uint64_t block;
40
41 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
42 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
43
44 if (!(io_u->flags & IO_U_F_BUSY_OK))
45 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
46
47 if ((nr_blocks * min_bs) < io_u->buflen)
48 io_u->buflen = nr_blocks * min_bs;
49}
50
51static uint64_t last_block(struct thread_data *td, struct fio_file *f,
52 enum fio_ddir ddir)
53{
54 uint64_t max_blocks;
55 uint64_t max_size;
56
57 assert(ddir_rw(ddir));
58
59 /*
60 * Hmm, should we make sure that ->io_size <= ->real_file_size?
61 * -> not for now since there is code assuming it could go either.
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 if (td->o.min_bs[ddir] > td->o.ba[ddir])
71 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
72
73 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
74 if (!max_blocks)
75 return 0;
76
77 return max_blocks;
78}
79
80static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
81 enum fio_ddir ddir, uint64_t *b,
82 uint64_t lastb)
83{
84 uint64_t r;
85
86 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
87 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
88
89 r = __rand(&td->random_state);
90
91 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
92
93 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
94 } else {
95 uint64_t off = 0;
96
97 assert(fio_file_lfsr(f));
98
99 if (lfsr_next(&f->lfsr, &off))
100 return 1;
101
102 *b = off;
103 }
104
105 /*
106 * if we are not maintaining a random map, we are done.
107 */
108 if (!file_randommap(td, f))
109 goto ret;
110
111 /*
112 * calculate map offset and check if it's free
113 */
114 if (random_map_free(f, *b))
115 goto ret;
116
117 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
118 (unsigned long long) *b);
119
120 *b = axmap_next_free(f->io_axmap, *b);
121 if (*b == (uint64_t) -1ULL)
122 return 1;
123ret:
124 return 0;
125}
126
127static int __get_next_rand_offset_zipf(struct thread_data *td,
128 struct fio_file *f, enum fio_ddir ddir,
129 uint64_t *b)
130{
131 *b = zipf_next(&f->zipf);
132 return 0;
133}
134
135static int __get_next_rand_offset_pareto(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = pareto_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_gauss(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = gauss_next(&f->gauss);
148 return 0;
149}
150
151static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
152 struct fio_file *f,
153 enum fio_ddir ddir, uint64_t *b)
154{
155 struct zone_split_index *zsi;
156 uint64_t lastb, send, stotal;
157 unsigned int v;
158
159 lastb = last_block(td, f, ddir);
160 if (!lastb)
161 return 1;
162
163 if (!td->o.zone_split_nr[ddir]) {
164bail:
165 return __get_next_rand_offset(td, f, ddir, b, lastb);
166 }
167
168 /*
169 * Generate a value, v, between 1 and 100, both inclusive
170 */
171 v = rand32_between(&td->zone_state, 1, 100);
172
173 /*
174 * Find our generated table. 'send' is the end block of this zone,
175 * 'stotal' is our start offset.
176 */
177 zsi = &td->zone_state_index[ddir][v - 1];
178 stotal = zsi->size_prev / td->o.ba[ddir];
179 send = zsi->size / td->o.ba[ddir];
180
181 /*
182 * Should never happen
183 */
184 if (send == -1U) {
185 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
186 log_err("fio: bug in zoned generation\n");
187 goto bail;
188 } else if (send > lastb) {
189 /*
190 * This happens if the user specifies ranges that exceed
191 * the file/device size. We can't handle that gracefully,
192 * so error and exit.
193 */
194 log_err("fio: zoned_abs sizes exceed file size\n");
195 return 1;
196 }
197
198 /*
199 * Generate index from 0..send-stotal
200 */
201 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
202 return 1;
203
204 *b += stotal;
205 return 0;
206}
207
208static int __get_next_rand_offset_zoned(struct thread_data *td,
209 struct fio_file *f, enum fio_ddir ddir,
210 uint64_t *b)
211{
212 unsigned int v, send, stotal;
213 uint64_t offset, lastb;
214 struct zone_split_index *zsi;
215
216 lastb = last_block(td, f, ddir);
217 if (!lastb)
218 return 1;
219
220 if (!td->o.zone_split_nr[ddir]) {
221bail:
222 return __get_next_rand_offset(td, f, ddir, b, lastb);
223 }
224
225 /*
226 * Generate a value, v, between 1 and 100, both inclusive
227 */
228 v = rand32_between(&td->zone_state, 1, 100);
229
230 zsi = &td->zone_state_index[ddir][v - 1];
231 stotal = zsi->size_perc_prev;
232 send = zsi->size_perc;
233
234 /*
235 * Should never happen
236 */
237 if (send == -1U) {
238 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
239 log_err("fio: bug in zoned generation\n");
240 goto bail;
241 }
242
243 /*
244 * 'send' is some percentage below or equal to 100 that
245 * marks the end of the current IO range. 'stotal' marks
246 * the start, in percent.
247 */
248 if (stotal)
249 offset = stotal * lastb / 100ULL;
250 else
251 offset = 0;
252
253 lastb = lastb * (send - stotal) / 100ULL;
254
255 /*
256 * Generate index from 0..send-of-lastb
257 */
258 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
259 return 1;
260
261 /*
262 * Add our start offset, if any
263 */
264 if (offset)
265 *b += offset;
266
267 return 0;
268}
269
270static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *b)
272{
273 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
274 uint64_t lastb;
275
276 lastb = last_block(td, f, ddir);
277 if (!lastb)
278 return 1;
279
280 return __get_next_rand_offset(td, f, ddir, b, lastb);
281 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
282 return __get_next_rand_offset_zipf(td, f, ddir, b);
283 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
284 return __get_next_rand_offset_pareto(td, f, ddir, b);
285 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
286 return __get_next_rand_offset_gauss(td, f, ddir, b);
287 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
288 return __get_next_rand_offset_zoned(td, f, ddir, b);
289 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
290 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
291
292 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
293 return 1;
294}
295
296static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
297{
298 unsigned int v;
299
300 if (td->o.perc_rand[ddir] == 100)
301 return true;
302
303 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
304
305 return v <= td->o.perc_rand[ddir];
306}
307
308static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
309{
310 struct thread_options *o = &td->o;
311
312 if (o->invalidate_cache && !o->odirect) {
313 int fio_unused ret;
314
315 ret = file_invalidate_cache(td, f);
316 }
317}
318
319static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
320 enum fio_ddir ddir, uint64_t *b)
321{
322 if (!get_next_rand_offset(td, f, ddir, b))
323 return 0;
324
325 if (td->o.time_based ||
326 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
327 fio_file_reset(td, f);
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330 loop_cache_invalidate(td, f);
331 }
332
333 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
334 f->file_name, (unsigned long long) f->last_pos[ddir],
335 (unsigned long long) f->real_file_size);
336 return 1;
337}
338
339static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
340 enum fio_ddir ddir, uint64_t *offset)
341{
342 struct thread_options *o = &td->o;
343
344 assert(ddir_rw(ddir));
345
346 /*
347 * If we reach the end for a time based run, reset us back to 0
348 * and invalidate the cache, if we need to.
