Signal td->free_cond with the associated mutex held
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
161 struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 struct zone_split_index *zsi;
165 uint64_t lastb, send, stotal;
166 unsigned int v;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 /*
183 * Find our generated table. 'send' is the end block of this zone,
184 * 'stotal' is our start offset.
185 */
186 zsi = &td->zone_state_index[ddir][v - 1];
187 stotal = zsi->size_prev / td->o.ba[ddir];
188 send = zsi->size / td->o.ba[ddir];
189
190 /*
191 * Should never happen
192 */
193 if (send == -1U) {
194 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
195 log_err("fio: bug in zoned generation\n");
196 goto bail;
197 } else if (send > lastb) {
198 /*
199 * This happens if the user specifies ranges that exceed
200 * the file/device size. We can't handle that gracefully,
201 * so error and exit.
202 */
203 log_err("fio: zoned_abs sizes exceed file size\n");
204 return 1;
205 }
206
207 /*
208 * Generate index from 0..send-stotal
209 */
210 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
211 return 1;
212
213 *b += stotal;
214 return 0;
215}
216
217static int __get_next_rand_offset_zoned(struct thread_data *td,
218 struct fio_file *f, enum fio_ddir ddir,
219 uint64_t *b)
220{
221 unsigned int v, send, stotal;
222 uint64_t offset, lastb;
223 struct zone_split_index *zsi;
224
225 lastb = last_block(td, f, ddir);
226 if (!lastb)
227 return 1;
228
229 if (!td->o.zone_split_nr[ddir]) {
230bail:
231 return __get_next_rand_offset(td, f, ddir, b, lastb);
232 }
233
234 /*
235 * Generate a value, v, between 1 and 100, both inclusive
236 */
237 v = rand32_between(&td->zone_state, 1, 100);
238
239 zsi = &td->zone_state_index[ddir][v - 1];
240 stotal = zsi->size_perc_prev;
241 send = zsi->size_perc;
242
243 /*
244 * Should never happen
245 */
246 if (send == -1U) {
247 if (!fio_did_warn(FIO_WARN_ZONED_BUG))
248 log_err("fio: bug in zoned generation\n");
249 goto bail;
250 }
251
252 /*
253 * 'send' is some percentage below or equal to 100 that
254 * marks the end of the current IO range. 'stotal' marks
255 * the start, in percent.
256 */
257 if (stotal)
258 offset = stotal * lastb / 100ULL;
259 else
260 offset = 0;
261
262 lastb = lastb * (send - stotal) / 100ULL;
263
264 /*
265 * Generate index from 0..send-of-lastb
266 */
267 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
268 return 1;
269
270 /*
271 * Add our start offset, if any
272 */
273 if (offset)
274 *b += offset;
275
276 return 0;
277}
278
279static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
280{
281 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
282 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
283
284 return r1->off - r2->off;
285}
286
287static int get_off_from_method(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
291 uint64_t lastb;
292
293 lastb = last_block(td, f, ddir);
294 if (!lastb)
295 return 1;
296
297 return __get_next_rand_offset(td, f, ddir, b, lastb);
298 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
299 return __get_next_rand_offset_zipf(td, f, ddir, b);
300 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
301 return __get_next_rand_offset_pareto(td, f, ddir, b);
302 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
303 return __get_next_rand_offset_gauss(td, f, ddir, b);
304 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
305 return __get_next_rand_offset_zoned(td, f, ddir, b);
306 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
307 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
308
309 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
310 return 1;
311}
312
313/*
314 * Sort the reads for a verify phase in batches of verifysort_nr, if
315 * specified.
316 */
317static inline bool should_sort_io(struct thread_data *td)
318{
319 if (!td->o.verifysort_nr || !td->o.do_verify)
320 return false;
321 if (!td_random(td))
322 return false;
323 if (td->runstate != TD_VERIFYING)
324 return false;
325 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
326 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
327 return false;
328
329 return true;
330}
331
332static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
333{
334 unsigned int v;
335
336 if (td->o.perc_rand[ddir] == 100)
337 return true;
338
339 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
340
341 return v <= td->o.perc_rand[ddir];
342}
343
344static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
345 enum fio_ddir ddir, uint64_t *b)
346{
347 struct rand_off *r;
348 int i, ret = 1;
349
350 if (!should_sort_io(td))
351 return get_off_from_method(td, f, ddir, b);
352
353 if (!flist_empty(&td->next_rand_list)) {
354fetch:
355 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
356 flist_del(&r->list);
357 *b = r->off;
358 free(r);
359 return 0;
360 }
361
362 for (i = 0; i < td->o.verifysort_nr; i++) {
363 r = malloc(sizeof(*r));
364
365 ret = get_off_from_method(td, f, ddir, &r->off);
366 if (ret) {
367 free(r);
368 break;
369 }
370
371 flist_add(&r->list, &td->next_rand_list);
372 }
373
374 if (ret && !i)
375 return ret;
376
377 assert(!flist_empty(&td->next_rand_list));
378 flist_sort(NULL, &td->next_rand_list, flist_cmp);
379 goto fetch;
380}
381
382static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
383{
384 struct thread_options *o = &td->o;
385
386 if (o->invalidate_cache && !o->odirect) {
387 int fio_unused ret;
388
389 ret = file_invalidate_cache(td, f);
390 }
391}
392
393static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
394 enum fio_ddir ddir, uint64_t *b)
395{
396 if (!get_next_rand_offset(td, f, ddir, b))
397 return 0;
398
399 if (td->o.time_based ||
400 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
401 fio_file_reset(td, f);
402 if (!get_next_rand_offset(td, f, ddir, b))
403 return 0;
404 loop_cache_invalidate(td, f);
405 }
406
407 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
408 f->file_name, (unsigned long long) f->last_pos[ddir],
409 (unsigned long long) f->real_file_size);
410 return 1;
411}
412
413static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
414 enum fio_ddir ddir, uint64_t *offset)
415{
416 struct thread_options *o = &td->o;
417
418 assert(ddir_rw(ddir));
419
420 /*
421 * If we reach the end for a time based run, reset us back to 0
422 * and invalidate the cache, if we need to.
423 */
424 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
425 o->time_based) {
426 f->last_pos[ddir] = f->file_offset;
427 loop_cache_invalidate(td, f);
428 }
429
430 if (f->last_pos[ddir] < f->real_file_size) {
431 uint64_t pos;
432
433 /*
434 * Only rewind if we already hit the end
435 */
436 if (f->last_pos[ddir] == f->file_offset &&
437 f->file_offset && o->ddir_seq_add < 0) {
438 if (f->real_file_size > f->io_size)
439 f->last_pos[ddir] = f->io_size;
440 else
441 f->last_pos[ddir] = f->real_file_size;
442 }
443
444 pos = f->last_pos[ddir] - f->file_offset;
445 if (pos && o->ddir_seq_add) {
446 pos += o->ddir_seq_add;
447
448 /*
449 * If we reach beyond the end of the file
450 * with holed IO, wrap around to the
451 * beginning again. If we're doing backwards IO,
452 * wrap to the end.
