axmap: fix bug in axmap_find_first_free()
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b);
129
130 *b = axmap_next_free(f->io_axmap, *b);
131 if (*b == (uint64_t) -1ULL)
132 return 1;
133ret:
134 return 0;
135}
136
137static int __get_next_rand_offset_zipf(struct thread_data *td,
138 struct fio_file *f, enum fio_ddir ddir,
139 uint64_t *b)
140{
141 *b = zipf_next(&f->zipf);
142 return 0;
143}
144
145static int __get_next_rand_offset_pareto(struct thread_data *td,
146 struct fio_file *f, enum fio_ddir ddir,
147 uint64_t *b)
148{
149 *b = pareto_next(&f->zipf);
150 return 0;
151}
152
153static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
154{
155 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
156 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
157
158 return r1->off - r2->off;
159}
160
161static int get_off_from_method(struct thread_data *td, struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
165 return __get_next_rand_offset(td, f, ddir, b);
166 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
167 return __get_next_rand_offset_zipf(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
169 return __get_next_rand_offset_pareto(td, f, ddir, b);
170
171 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
172 return 1;
173}
174
175/*
176 * Sort the reads for a verify phase in batches of verifysort_nr, if
177 * specified.
178 */
179static inline int should_sort_io(struct thread_data *td)
180{
181 if (!td->o.verifysort_nr || !td->o.do_verify)
182 return 0;
183 if (!td_random(td))
184 return 0;
185 if (td->runstate != TD_VERIFYING)
186 return 0;
187 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
188 return 0;
189
190 return 1;
191}
192
193static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
194 enum fio_ddir ddir, uint64_t *b)
195{
196 struct rand_off *r;
197 int i, ret = 1;
198
199 if (!should_sort_io(td))
200 return get_off_from_method(td, f, ddir, b);
201
202 if (!flist_empty(&td->next_rand_list)) {
203 struct rand_off *r;
204fetch:
205 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
206 flist_del(&r->list);
207 *b = r->off;
208 free(r);
209 return 0;
210 }
211
212 for (i = 0; i < td->o.verifysort_nr; i++) {
213 r = malloc(sizeof(*r));
214
215 ret = get_off_from_method(td, f, ddir, &r->off);
216 if (ret) {
217 free(r);
218 break;
219 }
220
221 flist_add(&r->list, &td->next_rand_list);
222 }
223
224 if (ret && !i)
225 return ret;
226
227 assert(!flist_empty(&td->next_rand_list));
228 flist_sort(NULL, &td->next_rand_list, flist_cmp);
229 goto fetch;
230}
231
232static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (!get_next_rand_offset(td, f, ddir, b))
236 return 0;
237
238 if (td->o.time_based) {
239 fio_file_reset(td, f);
240 if (!get_next_rand_offset(td, f, ddir, b))
241 return 0;
242 }
243
244 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
245 f->file_name, f->last_pos, f->real_file_size);
246 return 1;
247}
248
249static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
250 enum fio_ddir ddir, uint64_t *offset)
251{
252 assert(ddir_rw(ddir));
253
254 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
255 f->last_pos = f->last_pos - f->io_size;
256
257 if (f->last_pos < f->real_file_size) {
258 uint64_t pos;
259
260 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
261 f->last_pos = f->real_file_size;
262
263 pos = f->last_pos - f->file_offset;
264 if (pos)
265 pos += td->o.ddir_seq_add;
266
267 *offset = pos;
268 return 0;
269 }
270
271 return 1;
272}
273
274static int get_next_block(struct thread_data *td, struct io_u *io_u,
275 enum fio_ddir ddir, int rw_seq)
276{
277 struct fio_file *f = io_u->file;
278 uint64_t b, offset;
279 int ret;
280
281 assert(ddir_rw(ddir));
282
283 b = offset = -1ULL;
284
285 if (rw_seq) {
286 if (td_random(td))
287 ret = get_next_rand_block(td, f, ddir, &b);
288 else
289 ret = get_next_seq_offset(td, f, ddir, &offset);
290 } else {
291 io_u->flags |= IO_U_F_BUSY_OK;
292
293 if (td->o.rw_seq == RW_SEQ_SEQ) {
294 ret = get_next_seq_offset(td, f, ddir, &offset);
295 if (ret)
296 ret = get_next_rand_block(td, f, ddir, &b);
297 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
298 if (f->last_start != -1ULL)
299 offset = f->last_start - f->file_offset;
300 else
301 offset = 0;
302 ret = 0;
303 } else {
304 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
305 ret = 1;
306 }
307 }
308
309 if (!ret) {
310 if (offset != -1ULL)
311 io_u->offset = offset;
312 else if (b != -1ULL)
313 io_u->offset = b * td->o.ba[ddir];
314 else {
315 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n",
316 offset, b);
317 ret = 1;
318 }
319 }
320
321 return ret;
322}
323
324/*
325 * For random io, generate a random new block and see if it's used. Repeat
326 * until we find a free one. For sequential io, just return the end of
327 * the last io issued.