349 */
350 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
351 o->time_based) {
352 f->last_pos[ddir] = f->file_offset;
353 loop_cache_invalidate(td, f);
354 }
355
356 if (f->last_pos[ddir] < f->real_file_size) {
357 uint64_t pos;
358
359 /*
360 * Only rewind if we already hit the end
361 */
362 if (f->last_pos[ddir] == f->file_offset &&
363 f->file_offset && o->ddir_seq_add < 0) {
364 if (f->real_file_size > f->io_size)
365 f->last_pos[ddir] = f->io_size;
366 else
367 f->last_pos[ddir] = f->real_file_size;
368 }
369
370 pos = f->last_pos[ddir] - f->file_offset;
371 if (pos && o->ddir_seq_add) {
372 pos += o->ddir_seq_add;
373
374 /*
375 * If we reach beyond the end of the file
376 * with holed IO, wrap around to the
377 * beginning again. If we're doing backwards IO,
378 * wrap to the end.
379 */
380 if (pos >= f->real_file_size) {
381 if (o->ddir_seq_add > 0)
382 pos = f->file_offset;
383 else {
384 if (f->real_file_size > f->io_size)
385 pos = f->io_size;
386 else
387 pos = f->real_file_size;
388
389 pos += o->ddir_seq_add;
390 }
391 }
392 }
393
394 *offset = pos;
395 return 0;
396 }
397
398 return 1;
399}
400
401static int get_next_block(struct thread_data *td, struct io_u *io_u,
402 enum fio_ddir ddir, int rw_seq,
403 bool *is_random)
404{
405 struct fio_file *f = io_u->file;
406 uint64_t b, offset;
407 int ret;
408
409 assert(ddir_rw(ddir));
410
411 b = offset = -1ULL;
412
413 if (rw_seq) {
414 if (td_random(td)) {
415 if (should_do_random(td, ddir)) {
416 ret = get_next_rand_block(td, f, ddir, &b);
417 *is_random = true;
418 } else {
419 *is_random = false;
420 io_u_set(td, io_u, IO_U_F_BUSY_OK);
421 ret = get_next_seq_offset(td, f, ddir, &offset);
422 if (ret)
423 ret = get_next_rand_block(td, f, ddir, &b);
424 }
425 } else {
426 *is_random = false;
427 ret = get_next_seq_offset(td, f, ddir, &offset);
428 }
429 } else {
430 io_u_set(td, io_u, IO_U_F_BUSY_OK);
431 *is_random = false;
432
433 if (td->o.rw_seq == RW_SEQ_SEQ) {
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret) {
436 ret = get_next_rand_block(td, f, ddir, &b);
437 *is_random = false;
438 }
439 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
440 if (f->last_start[ddir] != -1ULL)
441 offset = f->last_start[ddir] - f->file_offset;
442 else
443 offset = 0;
444 ret = 0;
445 } else {
446 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
447 ret = 1;
448 }
449 }
450
451 if (!ret) {
452 if (offset != -1ULL)
453 io_u->offset = offset;
454 else if (b != -1ULL)
455 io_u->offset = b * td->o.ba[ddir];
456 else {
457 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
458 ret = 1;
459 }
460 }
461
462 return ret;
463}
464
465/*
466 * For random io, generate a random new block and see if it's used. Repeat
467 * until we find a free one. For sequential io, just return the end of
468 * the last io issued.
469 */
470static int get_next_offset(struct thread_data *td, struct io_u *io_u,
471 bool *is_random)
472{
473 struct fio_file *f = io_u->file;
474 enum fio_ddir ddir = io_u->ddir;
475 int rw_seq_hit = 0;
476
477 assert(ddir_rw(ddir));
478
479 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
480 rw_seq_hit = 1;
481 td->ddir_seq_nr = td->o.ddir_seq_nr;
482 }
483
484 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
485 return 1;
486
487 if (io_u->offset >= f->io_size) {
488 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
489 (unsigned long long) io_u->offset,
490 (unsigned long long) f->io_size);
491 return 1;
492 }
493
494 io_u->offset += f->file_offset;
495 if (io_u->offset >= f->real_file_size) {
496 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
497 (unsigned long long) io_u->offset,
498 (unsigned long long) f->real_file_size);
499 return 1;
500 }
501
502 return 0;
503}
504
505static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
506 unsigned int buflen)
507{
508 struct fio_file *f = io_u->file;
509
510 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
511}
512
513static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
514 bool is_random)
515{
516 int ddir = io_u->ddir;
517 unsigned int buflen = 0;
518 unsigned int minbs, maxbs;
519 uint64_t frand_max, r;
520 bool power_2;
521
522 assert(ddir_rw(ddir));
523
524 if (td->o.bs_is_seq_rand)
525 ddir = is_random ? DDIR_WRITE : DDIR_READ;
526
527 minbs = td->o.min_bs[ddir];
528 maxbs = td->o.max_bs[ddir];
529
530 if (minbs == maxbs)
531 return minbs;
532
533 /*
534 * If we can't satisfy the min block size from here, then fail
535 */
536 if (!io_u_fits(td, io_u, minbs))
537 return 0;
538
539 frand_max = rand_max(&td->bsrange_state[ddir]);
540 do {
541 r = __rand(&td->bsrange_state[ddir]);
542
543 if (!td->o.bssplit_nr[ddir]) {
544 buflen = 1 + (unsigned int) ((double) maxbs *
545 (r / (frand_max + 1.0)));
546 if (buflen < minbs)
547 buflen = minbs;
548 } else {
549 long long perc = 0;
550 unsigned int i;
551
552 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
553 struct bssplit *bsp = &td->o.bssplit[ddir][i];
554
555 buflen = bsp->bs;
556 perc += bsp->perc;
557 if (!perc)
558 break;
559 if ((r / perc <= frand_max / 100ULL) &&
560 io_u_fits(td, io_u, buflen))
561 break;
562 }
563 }
564
565 power_2 = is_power_of_2(minbs);
566 if (!td->o.bs_unaligned && power_2)
567 buflen &= ~(minbs - 1);
568 else if (!td->o.bs_unaligned && !power_2)
569 buflen -= buflen % minbs;
570 } while (!io_u_fits(td, io_u, buflen));
571
572 return buflen;
573}
574
575static void set_rwmix_bytes(struct thread_data *td)
576{
577 unsigned int diff;
578
579 /*
580 * we do time or byte based switch. this is needed because
581 * buffered writes may issue a lot quicker than they complete,
582 * whereas reads do not.
583 */
584 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
585 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
586}
587
588static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
589{
590 unsigned int v;
591
592 v = rand32_between(&td->rwmix_state, 1, 100);
593
594 if (v <= td->o.rwmix[DDIR_READ])
595 return DDIR_READ;
596
597 return DDIR_WRITE;
598}
599
600int io_u_quiesce(struct thread_data *td)
601{
602 int completed = 0;
603
604 /*
605 * We are going to sleep, ensure that we flush anything pending as
606 * not to skew our latency numbers.
607 *
608 * Changed to only monitor 'in flight' requests here instead of the
609 * td->cur_depth, b/c td->cur_depth does not accurately represent
610 * io's that have been actually submitted to an async engine,
611 * and cur_depth is meaningless for sync engines.
