fio: Fix (unsigned) integer overflow issues
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 */
66 max_size = f->io_size;
67 if (max_size > f->real_file_size)
68 max_size = f->real_file_size;
69
70 if (td->o.zone_range)
71 max_size = td->o.zone_range;
72
73 if (td->o.min_bs[ddir] > td->o.ba[ddir])
74 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
75
76 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
77 if (!max_blocks)
78 return 0;
79
80 return max_blocks;
81}
82
83struct rand_off {
84 struct flist_head list;
85 uint64_t off;
86};
87
88static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
89 enum fio_ddir ddir, uint64_t *b,
90 uint64_t lastb)
91{
92 uint64_t r;
93
94 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
95 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
96
97 r = __rand(&td->random_state);
98
99 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
100
101 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
102 } else {
103 uint64_t off = 0;
104
105 assert(fio_file_lfsr(f));
106
107 if (lfsr_next(&f->lfsr, &off))
108 return 1;
109
110 *b = off;
111 }
112
113 /*
114 * if we are not maintaining a random map, we are done.
115 */
116 if (!file_randommap(td, f))
117 goto ret;
118
119 /*
120 * calculate map offset and check if it's free
121 */
122 if (random_map_free(f, *b))
123 goto ret;
124
125 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
126 (unsigned long long) *b);
127
128 *b = axmap_next_free(f->io_axmap, *b);
129 if (*b == (uint64_t) -1ULL)
130 return 1;
131ret:
132 return 0;
133}
134
135static int __get_next_rand_offset_zipf(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = zipf_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_pareto(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = pareto_next(&f->zipf);
148 return 0;
149}
150
151static int __get_next_rand_offset_gauss(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = gauss_next(&f->gauss);
156 return 0;
157}
158
159static int __get_next_rand_offset_zoned(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 unsigned int v, send, stotal;
164 uint64_t offset, lastb;
165 static int warned;
166 struct zone_split_index *zsi;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_perc_prev;
184 send = zsi->size_perc;
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!warned) {
191 log_err("fio: bug in zoned generation\n");
192 warned = 1;
193 }
194 goto bail;
195 }
196
197 /*
198 * 'send' is some percentage below or equal to 100 that
199 * marks the end of the current IO range. 'stotal' marks
200 * the start, in percent.
201 */
202 if (stotal)
203 offset = stotal * lastb / 100ULL;
204 else
205 offset = 0;
206
207 lastb = lastb * (send - stotal) / 100ULL;
208
209 /*
210 * Generate index from 0..send-of-lastb
211 */
212 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
213 return 1;
214
215 /*
216 * Add our start offset, if any
217 */
218 if (offset)
219 *b += offset;
220
221 return 0;
222}
223
224static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
225{
226 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
227 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
228
229 return r1->off - r2->off;
230}
231
232static int get_off_from_method(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
236 uint64_t lastb;
237
238 lastb = last_block(td, f, ddir);
239 if (!lastb)
240 return 1;
241
242 return __get_next_rand_offset(td, f, ddir, b, lastb);
243 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
244 return __get_next_rand_offset_zipf(td, f, ddir, b);
245 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
246 return __get_next_rand_offset_pareto(td, f, ddir, b);
247 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
248 return __get_next_rand_offset_gauss(td, f, ddir, b);
249 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
250 return __get_next_rand_offset_zoned(td, f, ddir, b);
251
252 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
253 return 1;
254}
255
256/*
257 * Sort the reads for a verify phase in batches of verifysort_nr, if
258 * specified.
259 */
260static inline bool should_sort_io(struct thread_data *td)
261{
262 if (!td->o.verifysort_nr || !td->o.do_verify)
263 return false;
264 if (!td_random(td))
265 return false;
266 if (td->runstate != TD_VERIFYING)
267 return false;
268 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
269 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
270 return false;
271
272 return true;
273}
274
275static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
276{
277 unsigned int v;
278
279 if (td->o.perc_rand[ddir] == 100)
280 return true;
281
282 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
283
284 return v <= td->o.perc_rand[ddir];
285}
286
287static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 struct rand_off *r;
291 int i, ret = 1;
292
293 if (!should_sort_io(td))
294 return get_off_from_method(td, f, ddir, b);
295
296 if (!flist_empty(&td->next_rand_list)) {
297fetch:
298 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
299 flist_del(&r->list);
300 *b = r->off;
301 free(r);
302 return 0;
303 }
304
305 for (i = 0; i < td->o.verifysort_nr; i++) {
306 r = malloc(sizeof(*r));
307
308 ret = get_off_from_method(td, f, ddir, &r->off);
309 if (ret) {
310 free(r);
311 break;
312 }
313
314 flist_add(&r->list, &td->next_rand_list);
315 }
316
317 if (ret && !i)
318 return ret;
319
320 assert(!flist_empty(&td->next_rand_list));
321 flist_sort(NULL, &td->next_rand_list, flist_cmp);
322 goto fetch;
323}
324
325static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
326 enum fio_ddir ddir, uint64_t *b)
327{
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330
331 if (td->o.time_based ||
332 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
333 fio_file_reset(td, f);
334 if (!get_next_rand_offset(td, f, ddir, b))
335 return 0;
336 }
337
338 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
339 f->file_name, (unsigned long long) f->last_pos[ddir],
340 (unsigned long long) f->real_file_size);
341 return 1;
342}
343
344static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
345 enum fio_ddir ddir, uint64_t *offset)
346{
347 struct thread_options *o = &td->o;
348
349 assert(ddir_rw(ddir));
350
351 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
352 o->time_based) {
353 struct thread_options *o = &td->o;
354 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
355
356 if (io_size > f->last_pos[ddir])
357 f->last_pos[ddir] = 0;
358 else
359 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
360 }
361
362 if (f->last_pos[ddir] < f->real_file_size) {
363 uint64_t pos;
364
365 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
366 if (f->real_file_size > f->io_size)
367 f->last_pos[ddir] = f->io_size;
368 else
369 f->last_pos[ddir] = f->real_file_size;
370 }
371
372 pos = f->last_pos[ddir] - f->file_offset;
373 if (pos && o->ddir_seq_add) {
374 pos += o->ddir_seq_add;
375
376 /*
377 * If we reach beyond the end of the file
378 * with holed IO, wrap around to the
379 * beginning again. If we're doing backwards IO,
380 * wrap to the end.