328 */
329static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
330{
331 struct fio_file *f = io_u->file;
332 enum fio_ddir ddir = io_u->ddir;
333 int rw_seq_hit = 0;
334
335 assert(ddir_rw(ddir));
336
337 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
338 rw_seq_hit = 1;
339 td->ddir_seq_nr = td->o.ddir_seq_nr;
340 }
341
342 if (get_next_block(td, io_u, ddir, rw_seq_hit))
343 return 1;
344
345 if (io_u->offset >= f->io_size) {
346 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
347 io_u->offset, f->io_size);
348 return 1;
349 }
350
351 io_u->offset += f->file_offset;
352 if (io_u->offset >= f->real_file_size) {
353 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
354 io_u->offset, f->real_file_size);
355 return 1;
356 }
357
358 return 0;
359}
360
361static int get_next_offset(struct thread_data *td, struct io_u *io_u)
362{
363 if (td->flags & TD_F_PROFILE_OPS) {
364 struct prof_io_ops *ops = &td->prof_io_ops;
365
366 if (ops->fill_io_u_off)
367 return ops->fill_io_u_off(td, io_u);
368 }
369
370 return __get_next_offset(td, io_u);
371}
372
373static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
374 unsigned int buflen)
375{
376 struct fio_file *f = io_u->file;
377
378 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
379}
380
381static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
382{
383 const int ddir = io_u->ddir;
384 unsigned int buflen = 0;
385 unsigned int minbs, maxbs;
386 unsigned long r, rand_max;
387
388 assert(ddir_rw(ddir));
389
390 minbs = td->o.min_bs[ddir];
391 maxbs = td->o.max_bs[ddir];
392
393 if (minbs == maxbs)
394 return minbs;
395
396 /*
397 * If we can't satisfy the min block size from here, then fail
398 */
399 if (!io_u_fits(td, io_u, minbs))
400 return 0;
401
402 if (td->o.use_os_rand)
403 rand_max = OS_RAND_MAX;
404 else
405 rand_max = FRAND_MAX;
406
407 do {
408 if (td->o.use_os_rand)
409 r = os_random_long(&td->bsrange_state);
410 else
411 r = __rand(&td->__bsrange_state);
412
413 if (!td->o.bssplit_nr[ddir]) {
414 buflen = 1 + (unsigned int) ((double) maxbs *
415 (r / (rand_max + 1.0)));
416 if (buflen < minbs)
417 buflen = minbs;
418 } else {
419 long perc = 0;
420 unsigned int i;
421
422 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
423 struct bssplit *bsp = &td->o.bssplit[ddir][i];
424
425 buflen = bsp->bs;
426 perc += bsp->perc;
427 if ((r <= ((rand_max / 100L) * perc)) &&
428 io_u_fits(td, io_u, buflen))
429 break;
430 }
431 }
432
433 if (!td->o.bs_unaligned && is_power_of_2(minbs))
434 buflen = (buflen + minbs - 1) & ~(minbs - 1);
435
436 } while (!io_u_fits(td, io_u, buflen));
437
438 return buflen;
439}
440
441static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
442{
443 if (td->flags & TD_F_PROFILE_OPS) {
444 struct prof_io_ops *ops = &td->prof_io_ops;
445
446 if (ops->fill_io_u_size)
447 return ops->fill_io_u_size(td, io_u);
448 }
449
450 return __get_next_buflen(td, io_u);
451}
452
453static void set_rwmix_bytes(struct thread_data *td)
454{
455 unsigned int diff;
456
457 /*
458 * we do time or byte based switch. this is needed because
459 * buffered writes may issue a lot quicker than they complete,
460 * whereas reads do not.