612 */
613 if (td->io_u_queued || td->cur_depth) {
614 int fio_unused ret;
615
616 ret = td_io_commit(td);
617 }
618
619 while (td->io_u_in_flight) {
620 int ret;
621
622 ret = io_u_queued_complete(td, 1);
623 if (ret > 0)
624 completed += ret;
625 }
626
627 if (td->flags & TD_F_REGROW_LOGS)
628 regrow_logs(td);
629
630 return completed;
631}
632
633static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
634{
635 enum fio_ddir odir = ddir ^ 1;
636 uint64_t usec;
637 uint64_t now;
638
639 assert(ddir_rw(ddir));
640 now = utime_since_now(&td->start);
641
642 /*
643 * if rate_next_io_time is in the past, need to catch up to rate
644 */
645 if (td->rate_next_io_time[ddir] <= now)
646 return ddir;
647
648 /*
649 * We are ahead of rate in this direction. See if we
650 * should switch.
651 */
652 if (td_rw(td) && td->o.rwmix[odir]) {
653 /*
654 * Other direction is behind rate, switch
655 */
656 if (td->rate_next_io_time[odir] <= now)
657 return odir;
658
659 /*
660 * Both directions are ahead of rate. sleep the min,
661 * switch if necessary
662 */
663 if (td->rate_next_io_time[ddir] <=
664 td->rate_next_io_time[odir]) {
665 usec = td->rate_next_io_time[ddir] - now;
666 } else {
667 usec = td->rate_next_io_time[odir] - now;
668 ddir = odir;
669 }
670 } else
671 usec = td->rate_next_io_time[ddir] - now;
672
673 if (td->o.io_submit_mode == IO_MODE_INLINE)
674 io_u_quiesce(td);
675
676 usec_sleep(td, usec);
677 return ddir;
678}
679
680/*
681 * Return the data direction for the next io_u. If the job is a
682 * mixed read/write workload, check the rwmix cycle and switch if
683 * necessary.
684 */
685static enum fio_ddir get_rw_ddir(struct thread_data *td)
686{
687 enum fio_ddir ddir;
688
689 /*
690 * See if it's time to fsync/fdatasync/sync_file_range first,
691 * and if not then move on to check regular I/Os.
692 */
693 if (should_fsync(td)) {
694 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
695 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
696 return DDIR_SYNC;
697
698 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
699 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
700 return DDIR_DATASYNC;
701
702 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
703 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
704 return DDIR_SYNC_FILE_RANGE;
705 }
706
707 if (td_rw(td)) {
708 /*
709 * Check if it's time to seed a new data direction.
710 */
711 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
712 /*
713 * Put a top limit on how many bytes we do for
714 * one data direction, to avoid overflowing the
715 * ranges too much
716 */
717 ddir = get_rand_ddir(td);
718
719 if (ddir != td->rwmix_ddir)
720 set_rwmix_bytes(td);
721
722 td->rwmix_ddir = ddir;
723 }
724 ddir = td->rwmix_ddir;
725 } else if (td_read(td))
726 ddir = DDIR_READ;
727 else if (td_write(td))
728 ddir = DDIR_WRITE;
729 else if (td_trim(td))
730 ddir = DDIR_TRIM;
731 else
732 ddir = DDIR_INVAL;
733
734 td->rwmix_ddir = rate_ddir(td, ddir);
735 return td->rwmix_ddir;
736}
737
738static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
739{
740 enum fio_ddir ddir = get_rw_ddir(td);
741
742 if (td_trimwrite(td)) {
743 struct fio_file *f = io_u->file;
744 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
745 ddir = DDIR_TRIM;
746 else
747 ddir = DDIR_WRITE;
748 }
749
750 io_u->ddir = io_u->acct_ddir = ddir;
751
752 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
753 td->o.barrier_blocks &&
754 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
755 td->io_issues[DDIR_WRITE])
756 io_u_set(td, io_u, IO_U_F_BARRIER);
757}
758
759void put_file_log(struct thread_data *td, struct fio_file *f)
760{
761 unsigned int ret = put_file(td, f);
762
763 if (ret)
764 td_verror(td, ret, "file close");
765}
766
767void put_io_u(struct thread_data *td, struct io_u *io_u)
768{
769 if (td->parent)
770 td = td->parent;
771
772 td_io_u_lock(td);
773
774 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
775 put_file_log(td, io_u->file);
776
777 io_u->file = NULL;
778 io_u_set(td, io_u, IO_U_F_FREE);
779
780 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
781 td->cur_depth--;
782 assert(!(td->flags & TD_F_CHILD));
783 }
784 io_u_qpush(&td->io_u_freelist, io_u);
785 td_io_u_free_notify(td);
786 td_io_u_unlock(td);
787}
788
789void clear_io_u(struct thread_data *td, struct io_u *io_u)
790{
791 io_u_clear(td, io_u, IO_U_F_FLIGHT);
792 put_io_u(td, io_u);
793}
794
795void requeue_io_u(struct thread_data *td, struct io_u **io_u)
796{
797 struct io_u *__io_u = *io_u;
798 enum fio_ddir ddir = acct_ddir(__io_u);
799
800 dprint(FD_IO, "requeue %p\n", __io_u);
801
802 if (td->parent)
803 td = td->parent;
804
805 td_io_u_lock(td);
806
807 io_u_set(td, __io_u, IO_U_F_FREE);
808 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
809 td->io_issues[ddir]--;
810
811 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
812 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
813 td->cur_depth--;
814 assert(!(td->flags & TD_F_CHILD));
815 }
816
817 io_u_rpush(&td->io_u_requeues, __io_u);
818 td_io_u_free_notify(td);
819 td_io_u_unlock(td);
820 *io_u = NULL;
821}
822
823static void __fill_io_u_zone(struct thread_data *td, struct io_u *io_u)
824{
825 struct fio_file *f = io_u->file;
826
827 /*
828 * See if it's time to switch to a new zone
829 */
830 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
831 td->zone_bytes = 0;
832 f->file_offset += td->o.zone_range + td->o.zone_skip;
833
834 /*
835 * Wrap from the beginning, if we exceed the file size
836 */
837 if (f->file_offset >= f->real_file_size)
838 f->file_offset = f->real_file_size - f->file_offset;
839 f->last_pos[io_u->ddir] = f->file_offset;
840 td->io_skip_bytes += td->o.zone_skip;
841 }
842
843 /*
844 * If zone_size > zone_range, then maintain the same zone until
845 * zone_bytes >= zone_size.
846 */
847 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
848 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
849 f->file_offset, f->last_pos[io_u->ddir]);
850 f->last_pos[io_u->ddir] = f->file_offset;
851 }
852
853 /*
854 * For random: if 'norandommap' is not set and zone_size > zone_range,
855 * map needs to be reset as it's done with zone_range everytime.
856 */
857 if ((td->zone_bytes % td->o.zone_range) == 0) {
858 fio_file_reset(td, f);
859 }
860}
861
862static int fill_io_u(struct thread_data *td, struct io_u *io_u)
863{
864 bool is_random;
865
866 if (td_ioengine_flagged(td, FIO_NOIO))
867 goto out;
868
869 set_rw_ddir(td, io_u);
870
871 /*
872 * fsync() or fdatasync() or trim etc, we are done
873 */
874 if (!ddir_rw(io_u->ddir))
875 goto out;
876
877 /*
878 * When file is zoned zone_range is always positive
879 */
880 if (td->o.zone_range) {
881 __fill_io_u_zone(td, io_u);
882 }
883
884 /*
885 * No log, let the seq/rand engine retrieve the next buflen and
886 * position.