453 */
454 if (pos >= f->real_file_size) {
455 if (o->ddir_seq_add > 0)
456 pos = f->file_offset;
457 else {
458 if (f->real_file_size > f->io_size)
459 pos = f->io_size;
460 else
461 pos = f->real_file_size;
462
463 pos += o->ddir_seq_add;
464 }
465 }
466 }
467
468 *offset = pos;
469 return 0;
470 }
471
472 return 1;
473}
474
475static int get_next_block(struct thread_data *td, struct io_u *io_u,
476 enum fio_ddir ddir, int rw_seq,
477 bool *is_random)
478{
479 struct fio_file *f = io_u->file;
480 uint64_t b, offset;
481 int ret;
482
483 assert(ddir_rw(ddir));
484
485 b = offset = -1ULL;
486
487 if (rw_seq) {
488 if (td_random(td)) {
489 if (should_do_random(td, ddir)) {
490 ret = get_next_rand_block(td, f, ddir, &b);
491 *is_random = true;
492 } else {
493 *is_random = false;
494 io_u_set(td, io_u, IO_U_F_BUSY_OK);
495 ret = get_next_seq_offset(td, f, ddir, &offset);
496 if (ret)
497 ret = get_next_rand_block(td, f, ddir, &b);
498 }
499 } else {
500 *is_random = false;
501 ret = get_next_seq_offset(td, f, ddir, &offset);
502 }
503 } else {
504 io_u_set(td, io_u, IO_U_F_BUSY_OK);
505 *is_random = false;
506
507 if (td->o.rw_seq == RW_SEQ_SEQ) {
508 ret = get_next_seq_offset(td, f, ddir, &offset);
509 if (ret) {
510 ret = get_next_rand_block(td, f, ddir, &b);
511 *is_random = false;
512 }
513 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
514 if (f->last_start[ddir] != -1ULL)
515 offset = f->last_start[ddir] - f->file_offset;
516 else
517 offset = 0;
518 ret = 0;
519 } else {
520 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
521 ret = 1;
522 }
523 }
524
525 if (!ret) {
526 if (offset != -1ULL)
527 io_u->offset = offset;
528 else if (b != -1ULL)
529 io_u->offset = b * td->o.ba[ddir];
530 else {
531 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
532 ret = 1;
533 }
534 }
535
536 return ret;
537}
538
539/*
540 * For random io, generate a random new block and see if it's used. Repeat
541 * until we find a free one. For sequential io, just return the end of
542 * the last io issued.
543 */
544static int get_next_offset(struct thread_data *td, struct io_u *io_u,
545 bool *is_random)
546{
547 struct fio_file *f = io_u->file;
548 enum fio_ddir ddir = io_u->ddir;
549 int rw_seq_hit = 0;
550
551 assert(ddir_rw(ddir));
552
553 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
554 rw_seq_hit = 1;
555 td->ddir_seq_nr = td->o.ddir_seq_nr;
556 }
557
558 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
559 return 1;
560
561 if (io_u->offset >= f->io_size) {
562 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
563 (unsigned long long) io_u->offset,
564 (unsigned long long) f->io_size);
565 return 1;
566 }
567
568 io_u->offset += f->file_offset;
569 if (io_u->offset >= f->real_file_size) {
570 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
571 (unsigned long long) io_u->offset,
572 (unsigned long long) f->real_file_size);
573 return 1;
574 }
575
576 return 0;
577}
578
579static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
580 unsigned int buflen)
581{
582 struct fio_file *f = io_u->file;
583
584 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
585}
586
587static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
588 bool is_random)
589{
590 int ddir = io_u->ddir;
591 unsigned int buflen = 0;
592 unsigned int minbs, maxbs;
593 uint64_t frand_max, r;
594 bool power_2;
595
596 assert(ddir_rw(ddir));
597
598 if (td->o.bs_is_seq_rand)
599 ddir = is_random ? DDIR_WRITE : DDIR_READ;
600
601 minbs = td->o.min_bs[ddir];
602 maxbs = td->o.max_bs[ddir];
603
604 if (minbs == maxbs)
605 return minbs;
606
607 /*
608 * If we can't satisfy the min block size from here, then fail
609 */
610 if (!io_u_fits(td, io_u, minbs))
611 return 0;
612
613 frand_max = rand_max(&td->bsrange_state[ddir]);
614 do {
615 r = __rand(&td->bsrange_state[ddir]);
616
617 if (!td->o.bssplit_nr[ddir]) {
618 buflen = 1 + (unsigned int) ((double) maxbs *
619 (r / (frand_max + 1.0)));
620 if (buflen < minbs)
621 buflen = minbs;
622 } else {
623 long long perc = 0;
624 unsigned int i;
625
626 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
627 struct bssplit *bsp = &td->o.bssplit[ddir][i];
628
629 buflen = bsp->bs;
630 perc += bsp->perc;
631 if (!perc)
632 break;
633 if ((r / perc <= frand_max / 100ULL) &&
634 io_u_fits(td, io_u, buflen))
635 break;
636 }
637 }
638
639 power_2 = is_power_of_2(minbs);
640 if (!td->o.bs_unaligned && power_2)
641 buflen &= ~(minbs - 1);
642 else if (!td->o.bs_unaligned && !power_2)
643 buflen -= buflen % minbs;
644 } while (!io_u_fits(td, io_u, buflen));
645
646 return buflen;
647}
648
649static void set_rwmix_bytes(struct thread_data *td)
650{
651 unsigned int diff;
652
653 /*
654 * we do time or byte based switch. this is needed because
655 * buffered writes may issue a lot quicker than they complete,
656 * whereas reads do not.
657 */
658 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
659 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
660}
661
662static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
663{
664 unsigned int v;
665
666 v = rand32_between(&td->rwmix_state, 1, 100);
667
668 if (v <= td->o.rwmix[DDIR_READ])
669 return DDIR_READ;
670
671 return DDIR_WRITE;
672}
673
674int io_u_quiesce(struct thread_data *td)
675{
676 int completed = 0;
677
678 /*
679 * We are going to sleep, ensure that we flush anything pending as
680 * not to skew our latency numbers.
681 *
682 * Changed to only monitor 'in flight' requests here instead of the
683 * td->cur_depth, b/c td->cur_depth does not accurately represent
684 * io's that have been actually submitted to an async engine,
685 * and cur_depth is meaningless for sync engines.
686 */
687 if (td->io_u_queued || td->cur_depth) {
688 int fio_unused ret;
689
690 ret = td_io_commit(td);
691 }
692
693 while (td->io_u_in_flight) {
694 int ret;
695
696 ret = io_u_queued_complete(td, 1);
697 if (ret > 0)
698 completed += ret;
699 }
700
701 if (td->flags & TD_F_REGROW_LOGS)
702 regrow_logs(td);
703
704 return completed;
705}
706
707static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
708{
709 enum fio_ddir odir = ddir ^ 1;
710 uint64_t usec;
711 uint64_t now;
712
713 assert(ddir_rw(ddir));
714 now = utime_since_now(&td->start);
715
716 /*
717 * if rate_next_io_time is in the past, need to catch up to rate
718 */
719 if (td->rate_next_io_time[ddir] <= now)
720 return ddir;
721
722 /*
723 * We are ahead of rate in this direction. See if we
724 * should switch.