381 */
382 if (pos >= f->real_file_size) {
383 if (o->ddir_seq_add > 0)
384 pos = f->file_offset;
385 else {
386 if (f->real_file_size > f->io_size)
387 pos = f->io_size;
388 else
389 pos = f->real_file_size;
390
391 pos += o->ddir_seq_add;
392 }
393 }
394 }
395
396 *offset = pos;
397 return 0;
398 }
399
400 return 1;
401}
402
403static int get_next_block(struct thread_data *td, struct io_u *io_u,
404 enum fio_ddir ddir, int rw_seq,
405 unsigned int *is_random)
406{
407 struct fio_file *f = io_u->file;
408 uint64_t b, offset;
409 int ret;
410
411 assert(ddir_rw(ddir));
412
413 b = offset = -1ULL;
414
415 if (rw_seq) {
416 if (td_random(td)) {
417 if (should_do_random(td, ddir)) {
418 ret = get_next_rand_block(td, f, ddir, &b);
419 *is_random = 1;
420 } else {
421 *is_random = 0;
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 ret = get_next_seq_offset(td, f, ddir, &offset);
424 if (ret)
425 ret = get_next_rand_block(td, f, ddir, &b);
426 }
427 } else {
428 *is_random = 0;
429 ret = get_next_seq_offset(td, f, ddir, &offset);
430 }
431 } else {
432 io_u_set(td, io_u, IO_U_F_BUSY_OK);
433 *is_random = 0;
434
435 if (td->o.rw_seq == RW_SEQ_SEQ) {
436 ret = get_next_seq_offset(td, f, ddir, &offset);
437 if (ret) {
438 ret = get_next_rand_block(td, f, ddir, &b);
439 *is_random = 0;
440 }
441 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
442 if (f->last_start[ddir] != -1ULL)
443 offset = f->last_start[ddir] - f->file_offset;
444 else
445 offset = 0;
446 ret = 0;
447 } else {
448 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
449 ret = 1;
450 }
451 }
452
453 if (!ret) {
454 if (offset != -1ULL)
455 io_u->offset = offset;
456 else if (b != -1ULL)
457 io_u->offset = b * td->o.ba[ddir];
458 else {
459 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
460 ret = 1;
461 }
462 }
463
464 return ret;
465}
466
467/*
468 * For random io, generate a random new block and see if it's used. Repeat
469 * until we find a free one. For sequential io, just return the end of
470 * the last io issued.
471 */
472static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
473 unsigned int *is_random)
474{
475 struct fio_file *f = io_u->file;
476 enum fio_ddir ddir = io_u->ddir;
477 int rw_seq_hit = 0;
478
479 assert(ddir_rw(ddir));
480
481 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
482 rw_seq_hit = 1;
483 td->ddir_seq_nr = td->o.ddir_seq_nr;
484 }
485
486 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
487 return 1;
488
489 if (io_u->offset >= f->io_size) {
490 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
491 (unsigned long long) io_u->offset,
492 (unsigned long long) f->io_size);
493 return 1;
494 }
495
496 io_u->offset += f->file_offset;
497 if (io_u->offset >= f->real_file_size) {
498 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
499 (unsigned long long) io_u->offset,
500 (unsigned long long) f->real_file_size);
501 return 1;
502 }
503
504 return 0;
505}
506
507static int get_next_offset(struct thread_data *td, struct io_u *io_u,
508 unsigned int *is_random)
509{
510 if (td->flags & TD_F_PROFILE_OPS) {
511 struct prof_io_ops *ops = &td->prof_io_ops;
512
513 if (ops->fill_io_u_off)
514 return ops->fill_io_u_off(td, io_u, is_random);
515 }
516
517 return __get_next_offset(td, io_u, is_random);
518}
519
520static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
521 unsigned int buflen)
522{
523 struct fio_file *f = io_u->file;
524
525 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
526}
527
528static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
529 unsigned int is_random)
530{
531 int ddir = io_u->ddir;
532 unsigned int buflen = 0;
533 unsigned int minbs, maxbs;
534 uint64_t frand_max, r;
535
536 assert(ddir_rw(ddir));
537
538 if (td->o.bs_is_seq_rand)
539 ddir = is_random ? DDIR_WRITE: DDIR_READ;
540
541 minbs = td->o.min_bs[ddir];
542 maxbs = td->o.max_bs[ddir];
543
544 if (minbs == maxbs)
545 return minbs;
546
547 /*
548 * If we can't satisfy the min block size from here, then fail
549 */
550 if (!io_u_fits(td, io_u, minbs))
551 return 0;
552
553 frand_max = rand_max(&td->bsrange_state);
554 do {
555 r = __rand(&td->bsrange_state);
556
557 if (!td->o.bssplit_nr[ddir]) {
558 buflen = 1 + (unsigned int) ((double) maxbs *
559 (r / (frand_max + 1.0)));
560 if (buflen < minbs)
561 buflen = minbs;
562 } else {
563 long long perc = 0;
564 unsigned int i;
565
566 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
567 struct bssplit *bsp = &td->o.bssplit[ddir][i];
568
569 buflen = bsp->bs;
570 perc += bsp->perc;
571 if (!perc)
572 break;
573 if ((r / perc <= frand_max / 100ULL) &&
574 io_u_fits(td, io_u, buflen))
575 break;
576 }
577 }
578
579 if (td->o.verify != VERIFY_NONE)
580 buflen = (buflen + td->o.verify_interval - 1) &
581 ~(td->o.verify_interval - 1);
582
583 if (!td->o.bs_unaligned && is_power_of_2(minbs))
584 buflen &= ~(minbs - 1);
585
586 } while (!io_u_fits(td, io_u, buflen));
587
588 return buflen;
589}
590
591static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
592 unsigned int is_random)
593{
594 if (td->flags & TD_F_PROFILE_OPS) {
595 struct prof_io_ops *ops = &td->prof_io_ops;
596
597 if (ops->fill_io_u_size)
598 return ops->fill_io_u_size(td, io_u, is_random);
599 }
600
601 return __get_next_buflen(td, io_u, is_random);
602}
603
604static void set_rwmix_bytes(struct thread_data *td)
605{
606 unsigned int diff;
607
608 /*
609 * we do time or byte based switch. this is needed because
610 * buffered writes may issue a lot quicker than they complete,
611 * whereas reads do not.
612 */
613 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
614 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
615}
616
617static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
618{
619 unsigned int v;
620
621 v = rand32_between(&td->rwmix_state, 1, 100);
622
623 if (v <= td->o.rwmix[DDIR_READ])
624 return DDIR_READ;
625
626 return DDIR_WRITE;
627}
628
629int io_u_quiesce(struct thread_data *td)
630{
631 int completed = 0;
632
633 /*
634 * We are going to sleep, ensure that we flush anything pending as
635 * not to skew our latency numbers.
636 *
637 * Changed to only monitor 'in flight' requests here instead of the
638 * td->cur_depth, b/c td->cur_depth does not accurately represent
639 * io's that have been actually submitted to an async engine,
640 * and cur_depth is meaningless for sync engines.