887 */
888 if (get_next_offset(td, io_u, &is_random)) {
889 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
890 return 1;
891 }
892
893 io_u->buflen = get_next_buflen(td, io_u, is_random);
894 if (!io_u->buflen) {
895 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
896 return 1;
897 }
898
899 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
900 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%lx exceeds file size=0x%llx\n",
901 io_u,
902 (unsigned long long) io_u->offset, io_u->buflen,
903 (unsigned long long) io_u->file->real_file_size);
904 return 1;
905 }
906
907 /*
908 * mark entry before potentially trimming io_u
909 */
910 if (td_random(td) && file_randommap(td, io_u->file))
911 mark_random_map(td, io_u);
912
913out:
914 dprint_io_u(io_u, "fill");
915 td->zone_bytes += io_u->buflen;
916 return 0;
917}
918
919static void __io_u_mark_map(uint64_t *map, unsigned int nr)
920{
921 int idx = 0;
922
923 switch (nr) {
924 default:
925 idx = 6;
926 break;
927 case 33 ... 64:
928 idx = 5;
929 break;
930 case 17 ... 32:
931 idx = 4;
932 break;
933 case 9 ... 16:
934 idx = 3;
935 break;
936 case 5 ... 8:
937 idx = 2;
938 break;
939 case 1 ... 4:
940 idx = 1;
941 case 0:
942 break;
943 }
944
945 map[idx]++;
946}
947
948void io_u_mark_submit(struct thread_data *td, unsigned int nr)
949{
950 __io_u_mark_map(td->ts.io_u_submit, nr);
951 td->ts.total_submit++;
952}
953
954void io_u_mark_complete(struct thread_data *td, unsigned int nr)
955{
956 __io_u_mark_map(td->ts.io_u_complete, nr);
957 td->ts.total_complete++;
958}
959
960void io_u_mark_depth(struct thread_data *td, unsigned int nr)
961{
962 int idx = 0;
963
964 switch (td->cur_depth) {
965 default:
966 idx = 6;
967 break;
968 case 32 ... 63:
969 idx = 5;
970 break;
971 case 16 ... 31:
972 idx = 4;
973 break;
974 case 8 ... 15:
975 idx = 3;
976 break;
977 case 4 ... 7:
978 idx = 2;
979 break;
980 case 2 ... 3:
981 idx = 1;
982 case 1:
983 break;
984 }
985
986 td->ts.io_u_map[idx] += nr;
987}
988
989static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
990{
991 int idx = 0;
992
993 assert(nsec < 1000);
994
995 switch (nsec) {
996 case 750 ... 999:
997 idx = 9;
998 break;
999 case 500 ... 749:
1000 idx = 8;
1001 break;
1002 case 250 ... 499:
1003 idx = 7;
1004 break;
1005 case 100 ... 249:
1006 idx = 6;
1007 break;
1008 case 50 ... 99:
1009 idx = 5;
1010 break;
1011 case 20 ... 49:
1012 idx = 4;
1013 break;
1014 case 10 ... 19:
1015 idx = 3;
1016 break;
1017 case 4 ... 9:
1018 idx = 2;
1019 break;
1020 case 2 ... 3:
1021 idx = 1;
1022 case 0 ... 1:
1023 break;
1024 }
1025
1026 assert(idx < FIO_IO_U_LAT_N_NR);
1027 td->ts.io_u_lat_n[idx]++;
1028}
1029
1030static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1031{
1032 int idx = 0;
1033
1034 assert(usec < 1000 && usec >= 1);
1035
1036 switch (usec) {
1037 case 750 ... 999:
1038 idx = 9;
1039 break;
1040 case 500 ... 749:
1041 idx = 8;
1042 break;
1043 case 250 ... 499:
1044 idx = 7;
1045 break;
1046 case 100 ... 249:
1047 idx = 6;
1048 break;
1049 case 50 ... 99:
1050 idx = 5;
1051 break;
1052 case 20 ... 49:
1053 idx = 4;
1054 break;
1055 case 10 ... 19:
1056 idx = 3;
1057 break;
1058 case 4 ... 9:
1059 idx = 2;
1060 break;
1061 case 2 ... 3:
1062 idx = 1;
1063 case 0 ... 1:
1064 break;
1065 }
1066
1067 assert(idx < FIO_IO_U_LAT_U_NR);
1068 td->ts.io_u_lat_u[idx]++;
1069}
1070
1071static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1072{
1073 int idx = 0;
1074
1075 assert(msec >= 1);
1076
1077 switch (msec) {
1078 default:
1079 idx = 11;
1080 break;
1081 case 1000 ... 1999:
1082 idx = 10;
1083 break;
1084 case 750 ... 999:
1085 idx = 9;
1086 break;
1087 case 500 ... 749:
1088 idx = 8;
1089 break;
1090 case 250 ... 499:
1091 idx = 7;
1092 break;
1093 case 100 ... 249:
1094 idx = 6;
1095 break;
1096 case 50 ... 99:
1097 idx = 5;
1098 break;
1099 case 20 ... 49:
1100 idx = 4;
1101 break;
1102 case 10 ... 19:
1103 idx = 3;
1104 break;
1105 case 4 ... 9:
1106 idx = 2;
1107 break;
1108 case 2 ... 3:
1109 idx = 1;
1110 case 0 ... 1:
1111 break;
1112 }
1113
1114 assert(idx < FIO_IO_U_LAT_M_NR);
1115 td->ts.io_u_lat_m[idx]++;
1116}
1117
1118static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1119{
1120 if (nsec < 1000)
1121 io_u_mark_lat_nsec(td, nsec);
1122 else if (nsec < 1000000)
1123 io_u_mark_lat_usec(td, nsec / 1000);
1124 else
1125 io_u_mark_lat_msec(td, nsec / 1000000);
1126}
1127
1128static unsigned int __get_next_fileno_rand(struct thread_data *td)
1129{
1130 unsigned long fileno;
1131
1132 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1133 uint64_t frand_max = rand_max(&td->next_file_state);
1134 unsigned long r;
1135
1136 r = __rand(&td->next_file_state);
1137 return (unsigned int) ((double) td->o.nr_files
1138 * (r / (frand_max + 1.0)));
1139 }
1140
1141 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1142 fileno = zipf_next(&td->next_file_zipf);
1143 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1144 fileno = pareto_next(&td->next_file_zipf);
1145 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1146 fileno = gauss_next(&td->next_file_gauss);
1147 else {
1148 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1149 assert(0);
1150 return 0;
1151 }
1152
1153 return fileno >> FIO_FSERVICE_SHIFT;
1154}
1155
1156/*
1157 * Get next file to service by choosing one at random
1158 */
1159static struct fio_file *get_next_file_rand(struct thread_data *td,
1160 enum fio_file_flags goodf,
1161 enum fio_file_flags badf)
1162{
1163 struct fio_file *f;
1164 int fno;
1165
1166 do {
1167 int opened = 0;
1168
1169 fno = __get_next_fileno_rand(td);
1170
1171 f = td->files[fno];
1172 if (fio_file_done(f))
1173 continue;
1174
1175 if (!fio_file_open(f)) {
1176 int err;
1177
1178 if (td->nr_open_files >= td->o.open_files)
1179 return ERR_PTR(-EBUSY);
1180
1181 err = td_io_open_file(td, f);
1182 if (err)
1183 continue;
1184 opened = 1;
1185 }
1186
1187 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1188 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1189 return f;
1190 }
