libfio: clear iops/bw sample times on stats reset
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 */
66 max_size = f->io_size;
67 if (max_size > f->real_file_size)
68 max_size = f->real_file_size;
69
70 if (td->o.zone_range)
71 max_size = td->o.zone_range;
72
73 if (td->o.min_bs[ddir] > td->o.ba[ddir])
74 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
75
76 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
77 if (!max_blocks)
78 return 0;
79
80 return max_blocks;
81}
82
83struct rand_off {
84 struct flist_head list;
85 uint64_t off;
86};
87
88static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
89 enum fio_ddir ddir, uint64_t *b,
90 uint64_t lastb)
91{
92 uint64_t r;
93
94 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
95 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
96
97 r = __rand(&td->random_state);
98
99 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
100
101 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
102 } else {
103 uint64_t off = 0;
104
105 assert(fio_file_lfsr(f));
106
107 if (lfsr_next(&f->lfsr, &off))
108 return 1;
109
110 *b = off;
111 }
112
113 /*
114 * if we are not maintaining a random map, we are done.
115 */
116 if (!file_randommap(td, f))
117 goto ret;
118
119 /*
120 * calculate map offset and check if it's free
121 */
122 if (random_map_free(f, *b))
123 goto ret;
124
125 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
126 (unsigned long long) *b);
127
128 *b = axmap_next_free(f->io_axmap, *b);
129 if (*b == (uint64_t) -1ULL)
130 return 1;
131ret:
132 return 0;
133}
134
135static int __get_next_rand_offset_zipf(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = zipf_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_pareto(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = pareto_next(&f->zipf);
148 return 0;
149}
150
151static int __get_next_rand_offset_gauss(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = gauss_next(&f->gauss);
156 return 0;
157}
158
159static int __get_next_rand_offset_zoned(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 unsigned int v, send, stotal;
164 uint64_t offset, lastb;
165 static int warned;
166 struct zone_split_index *zsi;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_perc_prev;
184 send = zsi->size_perc;
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!warned) {
191 log_err("fio: bug in zoned generation\n");
192 warned = 1;
193 }
194 goto bail;
195 }
196
197 /*
198 * 'send' is some percentage below or equal to 100 that
199 * marks the end of the current IO range. 'stotal' marks
200 * the start, in percent.
201 */
202 if (stotal)
203 offset = stotal * lastb / 100ULL;
204 else
205 offset = 0;
206
207 lastb = lastb * (send - stotal) / 100ULL;
208
209 /*
210 * Generate index from 0..send-of-lastb
211 */
212 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
213 return 1;
214
215 /*
216 * Add our start offset, if any
217 */
218 if (offset)
219 *b += offset;
220
221 return 0;
222}
223
224static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
225{
226 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
227 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
228
229 return r1->off - r2->off;
230}
231
232static int get_off_from_method(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
236 uint64_t lastb;
237
238 lastb = last_block(td, f, ddir);
239 if (!lastb)
240 return 1;
241
242 return __get_next_rand_offset(td, f, ddir, b, lastb);
243 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
244 return __get_next_rand_offset_zipf(td, f, ddir, b);
245 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
246 return __get_next_rand_offset_pareto(td, f, ddir, b);
247 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
248 return __get_next_rand_offset_gauss(td, f, ddir, b);
249 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
250 return __get_next_rand_offset_zoned(td, f, ddir, b);
251
252 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
253 return 1;
254}
255
256/*
257 * Sort the reads for a verify phase in batches of verifysort_nr, if
258 * specified.
259 */
260static inline bool should_sort_io(struct thread_data *td)
261{
262 if (!td->o.verifysort_nr || !td->o.do_verify)
263 return false;
264 if (!td_random(td))
265 return false;
266 if (td->runstate != TD_VERIFYING)
267 return false;
268 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
269 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
270 return false;
271
272 return true;
273}
274
275static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
276{
277 unsigned int v;
278
279 if (td->o.perc_rand[ddir] == 100)
280 return true;
281
282 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
283
284 return v <= td->o.perc_rand[ddir];
285}
286
287static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 struct rand_off *r;
291 int i, ret = 1;
292
293 if (!should_sort_io(td))
294 return get_off_from_method(td, f, ddir, b);
295
296 if (!flist_empty(&td->next_rand_list)) {
297fetch:
298 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
299 flist_del(&r->list);
300 *b = r->off;
301 free(r);
302 return 0;
303 }
304
305 for (i = 0; i < td->o.verifysort_nr; i++) {
306 r = malloc(sizeof(*r));
307
308 ret = get_off_from_method(td, f, ddir, &r->off);
309 if (ret) {
310 free(r);
311 break;
312 }
313
314 flist_add(&r->list, &td->next_rand_list);
315 }
316
317 if (ret && !i)
318 return ret;
319
320 assert(!flist_empty(&td->next_rand_list));
321 flist_sort(NULL, &td->next_rand_list, flist_cmp);
322 goto fetch;
323}
324
325static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
326 enum fio_ddir ddir, uint64_t *b)
327{
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330
331 if (td->o.time_based) {
332 fio_file_reset(td, f);
333 if (!get_next_rand_offset(td, f, ddir, b))
334 return 0;
335 }
336
337 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
338 f->file_name, (unsigned long long) f->last_pos[ddir],
339 (unsigned long long) f->real_file_size);
340 return 1;
341}
342
343static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
344 enum fio_ddir ddir, uint64_t *offset)
345{
346 struct thread_options *o = &td->o;
347
348 assert(ddir_rw(ddir));
349
350 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
351 o->time_based) {
352 struct thread_options *o = &td->o;
353 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
354
355 if (io_size > f->last_pos[ddir])
356 f->last_pos[ddir] = 0;
357 else
358 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
359 }
360
361 if (f->last_pos[ddir] < f->real_file_size) {
362 uint64_t pos;
363
364 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0)
365 f->last_pos[ddir] = f->real_file_size;
366
367 pos = f->last_pos[ddir] - f->file_offset;
368 if (pos && o->ddir_seq_add) {
369 pos += o->ddir_seq_add;
370
371 /*
372 * If we reach beyond the end of the file
373 * with holed IO, wrap around to the
374 * beginning again.