641 */
642 if (td->io_u_queued || td->cur_depth) {
643 int fio_unused ret;
644
645 ret = td_io_commit(td);
646 }
647
648 while (td->io_u_in_flight) {
649 int fio_unused ret;
650
651 ret = io_u_queued_complete(td, 1);
652 if (ret > 0)
653 completed += ret;
654 }
655
656 return completed;
657}
658
659static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
660{
661 enum fio_ddir odir = ddir ^ 1;
662 long usec;
663 uint64_t now;
664
665 assert(ddir_rw(ddir));
666 now = utime_since_now(&td->start);
667
668 /*
669 * if rate_next_io_time is in the past, need to catch up to rate
670 */
671 if (td->rate_next_io_time[ddir] <= now)
672 return ddir;
673
674 /*
675 * We are ahead of rate in this direction. See if we
676 * should switch.
677 */
678 if (td_rw(td) && td->o.rwmix[odir]) {
679 /*
680 * Other direction is behind rate, switch
681 */
682 if (td->rate_next_io_time[odir] <= now)
683 return odir;
684
685 /*
686 * Both directions are ahead of rate. sleep the min
687 * switch if necissary
688 */
689 if (td->rate_next_io_time[ddir] <=
690 td->rate_next_io_time[odir]) {
691 usec = td->rate_next_io_time[ddir] - now;
692 } else {
693 usec = td->rate_next_io_time[odir] - now;
694 ddir = odir;
695 }
696 } else
697 usec = td->rate_next_io_time[ddir] - now;
698
699 if (td->o.io_submit_mode == IO_MODE_INLINE)
700 io_u_quiesce(td);
701
702 usec = usec_sleep(td, usec);
703
704 return ddir;
705}
706
707/*
708 * Return the data direction for the next io_u. If the job is a
709 * mixed read/write workload, check the rwmix cycle and switch if
710 * necessary.
711 */
712static enum fio_ddir get_rw_ddir(struct thread_data *td)
713{
714 enum fio_ddir ddir;
715
716 /*
717 * see if it's time to fsync
718 */
719 if (td->o.fsync_blocks &&
720 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
721 td->io_issues[DDIR_WRITE] && should_fsync(td))
722 return DDIR_SYNC;
723
724 /*
725 * see if it's time to fdatasync
726 */
727 if (td->o.fdatasync_blocks &&
728 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
729 td->io_issues[DDIR_WRITE] && should_fsync(td))
730 return DDIR_DATASYNC;
731
732 /*
733 * see if it's time to sync_file_range
734 */
735 if (td->sync_file_range_nr &&
736 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
737 td->io_issues[DDIR_WRITE] && should_fsync(td))
738 return DDIR_SYNC_FILE_RANGE;
739
740 if (td_rw(td)) {
741 /*
742 * Check if it's time to seed a new data direction.
743 */
744 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
745 /*
746 * Put a top limit on how many bytes we do for
747 * one data direction, to avoid overflowing the
748 * ranges too much
749 */
750 ddir = get_rand_ddir(td);
751
752 if (ddir != td->rwmix_ddir)
753 set_rwmix_bytes(td);
754
755 td->rwmix_ddir = ddir;
756 }
757 ddir = td->rwmix_ddir;
758 } else if (td_read(td))
759 ddir = DDIR_READ;
760 else if (td_write(td))
761 ddir = DDIR_WRITE;
762 else
763 ddir = DDIR_TRIM;
764
765 td->rwmix_ddir = rate_ddir(td, ddir);
766 return td->rwmix_ddir;
767}
768
769static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
770{
771 enum fio_ddir ddir = get_rw_ddir(td);
772
773 if (td_trimwrite(td)) {
774 struct fio_file *f = io_u->file;
775 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
776 ddir = DDIR_TRIM;
777 else
778 ddir = DDIR_WRITE;
779 }
780
781 io_u->ddir = io_u->acct_ddir = ddir;
782
783 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
784 td->o.barrier_blocks &&
785 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
786 td->io_issues[DDIR_WRITE])
787 io_u_set(td, io_u, IO_U_F_BARRIER);
788}
789
790void put_file_log(struct thread_data *td, struct fio_file *f)
791{
792 unsigned int ret = put_file(td, f);
793
794 if (ret)
795 td_verror(td, ret, "file close");
796}
797
798void put_io_u(struct thread_data *td, struct io_u *io_u)
799{
800 if (td->parent)
801 td = td->parent;
802
803 td_io_u_lock(td);
804
805 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
806 put_file_log(td, io_u->file);
807
808 io_u->file = NULL;
809 io_u_set(td, io_u, IO_U_F_FREE);
810
811 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
812 td->cur_depth--;
813 assert(!(td->flags & TD_F_CHILD));
814 }
815 io_u_qpush(&td->io_u_freelist, io_u);
816 td_io_u_unlock(td);
817 td_io_u_free_notify(td);
818}
819
820void clear_io_u(struct thread_data *td, struct io_u *io_u)
821{
822 io_u_clear(td, io_u, IO_U_F_FLIGHT);
823 put_io_u(td, io_u);
824}
825
826void requeue_io_u(struct thread_data *td, struct io_u **io_u)
827{
828 struct io_u *__io_u = *io_u;
829 enum fio_ddir ddir = acct_ddir(__io_u);
830
831 dprint(FD_IO, "requeue %p\n", __io_u);
832
833 if (td->parent)
834 td = td->parent;
835
836 td_io_u_lock(td);
837
838 io_u_set(td, __io_u, IO_U_F_FREE);
839 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
840 td->io_issues[ddir]--;
841
842 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
843 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
844 td->cur_depth--;
845 assert(!(td->flags & TD_F_CHILD));
846 }
847
848 io_u_rpush(&td->io_u_requeues, __io_u);
849 td_io_u_unlock(td);
850 td_io_u_free_notify(td);
851 *io_u = NULL;
852}
853
854static int fill_io_u(struct thread_data *td, struct io_u *io_u)
855{
856 unsigned int is_random;
857
858 if (td_ioengine_flagged(td, FIO_NOIO))
859 goto out;
860
861 set_rw_ddir(td, io_u);
862
863 /*
864 * fsync() or fdatasync() or trim etc, we are done
865 */
866 if (!ddir_rw(io_u->ddir))
867 goto out;
868
869 /*
870 * See if it's time to switch to a new zone
871 */
872 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
873 struct fio_file *f = io_u->file;
874
875 td->zone_bytes = 0;
876 f->file_offset += td->o.zone_range + td->o.zone_skip;
877
878 /*
879 * Wrap from the beginning, if we exceed the file size
880 */
881 if (f->file_offset >= f->real_file_size)
882 f->file_offset = f->real_file_size - f->file_offset;
883 f->last_pos[io_u->ddir] = f->file_offset;
884 td->io_skip_bytes += td->o.zone_skip;
885 }
886
887 /*
888 * No log, let the seq/rand engine retrieve the next buflen and
889 * position.
