Merge branch 'fix-cpus_allowed' of https://github.com/roxma/fio
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <string.h>
3#include <assert.h>
4
5#include "fio.h"
6#include "verify.h"
7#include "trim.h"
8#include "lib/rand.h"
9#include "lib/axmap.h"
10#include "err.h"
11#include "lib/pow2.h"
12#include "minmax.h"
13#include "zbd.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timespec time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static bool random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static uint64_t mark_random_map(struct thread_data *td, struct io_u *io_u,
36 uint64_t offset, uint64_t buflen)
37{
38 unsigned long long min_bs = td->o.min_bs[io_u->ddir];
39 struct fio_file *f = io_u->file;
40 unsigned long long nr_blocks;
41 uint64_t block;
42
43 block = (offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (buflen + min_bs - 1) / min_bs;
45 assert(nr_blocks > 0);
46
47 if (!(io_u->flags & IO_U_F_BUSY_OK)) {
48 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
49 assert(nr_blocks > 0);
50 }
51
52 if ((nr_blocks * min_bs) < buflen)
53 buflen = nr_blocks * min_bs;
54
55 return buflen;
56}
57
58static uint64_t last_block(struct thread_data *td, struct fio_file *f,
59 enum fio_ddir ddir)
60{
61 uint64_t max_blocks;
62 uint64_t max_size;
63
64 assert(ddir_rw(ddir));
65
66 /*
67 * Hmm, should we make sure that ->io_size <= ->real_file_size?
68 * -> not for now since there is code assuming it could go either.
69 */
70 max_size = f->io_size;
71 if (max_size > f->real_file_size)
72 max_size = f->real_file_size;
73
74 if (td->o.zone_mode == ZONE_MODE_STRIDED && td->o.zone_range)
75 max_size = td->o.zone_range;
76
77 if (td->o.min_bs[ddir] > td->o.ba[ddir])
78 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
79
80 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
81 if (!max_blocks)
82 return 0;
83
84 return max_blocks;
85}
86
87static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
88 enum fio_ddir ddir, uint64_t *b,
89 uint64_t lastb)
90{
91 uint64_t r;
92
93 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
94 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
95
96 r = __rand(&td->random_state);
97
98 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
99
100 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
101 } else {
102 uint64_t off = 0;
103
104 assert(fio_file_lfsr(f));
105
106 if (lfsr_next(&f->lfsr, &off))
107 return 1;
108
109 *b = off;
110 }
111
112 /*
113 * if we are not maintaining a random map, we are done.
114 */
115 if (!file_randommap(td, f))
116 goto ret;
117
118 /*
119 * calculate map offset and check if it's free
120 */
121 if (random_map_free(f, *b))
122 goto ret;
123
124 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
125 (unsigned long long) *b);
126
127 *b = axmap_next_free(f->io_axmap, *b);
128 if (*b == (uint64_t) -1ULL)
129 return 1;
130ret:
131 return 0;
132}
133
134static int __get_next_rand_offset_zipf(struct thread_data *td,
135 struct fio_file *f, enum fio_ddir ddir,
136 uint64_t *b)
137{
138 *b = zipf_next(&f->zipf);
139 return 0;
140}
141
142static int __get_next_rand_offset_pareto(struct thread_data *td,
143 struct fio_file *f, enum fio_ddir ddir,
144 uint64_t *b)
145{
146 *b = pareto_next(&f->zipf);
147 return 0;
148}
149
150static int __get_next_rand_offset_gauss(struct thread_data *td,
151 struct fio_file *f, enum fio_ddir ddir,
152 uint64_t *b)
153{
154 *b = gauss_next(&f->gauss);
155 return 0;
156}
157
158static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
159 struct fio_file *f,
160 enum fio_ddir ddir, uint64_t *b)
161{
162 struct zone_split_index *zsi;
163 uint64_t lastb, send, stotal;
164 unsigned int v;
165
166 lastb = last_block(td, f, ddir);
167 if (!lastb)
168 return 1;
169
170 if (!td->o.zone_split_nr[ddir]) {
171bail:
172 return __get_next_rand_offset(td, f, ddir, b, lastb);
173 }
174
175 /*
176 * Generate a value, v, between 1 and 100, both inclusive
177 */
178 v = rand_between(&td->zone_state, 1, 100);
179
180 /*
181 * Find our generated table. 'send' is the end block of this zone,
182 * 'stotal' is our start offset.
183 */
184 zsi = &td->zone_state_index[ddir][v - 1];
185 stotal = zsi->size_prev / td->o.ba[ddir];
186 send = zsi->size / td->o.ba[ddir];
187
188 /*
189 * Should never happen
190 */
191 if (send == -1U) {
192 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
193 log_err("fio: bug in zoned generation\n");
194 goto bail;
195 } else if (send > lastb) {
196 /*
197 * This happens if the user specifies ranges that exceed
198 * the file/device size. We can't handle that gracefully,
199 * so error and exit.
200 */
201 log_err("fio: zoned_abs sizes exceed file size\n");
202 return 1;
203 }
204
205 /*
206 * Generate index from 0..send-stotal
207 */
208 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
209 return 1;
210
211 *b += stotal;
212 return 0;
213}
214
215static int __get_next_rand_offset_zoned(struct thread_data *td,
216 struct fio_file *f, enum fio_ddir ddir,
217 uint64_t *b)
218{
219 unsigned int v, send, stotal;
220 uint64_t offset, lastb;
221 struct zone_split_index *zsi;
222
223 lastb = last_block(td, f, ddir);
224 if (!lastb)
225 return 1;
226
227 if (!td->o.zone_split_nr[ddir]) {
228bail:
229 return __get_next_rand_offset(td, f, ddir, b, lastb);
230 }
231
232 /*
233 * Generate a value, v, between 1 and 100, both inclusive
234 */
235 v = rand_between(&td->zone_state, 1, 100);
236
237 zsi = &td->zone_state_index[ddir][v - 1];
238 stotal = zsi->size_perc_prev;
239 send = zsi->size_perc;
240
241 /*
242 * Should never happen
243 */
244 if (send == -1U) {
245 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
246 log_err("fio: bug in zoned generation\n");
247 goto bail;
248 }
249
250 /*
251 * 'send' is some percentage below or equal to 100 that
252 * marks the end of the current IO range. 'stotal' marks
253 * the start, in percent.
254 */
255 if (stotal)
256 offset = stotal * lastb / 100ULL;
257 else
258 offset = 0;
259
260 lastb = lastb * (send - stotal) / 100ULL;
261
262 /*
263 * Generate index from 0..send-of-lastb
264 */
265 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
266 return 1;
267
268 /*
269 * Add our start offset, if any
270 */
271 if (offset)
272 *b += offset;
273
274 return 0;
275}
276
277static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
278 enum fio_ddir ddir, uint64_t *b)
279{
280 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
281 uint64_t lastb;
282
283 lastb = last_block(td, f, ddir);
284 if (!lastb)
285 return 1;
286
287 return __get_next_rand_offset(td, f, ddir, b, lastb);
288 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
289 return __get_next_rand_offset_zipf(td, f, ddir, b);
290 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
291 return __get_next_rand_offset_pareto(td, f, ddir, b);
292 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
293 return __get_next_rand_offset_gauss(td, f, ddir, b);
294 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
295 return __get_next_rand_offset_zoned(td, f, ddir, b);
296 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
297 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
298
299 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
300 return 1;
301}
302
303static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
304{
305 unsigned int v;
306
307 if (td->o.perc_rand[ddir] == 100)
308 return true;
309
310 v = rand_between(&td->seq_rand_state[ddir], 1, 100);
311
312 return v <= td->o.perc_rand[ddir];
313}
314
315static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
316{
317 struct thread_options *o = &td->o;
318
319 if (o->invalidate_cache && !o->odirect) {
320 int fio_unused ret;
321
322 ret = file_invalidate_cache(td, f);
323 }
324}
325
326static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
327 enum fio_ddir ddir, uint64_t *b)
328{
329 if (!get_next_rand_offset(td, f, ddir, b))
330 return 0;
331
332 if (td->o.time_based ||
333 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
334 fio_file_reset(td, f);
335 loop_cache_invalidate(td, f);
336 if (!get_next_rand_offset(td, f, ddir, b))
337 return 0;
338 }
339
340 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
341 f->file_name, (unsigned long long) f->last_pos[ddir],
342 (unsigned long long) f->real_file_size);
343 return 1;
344}
345
346static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
347 enum fio_ddir ddir, uint64_t *offset)
348{
349 struct thread_options *o = &td->o;
350
351 assert(ddir_rw(ddir));
352
353 /*
354 * If we reach the end for a time based run, reset us back to 0
355 * and invalidate the cache, if we need to.