1191 if (opened)
1192 td_io_close_file(td, f);
1193 } while (1);
1194}
1195
1196/*
1197 * Get next file to service by doing round robin between all available ones
1198 */
1199static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1200 int badf)
1201{
1202 unsigned int old_next_file = td->next_file;
1203 struct fio_file *f;
1204
1205 do {
1206 int opened = 0;
1207
1208 f = td->files[td->next_file];
1209
1210 td->next_file++;
1211 if (td->next_file >= td->o.nr_files)
1212 td->next_file = 0;
1213
1214 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1215 if (fio_file_done(f)) {
1216 f = NULL;
1217 continue;
1218 }
1219
1220 if (!fio_file_open(f)) {
1221 int err;
1222
1223 if (td->nr_open_files >= td->o.open_files)
1224 return ERR_PTR(-EBUSY);
1225
1226 err = td_io_open_file(td, f);
1227 if (err) {
1228 dprint(FD_FILE, "error %d on open of %s\n",
1229 err, f->file_name);
1230 f = NULL;
1231 continue;
1232 }
1233 opened = 1;
1234 }
1235
1236 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1237 f->flags);
1238 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1239 break;
1240
1241 if (opened)
1242 td_io_close_file(td, f);
1243
1244 f = NULL;
1245 } while (td->next_file != old_next_file);
1246
1247 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1248 return f;
1249}
1250
1251static struct fio_file *__get_next_file(struct thread_data *td)
1252{
1253 struct fio_file *f;
1254
1255 assert(td->o.nr_files <= td->files_index);
1256
1257 if (td->nr_done_files >= td->o.nr_files) {
1258 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1259 " nr_files=%d\n", td->nr_open_files,
1260 td->nr_done_files,
1261 td->o.nr_files);
1262 return NULL;
1263 }
1264
1265 f = td->file_service_file;
1266 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1267 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1268 goto out;
1269 if (td->file_service_left--)
1270 goto out;
1271 }
1272
1273 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1274 td->o.file_service_type == FIO_FSERVICE_SEQ)
1275 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1276 else
1277 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1278
1279 if (IS_ERR(f))
1280 return f;
1281
1282 td->file_service_file = f;
1283 td->file_service_left = td->file_service_nr - 1;
1284out:
1285 if (f)
1286 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1287 else
1288 dprint(FD_FILE, "get_next_file: NULL\n");
1289 return f;
1290}
1291
1292static struct fio_file *get_next_file(struct thread_data *td)
1293{
1294 return __get_next_file(td);
1295}
1296
1297static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1298{
1299 struct fio_file *f;
1300
1301 do {
1302 f = get_next_file(td);
1303 if (IS_ERR_OR_NULL(f))
1304 return PTR_ERR(f);
1305
1306 io_u->file = f;
1307 get_file(f);
1308
1309 if (!fill_io_u(td, io_u))
1310 break;
1311
1312 put_file_log(td, f);
1313 td_io_close_file(td, f);
1314 io_u->file = NULL;
1315 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1316 fio_file_reset(td, f);
1317 else {
1318 fio_file_set_done(f);
1319 td->nr_done_files++;
1320 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1321 td->nr_done_files, td->o.nr_files);
1322 }
1323 } while (1);
1324
1325 return 0;
1326}
1327
1328static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1329 unsigned long long tnsec, unsigned long long max_nsec)
1330{
1331 if (!td->error)
1332 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1333 td_verror(td, ETIMEDOUT, "max latency exceeded");
1334 icd->error = ETIMEDOUT;
1335}
1336
1337static void lat_new_cycle(struct thread_data *td)
1338{
1339 fio_gettime(&td->latency_ts, NULL);
1340 td->latency_ios = ddir_rw_sum(td->io_blocks);
1341 td->latency_failed = 0;
1342}
1343
1344/*
1345 * We had an IO outside the latency target. Reduce the queue depth. If we
1346 * are at QD=1, then it's time to give up.
1347 */
1348static bool __lat_target_failed(struct thread_data *td)
1349{
1350 if (td->latency_qd == 1)
1351 return true;
1352
1353 td->latency_qd_high = td->latency_qd;
1354
1355 if (td->latency_qd == td->latency_qd_low)
1356 td->latency_qd_low--;
1357
1358 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1359
1360 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1361
1362 /*
1363 * When we ramp QD down, quiesce existing IO to prevent
1364 * a storm of ramp downs due to pending higher depth.
1365 */
1366 io_u_quiesce(td);
1367 lat_new_cycle(td);
1368 return false;
1369}
1370
1371static bool lat_target_failed(struct thread_data *td)
1372{
1373 if (td->o.latency_percentile.u.f == 100.0)
1374 return __lat_target_failed(td);
1375
1376 td->latency_failed++;
1377 return false;
1378}
1379
1380void lat_target_init(struct thread_data *td)
1381{
1382 td->latency_end_run = 0;
1383
1384 if (td->o.latency_target) {
1385 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1386 fio_gettime(&td->latency_ts, NULL);
1387 td->latency_qd = 1;
1388 td->latency_qd_high = td->o.iodepth;
1389 td->latency_qd_low = 1;
1390 td->latency_ios = ddir_rw_sum(td->io_blocks);
1391 } else
1392 td->latency_qd = td->o.iodepth;
1393}
1394
1395void lat_target_reset(struct thread_data *td)
1396{
1397 if (!td->latency_end_run)
1398 lat_target_init(td);
1399}
1400
1401static void lat_target_success(struct thread_data *td)
1402{
1403 const unsigned int qd = td->latency_qd;
1404 struct thread_options *o = &td->o;
1405
1406 td->latency_qd_low = td->latency_qd;
1407
1408 /*
1409 * If we haven't failed yet, we double up to a failing value instead
1410 * of bisecting from highest possible queue depth. If we have set
1411 * a limit other than td->o.iodepth, bisect between that.
1412 */
1413 if (td->latency_qd_high != o->iodepth)
1414 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1415 else
1416 td->latency_qd *= 2;
1417
1418 if (td->latency_qd > o->iodepth)
1419 td->latency_qd = o->iodepth;
1420
1421 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1422
1423 /*
1424 * Same as last one, we are done. Let it run a latency cycle, so
1425 * we get only the results from the targeted depth.