890 */
891 if (get_next_offset(td, io_u, &is_random)) {
892 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
893 return 1;
894 }
895
896 io_u->buflen = get_next_buflen(td, io_u, is_random);
897 if (!io_u->buflen) {
898 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
899 return 1;
900 }
901
902 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
903 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
904 dprint(FD_IO, " off=%llu/%lu > %llu\n",
905 (unsigned long long) io_u->offset, io_u->buflen,
906 (unsigned long long) io_u->file->real_file_size);
907 return 1;
908 }
909
910 /*
911 * mark entry before potentially trimming io_u
912 */
913 if (td_random(td) && file_randommap(td, io_u->file))
914 mark_random_map(td, io_u);
915
916out:
917 dprint_io_u(io_u, "fill_io_u");
918 td->zone_bytes += io_u->buflen;
919 return 0;
920}
921
922static void __io_u_mark_map(unsigned int *map, unsigned int nr)
923{
924 int idx = 0;
925
926 switch (nr) {
927 default:
928 idx = 6;
929 break;
930 case 33 ... 64:
931 idx = 5;
932 break;
933 case 17 ... 32:
934 idx = 4;
935 break;
936 case 9 ... 16:
937 idx = 3;
938 break;
939 case 5 ... 8:
940 idx = 2;
941 break;
942 case 1 ... 4:
943 idx = 1;
944 case 0:
945 break;
946 }
947
948 map[idx]++;
949}
950
951void io_u_mark_submit(struct thread_data *td, unsigned int nr)
952{
953 __io_u_mark_map(td->ts.io_u_submit, nr);
954 td->ts.total_submit++;
955}
956
957void io_u_mark_complete(struct thread_data *td, unsigned int nr)
958{
959 __io_u_mark_map(td->ts.io_u_complete, nr);
960 td->ts.total_complete++;
961}
962
963void io_u_mark_depth(struct thread_data *td, unsigned int nr)
964{
965 int idx = 0;
966
967 switch (td->cur_depth) {
968 default:
969 idx = 6;
970 break;
971 case 32 ... 63:
972 idx = 5;
973 break;
974 case 16 ... 31:
975 idx = 4;
976 break;
977 case 8 ... 15:
978 idx = 3;
979 break;
980 case 4 ... 7:
981 idx = 2;
982 break;
983 case 2 ... 3:
984 idx = 1;
985 case 1:
986 break;
987 }
988
989 td->ts.io_u_map[idx] += nr;
990}
991
992static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
993{
994 int idx = 0;
995
996 assert(usec < 1000);
997
998 switch (usec) {
999 case 750 ... 999:
1000 idx = 9;
1001 break;
1002 case 500 ... 749:
1003 idx = 8;
1004 break;
1005 case 250 ... 499:
1006 idx = 7;
1007 break;
1008 case 100 ... 249:
1009 idx = 6;
1010 break;
1011 case 50 ... 99:
1012 idx = 5;
1013 break;
1014 case 20 ... 49:
1015 idx = 4;
1016 break;
1017 case 10 ... 19:
1018 idx = 3;
1019 break;
1020 case 4 ... 9:
1021 idx = 2;
1022 break;
1023 case 2 ... 3:
1024 idx = 1;
1025 case 0 ... 1:
1026 break;
1027 }
1028
1029 assert(idx < FIO_IO_U_LAT_U_NR);
1030 td->ts.io_u_lat_u[idx]++;
1031}
1032
1033static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1034{
1035 int idx = 0;
1036
1037 switch (msec) {
1038 default:
1039 idx = 11;
1040 break;
1041 case 1000 ... 1999:
1042 idx = 10;
1043 break;
1044 case 750 ... 999:
1045 idx = 9;
1046 break;
1047 case 500 ... 749:
1048 idx = 8;
1049 break;
1050 case 250 ... 499:
1051 idx = 7;
1052 break;
1053 case 100 ... 249:
1054 idx = 6;
1055 break;
1056 case 50 ... 99:
1057 idx = 5;
1058 break;
1059 case 20 ... 49:
1060 idx = 4;
1061 break;
1062 case 10 ... 19:
1063 idx = 3;
1064 break;
1065 case 4 ... 9:
1066 idx = 2;
1067 break;
1068 case 2 ... 3:
1069 idx = 1;
1070 case 0 ... 1:
1071 break;
1072 }
1073
1074 assert(idx < FIO_IO_U_LAT_M_NR);
1075 td->ts.io_u_lat_m[idx]++;
1076}
1077
1078static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1079{
1080 if (usec < 1000)
1081 io_u_mark_lat_usec(td, usec);
1082 else
1083 io_u_mark_lat_msec(td, usec / 1000);
1084}
1085
1086static unsigned int __get_next_fileno_rand(struct thread_data *td)
1087{
1088 unsigned long fileno;
1089
1090 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1091 uint64_t frand_max = rand_max(&td->next_file_state);
1092 unsigned long r;
1093
1094 r = __rand(&td->next_file_state);
1095 return (unsigned int) ((double) td->o.nr_files
1096 * (r / (frand_max + 1.0)));
1097 }
1098
1099 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1100 fileno = zipf_next(&td->next_file_zipf);
1101 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1102 fileno = pareto_next(&td->next_file_zipf);
1103 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1104 fileno = gauss_next(&td->next_file_gauss);
1105 else {
1106 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1107 assert(0);
1108 return 0;
1109 }
1110
1111 return fileno >> FIO_FSERVICE_SHIFT;
1112}
1113
1114/*
1115 * Get next file to service by choosing one at random
1116 */
1117static struct fio_file *get_next_file_rand(struct thread_data *td,
1118 enum fio_file_flags goodf,
1119 enum fio_file_flags badf)
1120{
1121 struct fio_file *f;
1122 int fno;
1123
1124 do {
1125 int opened = 0;
1126
1127 fno = __get_next_fileno_rand(td);
1128
1129 f = td->files[fno];
1130 if (fio_file_done(f))
1131 continue;
1132
1133 if (!fio_file_open(f)) {
1134 int err;
1135
1136 if (td->nr_open_files >= td->o.open_files)
1137 return ERR_PTR(-EBUSY);
1138
1139 err = td_io_open_file(td, f);
1140 if (err)
1141 continue;
1142 opened = 1;
1143 }
1144
1145 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1146 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1147 return f;
1148 }
1149 if (opened)
1150 td_io_close_file(td, f);
1151 } while (1);
1152}
1153
1154/*
1155 * Get next file to service by doing round robin between all available ones
1156 */
1157static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1158 int badf)
1159{
1160 unsigned int old_next_file = td->next_file;
1161 struct fio_file *f;
1162
1163 do {
1164 int opened = 0;
1165
1166 f = td->files[td->next_file];
1167
1168 td->next_file++;
1169 if (td->next_file >= td->o.nr_files)