356 */
357 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
358 o->time_based && o->nr_files == 1) {
359 f->last_pos[ddir] = f->file_offset;
360 loop_cache_invalidate(td, f);
361 }
362
363 if (f->last_pos[ddir] < f->real_file_size) {
364 uint64_t pos;
365
366 /*
367 * Only rewind if we already hit the end
368 */
369 if (f->last_pos[ddir] == f->file_offset &&
370 f->file_offset && o->ddir_seq_add < 0) {
371 if (f->real_file_size > f->io_size)
372 f->last_pos[ddir] = f->io_size;
373 else
374 f->last_pos[ddir] = f->real_file_size;
375 }
376
377 pos = f->last_pos[ddir] - f->file_offset;
378 if (pos && o->ddir_seq_add) {
379 pos += o->ddir_seq_add;
380
381 /*
382 * If we reach beyond the end of the file
383 * with holed IO, wrap around to the
384 * beginning again. If we're doing backwards IO,
385 * wrap to the end.
386 */
387 if (pos >= f->real_file_size) {
388 if (o->ddir_seq_add > 0)
389 pos = f->file_offset;
390 else {
391 if (f->real_file_size > f->io_size)
392 pos = f->io_size;
393 else
394 pos = f->real_file_size;
395
396 pos += o->ddir_seq_add;
397 }
398 }
399 }
400
401 *offset = pos;
402 return 0;
403 }
404
405 return 1;
406}
407
408static int get_next_block(struct thread_data *td, struct io_u *io_u,
409 enum fio_ddir ddir, int rw_seq,
410 bool *is_random)
411{
412 struct fio_file *f = io_u->file;
413 uint64_t b, offset;
414 int ret;
415
416 assert(ddir_rw(ddir));
417
418 b = offset = -1ULL;
419
420 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
421 /* don't mark randommap for these writes */
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 offset = f->last_start[DDIR_TRIM];
424 *is_random = true;
425 ret = 0;
426 } else if (rw_seq) {
427 if (td_random(td)) {
428 if (should_do_random(td, ddir)) {
429 ret = get_next_rand_block(td, f, ddir, &b);
430 *is_random = true;
431 } else {
432 *is_random = false;
433 io_u_set(td, io_u, IO_U_F_BUSY_OK);
434 ret = get_next_seq_offset(td, f, ddir, &offset);
435 if (ret)
436 ret = get_next_rand_block(td, f, ddir, &b);
437 }
438 } else {
439 *is_random = false;
440 ret = get_next_seq_offset(td, f, ddir, &offset);
441 }
442 } else {
443 io_u_set(td, io_u, IO_U_F_BUSY_OK);
444 *is_random = false;
445
446 if (td->o.rw_seq == RW_SEQ_SEQ) {
447 ret = get_next_seq_offset(td, f, ddir, &offset);
448 if (ret) {
449 ret = get_next_rand_block(td, f, ddir, &b);
450 *is_random = false;
451 }
452 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
453 if (f->last_start[ddir] != -1ULL)
454 offset = f->last_start[ddir] - f->file_offset;
455 else
456 offset = 0;
457 ret = 0;
458 } else {
459 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
460 ret = 1;
461 }
462 }
463
464 if (!ret) {
465 if (offset != -1ULL)
466 io_u->offset = offset;
467 else if (b != -1ULL)
468 io_u->offset = b * td->o.ba[ddir];
469 else {
470 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
471 ret = 1;
472 }
473 io_u->verify_offset = io_u->offset;
474 }
475
476 return ret;
477}
478
479/*
480 * For random io, generate a random new block and see if it's used. Repeat
481 * until we find a free one. For sequential io, just return the end of
482 * the last io issued.
483 */
484static int get_next_offset(struct thread_data *td, struct io_u *io_u,
485 bool *is_random)
486{
487 struct fio_file *f = io_u->file;
488 enum fio_ddir ddir = io_u->ddir;
489 int rw_seq_hit = 0;
490
491 assert(ddir_rw(ddir));
492
493 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
494 rw_seq_hit = 1;
495 td->ddir_seq_nr = td->o.ddir_seq_nr;
496 }
497
498 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
499 return 1;
500
501 if (io_u->offset >= f->io_size) {
502 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
503 (unsigned long long) io_u->offset,
504 (unsigned long long) f->io_size);
505 return 1;
506 }
507
508 io_u->offset += f->file_offset;
509 if (io_u->offset >= f->real_file_size) {
510 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
511 (unsigned long long) io_u->offset,
512 (unsigned long long) f->real_file_size);
513 return 1;
514 }
515
516 /*
517 * For randtrimwrite, we decide whether to issue a trim or a write
518 * based on whether the offsets for the most recent trim and write
519 * operations match. If they don't match that means we just issued a
520 * new trim and the next operation should be a write. If they *do*
521 * match that means we just completed a trim+write pair and the next
522 * command should be a trim.
523 *
524 * This works fine for sequential workloads but for random workloads
525 * it's possible to complete a trim+write pair and then have the next
526 * randomly generated offset match the previous offset. If that happens
527 * we need to alter the offset for the last write operation in order
528 * to ensure that we issue a write operation the next time through.
529 */
530 if (td_randtrimwrite(td) && ddir == DDIR_TRIM &&
531 f->last_start[DDIR_TRIM] == io_u->offset)
532 f->last_start[DDIR_WRITE]--;
533
534 io_u->verify_offset = io_u->offset;
535 return 0;
536}
537
538static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
539 unsigned long long buflen)
540{
541 struct fio_file *f = io_u->file;
542
543 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
544}
545
546static unsigned long long get_next_buflen(struct thread_data *td, struct io_u *io_u,
547 bool is_random)
548{
549 int ddir = io_u->ddir;
550 unsigned long long buflen = 0;
551 unsigned long long minbs, maxbs;
552 uint64_t frand_max, r;
553 bool power_2;
554
555 assert(ddir_rw(ddir));
556
557 if (td_randtrimwrite(td) && ddir == DDIR_WRITE) {
558 struct fio_file *f = io_u->file;
559
560 return f->last_pos[DDIR_TRIM] - f->last_start[DDIR_TRIM];
561 }
562
563 if (td->o.bs_is_seq_rand)
564 ddir = is_random ? DDIR_WRITE : DDIR_READ;
565
566 minbs = td->o.min_bs[ddir];
567 maxbs = td->o.max_bs[ddir];
568
569 if (minbs == maxbs)
570 return minbs;
571
572 /*
573 * If we can't satisfy the min block size from here, then fail
574 */
575 if (!io_u_fits(td, io_u, minbs))
576 return 0;
577
578 frand_max = rand_max(&td->bsrange_state[ddir]);
579 do {
580 r = __rand(&td->bsrange_state[ddir]);
581
582 if (!td->o.bssplit_nr[ddir]) {
583 buflen = minbs + (unsigned long long) ((double) maxbs *
584 (r / (frand_max + 1.0)));
585 } else {
586 long long perc = 0;
587 unsigned int i;
588
589 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
590 struct bssplit *bsp = &td->o.bssplit[ddir][i];
591
592 if (!bsp->perc)
593 continue;
594 buflen = bsp->bs;
595 perc += bsp->perc;
596 if ((r / perc <= frand_max / 100ULL) &&
597 io_u_fits(td, io_u, buflen))
598 break;
599 }
600 }
601
602 power_2 = is_power_of_2(minbs);
603 if (!td->o.bs_unaligned && power_2)
604 buflen &= ~(minbs - 1);
605 else if (!td->o.bs_unaligned && !power_2)
606 buflen -= buflen % minbs;
607 if (buflen > maxbs)
608 buflen = maxbs;
609 } while (!io_u_fits(td, io_u, buflen));
610
611 return buflen;
612}
613
614static void set_rwmix_bytes(struct thread_data *td)
615{
616 unsigned int diff;
617
618 /*
619 * we do time or byte based switch. this is needed because
620 * buffered writes may issue a lot quicker than they complete,
621 * whereas reads do not.