375 */
376 if (pos >= f->real_file_size)
377 pos = f->file_offset;
378 }
379
380 *offset = pos;
381 return 0;
382 }
383
384 return 1;
385}
386
387static int get_next_block(struct thread_data *td, struct io_u *io_u,
388 enum fio_ddir ddir, int rw_seq,
389 unsigned int *is_random)
390{
391 struct fio_file *f = io_u->file;
392 uint64_t b, offset;
393 int ret;
394
395 assert(ddir_rw(ddir));
396
397 b = offset = -1ULL;
398
399 if (rw_seq) {
400 if (td_random(td)) {
401 if (should_do_random(td, ddir)) {
402 ret = get_next_rand_block(td, f, ddir, &b);
403 *is_random = 1;
404 } else {
405 *is_random = 0;
406 io_u_set(io_u, IO_U_F_BUSY_OK);
407 ret = get_next_seq_offset(td, f, ddir, &offset);
408 if (ret)
409 ret = get_next_rand_block(td, f, ddir, &b);
410 }
411 } else {
412 *is_random = 0;
413 ret = get_next_seq_offset(td, f, ddir, &offset);
414 }
415 } else {
416 io_u_set(io_u, IO_U_F_BUSY_OK);
417 *is_random = 0;
418
419 if (td->o.rw_seq == RW_SEQ_SEQ) {
420 ret = get_next_seq_offset(td, f, ddir, &offset);
421 if (ret) {
422 ret = get_next_rand_block(td, f, ddir, &b);
423 *is_random = 0;
424 }
425 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
426 if (f->last_start[ddir] != -1ULL)
427 offset = f->last_start[ddir] - f->file_offset;
428 else
429 offset = 0;
430 ret = 0;
431 } else {
432 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
433 ret = 1;
434 }
435 }
436
437 if (!ret) {
438 if (offset != -1ULL)
439 io_u->offset = offset;
440 else if (b != -1ULL)
441 io_u->offset = b * td->o.ba[ddir];
442 else {
443 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
444 ret = 1;
445 }
446 }
447
448 return ret;
449}
450
451/*
452 * For random io, generate a random new block and see if it's used. Repeat
453 * until we find a free one. For sequential io, just return the end of
454 * the last io issued.
455 */
456static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
457 unsigned int *is_random)
458{
459 struct fio_file *f = io_u->file;
460 enum fio_ddir ddir = io_u->ddir;
461 int rw_seq_hit = 0;
462
463 assert(ddir_rw(ddir));
464
465 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
466 rw_seq_hit = 1;
467 td->ddir_seq_nr = td->o.ddir_seq_nr;
468 }
469
470 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
471 return 1;
472
473 if (io_u->offset >= f->io_size) {
474 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
475 (unsigned long long) io_u->offset,
476 (unsigned long long) f->io_size);
477 return 1;
478 }
479
480 io_u->offset += f->file_offset;
481 if (io_u->offset >= f->real_file_size) {
482 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
483 (unsigned long long) io_u->offset,
484 (unsigned long long) f->real_file_size);
485 return 1;
486 }
487
488 return 0;
489}
490
491static int get_next_offset(struct thread_data *td, struct io_u *io_u,
492 unsigned int *is_random)
493{
494 if (td->flags & TD_F_PROFILE_OPS) {
495 struct prof_io_ops *ops = &td->prof_io_ops;
496
497 if (ops->fill_io_u_off)
498 return ops->fill_io_u_off(td, io_u, is_random);
499 }
500
501 return __get_next_offset(td, io_u, is_random);
502}
503
504static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
505 unsigned int buflen)
506{
507 struct fio_file *f = io_u->file;
508
509 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
510}
511
512static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
513 unsigned int is_random)
514{
515 int ddir = io_u->ddir;
516 unsigned int buflen = 0;
517 unsigned int minbs, maxbs;
518 uint64_t frand_max;
519 unsigned long r;
520
521 assert(ddir_rw(ddir));
522
523 if (td->o.bs_is_seq_rand)
524 ddir = is_random ? DDIR_WRITE: DDIR_READ;
525
526 minbs = td->o.min_bs[ddir];
527 maxbs = td->o.max_bs[ddir];
528
529 if (minbs == maxbs)
530 return minbs;
531
532 /*
533 * If we can't satisfy the min block size from here, then fail
534 */
535 if (!io_u_fits(td, io_u, minbs))
536 return 0;
537
538 frand_max = rand_max(&td->bsrange_state);
539 do {
540 r = __rand(&td->bsrange_state);
541
542 if (!td->o.bssplit_nr[ddir]) {
543 buflen = 1 + (unsigned int) ((double) maxbs *
544 (r / (frand_max + 1.0)));
545 if (buflen < minbs)
546 buflen = minbs;
547 } else {
548 long perc = 0;
549 unsigned int i;
550
551 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
552 struct bssplit *bsp = &td->o.bssplit[ddir][i];
553
554 buflen = bsp->bs;
555 perc += bsp->perc;
556 if ((r * 100UL <= frand_max * perc) &&
557 io_u_fits(td, io_u, buflen))
558 break;
559 }
560 }
561
562 if (td->o.verify != VERIFY_NONE)
563 buflen = (buflen + td->o.verify_interval - 1) &
564 ~(td->o.verify_interval - 1);
565
566 if (!td->o.bs_unaligned && is_power_of_2(minbs))
567 buflen &= ~(minbs - 1);
568
569 } while (!io_u_fits(td, io_u, buflen));
570
571 return buflen;
572}
573
574static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
575 unsigned int is_random)
576{
577 if (td->flags & TD_F_PROFILE_OPS) {
578 struct prof_io_ops *ops = &td->prof_io_ops;
579
580 if (ops->fill_io_u_size)
581 return ops->fill_io_u_size(td, io_u, is_random);
582 }
583
584 return __get_next_buflen(td, io_u, is_random);
585}
586
587static void set_rwmix_bytes(struct thread_data *td)
588{
589 unsigned int diff;
590
591 /*
592 * we do time or byte based switch. this is needed because
593 * buffered writes may issue a lot quicker than they complete,
594 * whereas reads do not.
595 */
596 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
597 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
598}
599
600static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
601{
602 unsigned int v;
603
604 v = rand32_between(&td->rwmix_state, 1, 100);
605
606 if (v <= td->o.rwmix[DDIR_READ])
607 return DDIR_READ;
608
609 return DDIR_WRITE;
610}
611
612int io_u_quiesce(struct thread_data *td)
613{
614 int completed = 0;
615
616 /*
617 * We are going to sleep, ensure that we flush anything pending as
618 * not to skew our latency numbers.
619 *
620 * Changed to only monitor 'in flight' requests here instead of the
621 * td->cur_depth, b/c td->cur_depth does not accurately represent
622 * io's that have been actually submitted to an async engine,
623 * and cur_depth is meaningless for sync engines.