1170 td->next_file = 0;
1171
1172 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1173 if (fio_file_done(f)) {
1174 f = NULL;
1175 continue;
1176 }
1177
1178 if (!fio_file_open(f)) {
1179 int err;
1180
1181 if (td->nr_open_files >= td->o.open_files)
1182 return ERR_PTR(-EBUSY);
1183
1184 err = td_io_open_file(td, f);
1185 if (err) {
1186 dprint(FD_FILE, "error %d on open of %s\n",
1187 err, f->file_name);
1188 f = NULL;
1189 continue;
1190 }
1191 opened = 1;
1192 }
1193
1194 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1195 f->flags);
1196 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1197 break;
1198
1199 if (opened)
1200 td_io_close_file(td, f);
1201
1202 f = NULL;
1203 } while (td->next_file != old_next_file);
1204
1205 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1206 return f;
1207}
1208
1209static struct fio_file *__get_next_file(struct thread_data *td)
1210{
1211 struct fio_file *f;
1212
1213 assert(td->o.nr_files <= td->files_index);
1214
1215 if (td->nr_done_files >= td->o.nr_files) {
1216 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1217 " nr_files=%d\n", td->nr_open_files,
1218 td->nr_done_files,
1219 td->o.nr_files);
1220 return NULL;
1221 }
1222
1223 f = td->file_service_file;
1224 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1225 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1226 goto out;
1227 if (td->file_service_left--)
1228 goto out;
1229 }
1230
1231 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1232 td->o.file_service_type == FIO_FSERVICE_SEQ)
1233 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1234 else
1235 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1236
1237 if (IS_ERR(f))
1238 return f;
1239
1240 td->file_service_file = f;
1241 td->file_service_left = td->file_service_nr - 1;
1242out:
1243 if (f)
1244 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1245 else
1246 dprint(FD_FILE, "get_next_file: NULL\n");
1247 return f;
1248}
1249
1250static struct fio_file *get_next_file(struct thread_data *td)
1251{
1252 if (td->flags & TD_F_PROFILE_OPS) {
1253 struct prof_io_ops *ops = &td->prof_io_ops;
1254
1255 if (ops->get_next_file)
1256 return ops->get_next_file(td);
1257 }
1258
1259 return __get_next_file(td);
1260}
1261
1262static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1263{
1264 struct fio_file *f;
1265
1266 do {
1267 f = get_next_file(td);
1268 if (IS_ERR_OR_NULL(f))
1269 return PTR_ERR(f);
1270
1271 io_u->file = f;
1272 get_file(f);
1273
1274 if (!fill_io_u(td, io_u))
1275 break;
1276
1277 put_file_log(td, f);
1278 td_io_close_file(td, f);
1279 io_u->file = NULL;
1280 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1281 fio_file_reset(td, f);
1282 else {
1283 fio_file_set_done(f);
1284 td->nr_done_files++;
1285 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1286 td->nr_done_files, td->o.nr_files);
1287 }
1288 } while (1);
1289
1290 return 0;
1291}
1292
1293static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1294 unsigned long tusec, unsigned long max_usec)
1295{
1296 if (!td->error)
1297 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1298 td_verror(td, ETIMEDOUT, "max latency exceeded");
1299 icd->error = ETIMEDOUT;
1300}
1301
1302static void lat_new_cycle(struct thread_data *td)
1303{
1304 fio_gettime(&td->latency_ts, NULL);
1305 td->latency_ios = ddir_rw_sum(td->io_blocks);
1306 td->latency_failed = 0;
1307}
1308
1309/*
1310 * We had an IO outside the latency target. Reduce the queue depth. If we
1311 * are at QD=1, then it's time to give up.
1312 */
1313static bool __lat_target_failed(struct thread_data *td)
1314{
1315 if (td->latency_qd == 1)
1316 return true;
1317
1318 td->latency_qd_high = td->latency_qd;
1319
1320 if (td->latency_qd == td->latency_qd_low)
1321 td->latency_qd_low--;
1322
1323 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1324
1325 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1326
1327 /*
1328 * When we ramp QD down, quiesce existing IO to prevent
1329 * a storm of ramp downs due to pending higher depth.
1330 */
1331 io_u_quiesce(td);
1332 lat_new_cycle(td);
1333 return false;
1334}
1335
1336static bool lat_target_failed(struct thread_data *td)
1337{
1338 if (td->o.latency_percentile.u.f == 100.0)
1339 return __lat_target_failed(td);
1340
1341 td->latency_failed++;
1342 return false;
1343}
1344
1345void lat_target_init(struct thread_data *td)
1346{
1347 td->latency_end_run = 0;
1348
1349 if (td->o.latency_target) {
1350 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1351 fio_gettime(&td->latency_ts, NULL);
1352 td->latency_qd = 1;
1353 td->latency_qd_high = td->o.iodepth;
1354 td->latency_qd_low = 1;
1355 td->latency_ios = ddir_rw_sum(td->io_blocks);
1356 } else
1357 td->latency_qd = td->o.iodepth;
1358}
1359
1360void lat_target_reset(struct thread_data *td)
1361{
1362 if (!td->latency_end_run)
1363 lat_target_init(td);
1364}
1365
1366static void lat_target_success(struct thread_data *td)
1367{
1368 const unsigned int qd = td->latency_qd;
1369 struct thread_options *o = &td->o;
1370
1371 td->latency_qd_low = td->latency_qd;
1372
1373 /*
1374 * If we haven't failed yet, we double up to a failing value instead
1375 * of bisecting from highest possible queue depth. If we have set
1376 * a limit other than td->o.iodepth, bisect between that.
1377 */
1378 if (td->latency_qd_high != o->iodepth)
1379 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1380 else
1381 td->latency_qd *= 2;
1382
1383 if (td->latency_qd > o->iodepth)
1384 td->latency_qd = o->iodepth;
1385
1386 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1387
1388 /*
1389 * Same as last one, we are done. Let it run a latency cycle, so
1390 * we get only the results from the targeted depth.