622 */
623 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
624 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
625}
626
627static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
628{
629 unsigned int v;
630
631 v = rand_between(&td->rwmix_state, 1, 100);
632
633 if (v <= td->o.rwmix[DDIR_READ])
634 return DDIR_READ;
635
636 return DDIR_WRITE;
637}
638
639int io_u_quiesce(struct thread_data *td)
640{
641 int ret = 0, completed = 0, err = 0;
642
643 /*
644 * We are going to sleep, ensure that we flush anything pending as
645 * not to skew our latency numbers.
646 *
647 * Changed to only monitor 'in flight' requests here instead of the
648 * td->cur_depth, b/c td->cur_depth does not accurately represent
649 * io's that have been actually submitted to an async engine,
650 * and cur_depth is meaningless for sync engines.
651 */
652 if (td->io_u_queued || td->cur_depth)
653 td_io_commit(td);
654
655 while (td->io_u_in_flight) {
656 ret = io_u_queued_complete(td, 1);
657 if (ret > 0)
658 completed += ret;
659 else if (ret < 0)
660 err = ret;
661 }
662
663 if (td->flags & TD_F_REGROW_LOGS)
664 regrow_logs(td);
665
666 if (completed)
667 return completed;
668
669 return err;
670}
671
672static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
673{
674 enum fio_ddir odir = ddir ^ 1;
675 uint64_t usec;
676 uint64_t now;
677
678 assert(ddir_rw(ddir));
679 now = utime_since_now(&td->epoch);
680
681 /*
682 * if rate_next_io_time is in the past, need to catch up to rate
683 */
684 if (td->rate_next_io_time[ddir] <= now)
685 return ddir;
686
687 /*
688 * We are ahead of rate in this direction. See if we
689 * should switch.
690 */
691 if (td_rw(td) && td->o.rwmix[odir]) {
692 /*
693 * Other direction is behind rate, switch
694 */
695 if (td->rate_next_io_time[odir] <= now)
696 return odir;
697
698 /*
699 * Both directions are ahead of rate. sleep the min,
700 * switch if necessary
701 */
702 if (td->rate_next_io_time[ddir] <=
703 td->rate_next_io_time[odir]) {
704 usec = td->rate_next_io_time[ddir] - now;
705 } else {
706 usec = td->rate_next_io_time[odir] - now;
707 ddir = odir;
708 }
709 } else
710 usec = td->rate_next_io_time[ddir] - now;
711
712 if (td->o.io_submit_mode == IO_MODE_INLINE)
713 io_u_quiesce(td);
714
715 if (td->o.timeout && ((usec + now) > td->o.timeout)) {
716 /*
717 * check if the usec is capable of taking negative values
718 */
719 if (now > td->o.timeout) {
720 ddir = DDIR_INVAL;
721 return ddir;
722 }
723 usec = td->o.timeout - now;
724 }
725 usec_sleep(td, usec);
726
727 now = utime_since_now(&td->epoch);
728 if ((td->o.timeout && (now > td->o.timeout)) || td->terminate)
729 ddir = DDIR_INVAL;
730
731 return ddir;
732}
733
734/*
735 * Return the data direction for the next io_u. If the job is a
736 * mixed read/write workload, check the rwmix cycle and switch if
737 * necessary.
738 */
739static enum fio_ddir get_rw_ddir(struct thread_data *td)
740{
741 enum fio_ddir ddir;
742
743 /*
744 * See if it's time to fsync/fdatasync/sync_file_range first,
745 * and if not then move on to check regular I/Os.
746 */
747 if (should_fsync(td)) {
748 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
749 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
750 return DDIR_SYNC;
751
752 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
753 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
754 return DDIR_DATASYNC;
755
756 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
757 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
758 return DDIR_SYNC_FILE_RANGE;
759 }
760
761 if (td_rw(td)) {
762 /*
763 * Check if it's time to seed a new data direction.
764 */
765 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
766 /*
767 * Put a top limit on how many bytes we do for
768 * one data direction, to avoid overflowing the
769 * ranges too much
770 */
771 ddir = get_rand_ddir(td);
772
773 if (ddir != td->rwmix_ddir)
774 set_rwmix_bytes(td);
775
776 td->rwmix_ddir = ddir;
777 }
778 ddir = td->rwmix_ddir;
779 } else if (td_read(td))
780 ddir = DDIR_READ;
781 else if (td_write(td))
782 ddir = DDIR_WRITE;
783 else if (td_trim(td))
784 ddir = DDIR_TRIM;
785 else
786 ddir = DDIR_INVAL;
787
788 td->rwmix_ddir = rate_ddir(td, ddir);
789 return td->rwmix_ddir;
790}
791
792static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
793{
794 enum fio_ddir ddir = get_rw_ddir(td);
795
796 if (td->o.zone_mode == ZONE_MODE_ZBD)
797 ddir = zbd_adjust_ddir(td, io_u, ddir);
798
799 if (td_trimwrite(td)) {
800 struct fio_file *f = io_u->file;
801 if (f->last_start[DDIR_WRITE] == f->last_start[DDIR_TRIM])
802 ddir = DDIR_TRIM;
803 else
804 ddir = DDIR_WRITE;
805 }
806
807 io_u->ddir = io_u->acct_ddir = ddir;
808
809 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
810 td->o.barrier_blocks &&
811 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
812 td->io_issues[DDIR_WRITE])
813 io_u_set(td, io_u, IO_U_F_BARRIER);
814}
815
816void put_file_log(struct thread_data *td, struct fio_file *f)
817{
818 unsigned int ret = put_file(td, f);
819
820 if (ret)
821 td_verror(td, ret, "file close");
822}
823
824void put_io_u(struct thread_data *td, struct io_u *io_u)
825{
826 const bool needs_lock = td_async_processing(td);
827
828 zbd_put_io_u(td, io_u);
829
830 if (td->parent)
831 td = td->parent;
832
833 if (needs_lock)
834 __td_io_u_lock(td);
835
836 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
837 put_file_log(td, io_u->file);
838
839 io_u->file = NULL;
840 io_u_set(td, io_u, IO_U_F_FREE);
841
842 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
843 td->cur_depth--;
844 assert(!(td->flags & TD_F_CHILD));
845 }
846 io_u_qpush(&td->io_u_freelist, io_u);
847 td_io_u_free_notify(td);
848
849 if (needs_lock)
850 __td_io_u_unlock(td);
851}
852
853void clear_io_u(struct thread_data *td, struct io_u *io_u)
854{
855 io_u_clear(td, io_u, IO_U_F_FLIGHT);
856 put_io_u(td, io_u);
857}
858
859void requeue_io_u(struct thread_data *td, struct io_u **io_u)
860{
861 const bool needs_lock = td_async_processing(td);
862 struct io_u *__io_u = *io_u;
863 enum fio_ddir ddir = acct_ddir(__io_u);
864
865 dprint(FD_IO, "requeue %p\n", __io_u);
866
867 if (td->parent)
868 td = td->parent;
869
870 if (needs_lock)
871 __td_io_u_lock(td);
872
873 io_u_set(td, __io_u, IO_U_F_FREE);
874 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
875 td->io_issues[ddir]--;
876
877 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
878 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
879 td->cur_depth--;
880 assert(!(td->flags & TD_F_CHILD));
881 }
882
883 io_u_rpush(&td->io_u_requeues, __io_u);
884 td_io_u_free_notify(td);
885
886 if (needs_lock)
887 __td_io_u_unlock(td);
888
889 *io_u = NULL;
890}
891
892static void setup_strided_zone_mode(struct thread_data *td, struct io_u *io_u)
893{
894 struct fio_file *f = io_u->file;
895
896 assert(td->o.zone_mode == ZONE_MODE_STRIDED);
897 assert(td->o.zone_size);
898 assert(td->o.zone_range);
899
900 /*
901 * See if it's time to switch to a new zone
902 */
903 if (td->zone_bytes >= td->o.zone_size) {
904 td->zone_bytes = 0;
905 f->file_offset += td->o.zone_range + td->o.zone_skip;
906
907 /*
908 * Wrap from the beginning, if we exceed the file size
909 */
910 if (f->file_offset >= f->real_file_size)
911 f->file_offset = get_start_offset(td, f);
912
913 f->last_pos[io_u->ddir] = f->file_offset;
914 td->io_skip_bytes += td->o.zone_skip;
915 }
916
917 /*
918 * If zone_size > zone_range, then maintain the same zone until
919 * zone_bytes >= zone_size.