1426 */
1427 if (td->latency_qd == qd) {
1428 if (td->latency_end_run) {
1429 dprint(FD_RATE, "We are done\n");
1430 td->done = 1;
1431 } else {
1432 dprint(FD_RATE, "Quiesce and final run\n");
1433 io_u_quiesce(td);
1434 td->latency_end_run = 1;
1435 reset_all_stats(td);
1436 reset_io_stats(td);
1437 }
1438 }
1439
1440 lat_new_cycle(td);
1441}
1442
1443/*
1444 * Check if we can bump the queue depth
1445 */
1446void lat_target_check(struct thread_data *td)
1447{
1448 uint64_t usec_window;
1449 uint64_t ios;
1450 double success_ios;
1451
1452 usec_window = utime_since_now(&td->latency_ts);
1453 if (usec_window < td->o.latency_window)
1454 return;
1455
1456 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1457 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1458 success_ios *= 100.0;
1459
1460 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1461
1462 if (success_ios >= td->o.latency_percentile.u.f)
1463 lat_target_success(td);
1464 else
1465 __lat_target_failed(td);
1466}
1467
1468/*
1469 * If latency target is enabled, we might be ramping up or down and not
1470 * using the full queue depth available.
1471 */
1472bool queue_full(const struct thread_data *td)
1473{
1474 const int qempty = io_u_qempty(&td->io_u_freelist);
1475
1476 if (qempty)
1477 return true;
1478 if (!td->o.latency_target)
1479 return false;
1480
1481 return td->cur_depth >= td->latency_qd;
1482}
1483
1484struct io_u *__get_io_u(struct thread_data *td)
1485{
1486 struct io_u *io_u = NULL;
1487 int ret;
1488
1489 if (td->stop_io)
1490 return NULL;
1491
1492 td_io_u_lock(td);
1493
1494again:
1495 if (!io_u_rempty(&td->io_u_requeues))
1496 io_u = io_u_rpop(&td->io_u_requeues);
1497 else if (!queue_full(td)) {
1498 io_u = io_u_qpop(&td->io_u_freelist);
1499
1500 io_u->file = NULL;
1501 io_u->buflen = 0;
1502 io_u->resid = 0;
1503 io_u->end_io = NULL;
1504 }
1505
1506 if (io_u) {
1507 assert(io_u->flags & IO_U_F_FREE);
1508 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1509 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1510 IO_U_F_VER_LIST);
1511
1512 io_u->error = 0;
1513 io_u->acct_ddir = -1;
1514 td->cur_depth++;
1515 assert(!(td->flags & TD_F_CHILD));
1516 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1517 io_u->ipo = NULL;
1518 } else if (td_async_processing(td)) {
1519 /*
1520 * We ran out, wait for async verify threads to finish and
1521 * return one
1522 */
1523 assert(!(td->flags & TD_F_CHILD));
1524 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1525 assert(ret == 0);
1526 goto again;
1527 }
1528
1529 td_io_u_unlock(td);
1530 return io_u;
1531}
1532
1533static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1534{
1535 if (!(td->flags & TD_F_TRIM_BACKLOG))
1536 return false;
1537 if (!td->trim_entries)
1538 return false;
1539
1540 if (td->trim_batch) {
1541 td->trim_batch--;
1542 if (get_next_trim(td, io_u))
1543 return true;
1544 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1545 td->last_ddir != DDIR_READ) {
1546 td->trim_batch = td->o.trim_batch;
1547 if (!td->trim_batch)
1548 td->trim_batch = td->o.trim_backlog;
1549 if (get_next_trim(td, io_u))
1550 return true;
1551 }
1552
1553 return false;
1554}
1555
1556static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1557{
1558 if (!(td->flags & TD_F_VER_BACKLOG))
1559 return false;
1560
1561 if (td->io_hist_len) {
1562 int get_verify = 0;
1563
1564 if (td->verify_batch)
1565 get_verify = 1;
1566 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1567 td->last_ddir != DDIR_READ) {
1568 td->verify_batch = td->o.verify_batch;
1569 if (!td->verify_batch)
1570 td->verify_batch = td->o.verify_backlog;
1571 get_verify = 1;
1572 }
1573
1574 if (get_verify && !get_next_verify(td, io_u)) {
1575 td->verify_batch--;
1576 return true;
1577 }
1578 }
1579
1580 return false;
1581}
1582
1583/*
1584 * Fill offset and start time into the buffer content, to prevent too
1585 * easy compressible data for simple de-dupe attempts. Do this for every
1586 * 512b block in the range, since that should be the smallest block size
1587 * we can expect from a device.
1588 */
1589static void small_content_scramble(struct io_u *io_u)
1590{
1591 unsigned int i, nr_blocks = io_u->buflen >> 9;
1592 unsigned int offset;
1593 uint64_t boffset, *iptr;
1594 char *p;
1595
1596 if (!nr_blocks)
1597 return;
1598
1599 p = io_u->xfer_buf;
1600 boffset = io_u->offset;
1601
1602 if (io_u->buf_filled_len)
1603 io_u->buf_filled_len = 0;
1604
1605 /*
1606 * Generate random index between 0..7. We do chunks of 512b, if
1607 * we assume a cacheline is 64 bytes, then we have 8 of those.
1608 * Scramble content within the blocks in the same cacheline to
1609 * speed things up.
1610 */
1611 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1612
1613 for (i = 0; i < nr_blocks; i++) {
1614 /*
1615 * Fill offset into start of cacheline, time into end
1616 * of cacheline
1617 */
1618 iptr = (void *) p + (offset << 6);
1619 *iptr = boffset;
1620
1621 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1622 iptr[0] = io_u->start_time.tv_sec;
1623 iptr[1] = io_u->start_time.tv_nsec;
1624
1625 p += 512;
1626 boffset += 512;
1627 }
1628}
1629
1630/*
1631 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1632 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1633 */
1634struct io_u *get_io_u(struct thread_data *td)
1635{
1636 struct fio_file *f;
1637 struct io_u *io_u;
1638 int do_scramble = 0;
1639 long ret = 0;
1640
1641 io_u = __get_io_u(td);
1642 if (!io_u) {
1643 dprint(FD_IO, "__get_io_u failed\n");
1644 return NULL;
1645 }
1646
1647 if (check_get_verify(td, io_u))
1648 goto out;
1649 if (check_get_trim(td, io_u))
1650 goto out;
1651
1652 /*
1653 * from a requeue, io_u already setup
1654 */
1655 if (io_u->file)
1656 goto out;
1657
1658 /*
1659 * If using an iolog, grab next piece if any available.
1660 */
1661 if (td->flags & TD_F_READ_IOLOG) {
1662 if (read_iolog_get(td, io_u))
1663 goto err_put;
1664 } else if (set_io_u_file(td, io_u)) {
1665 ret = -EBUSY;
1666 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1667 goto err_put;
1668 }
1669
1670 f = io_u->file;
1671 if (!f) {
1672 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1673 goto err_put;
1674 }
1675
1676 assert(fio_file_open(f));
1677
1678 if (ddir_rw(io_u->ddir)) {
1679 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1680 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1681 goto err_put;
1682 }
1683
1684 f->last_start[io_u->ddir] = io_u->offset;
1685 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1686
1687 if (io_u->ddir == DDIR_WRITE) {
1688 if (td->flags & TD_F_REFILL_BUFFERS) {
1689 io_u_fill_buffer(td, io_u,
1690 td->o.min_bs[DDIR_WRITE],
1691 io_u->buflen);
1692 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1693 !(td->flags & TD_F_COMPRESS) &&
1694 !(td->flags & TD_F_DO_VERIFY))
1695 do_scramble = 1;
1696 } else if (io_u->ddir == DDIR_READ) {
1697 /*
1698 * Reset the buf_filled parameters so next time if the
1699 * buffer is used for writes it is refilled.