461 */
462 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
463 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
464}
465
466static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
467{
468 unsigned int v;
469 unsigned long r;
470
471 if (td->o.use_os_rand) {
472 r = os_random_long(&td->rwmix_state);
473 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
474 } else {
475 r = __rand(&td->__rwmix_state);
476 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
477 }
478
479 if (v <= td->o.rwmix[DDIR_READ])
480 return DDIR_READ;
481
482 return DDIR_WRITE;
483}
484
485static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
486{
487 enum fio_ddir odir = ddir ^ 1;
488 struct timeval t;
489 long usec;
490
491 assert(ddir_rw(ddir));
492
493 if (td->rate_pending_usleep[ddir] <= 0)
494 return ddir;
495
496 /*
497 * We have too much pending sleep in this direction. See if we
498 * should switch.
499 */
500 if (td_rw(td)) {
501 /*
502 * Other direction does not have too much pending, switch
503 */
504 if (td->rate_pending_usleep[odir] < 100000)
505 return odir;
506
507 /*
508 * Both directions have pending sleep. Sleep the minimum time
509 * and deduct from both.
510 */
511 if (td->rate_pending_usleep[ddir] <=
512 td->rate_pending_usleep[odir]) {
513 usec = td->rate_pending_usleep[ddir];
514 } else {
515 usec = td->rate_pending_usleep[odir];
516 ddir = odir;
517 }
518 } else
519 usec = td->rate_pending_usleep[ddir];
520
521 /*
522 * We are going to sleep, ensure that we flush anything pending as
523 * not to skew our latency numbers.
524 *
525 * Changed to only monitor 'in flight' requests here instead of the
526 * td->cur_depth, b/c td->cur_depth does not accurately represent
527 * io's that have been actually submitted to an async engine,
528 * and cur_depth is meaningless for sync engines.
529 */
530 if (td->io_u_in_flight) {
531 int fio_unused ret;
532
533 ret = io_u_queued_complete(td, td->io_u_in_flight, NULL);
534 }
535
536 fio_gettime(&t, NULL);
537 usec_sleep(td, usec);
538 usec = utime_since_now(&t);
539
540 td->rate_pending_usleep[ddir] -= usec;
541
542 odir = ddir ^ 1;
543 if (td_rw(td) && __should_check_rate(td, odir))
544 td->rate_pending_usleep[odir] -= usec;
545
546 if (ddir_trim(ddir))
547 return ddir;
548 return ddir;
549}
550
551/*
552 * Return the data direction for the next io_u. If the job is a
553 * mixed read/write workload, check the rwmix cycle and switch if
554 * necessary.
555 */
556static enum fio_ddir get_rw_ddir(struct thread_data *td)
557{
558 enum fio_ddir ddir;
559
560 /*
561 * see if it's time to fsync
562 */
563 if (td->o.fsync_blocks &&
564 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
565 td->io_issues[DDIR_WRITE] && should_fsync(td))
566 return DDIR_SYNC;
567
568 /*
569 * see if it's time to fdatasync
570 */
571 if (td->o.fdatasync_blocks &&
572 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
573 td->io_issues[DDIR_WRITE] && should_fsync(td))
574 return DDIR_DATASYNC;
575
576 /*
577 * see if it's time to sync_file_range
578 */
579 if (td->sync_file_range_nr &&
580 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
581 td->io_issues[DDIR_WRITE] && should_fsync(td))
582 return DDIR_SYNC_FILE_RANGE;
583
584 if (td_rw(td)) {
585 /*
586 * Check if it's time to seed a new data direction.