725 */
726 if (td_rw(td) && td->o.rwmix[odir]) {
727 /*
728 * Other direction is behind rate, switch
729 */
730 if (td->rate_next_io_time[odir] <= now)
731 return odir;
732
733 /*
734 * Both directions are ahead of rate. sleep the min,
735 * switch if necessary
736 */
737 if (td->rate_next_io_time[ddir] <=
738 td->rate_next_io_time[odir]) {
739 usec = td->rate_next_io_time[ddir] - now;
740 } else {
741 usec = td->rate_next_io_time[odir] - now;
742 ddir = odir;
743 }
744 } else
745 usec = td->rate_next_io_time[ddir] - now;
746
747 if (td->o.io_submit_mode == IO_MODE_INLINE)
748 io_u_quiesce(td);
749
750 usec_sleep(td, usec);
751 return ddir;
752}
753
754/*
755 * Return the data direction for the next io_u. If the job is a
756 * mixed read/write workload, check the rwmix cycle and switch if
757 * necessary.
758 */
759static enum fio_ddir get_rw_ddir(struct thread_data *td)
760{
761 enum fio_ddir ddir;
762
763 /*
764 * See if it's time to fsync/fdatasync/sync_file_range first,
765 * and if not then move on to check regular I/Os.
766 */
767 if (should_fsync(td)) {
768 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
769 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
770 return DDIR_SYNC;
771
772 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
773 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
774 return DDIR_DATASYNC;
775
776 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
777 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
778 return DDIR_SYNC_FILE_RANGE;
779 }
780
781 if (td_rw(td)) {
782 /*
783 * Check if it's time to seed a new data direction.
784 */
785 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
786 /*
787 * Put a top limit on how many bytes we do for
788 * one data direction, to avoid overflowing the
789 * ranges too much
790 */
791 ddir = get_rand_ddir(td);
792
793 if (ddir != td->rwmix_ddir)
794 set_rwmix_bytes(td);
795
796 td->rwmix_ddir = ddir;
797 }
798 ddir = td->rwmix_ddir;
799 } else if (td_read(td))
800 ddir = DDIR_READ;
801 else if (td_write(td))
802 ddir = DDIR_WRITE;
803 else if (td_trim(td))
804 ddir = DDIR_TRIM;
805 else
806 ddir = DDIR_INVAL;
807
808 td->rwmix_ddir = rate_ddir(td, ddir);
809 return td->rwmix_ddir;
810}
811
812static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
813{
814 enum fio_ddir ddir = get_rw_ddir(td);
815
816 if (td_trimwrite(td)) {
817 struct fio_file *f = io_u->file;
818 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
819 ddir = DDIR_TRIM;
820 else
821 ddir = DDIR_WRITE;
822 }
823
824 io_u->ddir = io_u->acct_ddir = ddir;
825
826 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
827 td->o.barrier_blocks &&
828 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
829 td->io_issues[DDIR_WRITE])
830 io_u_set(td, io_u, IO_U_F_BARRIER);
831}
832
833void put_file_log(struct thread_data *td, struct fio_file *f)
834{
835 unsigned int ret = put_file(td, f);
836
837 if (ret)
838 td_verror(td, ret, "file close");
839}
840
841void put_io_u(struct thread_data *td, struct io_u *io_u)
842{
843 if (td->parent)
844 td = td->parent;
845
846 td_io_u_lock(td);
847
848 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
849 put_file_log(td, io_u->file);
850
851 io_u->file = NULL;
852 io_u_set(td, io_u, IO_U_F_FREE);
853
854 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
855 td->cur_depth--;
856 assert(!(td->flags & TD_F_CHILD));
857 }
858 io_u_qpush(&td->io_u_freelist, io_u);
859 td_io_u_free_notify(td);
860 td_io_u_unlock(td);
861}
862
863void clear_io_u(struct thread_data *td, struct io_u *io_u)
864{
865 io_u_clear(td, io_u, IO_U_F_FLIGHT);
866 put_io_u(td, io_u);
867}
868
869void requeue_io_u(struct thread_data *td, struct io_u **io_u)
870{
871 struct io_u *__io_u = *io_u;
872 enum fio_ddir ddir = acct_ddir(__io_u);
873
874 dprint(FD_IO, "requeue %p\n", __io_u);
875
876 if (td->parent)
877 td = td->parent;
878
879 td_io_u_lock(td);
880
881 io_u_set(td, __io_u, IO_U_F_FREE);
882 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
883 td->io_issues[ddir]--;
884
885 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
886 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
887 td->cur_depth--;
888 assert(!(td->flags & TD_F_CHILD));
889 }
890
891 io_u_rpush(&td->io_u_requeues, __io_u);
892 td_io_u_free_notify(td);
893 td_io_u_unlock(td);
894 *io_u = NULL;
895}
896
897static void __fill_io_u_zone(struct thread_data *td, struct io_u *io_u)
898{
899 struct fio_file *f = io_u->file;
900
901 /*
902 * See if it's time to switch to a new zone
903 */
904 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
905 td->zone_bytes = 0;
906 f->file_offset += td->o.zone_range + td->o.zone_skip;
907
908 /*
909 * Wrap from the beginning, if we exceed the file size
910 */
911 if (f->file_offset >= f->real_file_size)
912 f->file_offset = f->real_file_size - f->file_offset;
913 f->last_pos[io_u->ddir] = f->file_offset;
914 td->io_skip_bytes += td->o.zone_skip;
915 }
916
917 /*
918 * If zone_size > zone_range, then maintain the same zone until
919 * zone_bytes >= zone_size.
920 */
921 if (f->last_pos[io_u->ddir] >= (f->file_offset + td->o.zone_range)) {
922 dprint(FD_IO, "io_u maintain zone offset=%" PRIu64 "/last_pos=%" PRIu64 "\n",
923 f->file_offset, f->last_pos[io_u->ddir]);
924 f->last_pos[io_u->ddir] = f->file_offset;
925 }
926
927 /*
928 * For random: if 'norandommap' is not set and zone_size > zone_range,
929 * map needs to be reset as it's done with zone_range everytime.
930 */
931 if ((td->zone_bytes % td->o.zone_range) == 0) {
932 fio_file_reset(td, f);
933 }
934}
935
936static int fill_io_u(struct thread_data *td, struct io_u *io_u)
937{
938 bool is_random;
939
940 if (td_ioengine_flagged(td, FIO_NOIO))
941 goto out;
942
943 set_rw_ddir(td, io_u);
944
945 /*
946 * fsync() or fdatasync() or trim etc, we are done
947 */
948 if (!ddir_rw(io_u->ddir))
949 goto out;
950
951 /*
952 * When file is zoned zone_range is always positive
953 */
954 if (td->o.zone_range) {
955 __fill_io_u_zone(td, io_u);
956 }
957
958 /*
959 * No log, let the seq/rand engine retrieve the next buflen and
960 * position.