920 */
921 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
922 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
923 f->file_offset, f->last_pos[io_u->ddir]);
924 f->last_pos[io_u->ddir] = f->file_offset;
925 }
926
927 /*
928 * For random: if 'norandommap' is not set and zone_size > zone_range,
929 * map needs to be reset as it's done with zone_range everytime.
930 */
931 if ((td->zone_bytes % td->o.zone_range) == 0)
932 fio_file_reset(td, f);
933}
934
935static int fill_io_u(struct thread_data *td, struct io_u *io_u)
936{
937 bool is_random;
938 uint64_t offset;
939 enum io_u_action ret;
940
941 if (td_ioengine_flagged(td, FIO_NOIO))
942 goto out;
943
944 set_rw_ddir(td, io_u);
945
946 if (io_u->ddir == DDIR_INVAL) {
947 dprint(FD_IO, "invalid direction received ddir = %d", io_u->ddir);
948 return 1;
949 }
950 /*
951 * fsync() or fdatasync() or trim etc, we are done
952 */
953 if (!ddir_rw(io_u->ddir))
954 goto out;
955
956 if (td->o.zone_mode == ZONE_MODE_STRIDED)
957 setup_strided_zone_mode(td, io_u);
958 else if (td->o.zone_mode == ZONE_MODE_ZBD)
959 setup_zbd_zone_mode(td, io_u);
960
961 /*
962 * No log, let the seq/rand engine retrieve the next buflen and
963 * position.
964 */
965 if (get_next_offset(td, io_u, &is_random)) {
966 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
967 return 1;
968 }
969
970 io_u->buflen = get_next_buflen(td, io_u, is_random);
971 if (!io_u->buflen) {
972 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
973 return 1;
974 }
975
976 offset = io_u->offset;
977 if (td->o.zone_mode == ZONE_MODE_ZBD) {
978 ret = zbd_adjust_block(td, io_u);
979 if (ret == io_u_eof)
980 return 1;
981 }
982
983 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
984 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%llx exceeds file size=0x%llx\n",
985 io_u,
986 (unsigned long long) io_u->offset, io_u->buflen,
987 (unsigned long long) io_u->file->real_file_size);
988 return 1;
989 }
990
991 /*
992 * mark entry before potentially trimming io_u
993 */
994 if (td_random(td) && file_randommap(td, io_u->file))
995 io_u->buflen = mark_random_map(td, io_u, offset, io_u->buflen);
996
997out:
998 dprint_io_u(io_u, "fill");
999 io_u->verify_offset = io_u->offset;
1000 td->zone_bytes += io_u->buflen;
1001 return 0;
1002}
1003
1004static void __io_u_mark_map(uint64_t *map, unsigned int nr)
1005{
1006 int idx = 0;
1007
1008 switch (nr) {
1009 default:
1010 idx = 6;
1011 break;
1012 case 33 ... 64:
1013 idx = 5;
1014 break;
1015 case 17 ... 32:
1016 idx = 4;
1017 break;
1018 case 9 ... 16:
1019 idx = 3;
1020 break;
1021 case 5 ... 8:
1022 idx = 2;
1023 break;
1024 case 1 ... 4:
1025 idx = 1;
1026 fio_fallthrough;
1027 case 0:
1028 break;
1029 }
1030
1031 map[idx]++;
1032}
1033
1034void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1035{
1036 __io_u_mark_map(td->ts.io_u_submit, nr);
1037 td->ts.total_submit++;
1038}
1039
1040void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1041{
1042 __io_u_mark_map(td->ts.io_u_complete, nr);
1043 td->ts.total_complete++;
1044}
1045
1046void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1047{
1048 int idx = 0;
1049
1050 switch (td->cur_depth) {
1051 default:
1052 idx = 6;
1053 break;
1054 case 32 ... 63:
1055 idx = 5;
1056 break;
1057 case 16 ... 31:
1058 idx = 4;
1059 break;
1060 case 8 ... 15:
1061 idx = 3;
1062 break;
1063 case 4 ... 7:
1064 idx = 2;
1065 break;
1066 case 2 ... 3:
1067 idx = 1;
1068 fio_fallthrough;
1069 case 1:
1070 break;
1071 }
1072
1073 td->ts.io_u_map[idx] += nr;
1074}
1075
1076static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1077{
1078 int idx = 0;
1079
1080 assert(nsec < 1000);
1081
1082 switch (nsec) {
1083 case 750 ... 999:
1084 idx = 9;
1085 break;
1086 case 500 ... 749:
1087 idx = 8;
1088 break;
1089 case 250 ... 499:
1090 idx = 7;
1091 break;
1092 case 100 ... 249:
1093 idx = 6;
1094 break;
1095 case 50 ... 99:
1096 idx = 5;
1097 break;
1098 case 20 ... 49:
1099 idx = 4;
1100 break;
1101 case 10 ... 19:
1102 idx = 3;
1103 break;
1104 case 4 ... 9:
1105 idx = 2;
1106 break;
1107 case 2 ... 3:
1108 idx = 1;
1109 fio_fallthrough;
1110 case 0 ... 1:
1111 break;
1112 }
1113
1114 assert(idx < FIO_IO_U_LAT_N_NR);
1115 td->ts.io_u_lat_n[idx]++;
1116}
1117
1118static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1119{
1120 int idx = 0;
1121
1122 assert(usec < 1000 && usec >= 1);
1123
1124 switch (usec) {
1125 case 750 ... 999:
1126 idx = 9;
1127 break;
1128 case 500 ... 749:
1129 idx = 8;
1130 break;
1131 case 250 ... 499:
1132 idx = 7;
1133 break;
1134 case 100 ... 249:
1135 idx = 6;
1136 break;
1137 case 50 ... 99:
1138 idx = 5;
1139 break;
1140 case 20 ... 49:
1141 idx = 4;
1142 break;
1143 case 10 ... 19:
1144 idx = 3;
1145 break;
1146 case 4 ... 9:
1147 idx = 2;
1148 break;
1149 case 2 ... 3:
1150 idx = 1;
1151 fio_fallthrough;
1152 case 0 ... 1:
1153 break;
1154 }
1155
1156 assert(idx < FIO_IO_U_LAT_U_NR);
1157 td->ts.io_u_lat_u[idx]++;
1158}
1159
1160static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1161{
1162 int idx = 0;
1163
1164 assert(msec >= 1);
1165
1166 switch (msec) {
1167 default:
1168 idx = 11;
1169 break;
1170 case 1000 ... 1999:
1171 idx = 10;
1172 break;
1173 case 750 ... 999:
1174 idx = 9;
1175 break;
1176 case 500 ... 749:
1177 idx = 8;
1178 break;
1179 case 250 ... 499:
1180 idx = 7;
1181 break;
1182 case 100 ... 249:
1183 idx = 6;
1184 break;
1185 case 50 ... 99:
1186 idx = 5;
1187 break;
1188 case 20 ... 49:
1189 idx = 4;
1190 break;
1191 case 10 ... 19:
1192 idx = 3;
1193 break;
1194 case 4 ... 9:
1195 idx = 2;
1196 break;
1197 case 2 ... 3:
1198 idx = 1;
1199 fio_fallthrough;
1200 case 0 ... 1:
1201 break;
1202 }
1203
1204 assert(idx < FIO_IO_U_LAT_M_NR);
1205 td->ts.io_u_lat_m[idx]++;
1206}
1207
1208static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1209{
1210 if (nsec < 1000)
1211 io_u_mark_lat_nsec(td, nsec);
1212 else if (nsec < 1000000)
1213 io_u_mark_lat_usec(td, nsec / 1000);
1214 else
1215 io_u_mark_lat_msec(td, nsec / 1000000);
1216}
1217
1218static unsigned int __get_next_fileno_rand(struct thread_data *td)
1219{
1220 unsigned long fileno;
1221
1222 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1223 uint64_t frand_max = rand_max(&td->next_file_state);
1224 unsigned long r;
1225
1226 r = __rand(&td->next_file_state);
1227 return (unsigned int) ((double) td->o.nr_files
1228 * (r / (frand_max + 1.0)));
1229 }
1230
1231 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1232 fileno = zipf_next(&td->next_file_zipf);
1233 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1234 fileno = pareto_next(&td->next_file_zipf);
1235 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1236 fileno = gauss_next(&td->next_file_gauss);
1237 else {
1238 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1239 assert(0);
1240 return 0;
1241 }
1242
1243 return fileno >> FIO_FSERVICE_SHIFT;
1244}
1245
1246/*
1247 * Get next file to service by choosing one at random
1248 */
1249static struct fio_file *get_next_file_rand(struct thread_data *td,
1250 enum fio_file_flags goodf,
1251 enum fio_file_flags badf)
1252{
1253 struct fio_file *f;
1254 int fno;
1255
1256 do {
1257 int opened = 0;
1258
1259 fno = __get_next_fileno_rand(td);
1260
1261 f = td->files[fno];
1262 if (fio_file_done(f))