624 */
625 if (td->io_u_queued || td->cur_depth) {
626 int fio_unused ret;
627
628 ret = td_io_commit(td);
629 }
630
631 while (td->io_u_in_flight) {
632 int fio_unused ret;
633
634 ret = io_u_queued_complete(td, 1);
635 if (ret > 0)
636 completed += ret;
637 }
638
639 return completed;
640}
641
642static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
643{
644 enum fio_ddir odir = ddir ^ 1;
645 long usec, now;
646
647 assert(ddir_rw(ddir));
648 now = utime_since_now(&td->start);
649
650 /*
651 * if rate_next_io_time is in the past, need to catch up to rate
652 */
653 if (td->rate_next_io_time[ddir] <= now)
654 return ddir;
655
656 /*
657 * We are ahead of rate in this direction. See if we
658 * should switch.
659 */
660 if (td_rw(td) && td->o.rwmix[odir]) {
661 /*
662 * Other direction is behind rate, switch
663 */
664 if (td->rate_next_io_time[odir] <= now)
665 return odir;
666
667 /*
668 * Both directions are ahead of rate. sleep the min
669 * switch if necissary
670 */
671 if (td->rate_next_io_time[ddir] <=
672 td->rate_next_io_time[odir]) {
673 usec = td->rate_next_io_time[ddir] - now;
674 } else {
675 usec = td->rate_next_io_time[odir] - now;
676 ddir = odir;
677 }
678 } else
679 usec = td->rate_next_io_time[ddir] - now;
680
681 if (td->o.io_submit_mode == IO_MODE_INLINE)
682 io_u_quiesce(td);
683
684 usec = usec_sleep(td, usec);
685
686 return ddir;
687}
688
689/*
690 * Return the data direction for the next io_u. If the job is a
691 * mixed read/write workload, check the rwmix cycle and switch if
692 * necessary.
693 */
694static enum fio_ddir get_rw_ddir(struct thread_data *td)
695{
696 enum fio_ddir ddir;
697
698 /*
699 * see if it's time to fsync
700 */
701 if (td->o.fsync_blocks &&
702 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
703 td->io_issues[DDIR_WRITE] && should_fsync(td))
704 return DDIR_SYNC;
705
706 /*
707 * see if it's time to fdatasync
708 */
709 if (td->o.fdatasync_blocks &&
710 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
711 td->io_issues[DDIR_WRITE] && should_fsync(td))
712 return DDIR_DATASYNC;
713
714 /*
715 * see if it's time to sync_file_range
716 */
717 if (td->sync_file_range_nr &&
718 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
719 td->io_issues[DDIR_WRITE] && should_fsync(td))
720 return DDIR_SYNC_FILE_RANGE;
721
722 if (td_rw(td)) {
723 /*
724 * Check if it's time to seed a new data direction.
725 */
726 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
727 /*
728 * Put a top limit on how many bytes we do for
729 * one data direction, to avoid overflowing the
730 * ranges too much
731 */
732 ddir = get_rand_ddir(td);
733
734 if (ddir != td->rwmix_ddir)
735 set_rwmix_bytes(td);
736
737 td->rwmix_ddir = ddir;
738 }
739 ddir = td->rwmix_ddir;
740 } else if (td_read(td))
741 ddir = DDIR_READ;
742 else if (td_write(td))
743 ddir = DDIR_WRITE;
744 else
745 ddir = DDIR_TRIM;
746
747 td->rwmix_ddir = rate_ddir(td, ddir);
748 return td->rwmix_ddir;
749}
750
751static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
752{
753 enum fio_ddir ddir = get_rw_ddir(td);
754
755 if (td_trimwrite(td)) {
756 struct fio_file *f = io_u->file;
757 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
758 ddir = DDIR_TRIM;
759 else
760 ddir = DDIR_WRITE;
761 }
762
763 io_u->ddir = io_u->acct_ddir = ddir;
764
765 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
766 td->o.barrier_blocks &&
767 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
768 td->io_issues[DDIR_WRITE])
769 io_u_set(io_u, IO_U_F_BARRIER);
770}
771
772void put_file_log(struct thread_data *td, struct fio_file *f)
773{
774 unsigned int ret = put_file(td, f);
775
776 if (ret)
777 td_verror(td, ret, "file close");
778}
779
780void put_io_u(struct thread_data *td, struct io_u *io_u)
781{
782 if (td->parent)
783 td = td->parent;
784
785 td_io_u_lock(td);
786
787 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
788 put_file_log(td, io_u->file);
789
790 io_u->file = NULL;
791 io_u_set(io_u, IO_U_F_FREE);
792
793 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
794 td->cur_depth--;
795 assert(!(td->flags & TD_F_CHILD));
796 }
797 io_u_qpush(&td->io_u_freelist, io_u);
798 td_io_u_unlock(td);
799 td_io_u_free_notify(td);
800}
801
802void clear_io_u(struct thread_data *td, struct io_u *io_u)
803{
804 io_u_clear(io_u, IO_U_F_FLIGHT);
805 put_io_u(td, io_u);
806}
807
808void requeue_io_u(struct thread_data *td, struct io_u **io_u)
809{
810 struct io_u *__io_u = *io_u;
811 enum fio_ddir ddir = acct_ddir(__io_u);
812
813 dprint(FD_IO, "requeue %p\n", __io_u);
814
815 if (td->parent)
816 td = td->parent;
817
818 td_io_u_lock(td);
819
820 io_u_set(__io_u, IO_U_F_FREE);
821 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
822 td->io_issues[ddir]--;
823
824 io_u_clear(__io_u, IO_U_F_FLIGHT);
825 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
826 td->cur_depth--;
827 assert(!(td->flags & TD_F_CHILD));
828 }
829
830 io_u_rpush(&td->io_u_requeues, __io_u);
831 td_io_u_unlock(td);
832 td_io_u_free_notify(td);
833 *io_u = NULL;
834}
835
836static int fill_io_u(struct thread_data *td, struct io_u *io_u)
837{
838 unsigned int is_random;
839
840 if (td->io_ops->flags & FIO_NOIO)
841 goto out;
842
843 set_rw_ddir(td, io_u);
844
845 /*
846 * fsync() or fdatasync() or trim etc, we are done
847 */
848 if (!ddir_rw(io_u->ddir))
849 goto out;
850
851 /*
852 * See if it's time to switch to a new zone
853 */
854 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
855 struct fio_file *f = io_u->file;
856
857 td->zone_bytes = 0;
858 f->file_offset += td->o.zone_range + td->o.zone_skip;
859
860 /*
861 * Wrap from the beginning, if we exceed the file size
862 */
863 if (f->file_offset >= f->real_file_size)
864 f->file_offset = f->real_file_size - f->file_offset;
865 f->last_pos[io_u->ddir] = f->file_offset;
866 td->io_skip_bytes += td->o.zone_skip;
867 }
868
869 /*
870 * No log, let the seq/rand engine retrieve the next buflen and
871 * position.