961 */
962 if (get_next_offset(td, io_u, &is_random)) {
963 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
964 return 1;
965 }
966
967 io_u->buflen = get_next_buflen(td, io_u, is_random);
968 if (!io_u->buflen) {
969 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
970 return 1;
971 }
972
973 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
974 dprint(FD_IO, "io_u %p, off=0x%llx + len=0x%lx exceeds file size=0x%llx\n",
975 io_u,
976 (unsigned long long) io_u->offset, io_u->buflen,
977 (unsigned long long) io_u->file->real_file_size);
978 return 1;
979 }
980
981 /*
982 * mark entry before potentially trimming io_u
983 */
984 if (td_random(td) && file_randommap(td, io_u->file))
985 mark_random_map(td, io_u);
986
987out:
988 dprint_io_u(io_u, "fill");
989 td->zone_bytes += io_u->buflen;
990 return 0;
991}
992
993static void __io_u_mark_map(uint64_t *map, unsigned int nr)
994{
995 int idx = 0;
996
997 switch (nr) {
998 default:
999 idx = 6;
1000 break;
1001 case 33 ... 64:
1002 idx = 5;
1003 break;
1004 case 17 ... 32:
1005 idx = 4;
1006 break;
1007 case 9 ... 16:
1008 idx = 3;
1009 break;
1010 case 5 ... 8:
1011 idx = 2;
1012 break;
1013 case 1 ... 4:
1014 idx = 1;
1015 case 0:
1016 break;
1017 }
1018
1019 map[idx]++;
1020}
1021
1022void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1023{
1024 __io_u_mark_map(td->ts.io_u_submit, nr);
1025 td->ts.total_submit++;
1026}
1027
1028void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1029{
1030 __io_u_mark_map(td->ts.io_u_complete, nr);
1031 td->ts.total_complete++;
1032}
1033
1034void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1035{
1036 int idx = 0;
1037
1038 switch (td->cur_depth) {
1039 default:
1040 idx = 6;
1041 break;
1042 case 32 ... 63:
1043 idx = 5;
1044 break;
1045 case 16 ... 31:
1046 idx = 4;
1047 break;
1048 case 8 ... 15:
1049 idx = 3;
1050 break;
1051 case 4 ... 7:
1052 idx = 2;
1053 break;
1054 case 2 ... 3:
1055 idx = 1;
1056 case 1:
1057 break;
1058 }
1059
1060 td->ts.io_u_map[idx] += nr;
1061}
1062
1063static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1064{
1065 int idx = 0;
1066
1067 assert(nsec < 1000);
1068
1069 switch (nsec) {
1070 case 750 ... 999:
1071 idx = 9;
1072 break;
1073 case 500 ... 749:
1074 idx = 8;
1075 break;
1076 case 250 ... 499:
1077 idx = 7;
1078 break;
1079 case 100 ... 249:
1080 idx = 6;
1081 break;
1082 case 50 ... 99:
1083 idx = 5;
1084 break;
1085 case 20 ... 49:
1086 idx = 4;
1087 break;
1088 case 10 ... 19:
1089 idx = 3;
1090 break;
1091 case 4 ... 9:
1092 idx = 2;
1093 break;
1094 case 2 ... 3:
1095 idx = 1;
1096 case 0 ... 1:
1097 break;
1098 }
1099
1100 assert(idx < FIO_IO_U_LAT_N_NR);
1101 td->ts.io_u_lat_n[idx]++;
1102}
1103
1104static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1105{
1106 int idx = 0;
1107
1108 assert(usec < 1000 && usec >= 1);
1109
1110 switch (usec) {
1111 case 750 ... 999:
1112 idx = 9;
1113 break;
1114 case 500 ... 749:
1115 idx = 8;
1116 break;
1117 case 250 ... 499:
1118 idx = 7;
1119 break;
1120 case 100 ... 249:
1121 idx = 6;
1122 break;
1123 case 50 ... 99:
1124 idx = 5;
1125 break;
1126 case 20 ... 49:
1127 idx = 4;
1128 break;
1129 case 10 ... 19:
1130 idx = 3;
1131 break;
1132 case 4 ... 9:
1133 idx = 2;
1134 break;
1135 case 2 ... 3:
1136 idx = 1;
1137 case 0 ... 1:
1138 break;
1139 }
1140
1141 assert(idx < FIO_IO_U_LAT_U_NR);
1142 td->ts.io_u_lat_u[idx]++;
1143}
1144
1145static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1146{
1147 int idx = 0;
1148
1149 assert(msec >= 1);
1150
1151 switch (msec) {
1152 default:
1153 idx = 11;
1154 break;
1155 case 1000 ... 1999:
1156 idx = 10;
1157 break;
1158 case 750 ... 999:
1159 idx = 9;
1160 break;
1161 case 500 ... 749:
1162 idx = 8;
1163 break;
1164 case 250 ... 499:
1165 idx = 7;
1166 break;
1167 case 100 ... 249:
1168 idx = 6;
1169 break;
1170 case 50 ... 99:
1171 idx = 5;
1172 break;
1173 case 20 ... 49:
1174 idx = 4;
1175 break;
1176 case 10 ... 19:
1177 idx = 3;
1178 break;
1179 case 4 ... 9:
1180 idx = 2;
1181 break;
1182 case 2 ... 3:
1183 idx = 1;
1184 case 0 ... 1:
1185 break;
1186 }
1187
1188 assert(idx < FIO_IO_U_LAT_M_NR);
1189 td->ts.io_u_lat_m[idx]++;
1190}
1191
1192static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1193{
1194 if (nsec < 1000)
1195 io_u_mark_lat_nsec(td, nsec);
1196 else if (nsec < 1000000)
1197 io_u_mark_lat_usec(td, nsec / 1000);
1198 else
1199 io_u_mark_lat_msec(td, nsec / 1000000);
1200}
1201
1202static unsigned int __get_next_fileno_rand(struct thread_data *td)
1203{
1204 unsigned long fileno;
1205
1206 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1207 uint64_t frand_max = rand_max(&td->next_file_state);
1208 unsigned long r;
1209
1210 r = __rand(&td->next_file_state);
1211 return (unsigned int) ((double) td->o.nr_files
1212 * (r / (frand_max + 1.0)));
1213 }
1214
1215 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1216 fileno = zipf_next(&td->next_file_zipf);
1217 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1218 fileno = pareto_next(&td->next_file_zipf);
1219 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1220 fileno = gauss_next(&td->next_file_gauss);
1221 else {
1222 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1223 assert(0);
1224 return 0;
1225 }
1226
1227 return fileno >> FIO_FSERVICE_SHIFT;
1228}
1229
1230/*
1231 * Get next file to service by choosing one at random
1232 */
1233static struct fio_file *get_next_file_rand(struct thread_data *td,
1234 enum fio_file_flags goodf,
1235 enum fio_file_flags badf)
1236{
1237 struct fio_file *f;
1238 int fno;
1239
1240 do {
1241 int opened = 0;
1242
1243 fno = __get_next_fileno_rand(td);
1244
1245 f = td->files[fno];
1246 if (fio_file_done(f))
1247 continue;
1248
1249 if (!fio_file_open(f)) {
1250 int err;
1251
1252 if (td->nr_open_files >= td->o.open_files)
1253 return ERR_PTR(-EBUSY);
1254
1255 err = td_io_open_file(td, f);
1256 if (err)
1257 continue;
1258 opened = 1;
1259 }
1260
1261 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1262 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1263 return f;
1264 }
1265 if (opened)
1266 td_io_close_file(td, f);
1267 } while (1);
1268}
1269
1270/*
1271 * Get next file to service by doing round robin between all available ones
1272 */
1273static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1274 int badf)
1275{
1276 unsigned int old_next_file = td->next_file;
1277 struct fio_file *f;
1278
1279 do {
1280 int opened = 0;
1281
1282 f = td->files[td->next_file];
1283
1284 td->next_file++;
1285 if (td->next_file >= td->o.nr_files)
1286 td->next_file = 0;
1287
1288 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1289 if (fio_file_done(f)) {