1263 continue;
1264
1265 if (!fio_file_open(f)) {
1266 int err;
1267
1268 if (td->nr_open_files >= td->o.open_files)
1269 return ERR_PTR(-EBUSY);
1270
1271 err = td_io_open_file(td, f);
1272 if (err)
1273 continue;
1274 opened = 1;
1275 }
1276
1277 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1278 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1279 return f;
1280 }
1281 if (opened)
1282 td_io_close_file(td, f);
1283 } while (1);
1284}
1285
1286/*
1287 * Get next file to service by doing round robin between all available ones
1288 */
1289static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1290 int badf)
1291{
1292 unsigned int old_next_file = td->next_file;
1293 struct fio_file *f;
1294
1295 do {
1296 int opened = 0;
1297
1298 f = td->files[td->next_file];
1299
1300 td->next_file++;
1301 if (td->next_file >= td->o.nr_files)
1302 td->next_file = 0;
1303
1304 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1305 if (fio_file_done(f)) {
1306 f = NULL;
1307 continue;
1308 }
1309
1310 if (!fio_file_open(f)) {
1311 int err;
1312
1313 if (td->nr_open_files >= td->o.open_files)
1314 return ERR_PTR(-EBUSY);
1315
1316 err = td_io_open_file(td, f);
1317 if (err) {
1318 dprint(FD_FILE, "error %d on open of %s\n",
1319 err, f->file_name);
1320 f = NULL;
1321 continue;
1322 }
1323 opened = 1;
1324 }
1325
1326 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1327 f->flags);
1328 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1329 break;
1330
1331 if (opened)
1332 td_io_close_file(td, f);
1333
1334 f = NULL;
1335 } while (td->next_file != old_next_file);
1336
1337 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1338 return f;
1339}
1340
1341static struct fio_file *__get_next_file(struct thread_data *td)
1342{
1343 struct fio_file *f;
1344
1345 assert(td->o.nr_files <= td->files_index);
1346
1347 if (td->nr_done_files >= td->o.nr_files) {
1348 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1349 " nr_files=%d\n", td->nr_open_files,
1350 td->nr_done_files,
1351 td->o.nr_files);
1352 return NULL;
1353 }
1354
1355 f = td->file_service_file;
1356 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1357 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1358 goto out;
1359 if (td->file_service_left) {
1360 td->file_service_left--;
1361 goto out;
1362 }
1363 }
1364
1365 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1366 td->o.file_service_type == FIO_FSERVICE_SEQ)
1367 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1368 else
1369 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1370
1371 if (IS_ERR(f))
1372 return f;
1373
1374 td->file_service_file = f;
1375 td->file_service_left = td->file_service_nr - 1;
1376out:
1377 if (f)
1378 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1379 else
1380 dprint(FD_FILE, "get_next_file: NULL\n");
1381 return f;
1382}
1383
1384static struct fio_file *get_next_file(struct thread_data *td)
1385{
1386 return __get_next_file(td);
1387}
1388
1389static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1390{
1391 struct fio_file *f;
1392
1393 do {
1394 f = get_next_file(td);
1395 if (IS_ERR_OR_NULL(f))
1396 return PTR_ERR(f);
1397
1398 io_u->file = f;
1399 get_file(f);
1400
1401 if (!fill_io_u(td, io_u))
1402 break;
1403
1404 zbd_put_io_u(td, io_u);
1405
1406 put_file_log(td, f);
1407 td_io_close_file(td, f);
1408 io_u->file = NULL;
1409 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1410 fio_file_reset(td, f);
1411 else {
1412 fio_file_set_done(f);
1413 td->nr_done_files++;
1414 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1415 td->nr_done_files, td->o.nr_files);
1416 }
1417 } while (1);
1418
1419 return 0;
1420}
1421
1422static void lat_fatal(struct thread_data *td, struct io_u *io_u, struct io_completion_data *icd,
1423 unsigned long long tnsec, unsigned long long max_nsec)
1424{
1425 if (!td->error) {
1426 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec): %s %s %llu %llu\n",
1427 tnsec, max_nsec,
1428 io_u->file->file_name,
1429 io_ddir_name(io_u->ddir),
1430 io_u->offset, io_u->buflen);
1431 }
1432 td_verror(td, ETIMEDOUT, "max latency exceeded");
1433 icd->error = ETIMEDOUT;
1434}
1435
1436static void lat_new_cycle(struct thread_data *td)
1437{
1438 fio_gettime(&td->latency_ts, NULL);
1439 td->latency_ios = ddir_rw_sum(td->io_blocks);
1440 td->latency_failed = 0;
1441}
1442
1443/*
1444 * We had an IO outside the latency target. Reduce the queue depth. If we
1445 * are at QD=1, then it's time to give up.
1446 */
1447static bool __lat_target_failed(struct thread_data *td)
1448{
1449 if (td->latency_qd == 1)
1450 return true;
1451
1452 td->latency_qd_high = td->latency_qd;
1453
1454 if (td->latency_qd == td->latency_qd_low)
1455 td->latency_qd_low--;
1456
1457 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1458 td->latency_stable_count = 0;
1459
1460 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1461
1462 /*
1463 * When we ramp QD down, quiesce existing IO to prevent
1464 * a storm of ramp downs due to pending higher depth.
1465 */
1466 io_u_quiesce(td);
1467 lat_new_cycle(td);
1468 return false;
1469}
1470
1471static bool lat_target_failed(struct thread_data *td)
1472{
1473 if (td->o.latency_percentile.u.f == 100.0)
1474 return __lat_target_failed(td);
1475
1476 td->latency_failed++;
1477 return false;
1478}
1479
1480void lat_target_init(struct thread_data *td)
1481{
1482 td->latency_end_run = 0;
1483
1484 if (td->o.latency_target) {
1485 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1486 fio_gettime(&td->latency_ts, NULL);
1487 td->latency_qd = 1;
1488 td->latency_qd_high = td->o.iodepth;
1489 td->latency_qd_low = 1;
1490 td->latency_ios = ddir_rw_sum(td->io_blocks);
1491 } else
1492 td->latency_qd = td->o.iodepth;
1493}
1494
1495void lat_target_reset(struct thread_data *td)
1496{
1497 if (!td->latency_end_run)
1498 lat_target_init(td);
1499}
1500
1501static void lat_target_success(struct thread_data *td)
1502{
1503 const unsigned int qd = td->latency_qd;
1504 struct thread_options *o = &td->o;
1505
1506 td->latency_qd_low = td->latency_qd;
1507
1508 if (td->latency_qd + 1 == td->latency_qd_high) {
1509 /*
1510 * latency_qd will not incease on lat_target_success(), so
1511 * called stable. If we stick with this queue depth, the
1512 * final latency is likely lower than latency_target. Fix
1513 * this by increasing latency_qd_high slowly. Use a naive
1514 * heuristic here. If we get lat_target_success() 3 times
1515 * in a row, increase latency_qd_high by 1.
1516 */
1517 if (++td->latency_stable_count >= 3) {
1518 td->latency_qd_high++;
1519 td->latency_stable_count = 0;
1520 }
1521 }
1522
1523 /*
1524 * If we haven't failed yet, we double up to a failing value instead
1525 * of bisecting from highest possible queue depth. If we have set
1526 * a limit other than td->o.iodepth, bisect between that.
1527 */
1528 if (td->latency_qd_high != o->iodepth)
1529 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1530 else
1531 td->latency_qd *= 2;
1532
1533 if (td->latency_qd > o->iodepth)
1534 td->latency_qd = o->iodepth;
1535
1536 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1537
1538 /*
1539 * Same as last one, we are done. Let it run a latency cycle, so
1540 * we get only the results from the targeted depth.