1700 */
1701 io_u->buf_filled_len = 0;
1702 }
1703 }
1704
1705 /*
1706 * Set io data pointers.
1707 */
1708 io_u->xfer_buf = io_u->buf;
1709 io_u->xfer_buflen = io_u->buflen;
1710
1711out:
1712 assert(io_u->file);
1713 if (!td_io_prep(td, io_u)) {
1714 if (!td->o.disable_lat)
1715 fio_gettime(&io_u->start_time, NULL);
1716
1717 if (do_scramble)
1718 small_content_scramble(io_u);
1719
1720 return io_u;
1721 }
1722err_put:
1723 dprint(FD_IO, "get_io_u failed\n");
1724 put_io_u(td, io_u);
1725 return ERR_PTR(ret);
1726}
1727
1728static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1729{
1730 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1731
1732 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1733 return;
1734
1735 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1736 io_u->file ? " on file " : "",
1737 io_u->file ? io_u->file->file_name : "",
1738 strerror(io_u->error),
1739 io_ddir_name(io_u->ddir),
1740 io_u->offset, io_u->xfer_buflen);
1741
1742 if (td->io_ops->errdetails) {
1743 char *err = td->io_ops->errdetails(io_u);
1744
1745 log_err("fio: %s\n", err);
1746 free(err);
1747 }
1748
1749 if (!td->error)
1750 td_verror(td, io_u->error, "io_u error");
1751}
1752
1753void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1754{
1755 __io_u_log_error(td, io_u);
1756 if (td->parent)
1757 __io_u_log_error(td->parent, io_u);
1758}
1759
1760static inline bool gtod_reduce(struct thread_data *td)
1761{
1762 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1763 || td->o.gtod_reduce;
1764}
1765
1766static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1767 struct io_completion_data *icd,
1768 const enum fio_ddir idx, unsigned int bytes)
1769{
1770 const int no_reduce = !gtod_reduce(td);
1771 unsigned long long llnsec = 0;
1772
1773 if (td->parent)
1774 td = td->parent;
1775
1776 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1777 return;
1778
1779 if (no_reduce)
1780 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1781
1782 if (!td->o.disable_lat) {
1783 unsigned long long tnsec;
1784
1785 tnsec = ntime_since(&io_u->start_time, &icd->time);
1786 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1787
1788 if (td->flags & TD_F_PROFILE_OPS) {
1789 struct prof_io_ops *ops = &td->prof_io_ops;
1790
1791 if (ops->io_u_lat)
1792 icd->error = ops->io_u_lat(td, tnsec);
1793 }
1794
1795 if (td->o.max_latency && tnsec > td->o.max_latency)
1796 lat_fatal(td, icd, tnsec, td->o.max_latency);
1797 if (td->o.latency_target && tnsec > td->o.latency_target) {
1798 if (lat_target_failed(td))
1799 lat_fatal(td, icd, tnsec, td->o.latency_target);
1800 }
1801 }
1802
1803 if (ddir_rw(idx)) {
1804 if (!td->o.disable_clat) {
1805 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1806 io_u_mark_latency(td, llnsec);
1807 }
1808
1809 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1810 add_bw_sample(td, io_u, bytes, llnsec);
1811
1812 if (no_reduce && per_unit_log(td->iops_log))
1813 add_iops_sample(td, io_u, bytes);
1814 } else if (ddir_sync(idx) && !td->o.disable_clat)
1815 add_sync_clat_sample(&td->ts, llnsec);
1816
1817 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1818 uint32_t *info = io_u_block_info(td, io_u);
1819 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1820 if (io_u->ddir == DDIR_TRIM) {
1821 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1822 BLOCK_INFO_TRIMS(*info) + 1);
1823 } else if (io_u->ddir == DDIR_WRITE) {
1824 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1825 *info);
1826 }
1827 }
1828 }
1829}
1830
1831static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1832 uint64_t offset, unsigned int bytes)
1833{
1834 int idx;
1835
1836 if (!f)
1837 return;
1838
1839 if (f->first_write == -1ULL || offset < f->first_write)
1840 f->first_write = offset;
1841 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1842 f->last_write = offset + bytes;
1843
1844 if (!f->last_write_comp)
1845 return;
1846
1847 idx = f->last_write_idx++;
1848 f->last_write_comp[idx] = offset;
1849 if (f->last_write_idx == td->o.iodepth)
1850 f->last_write_idx = 0;
1851}
1852
1853static bool should_account(struct thread_data *td)
1854{
1855 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1856 td->runstate == TD_VERIFYING);
1857}
1858
1859static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1860 struct io_completion_data *icd)
1861{
1862 struct io_u *io_u = *io_u_ptr;
1863 enum fio_ddir ddir = io_u->ddir;
1864 struct fio_file *f = io_u->file;
1865
1866 dprint_io_u(io_u, "complete");
1867
1868 assert(io_u->flags & IO_U_F_FLIGHT);
1869 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1870
1871 /*
1872 * Mark IO ok to verify
1873 */
1874 if (io_u->ipo) {
1875 /*
1876 * Remove errored entry from the verification list
1877 */
1878 if (io_u->error)
1879 unlog_io_piece(td, io_u);
1880 else {
1881 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1882 write_barrier();
1883 }
1884 }
1885
1886 if (ddir_sync(ddir)) {
1887 td->last_was_sync = true;
1888 if (f) {
1889 f->first_write = -1ULL;
1890 f->last_write = -1ULL;
1891 }
1892 if (should_account(td))
1893 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1894 return;
1895 }
1896
1897 td->last_was_sync = false;
1898 td->last_ddir = ddir;
1899
1900 if (!io_u->error && ddir_rw(ddir)) {
1901 unsigned int bytes = io_u->buflen - io_u->resid;
1902 int ret;
1903
1904 td->io_blocks[ddir]++;
1905 td->io_bytes[ddir] += bytes;
1906
1907 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1908 td->this_io_blocks[ddir]++;
1909 td->this_io_bytes[ddir] += bytes;
1910 }
1911
1912 if (ddir == DDIR_WRITE)
1913 file_log_write_comp(td, f, io_u->offset, bytes);
1914
1915 if (should_account(td))
1916 account_io_completion(td, io_u, icd, ddir, bytes);
1917
1918 icd->bytes_done[ddir] += bytes;
1919
1920 if (io_u->end_io) {
1921 ret = io_u->end_io(td, io_u_ptr);
1922 io_u = *io_u_ptr;
1923 if (ret && !icd->error)
1924 icd->error = ret;
1925 }
1926 } else if (io_u->error) {
1927 icd->error = io_u->error;
1928 io_u_log_error(td, io_u);
1929 }
1930 if (icd->error) {
1931 enum error_type_bit eb = td_error_type(ddir, icd->error);
1932
1933 if (!td_non_fatal_error(td, eb, icd->error))
1934 return;
1935
1936 /*
1937 * If there is a non_fatal error, then add to the error count
1938 * and clear all the errors.