1290 f = NULL;
1291 continue;
1292 }
1293
1294 if (!fio_file_open(f)) {
1295 int err;
1296
1297 if (td->nr_open_files >= td->o.open_files)
1298 return ERR_PTR(-EBUSY);
1299
1300 err = td_io_open_file(td, f);
1301 if (err) {
1302 dprint(FD_FILE, "error %d on open of %s\n",
1303 err, f->file_name);
1304 f = NULL;
1305 continue;
1306 }
1307 opened = 1;
1308 }
1309
1310 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1311 f->flags);
1312 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1313 break;
1314
1315 if (opened)
1316 td_io_close_file(td, f);
1317
1318 f = NULL;
1319 } while (td->next_file != old_next_file);
1320
1321 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1322 return f;
1323}
1324
1325static struct fio_file *__get_next_file(struct thread_data *td)
1326{
1327 struct fio_file *f;
1328
1329 assert(td->o.nr_files <= td->files_index);
1330
1331 if (td->nr_done_files >= td->o.nr_files) {
1332 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1333 " nr_files=%d\n", td->nr_open_files,
1334 td->nr_done_files,
1335 td->o.nr_files);
1336 return NULL;
1337 }
1338
1339 f = td->file_service_file;
1340 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1341 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1342 goto out;
1343 if (td->file_service_left--)
1344 goto out;
1345 }
1346
1347 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1348 td->o.file_service_type == FIO_FSERVICE_SEQ)
1349 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1350 else
1351 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1352
1353 if (IS_ERR(f))
1354 return f;
1355
1356 td->file_service_file = f;
1357 td->file_service_left = td->file_service_nr - 1;
1358out:
1359 if (f)
1360 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1361 else
1362 dprint(FD_FILE, "get_next_file: NULL\n");
1363 return f;
1364}
1365
1366static struct fio_file *get_next_file(struct thread_data *td)
1367{
1368 return __get_next_file(td);
1369}
1370
1371static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1372{
1373 struct fio_file *f;
1374
1375 do {
1376 f = get_next_file(td);
1377 if (IS_ERR_OR_NULL(f))
1378 return PTR_ERR(f);
1379
1380 io_u->file = f;
1381 get_file(f);
1382
1383 if (!fill_io_u(td, io_u))
1384 break;
1385
1386 put_file_log(td, f);
1387 td_io_close_file(td, f);
1388 io_u->file = NULL;
1389 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1390 fio_file_reset(td, f);
1391 else {
1392 fio_file_set_done(f);
1393 td->nr_done_files++;
1394 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1395 td->nr_done_files, td->o.nr_files);
1396 }
1397 } while (1);
1398
1399 return 0;
1400}
1401
1402static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1403 unsigned long long tnsec, unsigned long long max_nsec)
1404{
1405 if (!td->error)
1406 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1407 td_verror(td, ETIMEDOUT, "max latency exceeded");
1408 icd->error = ETIMEDOUT;
1409}
1410
1411static void lat_new_cycle(struct thread_data *td)
1412{
1413 fio_gettime(&td->latency_ts, NULL);
1414 td->latency_ios = ddir_rw_sum(td->io_blocks);
1415 td->latency_failed = 0;
1416}
1417
1418/*
1419 * We had an IO outside the latency target. Reduce the queue depth. If we
1420 * are at QD=1, then it's time to give up.
1421 */
1422static bool __lat_target_failed(struct thread_data *td)
1423{
1424 if (td->latency_qd == 1)
1425 return true;
1426
1427 td->latency_qd_high = td->latency_qd;
1428
1429 if (td->latency_qd == td->latency_qd_low)
1430 td->latency_qd_low--;
1431
1432 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1433
1434 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1435
1436 /*
1437 * When we ramp QD down, quiesce existing IO to prevent
1438 * a storm of ramp downs due to pending higher depth.
1439 */
1440 io_u_quiesce(td);
1441 lat_new_cycle(td);
1442 return false;
1443}
1444
1445static bool lat_target_failed(struct thread_data *td)
1446{
1447 if (td->o.latency_percentile.u.f == 100.0)
1448 return __lat_target_failed(td);
1449
1450 td->latency_failed++;
1451 return false;
1452}
1453
1454void lat_target_init(struct thread_data *td)
1455{
1456 td->latency_end_run = 0;
1457
1458 if (td->o.latency_target) {
1459 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1460 fio_gettime(&td->latency_ts, NULL);
1461 td->latency_qd = 1;
1462 td->latency_qd_high = td->o.iodepth;
1463 td->latency_qd_low = 1;
1464 td->latency_ios = ddir_rw_sum(td->io_blocks);
1465 } else
1466 td->latency_qd = td->o.iodepth;
1467}
1468
1469void lat_target_reset(struct thread_data *td)
1470{
1471 if (!td->latency_end_run)
1472 lat_target_init(td);
1473}
1474
1475static void lat_target_success(struct thread_data *td)
1476{
1477 const unsigned int qd = td->latency_qd;
1478 struct thread_options *o = &td->o;
1479
1480 td->latency_qd_low = td->latency_qd;
1481
1482 /*
1483 * If we haven't failed yet, we double up to a failing value instead
1484 * of bisecting from highest possible queue depth. If we have set
1485 * a limit other than td->o.iodepth, bisect between that.
1486 */
1487 if (td->latency_qd_high != o->iodepth)
1488 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1489 else
1490 td->latency_qd *= 2;
1491
1492 if (td->latency_qd > o->iodepth)
1493 td->latency_qd = o->iodepth;
1494
1495 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1496
1497 /*
1498 * Same as last one, we are done. Let it run a latency cycle, so
1499 * we get only the results from the targeted depth.
1500 */
1501 if (td->latency_qd == qd) {
1502 if (td->latency_end_run) {
1503 dprint(FD_RATE, "We are done\n");
1504 td->done = 1;
1505 } else {
1506 dprint(FD_RATE, "Quiesce and final run\n");
1507 io_u_quiesce(td);
1508 td->latency_end_run = 1;
1509 reset_all_stats(td);
1510 reset_io_stats(td);
1511 }
1512 }
1513
1514 lat_new_cycle(td);
1515}
1516
1517/*
1518 * Check if we can bump the queue depth
1519 */
1520void lat_target_check(struct thread_data *td)
1521{
1522 uint64_t usec_window;
1523 uint64_t ios;
1524 double success_ios;
1525
1526 usec_window = utime_since_now(&td->latency_ts);
1527 if (usec_window < td->o.latency_window)
1528 return;
1529
1530 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1531 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1532 success_ios *= 100.0;
1533
1534 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1535
1536 if (success_ios >= td->o.latency_percentile.u.f)
1537 lat_target_success(td);
1538 else
1539 __lat_target_failed(td);
1540}
1541
1542/*
1543 * If latency target is enabled, we might be ramping up or down and not
1544 * using the full queue depth available.