1541 */
1542 if (!o->latency_run && td->latency_qd == qd) {
1543 if (td->latency_end_run) {
1544 dprint(FD_RATE, "We are done\n");
1545 td->done = 1;
1546 } else {
1547 dprint(FD_RATE, "Quiesce and final run\n");
1548 io_u_quiesce(td);
1549 td->latency_end_run = 1;
1550 reset_all_stats(td);
1551 reset_io_stats(td);
1552 }
1553 }
1554
1555 lat_new_cycle(td);
1556}
1557
1558/*
1559 * Check if we can bump the queue depth
1560 */
1561void lat_target_check(struct thread_data *td)
1562{
1563 uint64_t usec_window;
1564 uint64_t ios;
1565 double success_ios;
1566
1567 usec_window = utime_since_now(&td->latency_ts);
1568 if (usec_window < td->o.latency_window)
1569 return;
1570
1571 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1572 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1573 success_ios *= 100.0;
1574
1575 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1576
1577 if (success_ios >= td->o.latency_percentile.u.f)
1578 lat_target_success(td);
1579 else
1580 __lat_target_failed(td);
1581}
1582
1583/*
1584 * If latency target is enabled, we might be ramping up or down and not
1585 * using the full queue depth available.
1586 */
1587bool queue_full(const struct thread_data *td)
1588{
1589 const int qempty = io_u_qempty(&td->io_u_freelist);
1590
1591 if (qempty)
1592 return true;
1593 if (!td->o.latency_target)
1594 return false;
1595
1596 return td->cur_depth >= td->latency_qd;
1597}
1598
1599struct io_u *__get_io_u(struct thread_data *td)
1600{
1601 const bool needs_lock = td_async_processing(td);
1602 struct io_u *io_u = NULL;
1603 int ret;
1604
1605 if (td->stop_io)
1606 return NULL;
1607
1608 if (needs_lock)
1609 __td_io_u_lock(td);
1610
1611again:
1612 if (!io_u_rempty(&td->io_u_requeues)) {
1613 io_u = io_u_rpop(&td->io_u_requeues);
1614 io_u->resid = 0;
1615 } else if (!queue_full(td)) {
1616 io_u = io_u_qpop(&td->io_u_freelist);
1617
1618 io_u->file = NULL;
1619 io_u->buflen = 0;
1620 io_u->resid = 0;
1621 io_u->end_io = NULL;
1622 }
1623
1624 if (io_u) {
1625 assert(io_u->flags & IO_U_F_FREE);
1626 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1627 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1628 IO_U_F_VER_LIST);
1629
1630 io_u->error = 0;
1631 io_u->acct_ddir = -1;
1632 td->cur_depth++;
1633 assert(!(td->flags & TD_F_CHILD));
1634 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1635 io_u->ipo = NULL;
1636 } else if (td_async_processing(td)) {
1637 /*
1638 * We ran out, wait for async verify threads to finish and
1639 * return one
1640 */
1641 assert(!(td->flags & TD_F_CHILD));
1642 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1643 assert(ret == 0);
1644 if (!td->error)
1645 goto again;
1646 }
1647
1648 if (needs_lock)
1649 __td_io_u_unlock(td);
1650
1651 return io_u;
1652}
1653
1654static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1655{
1656 if (!(td->flags & TD_F_TRIM_BACKLOG))
1657 return false;
1658 if (!td->trim_entries)
1659 return false;
1660
1661 if (td->trim_batch) {
1662 td->trim_batch--;
1663 if (get_next_trim(td, io_u))
1664 return true;
1665 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1666 td->last_ddir != DDIR_READ) {
1667 td->trim_batch = td->o.trim_batch;
1668 if (!td->trim_batch)
1669 td->trim_batch = td->o.trim_backlog;
1670 if (get_next_trim(td, io_u))
1671 return true;
1672 }
1673
1674 return false;
1675}
1676
1677static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1678{
1679 if (!(td->flags & TD_F_VER_BACKLOG))
1680 return false;
1681
1682 if (td->io_hist_len) {
1683 int get_verify = 0;
1684
1685 if (td->verify_batch)
1686 get_verify = 1;
1687 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1688 td->last_ddir != DDIR_READ) {
1689 td->verify_batch = td->o.verify_batch;
1690 if (!td->verify_batch)
1691 td->verify_batch = td->o.verify_backlog;
1692 get_verify = 1;
1693 }
1694
1695 if (get_verify && !get_next_verify(td, io_u)) {
1696 td->verify_batch--;
1697 return true;
1698 }
1699 }
1700
1701 return false;
1702}
1703
1704/*
1705 * Fill offset and start time into the buffer content, to prevent too
1706 * easy compressible data for simple de-dupe attempts. Do this for every
1707 * 512b block in the range, since that should be the smallest block size
1708 * we can expect from a device.
1709 */
1710static void small_content_scramble(struct io_u *io_u)
1711{
1712 unsigned long long i, nr_blocks = io_u->buflen >> 9;
1713 unsigned int offset;
1714 uint64_t boffset, *iptr;
1715 char *p;
1716
1717 if (!nr_blocks)
1718 return;
1719
1720 p = io_u->xfer_buf;
1721 boffset = io_u->offset;
1722
1723 if (io_u->buf_filled_len)
1724 io_u->buf_filled_len = 0;
1725
1726 /*
1727 * Generate random index between 0..7. We do chunks of 512b, if
1728 * we assume a cacheline is 64 bytes, then we have 8 of those.
1729 * Scramble content within the blocks in the same cacheline to
1730 * speed things up.
1731 */
1732 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1733
1734 for (i = 0; i < nr_blocks; i++) {
1735 /*
1736 * Fill offset into start of cacheline, time into end
1737 * of cacheline
1738 */
1739 iptr = (void *) p + (offset << 6);
1740 *iptr = boffset;
1741
1742 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1743 iptr[0] = io_u->start_time.tv_sec;
1744 iptr[1] = io_u->start_time.tv_nsec;
1745
1746 p += 512;
1747 boffset += 512;
1748 }
1749}
1750
1751/*
1752 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1753 * etc. The returned io_u is fully ready to be prepped, populated and submitted.
1754 */
1755struct io_u *get_io_u(struct thread_data *td)
1756{
1757 struct fio_file *f;
1758 struct io_u *io_u;
1759 int do_scramble = 0;
1760 long ret = 0;
1761
1762 io_u = __get_io_u(td);
1763 if (!io_u) {
1764 dprint(FD_IO, "__get_io_u failed\n");
1765 return NULL;
1766 }
1767
1768 if (check_get_verify(td, io_u))
1769 goto out;
1770 if (check_get_trim(td, io_u))
1771 goto out;
1772
1773 /*
1774 * from a requeue, io_u already setup
1775 */
1776 if (io_u->file)
1777 goto out;
1778
1779 /*
1780 * If using an iolog, grab next piece if any available.
1781 */
1782 if (td->flags & TD_F_READ_IOLOG) {
1783 if (read_iolog_get(td, io_u))
1784 goto err_put;
1785 } else if (set_io_u_file(td, io_u)) {
1786 ret = -EBUSY;
1787 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1788 goto err_put;
1789 }
1790
1791 f = io_u->file;
1792 if (!f) {
1793 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1794 goto err_put;
1795 }
1796
1797 assert(fio_file_open(f));
1798
1799 if (ddir_rw(io_u->ddir)) {
1800 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1801 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1802 goto err_put;
1803 }
1804
1805 f->last_start[io_u->ddir] = io_u->offset;
1806 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1807
1808 if (io_u->ddir == DDIR_WRITE) {
1809 if (td->flags & TD_F_REFILL_BUFFERS) {
1810 io_u_fill_buffer(td, io_u,
1811 td->o.min_bs[DDIR_WRITE],
1812 io_u->buflen);
1813 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1814 !(td->flags & TD_F_COMPRESS) &&
1815 !(td->flags & TD_F_DO_VERIFY))
1816 do_scramble = 1;
1817 } else if (io_u->ddir == DDIR_READ) {
1818 /*
1819 * Reset the buf_filled parameters so next time if the
1820 * buffer is used for writes it is refilled.
1821 */
1822 io_u->buf_filled_len = 0;
1823 }
1824 }
1825
1826 /*
1827 * Set io data pointers.