1939 */
1940 update_error_count(td, icd->error);
1941 td_clear_error(td);
1942 icd->error = 0;
1943 if (io_u)
1944 io_u->error = 0;
1945 }
1946}
1947
1948static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1949 int nr)
1950{
1951 int ddir;
1952
1953 if (!gtod_reduce(td))
1954 fio_gettime(&icd->time, NULL);
1955
1956 icd->nr = nr;
1957
1958 icd->error = 0;
1959 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1960 icd->bytes_done[ddir] = 0;
1961}
1962
1963static void ios_completed(struct thread_data *td,
1964 struct io_completion_data *icd)
1965{
1966 struct io_u *io_u;
1967 int i;
1968
1969 for (i = 0; i < icd->nr; i++) {
1970 io_u = td->io_ops->event(td, i);
1971
1972 io_completed(td, &io_u, icd);
1973
1974 if (io_u)
1975 put_io_u(td, io_u);
1976 }
1977}
1978
1979/*
1980 * Complete a single io_u for the sync engines.
1981 */
1982int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1983{
1984 struct io_completion_data icd;
1985 int ddir;
1986
1987 init_icd(td, &icd, 1);
1988 io_completed(td, &io_u, &icd);
1989
1990 if (io_u)
1991 put_io_u(td, io_u);
1992
1993 if (icd.error) {
1994 td_verror(td, icd.error, "io_u_sync_complete");
1995 return -1;
1996 }
1997
1998 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1999 td->bytes_done[ddir] += icd.bytes_done[ddir];
2000
2001 return 0;
2002}
2003
2004/*
2005 * Called to complete min_events number of io for the async engines.
2006 */
2007int io_u_queued_complete(struct thread_data *td, int min_evts)
2008{
2009 struct io_completion_data icd;
2010 struct timespec *tvp = NULL;
2011 int ret, ddir;
2012 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2013
2014 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2015
2016 if (!min_evts)
2017 tvp = &ts;
2018 else if (min_evts > td->cur_depth)
2019 min_evts = td->cur_depth;
2020
2021 /* No worries, td_io_getevents fixes min and max if they are
2022 * set incorrectly */
2023 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2024 if (ret < 0) {
2025 td_verror(td, -ret, "td_io_getevents");
2026 return ret;
2027 } else if (!ret)
2028 return ret;
2029
2030 init_icd(td, &icd, ret);
2031 ios_completed(td, &icd);
2032 if (icd.error) {
2033 td_verror(td, icd.error, "io_u_queued_complete");
2034 return -1;
2035 }
2036
2037 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2038 td->bytes_done[ddir] += icd.bytes_done[ddir];
2039
2040 return ret;
2041}
2042
2043/*
2044 * Call when io_u is really queued, to update the submission latency.
2045 */
2046void io_u_queued(struct thread_data *td, struct io_u *io_u)
2047{
2048 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2049 unsigned long slat_time;
2050
2051 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2052
2053 if (td->parent)
2054 td = td->parent;
2055
2056 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2057 io_u->offset);
2058 }
2059}
2060
2061/*
2062 * See if we should reuse the last seed, if dedupe is enabled
2063 */
2064static struct frand_state *get_buf_state(struct thread_data *td)
2065{
2066 unsigned int v;
2067
2068 if (!td->o.dedupe_percentage)
2069 return &td->buf_state;
2070 else if (td->o.dedupe_percentage == 100) {
2071 frand_copy(&td->buf_state_prev, &td->buf_state);
2072 return &td->buf_state;
2073 }
2074
2075 v = rand32_between(&td->dedupe_state, 1, 100);
2076
2077 if (v <= td->o.dedupe_percentage)
2078 return &td->buf_state_prev;
2079
2080 return &td->buf_state;
2081}
2082
2083static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2084{
2085 if (td->o.dedupe_percentage == 100)
2086 frand_copy(rs, &td->buf_state_prev);
2087 else if (rs == &td->buf_state)
2088 frand_copy(&td->buf_state_prev, rs);
2089}
2090
2091void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2092 unsigned int max_bs)
2093{
2094 struct thread_options *o = &td->o;
2095
2096 if (o->mem_type == MEM_CUDA_MALLOC)
2097 return;
2098
2099 if (o->compress_percentage || o->dedupe_percentage) {
2100 unsigned int perc = td->o.compress_percentage;
2101 struct frand_state *rs;
2102 unsigned int left = max_bs;
2103 unsigned int this_write;
2104
2105 do {
2106 rs = get_buf_state(td);
2107
2108 min_write = min(min_write, left);
2109
2110 if (perc) {
2111 this_write = min_not_zero(min_write,
2112 td->o.compress_chunk);
2113
2114 fill_random_buf_percentage(rs, buf, perc,
2115 this_write, this_write,
2116 o->buffer_pattern,
2117 o->buffer_pattern_bytes);
2118 } else {
2119 fill_random_buf(rs, buf, min_write);
2120 this_write = min_write;
2121 }
2122
2123 buf += this_write;
2124 left -= this_write;
2125 save_buf_state(td, rs);
2126 } while (left);
2127 } else if (o->buffer_pattern_bytes)
2128 fill_buffer_pattern(td, buf, max_bs);
2129 else if (o->zero_buffers)
2130 memset(buf, 0, max_bs);
2131 else
2132 fill_random_buf(get_buf_state(td), buf, max_bs);
2133}
2134
2135/*
2136 * "randomly" fill the buffer contents
2137 */
2138void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2139 unsigned int min_write, unsigned int max_bs)
2140{
2141 io_u->buf_filled_len = 0;
2142 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2143}
2144
2145static int do_sync_file_range(const struct thread_data *td,
2146 struct fio_file *f)
2147{
2148 off64_t offset, nbytes;
2149
2150 offset = f->first_write;
2151 nbytes = f->last_write - f->first_write;
2152
2153 if (!nbytes)
2154 return 0;
2155
2156 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2157}
2158
2159int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2160{
2161 int ret;
2162
2163 if (io_u->ddir == DDIR_SYNC) {
2164 ret = fsync(io_u->file->fd);
2165 } else if (io_u->ddir == DDIR_DATASYNC) {
2166#ifdef CONFIG_FDATASYNC
2167 ret = fdatasync(io_u->file->fd);
2168#else
2169 ret = io_u->xfer_buflen;
2170 io_u->error = EINVAL;
2171#endif
2172 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2173 ret = do_sync_file_range(td, io_u->file);
2174 else {
2175 ret = io_u->xfer_buflen;
2176 io_u->error = EINVAL;
2177 }
2178
2179 if (ret < 0)
2180 io_u->error = errno;
2181
2182 return ret;
2183}
2184
2185int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2186{
2187#ifndef FIO_HAVE_TRIM
2188 io_u->error = EINVAL;
2189 return 0;
2190#else
2191 struct fio_file *f = io_u->file;
2192 int ret;
2193
2194 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2195 if (!ret)
2196 return io_u->xfer_buflen;
2197
2198 io_u->error = ret;
2199 return 0;
2200#endif
2201}