1391 */
1392 if (td->latency_qd == qd) {
1393 if (td->latency_end_run) {
1394 dprint(FD_RATE, "We are done\n");
1395 td->done = 1;
1396 } else {
1397 dprint(FD_RATE, "Quiesce and final run\n");
1398 io_u_quiesce(td);
1399 td->latency_end_run = 1;
1400 reset_all_stats(td);
1401 reset_io_stats(td);
1402 }
1403 }
1404
1405 lat_new_cycle(td);
1406}
1407
1408/*
1409 * Check if we can bump the queue depth
1410 */
1411void lat_target_check(struct thread_data *td)
1412{
1413 uint64_t usec_window;
1414 uint64_t ios;
1415 double success_ios;
1416
1417 usec_window = utime_since_now(&td->latency_ts);
1418 if (usec_window < td->o.latency_window)
1419 return;
1420
1421 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1422 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1423 success_ios *= 100.0;
1424
1425 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1426
1427 if (success_ios >= td->o.latency_percentile.u.f)
1428 lat_target_success(td);
1429 else
1430 __lat_target_failed(td);
1431}
1432
1433/*
1434 * If latency target is enabled, we might be ramping up or down and not
1435 * using the full queue depth available.
1436 */
1437bool queue_full(const struct thread_data *td)
1438{
1439 const int qempty = io_u_qempty(&td->io_u_freelist);
1440
1441 if (qempty)
1442 return true;
1443 if (!td->o.latency_target)
1444 return false;
1445
1446 return td->cur_depth >= td->latency_qd;
1447}
1448
1449struct io_u *__get_io_u(struct thread_data *td)
1450{
1451 struct io_u *io_u = NULL;
1452
1453 if (td->stop_io)
1454 return NULL;
1455
1456 td_io_u_lock(td);
1457
1458again:
1459 if (!io_u_rempty(&td->io_u_requeues))
1460 io_u = io_u_rpop(&td->io_u_requeues);
1461 else if (!queue_full(td)) {
1462 io_u = io_u_qpop(&td->io_u_freelist);
1463
1464 io_u->file = NULL;
1465 io_u->buflen = 0;
1466 io_u->resid = 0;
1467 io_u->end_io = NULL;
1468 }
1469
1470 if (io_u) {
1471 assert(io_u->flags & IO_U_F_FREE);
1472 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1473 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1474 IO_U_F_VER_LIST);
1475
1476 io_u->error = 0;
1477 io_u->acct_ddir = -1;
1478 td->cur_depth++;
1479 assert(!(td->flags & TD_F_CHILD));
1480 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1481 io_u->ipo = NULL;
1482 } else if (td_async_processing(td)) {
1483 /*
1484 * We ran out, wait for async verify threads to finish and
1485 * return one
1486 */
1487 assert(!(td->flags & TD_F_CHILD));
1488 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1489 goto again;
1490 }
1491
1492 td_io_u_unlock(td);
1493 return io_u;
1494}
1495
1496static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1497{
1498 if (!(td->flags & TD_F_TRIM_BACKLOG))
1499 return false;
1500
1501 if (td->trim_entries) {
1502 int get_trim = 0;
1503
1504 if (td->trim_batch) {
1505 td->trim_batch--;
1506 get_trim = 1;
1507 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1508 td->last_ddir != DDIR_READ) {
1509 td->trim_batch = td->o.trim_batch;
1510 if (!td->trim_batch)
1511 td->trim_batch = td->o.trim_backlog;
1512 get_trim = 1;
1513 }
1514
1515 if (get_trim && get_next_trim(td, io_u))
1516 return true;
1517 }
1518
1519 return false;
1520}
1521
1522static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1523{
1524 if (!(td->flags & TD_F_VER_BACKLOG))
1525 return false;
1526
1527 if (td->io_hist_len) {
1528 int get_verify = 0;
1529
1530 if (td->verify_batch)
1531 get_verify = 1;
1532 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1533 td->last_ddir != DDIR_READ) {
1534 td->verify_batch = td->o.verify_batch;
1535 if (!td->verify_batch)
1536 td->verify_batch = td->o.verify_backlog;
1537 get_verify = 1;
1538 }
1539
1540 if (get_verify && !get_next_verify(td, io_u)) {
1541 td->verify_batch--;
1542 return true;
1543 }
1544 }
1545
1546 return false;
1547}
1548
1549/*
1550 * Fill offset and start time into the buffer content, to prevent too
1551 * easy compressible data for simple de-dupe attempts. Do this for every
1552 * 512b block in the range, since that should be the smallest block size
1553 * we can expect from a device.
1554 */
1555static void small_content_scramble(struct io_u *io_u)
1556{
1557 unsigned int i, nr_blocks = io_u->buflen / 512;
1558 uint64_t boffset;
1559 unsigned int offset;
1560 void *p, *end;
1561
1562 if (!nr_blocks)
1563 return;
1564
1565 p = io_u->xfer_buf;
1566 boffset = io_u->offset;
1567 io_u->buf_filled_len = 0;
1568
1569 for (i = 0; i < nr_blocks; i++) {
1570 /*
1571 * Fill the byte offset into a "random" start offset of
1572 * the buffer, given by the product of the usec time
1573 * and the actual offset.
1574 */
1575 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1576 offset &= ~(sizeof(uint64_t) - 1);
1577 if (offset >= 512 - sizeof(uint64_t))
1578 offset -= sizeof(uint64_t);
1579 memcpy(p + offset, &boffset, sizeof(boffset));
1580
1581 end = p + 512 - sizeof(io_u->start_time);
1582 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1583 p += 512;
1584 boffset += 512;
1585 }
1586}
1587
1588/*
1589 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1590 * etc. The returned io_u is fully ready to be prepped and submitted.
1591 */
1592struct io_u *get_io_u(struct thread_data *td)
1593{
1594 struct fio_file *f;
1595 struct io_u *io_u;
1596 int do_scramble = 0;
1597 long ret = 0;
1598
1599 io_u = __get_io_u(td);
1600 if (!io_u) {
1601 dprint(FD_IO, "__get_io_u failed\n");
1602 return NULL;
1603 }
1604
1605 if (check_get_verify(td, io_u))
1606 goto out;
1607 if (check_get_trim(td, io_u))
1608 goto out;
1609
1610 /*
1611 * from a requeue, io_u already setup
1612 */
1613 if (io_u->file)
1614 goto out;
1615
1616 /*
1617 * If using an iolog, grab next piece if any available.