1828 */
1829 io_u->xfer_buf = io_u->buf;
1830 io_u->xfer_buflen = io_u->buflen;
1831
1832 /*
1833 * Remember the issuing context priority. The IO engine may change this.
1834 */
1835 io_u->ioprio = td->ioprio;
1836 io_u->clat_prio_index = 0;
1837out:
1838 assert(io_u->file);
1839 if (!td_io_prep(td, io_u)) {
1840 if (!td->o.disable_lat)
1841 fio_gettime(&io_u->start_time, NULL);
1842
1843 if (do_scramble)
1844 small_content_scramble(io_u);
1845
1846 return io_u;
1847 }
1848err_put:
1849 dprint(FD_IO, "get_io_u failed\n");
1850 put_io_u(td, io_u);
1851 return ERR_PTR(ret);
1852}
1853
1854static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1855{
1856 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1857
1858 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1859 return;
1860
1861 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%llu\n",
1862 io_u->file ? " on file " : "",
1863 io_u->file ? io_u->file->file_name : "",
1864 strerror(io_u->error),
1865 io_ddir_name(io_u->ddir),
1866 io_u->offset, io_u->xfer_buflen);
1867
1868 if (td->io_ops->errdetails) {
1869 char *err = td->io_ops->errdetails(io_u);
1870
1871 log_err("fio: %s\n", err);
1872 free(err);
1873 }
1874
1875 if (!td->error)
1876 td_verror(td, io_u->error, "io_u error");
1877}
1878
1879void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1880{
1881 __io_u_log_error(td, io_u);
1882 if (td->parent)
1883 __io_u_log_error(td->parent, io_u);
1884}
1885
1886static inline bool gtod_reduce(struct thread_data *td)
1887{
1888 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1889 || td->o.gtod_reduce;
1890}
1891
1892static void trim_block_info(struct thread_data *td, struct io_u *io_u)
1893{
1894 uint32_t *info = io_u_block_info(td, io_u);
1895
1896 if (BLOCK_INFO_STATE(*info) >= BLOCK_STATE_TRIM_FAILURE)
1897 return;
1898
1899 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED, BLOCK_INFO_TRIMS(*info) + 1);
1900}
1901
1902static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1903 struct io_completion_data *icd,
1904 const enum fio_ddir idx, unsigned int bytes)
1905{
1906 const int no_reduce = !gtod_reduce(td);
1907 unsigned long long llnsec = 0;
1908
1909 if (td->parent)
1910 td = td->parent;
1911
1912 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1913 return;
1914
1915 if (no_reduce)
1916 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1917
1918 if (!td->o.disable_lat) {
1919 unsigned long long tnsec;
1920
1921 tnsec = ntime_since(&io_u->start_time, &icd->time);
1922 add_lat_sample(td, idx, tnsec, bytes, io_u->offset,
1923 io_u->ioprio, io_u->clat_prio_index);
1924
1925 if (td->flags & TD_F_PROFILE_OPS) {
1926 struct prof_io_ops *ops = &td->prof_io_ops;
1927
1928 if (ops->io_u_lat)
1929 icd->error = ops->io_u_lat(td, tnsec);
1930 }
1931
1932 if (ddir_rw(idx)) {
1933 if (td->o.max_latency[idx] && tnsec > td->o.max_latency[idx])
1934 lat_fatal(td, io_u, icd, tnsec, td->o.max_latency[idx]);
1935 if (td->o.latency_target && tnsec > td->o.latency_target) {
1936 if (lat_target_failed(td))
1937 lat_fatal(td, io_u, icd, tnsec, td->o.latency_target);
1938 }
1939 }
1940 }
1941
1942 if (ddir_rw(idx)) {
1943 if (!td->o.disable_clat) {
1944 add_clat_sample(td, idx, llnsec, bytes, io_u->offset,
1945 io_u->ioprio, io_u->clat_prio_index);
1946 io_u_mark_latency(td, llnsec);
1947 }
1948
1949 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1950 add_bw_sample(td, io_u, bytes, llnsec);
1951
1952 if (no_reduce && per_unit_log(td->iops_log))
1953 add_iops_sample(td, io_u, bytes);
1954 } else if (ddir_sync(idx) && !td->o.disable_clat)
1955 add_sync_clat_sample(&td->ts, llnsec);
1956
1957 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM)
1958 trim_block_info(td, io_u);
1959}
1960
1961static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1962 uint64_t offset, unsigned int bytes)
1963{
1964 int idx;
1965
1966 if (!f)
1967 return;
1968
1969 if (f->first_write == -1ULL || offset < f->first_write)
1970 f->first_write = offset;
1971 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1972 f->last_write = offset + bytes;
1973
1974 if (!f->last_write_comp)
1975 return;
1976
1977 idx = f->last_write_idx++;
1978 f->last_write_comp[idx] = offset;
1979 if (f->last_write_idx == td->o.iodepth)
1980 f->last_write_idx = 0;
1981}
1982
1983static bool should_account(struct thread_data *td)
1984{
1985 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1986 td->runstate == TD_VERIFYING);
1987}
1988
1989static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1990 struct io_completion_data *icd)
1991{
1992 struct io_u *io_u = *io_u_ptr;
1993 enum fio_ddir ddir = io_u->ddir;
1994 struct fio_file *f = io_u->file;
1995
1996 dprint_io_u(io_u, "complete");
1997
1998 assert(io_u->flags & IO_U_F_FLIGHT);
1999 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
2000
2001 /*
2002 * Mark IO ok to verify
2003 */
2004 if (io_u->ipo) {
2005 /*
2006 * Remove errored entry from the verification list
2007 */
2008 if (io_u->error)
2009 unlog_io_piece(td, io_u);
2010 else {
2011 atomic_store_release(&io_u->ipo->flags,
2012 io_u->ipo->flags & ~IP_F_IN_FLIGHT);
2013 }
2014 }
2015
2016 if (ddir_sync(ddir)) {
2017 td->last_was_sync = true;
2018 if (f) {
2019 f->first_write = -1ULL;
2020 f->last_write = -1ULL;
2021 }
2022 if (should_account(td))
2023 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
2024 return;
2025 }
2026
2027 td->last_was_sync = false;
2028 td->last_ddir = ddir;
2029
2030 if (!io_u->error && ddir_rw(ddir)) {
2031 unsigned long long bytes = io_u->xfer_buflen - io_u->resid;
2032 int ret;
2033
2034 /*
2035 * Make sure we notice short IO from here, and requeue them
2036 * appropriately!
2037 */
2038 if (bytes && io_u->resid) {
2039 io_u->xfer_buflen = io_u->resid;
2040 io_u->xfer_buf += bytes;
2041 io_u->offset += bytes;
2042 td->ts.short_io_u[io_u->ddir]++;
2043 if (io_u->offset < io_u->file->real_file_size) {
2044 requeue_io_u(td, io_u_ptr);
2045 return;
2046 }
2047 }
2048
2049 td->io_blocks[ddir]++;
2050 td->io_bytes[ddir] += bytes;
2051
2052 if (!(io_u->flags & IO_U_F_VER_LIST)) {
2053 td->this_io_blocks[ddir]++;
2054 td->this_io_bytes[ddir] += bytes;
2055 }
2056
2057 if (ddir == DDIR_WRITE)
2058 file_log_write_comp(td, f, io_u->offset, bytes);
2059
2060 if (should_account(td))
2061 account_io_completion(td, io_u, icd, ddir, bytes);
2062
2063 icd->bytes_done[ddir] += bytes;
2064
2065 if (io_u->end_io) {
2066 ret = io_u->end_io(td, io_u_ptr);
2067 io_u = *io_u_ptr;
2068 if (ret && !icd->error)
2069 icd->error = ret;
2070 }
2071 } else if (io_u->error) {
2072 icd->error = io_u->error;
2073 io_u_log_error(td, io_u);
2074 }
2075 if (icd->error) {
2076 enum error_type_bit eb = td_error_type(ddir, icd->error);
2077
2078 if (!td_non_fatal_error(td, eb, icd->error))
2079 return;
2080
2081 /*
2082 * If there is a non_fatal error, then add to the error count
2083 * and clear all the errors.