587 */
588 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
589 /*
590 * Put a top limit on how many bytes we do for
591 * one data direction, to avoid overflowing the
592 * ranges too much
593 */
594 ddir = get_rand_ddir(td);
595
596 if (ddir != td->rwmix_ddir)
597 set_rwmix_bytes(td);
598
599 td->rwmix_ddir = ddir;
600 }
601 ddir = td->rwmix_ddir;
602 } else if (td_read(td))
603 ddir = DDIR_READ;
604 else if (td_write(td))
605 ddir = DDIR_WRITE;
606 else
607 ddir = DDIR_TRIM;
608
609 td->rwmix_ddir = rate_ddir(td, ddir);
610 return td->rwmix_ddir;
611}
612
613static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
614{
615 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
616
617 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
618 td->o.barrier_blocks &&
619 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
620 td->io_issues[DDIR_WRITE])
621 io_u->flags |= IO_U_F_BARRIER;
622}
623
624void put_file_log(struct thread_data *td, struct fio_file *f)
625{
626 int ret = put_file(td, f);
627
628 if (ret)
629 td_verror(td, ret, "file close");
630}
631
632void put_io_u(struct thread_data *td, struct io_u *io_u)
633{
634 td_io_u_lock(td);
635
636 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
637 put_file_log(td, io_u->file);
638 io_u->file = NULL;
639 io_u->flags &= ~IO_U_F_FREE_DEF;
640 io_u->flags |= IO_U_F_FREE;
641
642 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
643 td->cur_depth--;
644 flist_del_init(&io_u->list);
645 flist_add(&io_u->list, &td->io_u_freelist);
646 td_io_u_unlock(td);
647 td_io_u_free_notify(td);
648}
649
650void clear_io_u(struct thread_data *td, struct io_u *io_u)
651{
652 io_u->flags &= ~IO_U_F_FLIGHT;
653 put_io_u(td, io_u);
654}
655
656void requeue_io_u(struct thread_data *td, struct io_u **io_u)
657{
658 struct io_u *__io_u = *io_u;
659 enum fio_ddir ddir = acct_ddir(__io_u);
660
661 dprint(FD_IO, "requeue %p\n", __io_u);
662
663 td_io_u_lock(td);
664
665 __io_u->flags |= IO_U_F_FREE;
666 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
667 td->io_issues[ddir]--;
668
669 __io_u->flags &= ~IO_U_F_FLIGHT;
670 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
671 td->cur_depth--;
672 flist_del(&__io_u->list);
673 flist_add_tail(&__io_u->list, &td->io_u_requeues);
674 td_io_u_unlock(td);
675 *io_u = NULL;
676}
677
678static int fill_io_u(struct thread_data *td, struct io_u *io_u)
679{
680 if (td->io_ops->flags & FIO_NOIO)
681 goto out;
682
683 set_rw_ddir(td, io_u);
684
685 /*
686 * fsync() or fdatasync() or trim etc, we are done
687 */
688 if (!ddir_rw(io_u->ddir))
689 goto out;
690
691 /*
692 * See if it's time to switch to a new zone
693 */
694 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
695 td->zone_bytes = 0;
696 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
697 io_u->file->last_pos = io_u->file->file_offset;
698 td->io_skip_bytes += td->o.zone_skip;
699 }
700
701 /*
702 * No log, let the seq/rand engine retrieve the next buflen and
703 * position.
704 */
705 if (get_next_offset(td, io_u)) {
706 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
707 return 1;
708 }
709
710 io_u->buflen = get_next_buflen(td, io_u);
711 if (!io_u->buflen) {
712 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
713 return 1;
714 }
715
716 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
717 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
718 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
719 io_u->buflen, io_u->file->real_file_size);
720 return 1;
721 }
722
723 /*
724 * mark entry before potentially trimming io_u
725 */
726 if (td_random(td) && file_randommap(td, io_u->file))
727 mark_random_map(td, io_u);
728
729out:
730 dprint_io_u(io_u, "fill_io_u");
731 td->zone_bytes += io_u->buflen;
732 return 0;
733}
734
735static void __io_u_mark_map(unsigned int *map, unsigned int nr)
736{
737 int idx = 0;
738
739 switch (nr) {
740 default:
741 idx = 6;
742 break;
743 case 33 ... 64:
744 idx = 5;
745 break;
746 case 17 ... 32:
747 idx = 4;
748 break;
749 case 9 ... 16:
750 idx = 3;
751 break;
752 case 5 ... 8:
753 idx = 2;
754 break;
755 case 1 ... 4:
756 idx = 1;
757 case 0:
758 break;
759 }
760
761 map[idx]++;
762}
763
764void io_u_mark_submit(struct thread_data *td, unsigned int nr)
765{
766 __io_u_mark_map(td->ts.io_u_submit, nr);
767 td->ts.total_submit++;