872 */
873 if (get_next_offset(td, io_u, &is_random)) {
874 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
875 return 1;
876 }
877
878 io_u->buflen = get_next_buflen(td, io_u, is_random);
879 if (!io_u->buflen) {
880 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
881 return 1;
882 }
883
884 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
885 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
886 dprint(FD_IO, " off=%llu/%lu > %llu\n",
887 (unsigned long long) io_u->offset, io_u->buflen,
888 (unsigned long long) io_u->file->real_file_size);
889 return 1;
890 }
891
892 /*
893 * mark entry before potentially trimming io_u
894 */
895 if (td_random(td) && file_randommap(td, io_u->file))
896 mark_random_map(td, io_u);
897
898out:
899 dprint_io_u(io_u, "fill_io_u");
900 td->zone_bytes += io_u->buflen;
901 return 0;
902}
903
904static void __io_u_mark_map(unsigned int *map, unsigned int nr)
905{
906 int idx = 0;
907
908 switch (nr) {
909 default:
910 idx = 6;
911 break;
912 case 33 ... 64:
913 idx = 5;
914 break;
915 case 17 ... 32:
916 idx = 4;
917 break;
918 case 9 ... 16:
919 idx = 3;
920 break;
921 case 5 ... 8:
922 idx = 2;
923 break;
924 case 1 ... 4:
925 idx = 1;
926 case 0:
927 break;
928 }
929
930 map[idx]++;
931}
932
933void io_u_mark_submit(struct thread_data *td, unsigned int nr)
934{
935 __io_u_mark_map(td->ts.io_u_submit, nr);
936 td->ts.total_submit++;
937}
938
939void io_u_mark_complete(struct thread_data *td, unsigned int nr)
940{
941 __io_u_mark_map(td->ts.io_u_complete, nr);
942 td->ts.total_complete++;
943}
944
945void io_u_mark_depth(struct thread_data *td, unsigned int nr)
946{
947 int idx = 0;
948
949 switch (td->cur_depth) {
950 default:
951 idx = 6;
952 break;
953 case 32 ... 63:
954 idx = 5;
955 break;
956 case 16 ... 31:
957 idx = 4;
958 break;
959 case 8 ... 15:
960 idx = 3;
961 break;
962 case 4 ... 7:
963 idx = 2;
964 break;
965 case 2 ... 3:
966 idx = 1;
967 case 1:
968 break;
969 }
970
971 td->ts.io_u_map[idx] += nr;
972}
973
974static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
975{
976 int idx = 0;
977
978 assert(usec < 1000);
979
980 switch (usec) {
981 case 750 ... 999:
982 idx = 9;
983 break;
984 case 500 ... 749:
985 idx = 8;
986 break;
987 case 250 ... 499:
988 idx = 7;
989 break;
990 case 100 ... 249:
991 idx = 6;
992 break;
993 case 50 ... 99:
994 idx = 5;
995 break;
996 case 20 ... 49:
997 idx = 4;
998 break;
999 case 10 ... 19:
1000 idx = 3;
1001 break;
1002 case 4 ... 9:
1003 idx = 2;
1004 break;
1005 case 2 ... 3:
1006 idx = 1;
1007 case 0 ... 1:
1008 break;
1009 }
1010
1011 assert(idx < FIO_IO_U_LAT_U_NR);
1012 td->ts.io_u_lat_u[idx]++;
1013}
1014
1015static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1016{
1017 int idx = 0;
1018
1019 switch (msec) {
1020 default:
1021 idx = 11;
1022 break;
1023 case 1000 ... 1999:
1024 idx = 10;
1025 break;
1026 case 750 ... 999:
1027 idx = 9;
1028 break;
1029 case 500 ... 749:
1030 idx = 8;
1031 break;
1032 case 250 ... 499:
1033 idx = 7;
1034 break;
1035 case 100 ... 249:
1036 idx = 6;
1037 break;
1038 case 50 ... 99:
1039 idx = 5;
1040 break;
1041 case 20 ... 49:
1042 idx = 4;
1043 break;
1044 case 10 ... 19:
1045 idx = 3;
1046 break;
1047 case 4 ... 9:
1048 idx = 2;
1049 break;
1050 case 2 ... 3:
1051 idx = 1;
1052 case 0 ... 1:
1053 break;
1054 }
1055
1056 assert(idx < FIO_IO_U_LAT_M_NR);
1057 td->ts.io_u_lat_m[idx]++;
1058}
1059
1060static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1061{
1062 if (usec < 1000)
1063 io_u_mark_lat_usec(td, usec);
1064 else
1065 io_u_mark_lat_msec(td, usec / 1000);
1066}
1067
1068/*
1069 * Get next file to service by choosing one at random
1070 */
1071static struct fio_file *get_next_file_rand(struct thread_data *td,
1072 enum fio_file_flags goodf,
1073 enum fio_file_flags badf)
1074{
1075 uint64_t frand_max = rand_max(&td->next_file_state);
1076 struct fio_file *f;
1077 int fno;
1078
1079 do {
1080 int opened = 0;
1081 unsigned long r;
1082
1083 r = __rand(&td->next_file_state);
1084 fno = (unsigned int) ((double) td->o.nr_files
1085 * (r / (frand_max + 1.0)));
1086
1087 f = td->files[fno];
1088 if (fio_file_done(f))
1089 continue;
1090
1091 if (!fio_file_open(f)) {
1092 int err;
1093
1094 if (td->nr_open_files >= td->o.open_files)
1095 return ERR_PTR(-EBUSY);
1096
1097 err = td_io_open_file(td, f);
1098 if (err)
1099 continue;
1100 opened = 1;
1101 }
1102
1103 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1104 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1105 return f;
1106 }
1107 if (opened)
1108 td_io_close_file(td, f);
1109 } while (1);
1110}
1111
1112/*
1113 * Get next file to service by doing round robin between all available ones
1114 */
1115static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1116 int badf)
1117{
1118 unsigned int old_next_file = td->next_file;
1119 struct fio_file *f;
1120
1121 do {
1122 int opened = 0;
1123
1124 f = td->files[td->next_file];
1125
1126 td->next_file++;
1127 if (td->next_file >= td->o.nr_files)
1128 td->next_file = 0;
1129
1130 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1131 if (fio_file_done(f)) {
1132 f = NULL;
1133 continue;
1134 }
1135
1136 if (!fio_file_open(f)) {
1137 int err;
1138
1139 if (td->nr_open_files >= td->o.open_files)
1140 return ERR_PTR(-EBUSY);
1141
1142 err = td_io_open_file(td, f);