1545 */
1546bool queue_full(const struct thread_data *td)
1547{
1548 const int qempty = io_u_qempty(&td->io_u_freelist);
1549
1550 if (qempty)
1551 return true;
1552 if (!td->o.latency_target)
1553 return false;
1554
1555 return td->cur_depth >= td->latency_qd;
1556}
1557
1558struct io_u *__get_io_u(struct thread_data *td)
1559{
1560 struct io_u *io_u = NULL;
1561 int ret;
1562
1563 if (td->stop_io)
1564 return NULL;
1565
1566 td_io_u_lock(td);
1567
1568again:
1569 if (!io_u_rempty(&td->io_u_requeues))
1570 io_u = io_u_rpop(&td->io_u_requeues);
1571 else if (!queue_full(td)) {
1572 io_u = io_u_qpop(&td->io_u_freelist);
1573
1574 io_u->file = NULL;
1575 io_u->buflen = 0;
1576 io_u->resid = 0;
1577 io_u->end_io = NULL;
1578 }
1579
1580 if (io_u) {
1581 assert(io_u->flags & IO_U_F_FREE);
1582 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1583 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1584 IO_U_F_VER_LIST);
1585
1586 io_u->error = 0;
1587 io_u->acct_ddir = -1;
1588 td->cur_depth++;
1589 assert(!(td->flags & TD_F_CHILD));
1590 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1591 io_u->ipo = NULL;
1592 } else if (td_async_processing(td)) {
1593 /*
1594 * We ran out, wait for async verify threads to finish and
1595 * return one
1596 */
1597 assert(!(td->flags & TD_F_CHILD));
1598 ret = pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1599 assert(ret == 0);
1600 goto again;
1601 }
1602
1603 td_io_u_unlock(td);
1604 return io_u;
1605}
1606
1607static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1608{
1609 if (!(td->flags & TD_F_TRIM_BACKLOG))
1610 return false;
1611 if (!td->trim_entries)
1612 return false;
1613
1614 if (td->trim_batch) {
1615 td->trim_batch--;
1616 if (get_next_trim(td, io_u))
1617 return true;
1618 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1619 td->last_ddir != DDIR_READ) {
1620 td->trim_batch = td->o.trim_batch;
1621 if (!td->trim_batch)
1622 td->trim_batch = td->o.trim_backlog;
1623 if (get_next_trim(td, io_u))
1624 return true;
1625 }
1626
1627 return false;
1628}
1629
1630static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1631{
1632 if (!(td->flags & TD_F_VER_BACKLOG))
1633 return false;
1634
1635 if (td->io_hist_len) {
1636 int get_verify = 0;
1637
1638 if (td->verify_batch)
1639 get_verify = 1;
1640 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1641 td->last_ddir != DDIR_READ) {
1642 td->verify_batch = td->o.verify_batch;
1643 if (!td->verify_batch)
1644 td->verify_batch = td->o.verify_backlog;
1645 get_verify = 1;
1646 }
1647
1648 if (get_verify && !get_next_verify(td, io_u)) {
1649 td->verify_batch--;
1650 return true;
1651 }
1652 }
1653
1654 return false;
1655}
1656
1657/*
1658 * Fill offset and start time into the buffer content, to prevent too
1659 * easy compressible data for simple de-dupe attempts. Do this for every
1660 * 512b block in the range, since that should be the smallest block size
1661 * we can expect from a device.
1662 */
1663static void small_content_scramble(struct io_u *io_u)
1664{
1665 unsigned int i, nr_blocks = io_u->buflen >> 9;
1666 unsigned int offset;
1667 uint64_t boffset, *iptr;
1668 char *p;
1669
1670 if (!nr_blocks)
1671 return;
1672
1673 p = io_u->xfer_buf;
1674 boffset = io_u->offset;
1675
1676 if (io_u->buf_filled_len)
1677 io_u->buf_filled_len = 0;
1678
1679 /*
1680 * Generate random index between 0..7. We do chunks of 512b, if
1681 * we assume a cacheline is 64 bytes, then we have 8 of those.
1682 * Scramble content within the blocks in the same cacheline to
1683 * speed things up.
1684 */
1685 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1686
1687 for (i = 0; i < nr_blocks; i++) {
1688 /*
1689 * Fill offset into start of cacheline, time into end
1690 * of cacheline
1691 */
1692 iptr = (void *) p + (offset << 6);
1693 *iptr = boffset;
1694
1695 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1696 iptr[0] = io_u->start_time.tv_sec;
1697 iptr[1] = io_u->start_time.tv_nsec;
1698
1699 p += 512;
1700 boffset += 512;
1701 }
1702}
1703
1704/*
1705 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1706 * etc. The returned io_u is fully ready to be prepped and submitted.
1707 */
1708struct io_u *get_io_u(struct thread_data *td)
1709{
1710 struct fio_file *f;
1711 struct io_u *io_u;
1712 int do_scramble = 0;
1713 long ret = 0;
1714
1715 io_u = __get_io_u(td);
1716 if (!io_u) {
1717 dprint(FD_IO, "__get_io_u failed\n");
1718 return NULL;
1719 }
1720
1721 if (check_get_verify(td, io_u))
1722 goto out;
1723 if (check_get_trim(td, io_u))
1724 goto out;
1725
1726 /*
1727 * from a requeue, io_u already setup
1728 */
1729 if (io_u->file)
1730 goto out;
1731
1732 /*
1733 * If using an iolog, grab next piece if any available.
1734 */
1735 if (td->flags & TD_F_READ_IOLOG) {
1736 if (read_iolog_get(td, io_u))
1737 goto err_put;
1738 } else if (set_io_u_file(td, io_u)) {
1739 ret = -EBUSY;
1740 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1741 goto err_put;
1742 }
1743
1744 f = io_u->file;
1745 if (!f) {
1746 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1747 goto err_put;
1748 }
1749
1750 assert(fio_file_open(f));
1751
1752 if (ddir_rw(io_u->ddir)) {
1753 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1754 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1755 goto err_put;
1756 }
1757
1758 f->last_start[io_u->ddir] = io_u->offset;
1759 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1760
1761 if (io_u->ddir == DDIR_WRITE) {
1762 if (td->flags & TD_F_REFILL_BUFFERS) {
1763 io_u_fill_buffer(td, io_u,
1764 td->o.min_bs[DDIR_WRITE],
1765 io_u->buflen);
1766 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1767 !(td->flags & TD_F_COMPRESS))
1768 do_scramble = 1;
1769 if (td->flags & TD_F_VER_NONE) {
1770 populate_verify_io_u(td, io_u);
1771 do_scramble = 0;
1772 }
1773 } else if (io_u->ddir == DDIR_READ) {
1774 /*
1775 * Reset the buf_filled parameters so next time if the
1776 * buffer is used for writes it is refilled.