768}
769
770void io_u_mark_complete(struct thread_data *td, unsigned int nr)
771{
772 __io_u_mark_map(td->ts.io_u_complete, nr);
773 td->ts.total_complete++;
774}
775
776void io_u_mark_depth(struct thread_data *td, unsigned int nr)
777{
778 int idx = 0;
779
780 switch (td->cur_depth) {
781 default:
782 idx = 6;
783 break;
784 case 32 ... 63:
785 idx = 5;
786 break;
787 case 16 ... 31:
788 idx = 4;
789 break;
790 case 8 ... 15:
791 idx = 3;
792 break;
793 case 4 ... 7:
794 idx = 2;
795 break;
796 case 2 ... 3:
797 idx = 1;
798 case 1:
799 break;
800 }
801
802 td->ts.io_u_map[idx] += nr;
803}
804
805static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
806{
807 int idx = 0;
808
809 assert(usec < 1000);
810
811 switch (usec) {
812 case 750 ... 999:
813 idx = 9;
814 break;
815 case 500 ... 749:
816 idx = 8;
817 break;
818 case 250 ... 499:
819 idx = 7;
820 break;
821 case 100 ... 249:
822 idx = 6;
823 break;
824 case 50 ... 99:
825 idx = 5;
826 break;
827 case 20 ... 49:
828 idx = 4;
829 break;
830 case 10 ... 19:
831 idx = 3;
832 break;
833 case 4 ... 9:
834 idx = 2;
835 break;
836 case 2 ... 3:
837 idx = 1;
838 case 0 ... 1:
839 break;
840 }
841
842 assert(idx < FIO_IO_U_LAT_U_NR);
843 td->ts.io_u_lat_u[idx]++;
844}
845
846static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
847{
848 int idx = 0;
849
850 switch (msec) {
851 default:
852 idx = 11;
853 break;
854 case 1000 ... 1999:
855 idx = 10;
856 break;
857 case 750 ... 999:
858 idx = 9;
859 break;
860 case 500 ... 749:
861 idx = 8;
862 break;
863 case 250 ... 499:
864 idx = 7;
865 break;
866 case 100 ... 249:
867 idx = 6;
868 break;
869 case 50 ... 99:
870 idx = 5;
871 break;
872 case 20 ... 49:
873 idx = 4;
874 break;
875 case 10 ... 19:
876 idx = 3;
877 break;
878 case 4 ... 9:
879 idx = 2;
880 break;
881 case 2 ... 3:
882 idx = 1;
883 case 0 ... 1:
884 break;
885 }
886
887 assert(idx < FIO_IO_U_LAT_M_NR);
888 td->ts.io_u_lat_m[idx]++;
889}
890
891static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
892{
893 if (usec < 1000)
894 io_u_mark_lat_usec(td, usec);
895 else
896 io_u_mark_lat_msec(td, usec / 1000);
897}
898
899/*
900 * Get next file to service by choosing one at random
901 */
902static struct fio_file *get_next_file_rand(struct thread_data *td,
903 enum fio_file_flags goodf,
904 enum fio_file_flags badf)
905{
906 struct fio_file *f;
907 int fno;
908
909 do {
910 int opened = 0;
911 unsigned long r;
912
913 if (td->o.use_os_rand) {
914 r = os_random_long(&td->next_file_state);
915 fno = (unsigned int) ((double) td->o.nr_files
916 * (r / (OS_RAND_MAX + 1.0)));
917 } else {
918 r = __rand(&td->__next_file_state);
919 fno = (unsigned int) ((double) td->o.nr_files
920 * (r / (FRAND_MAX + 1.0)));
921 }
922
923 f = td->files[fno];
924 if (fio_file_done(f))
925 continue;
926
927 if (!fio_file_open(f)) {
928 int err;
929
930 err = td_io_open_file(td, f);
931 if (err)
932 continue;
933 opened = 1;
934 }
935
936 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
937 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
938 return f;
939 }
940 if (opened)
941 td_io_close_file(td, f);
942 } while (1);
943}
944
945/*
946 * Get next file to service by doing round robin between all available ones
947 */
948static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
949 int badf)
950{
951 unsigned int old_next_file = td->next_file;
952 struct fio_file *f;
953
954 do {
955 int opened = 0;
956
957 f = td->files[td->next_file];
958
959 td->next_file++;
960 if (td->next_file >= td->o.nr_files)
961 td->next_file = 0;
962
963 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
964 if (fio_file_done(f)) {
965 f = NULL;
966 continue;
967 }
968
969 if (!fio_file_open(f)) {
970 int err;
971
972 err = td_io_open_file(td, f);
973 if (err) {
974 dprint(FD_FILE, "error %d on open of %s\n",
975 err, f->file_name);
976 f = NULL;
977 continue;
978 }
979 opened = 1;
980 }
981
982 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
983 f->flags);
984 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
985 break;
986
987 if (opened)
988 td_io_close_file(td, f);
989
990 f = NULL;
991 } while (td->next_file != old_next_file);
992
993 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
994 return f;
995}
996
997static struct fio_file *__get_next_file(struct thread_data *td)
998{