1143 if (err) {
1144 dprint(FD_FILE, "error %d on open of %s\n",
1145 err, f->file_name);
1146 f = NULL;
1147 continue;
1148 }
1149 opened = 1;
1150 }
1151
1152 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1153 f->flags);
1154 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1155 break;
1156
1157 if (opened)
1158 td_io_close_file(td, f);
1159
1160 f = NULL;
1161 } while (td->next_file != old_next_file);
1162
1163 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1164 return f;
1165}
1166
1167static struct fio_file *__get_next_file(struct thread_data *td)
1168{
1169 struct fio_file *f;
1170
1171 assert(td->o.nr_files <= td->files_index);
1172
1173 if (td->nr_done_files >= td->o.nr_files) {
1174 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1175 " nr_files=%d\n", td->nr_open_files,
1176 td->nr_done_files,
1177 td->o.nr_files);
1178 return NULL;
1179 }
1180
1181 f = td->file_service_file;
1182 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1183 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1184 goto out;
1185 if (td->file_service_left--)
1186 goto out;
1187 }
1188
1189 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1190 td->o.file_service_type == FIO_FSERVICE_SEQ)
1191 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1192 else
1193 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1194
1195 if (IS_ERR(f))
1196 return f;
1197
1198 td->file_service_file = f;
1199 td->file_service_left = td->file_service_nr - 1;
1200out:
1201 if (f)
1202 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1203 else
1204 dprint(FD_FILE, "get_next_file: NULL\n");
1205 return f;
1206}
1207
1208static struct fio_file *get_next_file(struct thread_data *td)
1209{
1210 if (td->flags & TD_F_PROFILE_OPS) {
1211 struct prof_io_ops *ops = &td->prof_io_ops;
1212
1213 if (ops->get_next_file)
1214 return ops->get_next_file(td);
1215 }
1216
1217 return __get_next_file(td);
1218}
1219
1220static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1221{
1222 struct fio_file *f;
1223
1224 do {
1225 f = get_next_file(td);
1226 if (IS_ERR_OR_NULL(f))
1227 return PTR_ERR(f);
1228
1229 io_u->file = f;
1230 get_file(f);
1231
1232 if (!fill_io_u(td, io_u))
1233 break;
1234
1235 put_file_log(td, f);
1236 td_io_close_file(td, f);
1237 io_u->file = NULL;
1238 fio_file_set_done(f);
1239 td->nr_done_files++;
1240 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1241 td->nr_done_files, td->o.nr_files);
1242 } while (1);
1243
1244 return 0;
1245}
1246
1247static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1248 unsigned long tusec, unsigned long max_usec)
1249{
1250 if (!td->error)
1251 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1252 td_verror(td, ETIMEDOUT, "max latency exceeded");
1253 icd->error = ETIMEDOUT;
1254}
1255
1256static void lat_new_cycle(struct thread_data *td)
1257{
1258 fio_gettime(&td->latency_ts, NULL);
1259 td->latency_ios = ddir_rw_sum(td->io_blocks);
1260 td->latency_failed = 0;
1261}
1262
1263/*
1264 * We had an IO outside the latency target. Reduce the queue depth. If we
1265 * are at QD=1, then it's time to give up.
1266 */
1267static bool __lat_target_failed(struct thread_data *td)
1268{
1269 if (td->latency_qd == 1)
1270 return true;
1271
1272 td->latency_qd_high = td->latency_qd;
1273
1274 if (td->latency_qd == td->latency_qd_low)
1275 td->latency_qd_low--;
1276
1277 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1278
1279 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1280
1281 /*
1282 * When we ramp QD down, quiesce existing IO to prevent
1283 * a storm of ramp downs due to pending higher depth.
1284 */
1285 io_u_quiesce(td);
1286 lat_new_cycle(td);
1287 return false;
1288}
1289
1290static bool lat_target_failed(struct thread_data *td)
1291{
1292 if (td->o.latency_percentile.u.f == 100.0)
1293 return __lat_target_failed(td);
1294
1295 td->latency_failed++;
1296 return false;
1297}
1298
1299void lat_target_init(struct thread_data *td)
1300{
1301 td->latency_end_run = 0;
1302
1303 if (td->o.latency_target) {
1304 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1305 fio_gettime(&td->latency_ts, NULL);
1306 td->latency_qd = 1;
1307 td->latency_qd_high = td->o.iodepth;
1308 td->latency_qd_low = 1;
1309 td->latency_ios = ddir_rw_sum(td->io_blocks);
1310 } else
1311 td->latency_qd = td->o.iodepth;
1312}
1313
1314void lat_target_reset(struct thread_data *td)
1315{
1316 if (!td->latency_end_run)
1317 lat_target_init(td);
1318}
1319
1320static void lat_target_success(struct thread_data *td)
1321{
1322 const unsigned int qd = td->latency_qd;
1323 struct thread_options *o = &td->o;
1324
1325 td->latency_qd_low = td->latency_qd;
1326
1327 /*
1328 * If we haven't failed yet, we double up to a failing value instead
1329 * of bisecting from highest possible queue depth. If we have set
1330 * a limit other than td->o.iodepth, bisect between that.
1331 */
1332 if (td->latency_qd_high != o->iodepth)
1333 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1334 else
1335 td->latency_qd *= 2;
1336
1337 if (td->latency_qd > o->iodepth)
1338 td->latency_qd = o->iodepth;
1339
1340 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1341
1342 /*
1343 * Same as last one, we are done. Let it run a latency cycle, so
1344 * we get only the results from the targeted depth.