1777 */
1778 io_u->buf_filled_len = 0;
1779 }
1780 }
1781
1782 /*
1783 * Set io data pointers.
1784 */
1785 io_u->xfer_buf = io_u->buf;
1786 io_u->xfer_buflen = io_u->buflen;
1787
1788out:
1789 assert(io_u->file);
1790 if (!td_io_prep(td, io_u)) {
1791 if (!td->o.disable_lat)
1792 fio_gettime(&io_u->start_time, NULL);
1793
1794 if (do_scramble)
1795 small_content_scramble(io_u);
1796
1797 return io_u;
1798 }
1799err_put:
1800 dprint(FD_IO, "get_io_u failed\n");
1801 put_io_u(td, io_u);
1802 return ERR_PTR(ret);
1803}
1804
1805static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1806{
1807 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1808
1809 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1810 return;
1811
1812 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1813 io_u->file ? " on file " : "",
1814 io_u->file ? io_u->file->file_name : "",
1815 strerror(io_u->error),
1816 io_ddir_name(io_u->ddir),
1817 io_u->offset, io_u->xfer_buflen);
1818
1819 if (td->io_ops->errdetails) {
1820 char *err = td->io_ops->errdetails(io_u);
1821
1822 log_err("fio: %s\n", err);
1823 free(err);
1824 }
1825
1826 if (!td->error)
1827 td_verror(td, io_u->error, "io_u error");
1828}
1829
1830void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1831{
1832 __io_u_log_error(td, io_u);
1833 if (td->parent)
1834 __io_u_log_error(td->parent, io_u);
1835}
1836
1837static inline bool gtod_reduce(struct thread_data *td)
1838{
1839 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1840 || td->o.gtod_reduce;
1841}
1842
1843static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1844 struct io_completion_data *icd,
1845 const enum fio_ddir idx, unsigned int bytes)
1846{
1847 const int no_reduce = !gtod_reduce(td);
1848 unsigned long long llnsec = 0;
1849
1850 if (td->parent)
1851 td = td->parent;
1852
1853 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1854 return;
1855
1856 if (no_reduce)
1857 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1858
1859 if (!td->o.disable_lat) {
1860 unsigned long long tnsec;
1861
1862 tnsec = ntime_since(&io_u->start_time, &icd->time);
1863 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1864
1865 if (td->flags & TD_F_PROFILE_OPS) {
1866 struct prof_io_ops *ops = &td->prof_io_ops;
1867
1868 if (ops->io_u_lat)
1869 icd->error = ops->io_u_lat(td, tnsec);
1870 }
1871
1872 if (td->o.max_latency && tnsec > td->o.max_latency)
1873 lat_fatal(td, icd, tnsec, td->o.max_latency);
1874 if (td->o.latency_target && tnsec > td->o.latency_target) {
1875 if (lat_target_failed(td))
1876 lat_fatal(td, icd, tnsec, td->o.latency_target);
1877 }
1878 }
1879
1880 if (ddir_rw(idx)) {
1881 if (!td->o.disable_clat) {
1882 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1883 io_u_mark_latency(td, llnsec);
1884 }
1885
1886 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1887 add_bw_sample(td, io_u, bytes, llnsec);
1888
1889 if (no_reduce && per_unit_log(td->iops_log))
1890 add_iops_sample(td, io_u, bytes);
1891 } else if (ddir_sync(idx) && !td->o.disable_clat)
1892 add_sync_clat_sample(&td->ts, llnsec);
1893
1894 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1895 uint32_t *info = io_u_block_info(td, io_u);
1896 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1897 if (io_u->ddir == DDIR_TRIM) {
1898 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1899 BLOCK_INFO_TRIMS(*info) + 1);
1900 } else if (io_u->ddir == DDIR_WRITE) {
1901 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1902 *info);
1903 }
1904 }
1905 }
1906}
1907
1908static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1909 uint64_t offset, unsigned int bytes)
1910{
1911 int idx;
1912
1913 if (!f)
1914 return;
1915
1916 if (f->first_write == -1ULL || offset < f->first_write)
1917 f->first_write = offset;
1918 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1919 f->last_write = offset + bytes;
1920
1921 if (!f->last_write_comp)
1922 return;
1923
1924 idx = f->last_write_idx++;
1925 f->last_write_comp[idx] = offset;
1926 if (f->last_write_idx == td->o.iodepth)
1927 f->last_write_idx = 0;
1928}
1929
1930static bool should_account(struct thread_data *td)
1931{
1932 return ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1933 td->runstate == TD_VERIFYING);
1934}
1935
1936static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1937 struct io_completion_data *icd)
1938{
1939 struct io_u *io_u = *io_u_ptr;
1940 enum fio_ddir ddir = io_u->ddir;
1941 struct fio_file *f = io_u->file;
1942
1943 dprint_io_u(io_u, "complete");
1944
1945 assert(io_u->flags & IO_U_F_FLIGHT);
1946 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1947
1948 /*
1949 * Mark IO ok to verify
1950 */
1951 if (io_u->ipo) {
1952 /*
1953 * Remove errored entry from the verification list
1954 */
1955 if (io_u->error)
1956 unlog_io_piece(td, io_u);
1957 else {
1958 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1959 write_barrier();
1960 }
1961 }
1962
1963 if (ddir_sync(ddir)) {
1964 td->last_was_sync = true;
1965 if (f) {
1966 f->first_write = -1ULL;
1967 f->last_write = -1ULL;
1968 }
1969 if (should_account(td))
1970 account_io_completion(td, io_u, icd, ddir, io_u->buflen);
1971 return;
1972 }
1973
1974 td->last_was_sync = false;
1975 td->last_ddir = ddir;
1976
1977 if (!io_u->error && ddir_rw(ddir)) {
1978 unsigned int bytes = io_u->buflen - io_u->resid;
1979 int ret;
1980
1981 td->io_blocks[ddir]++;
1982 td->io_bytes[ddir] += bytes;
1983
1984 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1985 td->this_io_blocks[ddir]++;
1986 td->this_io_bytes[ddir] += bytes;
1987 }
1988
1989 if (ddir == DDIR_WRITE)
1990 file_log_write_comp(td, f, io_u->offset, bytes);
1991
1992 if (should_account(td))
1993 account_io_completion(td, io_u, icd, ddir, bytes);
1994
1995 icd->bytes_done[ddir] += bytes;
1996
1997 if (io_u->end_io) {
1998 ret = io_u->end_io(td, io_u_ptr);
1999 io_u = *io_u_ptr;
2000 if (ret && !icd->error)
2001 icd->error = ret;
2002 }
2003 } else if (io_u->error) {
2004 icd->error = io_u->error;
2005 io_u_log_error(td, io_u);
2006 }
2007 if (icd->error) {
2008 enum error_type_bit eb = td_error_type(ddir, icd->error);
2009
2010 if (!td_non_fatal_error(td, eb, icd->error))
2011 return;
2012
2013 /*
2014 * If there is a non_fatal error, then add to the error count
2015 * and clear all the errors.