1618 */
1619 if (td->flags & TD_F_READ_IOLOG) {
1620 if (read_iolog_get(td, io_u))
1621 goto err_put;
1622 } else if (set_io_u_file(td, io_u)) {
1623 ret = -EBUSY;
1624 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1625 goto err_put;
1626 }
1627
1628 f = io_u->file;
1629 if (!f) {
1630 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1631 goto err_put;
1632 }
1633
1634 assert(fio_file_open(f));
1635
1636 if (ddir_rw(io_u->ddir)) {
1637 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1638 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1639 goto err_put;
1640 }
1641
1642 f->last_start[io_u->ddir] = io_u->offset;
1643 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1644
1645 if (io_u->ddir == DDIR_WRITE) {
1646 if (td->flags & TD_F_REFILL_BUFFERS) {
1647 io_u_fill_buffer(td, io_u,
1648 td->o.min_bs[DDIR_WRITE],
1649 io_u->buflen);
1650 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1651 !(td->flags & TD_F_COMPRESS))
1652 do_scramble = 1;
1653 if (td->flags & TD_F_VER_NONE) {
1654 populate_verify_io_u(td, io_u);
1655 do_scramble = 0;
1656 }
1657 } else if (io_u->ddir == DDIR_READ) {
1658 /*
1659 * Reset the buf_filled parameters so next time if the
1660 * buffer is used for writes it is refilled.
1661 */
1662 io_u->buf_filled_len = 0;
1663 }
1664 }
1665
1666 /*
1667 * Set io data pointers.
1668 */
1669 io_u->xfer_buf = io_u->buf;
1670 io_u->xfer_buflen = io_u->buflen;
1671
1672out:
1673 assert(io_u->file);
1674 if (!td_io_prep(td, io_u)) {
1675 if (!td->o.disable_lat)
1676 fio_gettime(&io_u->start_time, NULL);
1677 if (do_scramble)
1678 small_content_scramble(io_u);
1679 return io_u;
1680 }
1681err_put:
1682 dprint(FD_IO, "get_io_u failed\n");
1683 put_io_u(td, io_u);
1684 return ERR_PTR(ret);
1685}
1686
1687static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1688{
1689 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1690
1691 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1692 return;
1693
1694 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1695 io_u->file ? " on file " : "",
1696 io_u->file ? io_u->file->file_name : "",
1697 strerror(io_u->error),
1698 io_ddir_name(io_u->ddir),
1699 io_u->offset, io_u->xfer_buflen);
1700
1701 if (td->io_ops->errdetails) {
1702 char *err = td->io_ops->errdetails(io_u);
1703
1704 log_err("fio: %s\n", err);
1705 free(err);
1706 }
1707
1708 if (!td->error)
1709 td_verror(td, io_u->error, "io_u error");
1710}
1711
1712void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1713{
1714 __io_u_log_error(td, io_u);
1715 if (td->parent)
1716 __io_u_log_error(td->parent, io_u);
1717}
1718
1719static inline bool gtod_reduce(struct thread_data *td)
1720{
1721 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1722 || td->o.gtod_reduce;
1723}
1724
1725static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1726 struct io_completion_data *icd,
1727 const enum fio_ddir idx, unsigned int bytes)
1728{
1729 const int no_reduce = !gtod_reduce(td);
1730 unsigned long lusec = 0;
1731
1732 if (td->parent)
1733 td = td->parent;
1734
1735 if (no_reduce)
1736 lusec = utime_since(&io_u->issue_time, &icd->time);
1737
1738 if (!td->o.disable_lat) {
1739 unsigned long tusec;
1740
1741 tusec = utime_since(&io_u->start_time, &icd->time);
1742 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1743
1744 if (td->flags & TD_F_PROFILE_OPS) {
1745 struct prof_io_ops *ops = &td->prof_io_ops;
1746
1747 if (ops->io_u_lat)
1748 icd->error = ops->io_u_lat(td, tusec);
1749 }
1750
1751 if (td->o.max_latency && tusec > td->o.max_latency)
1752 lat_fatal(td, icd, tusec, td->o.max_latency);
1753 if (td->o.latency_target && tusec > td->o.latency_target) {
1754 if (lat_target_failed(td))
1755 lat_fatal(td, icd, tusec, td->o.latency_target);
1756 }
1757 }
1758
1759 if (ddir_rw(idx)) {
1760 if (!td->o.disable_clat) {
1761 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1762 io_u_mark_latency(td, lusec);
1763 }
1764
1765 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1766 add_bw_sample(td, io_u, bytes, lusec);
1767
1768 if (no_reduce && per_unit_log(td->iops_log))
1769 add_iops_sample(td, io_u, bytes);
1770 }
1771
1772 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1773 uint32_t *info = io_u_block_info(td, io_u);
1774 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1775 if (io_u->ddir == DDIR_TRIM) {
1776 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1777 BLOCK_INFO_TRIMS(*info) + 1);
1778 } else if (io_u->ddir == DDIR_WRITE) {
1779 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1780 *info);
1781 }
1782 }
1783 }
1784}
1785
1786static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1787 uint64_t offset, unsigned int bytes)
1788{
1789 int idx;
1790
1791 if (!f)
1792 return;
1793
1794 if (f->first_write == -1ULL || offset < f->first_write)
1795 f->first_write = offset;
1796 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1797 f->last_write = offset + bytes;
1798
1799 if (!f->last_write_comp)
1800 return;
1801
1802 idx = f->last_write_idx++;
1803 f->last_write_comp[idx] = offset;
1804 if (f->last_write_idx == td->o.iodepth)
1805 f->last_write_idx = 0;
1806}
1807
1808static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1809 struct io_completion_data *icd)
1810{
1811 struct io_u *io_u = *io_u_ptr;
1812 enum fio_ddir ddir = io_u->ddir;
1813 struct fio_file *f = io_u->file;
1814
1815 dprint_io_u(io_u, "io complete");
1816
1817 assert(io_u->flags & IO_U_F_FLIGHT);
1818 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1819
1820 /*
1821 * Mark IO ok to verify
1822 */
1823 if (io_u->ipo) {
1824 /*
1825 * Remove errored entry from the verification list
1826 */
1827 if (io_u->error)
1828 unlog_io_piece(td, io_u);
1829 else {
1830 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1831 write_barrier();
1832 }
1833 }
1834
1835 if (ddir_sync(ddir)) {
1836 td->last_was_sync = 1;
1837 if (f) {
1838 f->first_write = -1ULL;
1839 f->last_write = -1ULL;
1840 }
1841 return;
1842 }
1843
1844 td->last_was_sync = 0;
1845 td->last_ddir = ddir;
1846
1847 if (!io_u->error && ddir_rw(ddir)) {
1848 unsigned int bytes = io_u->buflen - io_u->resid;
1849 int ret;
1850
1851 td->io_blocks[ddir]++;
1852 td->this_io_blocks[ddir]++;
1853 td->io_bytes[ddir] += bytes;
1854
1855 if (!(io_u->flags & IO_U_F_VER_LIST))
1856 td->this_io_bytes[ddir] += bytes;
1857
1858 if (ddir == DDIR_WRITE)
1859 file_log_write_comp(td, f, io_u->offset, bytes);
1860
1861 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1862 td->runstate == TD_VERIFYING))
1863 account_io_completion(td, io_u, icd, ddir, bytes);
1864
1865 icd->bytes_done[ddir] += bytes;
1866
1867 if (io_u->end_io) {
1868 ret = io_u->end_io(td, io_u_ptr);
1869 io_u = *io_u_ptr;
1870 if (ret && !icd->error)
1871 icd->error = ret;
1872 }
1873 } else if (io_u->error) {
1874 icd->error = io_u->error;
1875 io_u_log_error(td, io_u);
1876 }
1877 if (icd->error) {
1878 enum error_type_bit eb = td_error_type(ddir, icd->error);
1879
1880 if (!td_non_fatal_error(td, eb, icd->error))
1881 return;
1882
1883 /*
1884 * If there is a non_fatal error, then add to the error count
1885 * and clear all the errors.