1345 */
1346 if (td->latency_qd == qd) {
1347 if (td->latency_end_run) {
1348 dprint(FD_RATE, "We are done\n");
1349 td->done = 1;
1350 } else {
1351 dprint(FD_RATE, "Quiesce and final run\n");
1352 io_u_quiesce(td);
1353 td->latency_end_run = 1;
1354 reset_all_stats(td);
1355 reset_io_stats(td);
1356 }
1357 }
1358
1359 lat_new_cycle(td);
1360}
1361
1362/*
1363 * Check if we can bump the queue depth
1364 */
1365void lat_target_check(struct thread_data *td)
1366{
1367 uint64_t usec_window;
1368 uint64_t ios;
1369 double success_ios;
1370
1371 usec_window = utime_since_now(&td->latency_ts);
1372 if (usec_window < td->o.latency_window)
1373 return;
1374
1375 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1376 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1377 success_ios *= 100.0;
1378
1379 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1380
1381 if (success_ios >= td->o.latency_percentile.u.f)
1382 lat_target_success(td);
1383 else
1384 __lat_target_failed(td);
1385}
1386
1387/*
1388 * If latency target is enabled, we might be ramping up or down and not
1389 * using the full queue depth available.
1390 */
1391bool queue_full(const struct thread_data *td)
1392{
1393 const int qempty = io_u_qempty(&td->io_u_freelist);
1394
1395 if (qempty)
1396 return true;
1397 if (!td->o.latency_target)
1398 return false;
1399
1400 return td->cur_depth >= td->latency_qd;
1401}
1402
1403struct io_u *__get_io_u(struct thread_data *td)
1404{
1405 struct io_u *io_u = NULL;
1406
1407 if (td->stop_io)
1408 return NULL;
1409
1410 td_io_u_lock(td);
1411
1412again:
1413 if (!io_u_rempty(&td->io_u_requeues))
1414 io_u = io_u_rpop(&td->io_u_requeues);
1415 else if (!queue_full(td)) {
1416 io_u = io_u_qpop(&td->io_u_freelist);
1417
1418 io_u->file = NULL;
1419 io_u->buflen = 0;
1420 io_u->resid = 0;
1421 io_u->end_io = NULL;
1422 }
1423
1424 if (io_u) {
1425 assert(io_u->flags & IO_U_F_FREE);
1426 io_u_clear(io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1427 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1428 IO_U_F_VER_LIST);
1429
1430 io_u->error = 0;
1431 io_u->acct_ddir = -1;
1432 td->cur_depth++;
1433 assert(!(td->flags & TD_F_CHILD));
1434 io_u_set(io_u, IO_U_F_IN_CUR_DEPTH);
1435 io_u->ipo = NULL;
1436 } else if (td_async_processing(td)) {
1437 /*
1438 * We ran out, wait for async verify threads to finish and
1439 * return one
1440 */
1441 assert(!(td->flags & TD_F_CHILD));
1442 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1443 goto again;
1444 }
1445
1446 td_io_u_unlock(td);
1447 return io_u;
1448}
1449
1450static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1451{
1452 if (!(td->flags & TD_F_TRIM_BACKLOG))
1453 return false;
1454
1455 if (td->trim_entries) {
1456 int get_trim = 0;
1457
1458 if (td->trim_batch) {
1459 td->trim_batch--;
1460 get_trim = 1;
1461 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1462 td->last_ddir != DDIR_READ) {
1463 td->trim_batch = td->o.trim_batch;
1464 if (!td->trim_batch)
1465 td->trim_batch = td->o.trim_backlog;
1466 get_trim = 1;
1467 }
1468
1469 if (get_trim && !get_next_trim(td, io_u))
1470 return true;
1471 }
1472
1473 return false;
1474}
1475
1476static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1477{
1478 if (!(td->flags & TD_F_VER_BACKLOG))
1479 return false;
1480
1481 if (td->io_hist_len) {
1482 int get_verify = 0;
1483
1484 if (td->verify_batch)
1485 get_verify = 1;
1486 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1487 td->last_ddir != DDIR_READ) {
1488 td->verify_batch = td->o.verify_batch;
1489 if (!td->verify_batch)
1490 td->verify_batch = td->o.verify_backlog;
1491 get_verify = 1;
1492 }
1493
1494 if (get_verify && !get_next_verify(td, io_u)) {
1495 td->verify_batch--;
1496 return true;
1497 }
1498 }
1499
1500 return false;
1501}
1502
1503/*
1504 * Fill offset and start time into the buffer content, to prevent too
1505 * easy compressible data for simple de-dupe attempts. Do this for every
1506 * 512b block in the range, since that should be the smallest block size
1507 * we can expect from a device.
1508 */
1509static void small_content_scramble(struct io_u *io_u)
1510{
1511 unsigned int i, nr_blocks = io_u->buflen / 512;
1512 uint64_t boffset;
1513 unsigned int offset;
1514 void *p, *end;
1515
1516 if (!nr_blocks)
1517 return;
1518
1519 p = io_u->xfer_buf;
1520 boffset = io_u->offset;
1521 io_u->buf_filled_len = 0;
1522
1523 for (i = 0; i < nr_blocks; i++) {
1524 /*
1525 * Fill the byte offset into a "random" start offset of
1526 * the buffer, given by the product of the usec time
1527 * and the actual offset.
1528 */
1529 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1530 offset &= ~(sizeof(uint64_t) - 1);
1531 if (offset >= 512 - sizeof(uint64_t))
1532 offset -= sizeof(uint64_t);
1533 memcpy(p + offset, &boffset, sizeof(boffset));
1534
1535 end = p + 512 - sizeof(io_u->start_time);
1536 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1537 p += 512;
1538 boffset += 512;
1539 }
1540}
1541
1542/*
1543 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1544 * etc. The returned io_u is fully ready to be prepped and submitted.
1545 */
1546struct io_u *get_io_u(struct thread_data *td)
1547{
1548 struct fio_file *f;
1549 struct io_u *io_u;
1550 int do_scramble = 0;
1551 long ret = 0;
1552
1553 io_u = __get_io_u(td);
1554 if (!io_u) {
1555 dprint(FD_IO, "__get_io_u failed\n");
1556 return NULL;
1557 }
1558
1559 if (check_get_verify(td, io_u))
1560 goto out;
1561 if (check_get_trim(td, io_u))
1562 goto out;
1563
1564 /*
1565 * from a requeue, io_u already setup
1566 */
1567 if (io_u->file)
1568 goto out;
1569
1570 /*
1571 * If using an iolog, grab next piece if any available.