2084 */
2085 update_error_count(td, icd->error);
2086 td_clear_error(td);
2087 icd->error = 0;
2088 if (io_u)
2089 io_u->error = 0;
2090 }
2091}
2092
2093static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2094 int nr)
2095{
2096 int ddir;
2097
2098 if (!gtod_reduce(td))
2099 fio_gettime(&icd->time, NULL);
2100
2101 icd->nr = nr;
2102
2103 icd->error = 0;
2104 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2105 icd->bytes_done[ddir] = 0;
2106}
2107
2108static void ios_completed(struct thread_data *td,
2109 struct io_completion_data *icd)
2110{
2111 struct io_u *io_u;
2112 int i;
2113
2114 for (i = 0; i < icd->nr; i++) {
2115 io_u = td->io_ops->event(td, i);
2116
2117 io_completed(td, &io_u, icd);
2118
2119 if (io_u)
2120 put_io_u(td, io_u);
2121 }
2122}
2123
2124/*
2125 * Complete a single io_u for the sync engines.
2126 */
2127int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2128{
2129 struct io_completion_data icd;
2130 int ddir;
2131
2132 init_icd(td, &icd, 1);
2133 io_completed(td, &io_u, &icd);
2134
2135 if (io_u)
2136 put_io_u(td, io_u);
2137
2138 if (icd.error) {
2139 td_verror(td, icd.error, "io_u_sync_complete");
2140 return -1;
2141 }
2142
2143 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2144 td->bytes_done[ddir] += icd.bytes_done[ddir];
2145
2146 return 0;
2147}
2148
2149/*
2150 * Called to complete min_events number of io for the async engines.
2151 */
2152int io_u_queued_complete(struct thread_data *td, int min_evts)
2153{
2154 struct io_completion_data icd;
2155 struct timespec *tvp = NULL;
2156 int ret, ddir;
2157 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2158
2159 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2160
2161 if (!min_evts)
2162 tvp = &ts;
2163 else if (min_evts > td->cur_depth)
2164 min_evts = td->cur_depth;
2165
2166 /* No worries, td_io_getevents fixes min and max if they are
2167 * set incorrectly */
2168 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2169 if (ret < 0) {
2170 td_verror(td, -ret, "td_io_getevents");
2171 return ret;
2172 } else if (!ret)
2173 return ret;
2174
2175 init_icd(td, &icd, ret);
2176 ios_completed(td, &icd);
2177 if (icd.error) {
2178 td_verror(td, icd.error, "io_u_queued_complete");
2179 return -1;
2180 }
2181
2182 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2183 td->bytes_done[ddir] += icd.bytes_done[ddir];
2184
2185 return ret;
2186}
2187
2188/*
2189 * Call when io_u is really queued, to update the submission latency.
2190 */
2191void io_u_queued(struct thread_data *td, struct io_u *io_u)
2192{
2193 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2194 unsigned long slat_time;
2195
2196 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2197
2198 if (td->parent)
2199 td = td->parent;
2200
2201 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2202 io_u->offset, io_u->ioprio);
2203 }
2204}
2205
2206/*
2207 * See if we should reuse the last seed, if dedupe is enabled
2208 */
2209static struct frand_state *get_buf_state(struct thread_data *td)
2210{
2211 unsigned int v;
2212 unsigned long long i;
2213
2214 if (!td->o.dedupe_percentage)
2215 return &td->buf_state;
2216 else if (td->o.dedupe_percentage == 100) {
2217 frand_copy(&td->buf_state_prev, &td->buf_state);
2218 return &td->buf_state;
2219 }
2220
2221 v = rand_between(&td->dedupe_state, 1, 100);
2222
2223 if (v <= td->o.dedupe_percentage)
2224 switch (td->o.dedupe_mode) {
2225 case DEDUPE_MODE_REPEAT:
2226 /*
2227 * The caller advances the returned frand_state.
2228 * A copy of prev should be returned instead since
2229 * a subsequent intention to generate a deduped buffer
2230 * might result in generating a unique one
2231 */
2232 frand_copy(&td->buf_state_ret, &td->buf_state_prev);
2233 return &td->buf_state_ret;
2234 case DEDUPE_MODE_WORKING_SET:
2235 i = rand_between(&td->dedupe_working_set_index_state, 0, td->num_unique_pages - 1);
2236 frand_copy(&td->buf_state_ret, &td->dedupe_working_set_states[i]);
2237 return &td->buf_state_ret;
2238 default:
2239 log_err("unexpected dedupe mode %u\n", td->o.dedupe_mode);
2240 assert(0);
2241 }
2242
2243 return &td->buf_state;
2244}
2245
2246static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2247{
2248 if (td->o.dedupe_percentage == 100)
2249 frand_copy(rs, &td->buf_state_prev);
2250 else if (rs == &td->buf_state)
2251 frand_copy(&td->buf_state_prev, rs);
2252}
2253
2254void fill_io_buffer(struct thread_data *td, void *buf, unsigned long long min_write,
2255 unsigned long long max_bs)
2256{
2257 struct thread_options *o = &td->o;
2258
2259 if (o->mem_type == MEM_CUDA_MALLOC)
2260 return;
2261
2262 if (o->compress_percentage || o->dedupe_percentage) {
2263 unsigned int perc = td->o.compress_percentage;
2264 struct frand_state *rs = NULL;
2265 unsigned long long left = max_bs;
2266 unsigned long long this_write;
2267
2268 do {
2269 /*
2270 * Buffers are either entirely dedupe-able or not.
2271 * If we choose to dedup, the buffer should undergo
2272 * the same manipulation as the original write. Which
2273 * means we should retrack the steps we took for compression
2274 * as well.
2275 */
2276 if (!rs)
2277 rs = get_buf_state(td);
2278
2279 min_write = min(min_write, left);
2280
2281 this_write = min_not_zero(min_write,
2282 (unsigned long long) td->o.compress_chunk);
2283
2284 fill_random_buf_percentage(rs, buf, perc,
2285 this_write, this_write,
2286 o->buffer_pattern,
2287 o->buffer_pattern_bytes);
2288
2289 buf += this_write;
2290 left -= this_write;
2291 save_buf_state(td, rs);
2292 } while (left);
2293 } else if (o->buffer_pattern_bytes)
2294 fill_buffer_pattern(td, buf, max_bs);
2295 else if (o->zero_buffers)
2296 memset(buf, 0, max_bs);
2297 else
2298 fill_random_buf(get_buf_state(td), buf, max_bs);
2299}
2300
2301/*
2302 * "randomly" fill the buffer contents
2303 */
2304void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2305 unsigned long long min_write, unsigned long long max_bs)
2306{
2307 io_u->buf_filled_len = 0;
2308 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2309}
2310
2311static int do_sync_file_range(const struct thread_data *td,
2312 struct fio_file *f)
2313{
2314 uint64_t offset, nbytes;
2315
2316 offset = f->first_write;
2317 nbytes = f->last_write - f->first_write;
2318
2319 if (!nbytes)
2320 return 0;
2321
2322 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2323}
2324
2325int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2326{
2327 int ret;
2328
2329 if (io_u->ddir == DDIR_SYNC) {
2330#ifdef CONFIG_FCNTL_SYNC
2331 ret = fcntl(io_u->file->fd, F_FULLFSYNC);
2332#else
2333 ret = fsync(io_u->file->fd);
2334#endif
2335 } else if (io_u->ddir == DDIR_DATASYNC) {
2336#ifdef CONFIG_FDATASYNC
2337 ret = fdatasync(io_u->file->fd);
2338#else
2339 ret = io_u->xfer_buflen;
2340 io_u->error = EINVAL;
2341#endif
2342 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2343 ret = do_sync_file_range(td, io_u->file);
2344 else {
2345 ret = io_u->xfer_buflen;
2346 io_u->error = EINVAL;
2347 }
2348
2349 if (ret < 0)
2350 io_u->error = errno;
2351
2352 return ret;
2353}
2354
2355int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2356{
2357#ifndef FIO_HAVE_TRIM
2358 io_u->error = EINVAL;
2359 return 0;
2360#else
2361 struct fio_file *f = io_u->file;
2362 int ret;
2363
2364 if (td->o.zone_mode == ZONE_MODE_ZBD) {
2365 ret = zbd_do_io_u_trim(td, io_u);
2366 if (ret == io_u_completed)
2367 return io_u->xfer_buflen;
2368 if (ret)
2369 goto err;
2370 }
2371
2372 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2373 if (!ret)
2374 return io_u->xfer_buflen;
2375
2376err:
2377 io_u->error = ret;
2378 return 0;
2379#endif
2380}