2016 */
2017 update_error_count(td, icd->error);
2018 td_clear_error(td);
2019 icd->error = 0;
2020 if (io_u)
2021 io_u->error = 0;
2022 }
2023}
2024
2025static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2026 int nr)
2027{
2028 int ddir;
2029
2030 if (!gtod_reduce(td))
2031 fio_gettime(&icd->time, NULL);
2032
2033 icd->nr = nr;
2034
2035 icd->error = 0;
2036 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2037 icd->bytes_done[ddir] = 0;
2038}
2039
2040static void ios_completed(struct thread_data *td,
2041 struct io_completion_data *icd)
2042{
2043 struct io_u *io_u;
2044 int i;
2045
2046 for (i = 0; i < icd->nr; i++) {
2047 io_u = td->io_ops->event(td, i);
2048
2049 io_completed(td, &io_u, icd);
2050
2051 if (io_u)
2052 put_io_u(td, io_u);
2053 }
2054}
2055
2056/*
2057 * Complete a single io_u for the sync engines.
2058 */
2059int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2060{
2061 struct io_completion_data icd;
2062 int ddir;
2063
2064 init_icd(td, &icd, 1);
2065 io_completed(td, &io_u, &icd);
2066
2067 if (io_u)
2068 put_io_u(td, io_u);
2069
2070 if (icd.error) {
2071 td_verror(td, icd.error, "io_u_sync_complete");
2072 return -1;
2073 }
2074
2075 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2076 td->bytes_done[ddir] += icd.bytes_done[ddir];
2077
2078 return 0;
2079}
2080
2081/*
2082 * Called to complete min_events number of io for the async engines.
2083 */
2084int io_u_queued_complete(struct thread_data *td, int min_evts)
2085{
2086 struct io_completion_data icd;
2087 struct timespec *tvp = NULL;
2088 int ret, ddir;
2089 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2090
2091 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2092
2093 if (!min_evts)
2094 tvp = &ts;
2095 else if (min_evts > td->cur_depth)
2096 min_evts = td->cur_depth;
2097
2098 /* No worries, td_io_getevents fixes min and max if they are
2099 * set incorrectly */
2100 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2101 if (ret < 0) {
2102 td_verror(td, -ret, "td_io_getevents");
2103 return ret;
2104 } else if (!ret)
2105 return ret;
2106
2107 init_icd(td, &icd, ret);
2108 ios_completed(td, &icd);
2109 if (icd.error) {
2110 td_verror(td, icd.error, "io_u_queued_complete");
2111 return -1;
2112 }
2113
2114 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2115 td->bytes_done[ddir] += icd.bytes_done[ddir];
2116
2117 return ret;
2118}
2119
2120/*
2121 * Call when io_u is really queued, to update the submission latency.
2122 */
2123void io_u_queued(struct thread_data *td, struct io_u *io_u)
2124{
2125 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2126 unsigned long slat_time;
2127
2128 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2129
2130 if (td->parent)
2131 td = td->parent;
2132
2133 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2134 io_u->offset);
2135 }
2136}
2137
2138/*
2139 * See if we should reuse the last seed, if dedupe is enabled
2140 */
2141static struct frand_state *get_buf_state(struct thread_data *td)
2142{
2143 unsigned int v;
2144
2145 if (!td->o.dedupe_percentage)
2146 return &td->buf_state;
2147 else if (td->o.dedupe_percentage == 100) {
2148 frand_copy(&td->buf_state_prev, &td->buf_state);
2149 return &td->buf_state;
2150 }
2151
2152 v = rand32_between(&td->dedupe_state, 1, 100);
2153
2154 if (v <= td->o.dedupe_percentage)
2155 return &td->buf_state_prev;
2156
2157 return &td->buf_state;
2158}
2159
2160static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2161{
2162 if (td->o.dedupe_percentage == 100)
2163 frand_copy(rs, &td->buf_state_prev);
2164 else if (rs == &td->buf_state)
2165 frand_copy(&td->buf_state_prev, rs);
2166}
2167
2168void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2169 unsigned int max_bs)
2170{
2171 struct thread_options *o = &td->o;
2172
2173 if (o->mem_type == MEM_CUDA_MALLOC)
2174 return;
2175
2176 if (o->compress_percentage || o->dedupe_percentage) {
2177 unsigned int perc = td->o.compress_percentage;
2178 struct frand_state *rs;
2179 unsigned int left = max_bs;
2180 unsigned int this_write;
2181
2182 do {
2183 rs = get_buf_state(td);
2184
2185 min_write = min(min_write, left);
2186
2187 if (perc) {
2188 this_write = min_not_zero(min_write,
2189 td->o.compress_chunk);
2190
2191 fill_random_buf_percentage(rs, buf, perc,
2192 this_write, this_write,
2193 o->buffer_pattern,
2194 o->buffer_pattern_bytes);
2195 } else {
2196 fill_random_buf(rs, buf, min_write);
2197 this_write = min_write;
2198 }
2199
2200 buf += this_write;
2201 left -= this_write;
2202 save_buf_state(td, rs);
2203 } while (left);
2204 } else if (o->buffer_pattern_bytes)
2205 fill_buffer_pattern(td, buf, max_bs);
2206 else if (o->zero_buffers)
2207 memset(buf, 0, max_bs);
2208 else
2209 fill_random_buf(get_buf_state(td), buf, max_bs);
2210}
2211
2212/*
2213 * "randomly" fill the buffer contents
2214 */
2215void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2216 unsigned int min_write, unsigned int max_bs)
2217{
2218 io_u->buf_filled_len = 0;
2219 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2220}
2221
2222static int do_sync_file_range(const struct thread_data *td,
2223 struct fio_file *f)
2224{
2225 off64_t offset, nbytes;
2226
2227 offset = f->first_write;
2228 nbytes = f->last_write - f->first_write;
2229
2230 if (!nbytes)
2231 return 0;
2232
2233 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2234}
2235
2236int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2237{
2238 int ret;
2239
2240 if (io_u->ddir == DDIR_SYNC) {
2241 ret = fsync(io_u->file->fd);
2242 } else if (io_u->ddir == DDIR_DATASYNC) {
2243#ifdef CONFIG_FDATASYNC
2244 ret = fdatasync(io_u->file->fd);
2245#else
2246 ret = io_u->xfer_buflen;
2247 io_u->error = EINVAL;
2248#endif
2249 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2250 ret = do_sync_file_range(td, io_u->file);
2251 else {
2252 ret = io_u->xfer_buflen;
2253 io_u->error = EINVAL;
2254 }
2255
2256 if (ret < 0)
2257 io_u->error = errno;
2258
2259 return ret;
2260}
2261
2262int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2263{
2264#ifndef FIO_HAVE_TRIM
2265 io_u->error = EINVAL;
2266 return 0;
2267#else
2268 struct fio_file *f = io_u->file;
2269 int ret;
2270
2271 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2272 if (!ret)
2273 return io_u->xfer_buflen;
2274
2275 io_u->error = ret;
2276 return 0;
2277#endif
2278}