1886 */
1887 update_error_count(td, icd->error);
1888 td_clear_error(td);
1889 icd->error = 0;
1890 if (io_u)
1891 io_u->error = 0;
1892 }
1893}
1894
1895static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1896 int nr)
1897{
1898 int ddir;
1899
1900 if (!gtod_reduce(td))
1901 fio_gettime(&icd->time, NULL);
1902
1903 icd->nr = nr;
1904
1905 icd->error = 0;
1906 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1907 icd->bytes_done[ddir] = 0;
1908}
1909
1910static void ios_completed(struct thread_data *td,
1911 struct io_completion_data *icd)
1912{
1913 struct io_u *io_u;
1914 int i;
1915
1916 for (i = 0; i < icd->nr; i++) {
1917 io_u = td->io_ops->event(td, i);
1918
1919 io_completed(td, &io_u, icd);
1920
1921 if (io_u)
1922 put_io_u(td, io_u);
1923 }
1924}
1925
1926/*
1927 * Complete a single io_u for the sync engines.
1928 */
1929int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1930{
1931 struct io_completion_data icd;
1932 int ddir;
1933
1934 init_icd(td, &icd, 1);
1935 io_completed(td, &io_u, &icd);
1936
1937 if (io_u)
1938 put_io_u(td, io_u);
1939
1940 if (icd.error) {
1941 td_verror(td, icd.error, "io_u_sync_complete");
1942 return -1;
1943 }
1944
1945 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1946 td->bytes_done[ddir] += icd.bytes_done[ddir];
1947
1948 return 0;
1949}
1950
1951/*
1952 * Called to complete min_events number of io for the async engines.
1953 */
1954int io_u_queued_complete(struct thread_data *td, int min_evts)
1955{
1956 struct io_completion_data icd;
1957 struct timespec *tvp = NULL;
1958 int ret, ddir;
1959 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1960
1961 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1962
1963 if (!min_evts)
1964 tvp = &ts;
1965 else if (min_evts > td->cur_depth)
1966 min_evts = td->cur_depth;
1967
1968 /* No worries, td_io_getevents fixes min and max if they are
1969 * set incorrectly */
1970 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1971 if (ret < 0) {
1972 td_verror(td, -ret, "td_io_getevents");
1973 return ret;
1974 } else if (!ret)
1975 return ret;
1976
1977 init_icd(td, &icd, ret);
1978 ios_completed(td, &icd);
1979 if (icd.error) {
1980 td_verror(td, icd.error, "io_u_queued_complete");
1981 return -1;
1982 }
1983
1984 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1985 td->bytes_done[ddir] += icd.bytes_done[ddir];
1986
1987 return ret;
1988}
1989
1990/*
1991 * Call when io_u is really queued, to update the submission latency.
1992 */
1993void io_u_queued(struct thread_data *td, struct io_u *io_u)
1994{
1995 if (!td->o.disable_slat) {
1996 unsigned long slat_time;
1997
1998 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1999
2000 if (td->parent)
2001 td = td->parent;
2002
2003 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2004 io_u->offset);
2005 }
2006}
2007
2008/*
2009 * See if we should reuse the last seed, if dedupe is enabled
2010 */
2011static struct frand_state *get_buf_state(struct thread_data *td)
2012{
2013 unsigned int v;
2014
2015 if (!td->o.dedupe_percentage)
2016 return &td->buf_state;
2017 else if (td->o.dedupe_percentage == 100) {
2018 frand_copy(&td->buf_state_prev, &td->buf_state);
2019 return &td->buf_state;
2020 }
2021
2022 v = rand32_between(&td->dedupe_state, 1, 100);
2023
2024 if (v <= td->o.dedupe_percentage)
2025 return &td->buf_state_prev;
2026
2027 return &td->buf_state;
2028}
2029
2030static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2031{
2032 if (td->o.dedupe_percentage == 100)
2033 frand_copy(rs, &td->buf_state_prev);
2034 else if (rs == &td->buf_state)
2035 frand_copy(&td->buf_state_prev, rs);
2036}
2037
2038void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2039 unsigned int max_bs)
2040{
2041 struct thread_options *o = &td->o;
2042
2043 if (o->compress_percentage || o->dedupe_percentage) {
2044 unsigned int perc = td->o.compress_percentage;
2045 struct frand_state *rs;
2046 unsigned int left = max_bs;
2047 unsigned int this_write;
2048
2049 do {
2050 rs = get_buf_state(td);
2051
2052 min_write = min(min_write, left);
2053
2054 if (perc) {
2055 this_write = min_not_zero(min_write,
2056 td->o.compress_chunk);
2057
2058 fill_random_buf_percentage(rs, buf, perc,
2059 this_write, this_write,
2060 o->buffer_pattern,
2061 o->buffer_pattern_bytes);
2062 } else {
2063 fill_random_buf(rs, buf, min_write);
2064 this_write = min_write;
2065 }
2066
2067 buf += this_write;
2068 left -= this_write;
2069 save_buf_state(td, rs);
2070 } while (left);
2071 } else if (o->buffer_pattern_bytes)
2072 fill_buffer_pattern(td, buf, max_bs);
2073 else if (o->zero_buffers)
2074 memset(buf, 0, max_bs);
2075 else
2076 fill_random_buf(get_buf_state(td), buf, max_bs);
2077}
2078
2079/*
2080 * "randomly" fill the buffer contents
2081 */
2082void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2083 unsigned int min_write, unsigned int max_bs)
2084{
2085 io_u->buf_filled_len = 0;
2086 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2087}