1572 */
1573 if (td->flags & TD_F_READ_IOLOG) {
1574 if (read_iolog_get(td, io_u))
1575 goto err_put;
1576 } else if (set_io_u_file(td, io_u)) {
1577 ret = -EBUSY;
1578 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1579 goto err_put;
1580 }
1581
1582 f = io_u->file;
1583 if (!f) {
1584 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1585 goto err_put;
1586 }
1587
1588 assert(fio_file_open(f));
1589
1590 if (ddir_rw(io_u->ddir)) {
1591 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1592 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1593 goto err_put;
1594 }
1595
1596 f->last_start[io_u->ddir] = io_u->offset;
1597 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1598
1599 if (io_u->ddir == DDIR_WRITE) {
1600 if (td->flags & TD_F_REFILL_BUFFERS) {
1601 io_u_fill_buffer(td, io_u,
1602 td->o.min_bs[DDIR_WRITE],
1603 io_u->buflen);
1604 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1605 !(td->flags & TD_F_COMPRESS))
1606 do_scramble = 1;
1607 if (td->flags & TD_F_VER_NONE) {
1608 populate_verify_io_u(td, io_u);
1609 do_scramble = 0;
1610 }
1611 } else if (io_u->ddir == DDIR_READ) {
1612 /*
1613 * Reset the buf_filled parameters so next time if the
1614 * buffer is used for writes it is refilled.
1615 */
1616 io_u->buf_filled_len = 0;
1617 }
1618 }
1619
1620 /*
1621 * Set io data pointers.
1622 */
1623 io_u->xfer_buf = io_u->buf;
1624 io_u->xfer_buflen = io_u->buflen;
1625
1626out:
1627 assert(io_u->file);
1628 if (!td_io_prep(td, io_u)) {
1629 if (!td->o.disable_lat)
1630 fio_gettime(&io_u->start_time, NULL);
1631 if (do_scramble)
1632 small_content_scramble(io_u);
1633 return io_u;
1634 }
1635err_put:
1636 dprint(FD_IO, "get_io_u failed\n");
1637 put_io_u(td, io_u);
1638 return ERR_PTR(ret);
1639}
1640
1641static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1642{
1643 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1644
1645 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1646 return;
1647
1648 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1649 io_u->file ? " on file " : "",
1650 io_u->file ? io_u->file->file_name : "",
1651 strerror(io_u->error),
1652 io_ddir_name(io_u->ddir),
1653 io_u->offset, io_u->xfer_buflen);
1654
1655 if (td->io_ops->errdetails) {
1656 char *err = td->io_ops->errdetails(io_u);
1657
1658 log_err("fio: %s\n", err);
1659 free(err);
1660 }
1661
1662 if (!td->error)
1663 td_verror(td, io_u->error, "io_u error");
1664}
1665
1666void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1667{
1668 __io_u_log_error(td, io_u);
1669 if (td->parent)
1670 __io_u_log_error(td->parent, io_u);
1671}
1672
1673static inline bool gtod_reduce(struct thread_data *td)
1674{
1675 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1676 || td->o.gtod_reduce;
1677}
1678
1679static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1680 struct io_completion_data *icd,
1681 const enum fio_ddir idx, unsigned int bytes)
1682{
1683 const int no_reduce = !gtod_reduce(td);
1684 unsigned long lusec = 0;
1685
1686 if (td->parent)
1687 td = td->parent;
1688
1689 if (no_reduce)
1690 lusec = utime_since(&io_u->issue_time, &icd->time);
1691
1692 if (!td->o.disable_lat) {
1693 unsigned long tusec;
1694
1695 tusec = utime_since(&io_u->start_time, &icd->time);
1696 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1697
1698 if (td->flags & TD_F_PROFILE_OPS) {
1699 struct prof_io_ops *ops = &td->prof_io_ops;
1700
1701 if (ops->io_u_lat)
1702 icd->error = ops->io_u_lat(td, tusec);
1703 }
1704
1705 if (td->o.max_latency && tusec > td->o.max_latency)
1706 lat_fatal(td, icd, tusec, td->o.max_latency);
1707 if (td->o.latency_target && tusec > td->o.latency_target) {
1708 if (lat_target_failed(td))
1709 lat_fatal(td, icd, tusec, td->o.latency_target);
1710 }
1711 }
1712
1713 if (!td->o.disable_clat) {
1714 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1715 io_u_mark_latency(td, lusec);
1716 }
1717
1718 if (!td->o.disable_bw)
1719 add_bw_sample(td, idx, bytes, &icd->time);
1720
1721 if (no_reduce)
1722 add_iops_sample(td, idx, bytes, &icd->time);
1723
1724 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1725 uint32_t *info = io_u_block_info(td, io_u);
1726 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1727 if (io_u->ddir == DDIR_TRIM) {
1728 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1729 BLOCK_INFO_TRIMS(*info) + 1);
1730 } else if (io_u->ddir == DDIR_WRITE) {
1731 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1732 *info);
1733 }
1734 }
1735 }
1736}
1737
1738static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1739 uint64_t offset, unsigned int bytes)
1740{
1741 int idx;
1742
1743 if (!f)
1744 return;
1745
1746 if (f->first_write == -1ULL || offset < f->first_write)
1747 f->first_write = offset;
1748 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1749 f->last_write = offset + bytes;
1750
1751 if (!f->last_write_comp)
1752 return;
1753
1754 idx = f->last_write_idx++;
1755 f->last_write_comp[idx] = offset;
1756 if (f->last_write_idx == td->o.iodepth)
1757 f->last_write_idx = 0;
1758}
1759
1760static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1761 struct io_completion_data *icd)
1762{
1763 struct io_u *io_u = *io_u_ptr;
1764 enum fio_ddir ddir = io_u->ddir;
1765 struct fio_file *f = io_u->file;
1766
1767 dprint_io_u(io_u, "io complete");
1768
1769 assert(io_u->flags & IO_U_F_FLIGHT);
1770 io_u_clear(io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1771
1772 /*
1773 * Mark IO ok to verify
1774 */
1775 if (io_u->ipo) {
1776 /*
1777 * Remove errored entry from the verification list
1778 */
1779 if (io_u->error)
1780 unlog_io_piece(td, io_u);
1781 else {
1782 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1783 write_barrier();
1784 }
1785 }
1786
1787 if (ddir_sync(ddir)) {
1788 td->last_was_sync = 1;
1789 if (f) {
1790 f->first_write = -1ULL;
1791 f->last_write = -1ULL;
1792 }
1793 return;
1794 }
1795
1796 td->last_was_sync = 0;
1797 td->last_ddir = ddir;
1798
1799 if (!io_u->error && ddir_rw(ddir)) {
1800 unsigned int bytes = io_u->buflen - io_u->resid;
1801 int ret;
1802
1803 td->io_blocks[ddir]++;
1804 td->this_io_blocks[ddir]++;
1805 td->io_bytes[ddir] += bytes;
1806
1807 if (!(io_u->flags & IO_U_F_VER_LIST))
1808 td->this_io_bytes[ddir] += bytes;
1809
1810 if (ddir == DDIR_WRITE)
1811 file_log_write_comp(td, f, io_u->offset, bytes);
1812
1813 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1814 td->runstate == TD_VERIFYING))
1815 account_io_completion(td, io_u, icd, ddir, bytes);
1816
1817 icd->bytes_done[ddir] += bytes;
1818
1819 if (io_u->end_io) {
1820 ret = io_u->end_io(td, io_u_ptr);
1821 io_u = *io_u_ptr;
1822 if (ret && !icd->error)
1823 icd->error = ret;
1824 }
1825 } else if (io_u->error) {
1826 icd->error = io_u->error;
1827 io_u_log_error(td, io_u);
1828 }
1829 if (icd->error) {
1830 enum error_type_bit eb = td_error_type(ddir, icd->error);
1831
1832 if (!td_non_fatal_error(td, eb, icd->error))
1833 return;
1834
1835 /*
1836 * If there is a non_fatal error, then add to the error count
1837 * and clear all the errors.
1838 */
1839 update_error_count(td, icd->error);
1840 td_clear_error(td);
1841 icd->error = 0;
1842 if (io_u)
1843 io_u->error = 0;
1844 }
1845}
1846
1847static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1848 int nr)
1849{
1850 int ddir;
1851
1852 if (!gtod_reduce(td))
1853 fio_gettime(&icd->time, NULL);
1854
1855 icd->nr = nr;
1856
1857 icd->error = 0;
1858 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1859 icd->bytes_done[ddir] = 0;
1860}
1861
1862static void ios_completed(struct thread_data *td,
1863 struct io_completion_data *icd)
1864{
1865 struct io_u *io_u;
1866 int i;
1867
1868 for (i = 0; i < icd->nr; i++) {
1869 io_u = td->io_ops->event(td, i);
1870
1871 io_completed(td, &io_u, icd);
1872
1873 if (io_u)
1874 put_io_u(td, io_u);
1875 }
1876}
1877
1878/*
1879 * Complete a single io_u for the sync engines.
1880 */
1881int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1882{
1883 struct io_completion_data icd;
1884 int ddir;
1885
1886 init_icd(td, &icd, 1);
1887 io_completed(td, &io_u, &icd);
1888
1889 if (io_u)
1890 put_io_u(td, io_u);
1891
1892 if (icd.error) {
1893 td_verror(td, icd.error, "io_u_sync_complete");
1894 return -1;
1895 }
1896
1897 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1898 td->bytes_done[ddir] += icd.bytes_done[ddir];
1899
1900 return 0;
1901}
1902
1903/*
1904 * Called to complete min_events number of io for the async engines.
1905 */
1906int io_u_queued_complete(struct thread_data *td, int min_evts)
1907{
1908 struct io_completion_data icd;
1909 struct timespec *tvp = NULL;
1910 int ret, ddir;
1911 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1912
1913 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1914
1915 if (!min_evts)
1916 tvp = &ts;
1917 else if (min_evts > td->cur_depth)
1918 min_evts = td->cur_depth;
1919
1920 /* No worries, td_io_getevents fixes min and max if they are
1921 * set incorrectly */
1922 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1923 if (ret < 0) {
1924 td_verror(td, -ret, "td_io_getevents");
1925 return ret;
1926 } else if (!ret)
1927 return ret;
1928
1929 init_icd(td, &icd, ret);
1930 ios_completed(td, &icd);
1931 if (icd.error) {
1932 td_verror(td, icd.error, "io_u_queued_complete");
1933 return -1;
1934 }
1935
1936 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1937 td->bytes_done[ddir] += icd.bytes_done[ddir];
1938
1939 return ret;
1940}
1941
1942/*
1943 * Call when io_u is really queued, to update the submission latency.
1944 */
1945void io_u_queued(struct thread_data *td, struct io_u *io_u)
1946{
1947 if (!td->o.disable_slat) {
1948 unsigned long slat_time;
1949
1950 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1951
1952 if (td->parent)
1953 td = td->parent;
1954
1955 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1956 io_u->offset);
1957 }
1958}
1959
1960/*
1961 * See if we should reuse the last seed, if dedupe is enabled
1962 */
1963static struct frand_state *get_buf_state(struct thread_data *td)
1964{
1965 unsigned int v;
1966
1967 if (!td->o.dedupe_percentage)
1968 return &td->buf_state;
1969 else if (td->o.dedupe_percentage == 100) {
1970 frand_copy(&td->buf_state_prev, &td->buf_state);
1971 return &td->buf_state;
1972 }
1973
1974 v = rand32_between(&td->dedupe_state, 1, 100);
1975
1976 if (v <= td->o.dedupe_percentage)
1977 return &td->buf_state_prev;
1978
1979 return &td->buf_state;
1980}
1981
1982static void save_buf_state(struct thread_data *td, struct frand_state *rs)
1983{
1984 if (td->o.dedupe_percentage == 100)
1985 frand_copy(rs, &td->buf_state_prev);
1986 else if (rs == &td->buf_state)
1987 frand_copy(&td->buf_state_prev, rs);
1988}
1989
1990void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1991 unsigned int max_bs)
1992{
1993 struct thread_options *o = &td->o;
1994
1995 if (o->compress_percentage || o->dedupe_percentage) {
1996 unsigned int perc = td->o.compress_percentage;
1997 struct frand_state *rs;
1998 unsigned int left = max_bs;
1999 unsigned int this_write;
2000
2001 do {
2002 rs = get_buf_state(td);
2003
2004 min_write = min(min_write, left);
2005
2006 if (perc) {
2007 this_write = min_not_zero(min_write,
2008 td->o.compress_chunk);
2009
2010 fill_random_buf_percentage(rs, buf, perc,
2011 this_write, this_write,
2012 o->buffer_pattern,
2013 o->buffer_pattern_bytes);
2014 } else {
2015 fill_random_buf(rs, buf, min_write);
2016 this_write = min_write;
2017 }
2018
2019 buf += this_write;
2020 left -= this_write;
2021 save_buf_state(td, rs);
2022 } while (left);
2023 } else if (o->buffer_pattern_bytes)
2024 fill_buffer_pattern(td, buf, max_bs);
2025 else if (o->zero_buffers)
2026 memset(buf, 0, max_bs);
2027 else
2028 fill_random_buf(get_buf_state(td), buf, max_bs);
2029}
2030
2031/*
2032 * "randomly" fill the buffer contents
2033 */
2034void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2035 unsigned int min_write, unsigned int max_bs)
2036{
2037 io_u->buf_filled_len = 0;
2038 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2039}