999 struct fio_file *f;
1000
1001 assert(td->o.nr_files <= td->files_index);
1002
1003 if (td->nr_done_files >= td->o.nr_files) {
1004 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1005 " nr_files=%d\n", td->nr_open_files,
1006 td->nr_done_files,
1007 td->o.nr_files);
1008 return NULL;
1009 }
1010
1011 f = td->file_service_file;
1012 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1013 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1014 goto out;
1015 if (td->file_service_left--)
1016 goto out;
1017 }
1018
1019 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1020 td->o.file_service_type == FIO_FSERVICE_SEQ)
1021 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1022 else
1023 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1024
1025 td->file_service_file = f;
1026 td->file_service_left = td->file_service_nr - 1;
1027out:
1028 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1029 return f;
1030}
1031
1032static struct fio_file *get_next_file(struct thread_data *td)
1033{
1034 if (!(td->flags & TD_F_PROFILE_OPS)) {
1035 struct prof_io_ops *ops = &td->prof_io_ops;
1036
1037 if (ops->get_next_file)
1038 return ops->get_next_file(td);
1039 }
1040
1041 return __get_next_file(td);
1042}
1043
1044static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1045{
1046 struct fio_file *f;
1047
1048 do {
1049 f = get_next_file(td);
1050 if (!f)
1051 return 1;
1052
1053 io_u->file = f;
1054 get_file(f);
1055
1056 if (!fill_io_u(td, io_u))
1057 break;
1058
1059 put_file_log(td, f);
1060 td_io_close_file(td, f);
1061 io_u->file = NULL;
1062 fio_file_set_done(f);
1063 td->nr_done_files++;
1064 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1065 td->nr_done_files, td->o.nr_files);
1066 } while (1);
1067
1068 return 0;
1069}
1070
1071
1072struct io_u *__get_io_u(struct thread_data *td)
1073{
1074 struct io_u *io_u = NULL;
1075
1076 td_io_u_lock(td);
1077
1078again:
1079 if (!flist_empty(&td->io_u_requeues))
1080 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1081 else if (!queue_full(td)) {
1082 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1083
1084 io_u->buflen = 0;
1085 io_u->resid = 0;
1086 io_u->file = NULL;
1087 io_u->end_io = NULL;
1088 }
1089
1090 if (io_u) {
1091 assert(io_u->flags & IO_U_F_FREE);
1092 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1093 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1094 io_u->flags &= ~IO_U_F_VER_LIST;
1095
1096 io_u->error = 0;
1097 io_u->acct_ddir = -1;
1098 flist_del(&io_u->list);
1099 flist_add_tail(&io_u->list, &td->io_u_busylist);
1100 td->cur_depth++;
1101 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1102 } else if (td->o.verify_async) {
1103 /*
1104 * We ran out, wait for async verify threads to finish and
1105 * return one
1106 */
1107 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1108 goto again;
1109 }
1110
1111 td_io_u_unlock(td);
1112 return io_u;
1113}
1114
1115static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1116{
1117 if (!(td->flags & TD_F_TRIM_BACKLOG))
1118 return 0;
1119
1120 if (td->trim_entries) {
1121 int get_trim = 0;
1122
1123 if (td->trim_batch) {
1124 td->trim_batch--;
1125 get_trim = 1;
1126 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1127 td->last_ddir != DDIR_READ) {
1128 td->trim_batch = td->o.trim_batch;
1129 if (!td->trim_batch)
1130 td->trim_batch = td->o.trim_backlog;
1131 get_trim = 1;
1132 }
1133
1134 if (get_trim && !get_next_trim(td, io_u))
1135 return 1;
1136 }
1137
1138 return 0;
1139}
1140
1141static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1142{
1143 if (!(td->flags & TD_F_VER_BACKLOG))
1144 return 0;
1145
1146 if (td->io_hist_len) {
1147 int get_verify = 0;
1148
1149 if (td->verify_batch)
1150 get_verify = 1;
1151 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1152 td->last_ddir != DDIR_READ) {
1153 td->verify_batch = td->o.verify_batch;
1154 if (!td->verify_batch)
1155 td->verify_batch = td->o.verify_backlog;
1156 get_verify = 1;
1157 }
1158
1159 if (get_verify && !get_next_verify(td, io_u)) {
1160 td->verify_batch--;
1161 return 1;
1162 }
1163 }
1164
1165 return 0;
1166}
1167
1168/*
1169 * Fill offset and start time into the buffer content, to prevent too
1170 * easy compressible data for simple de-dupe attempts. Do this for every
1171 * 512b block in the range, since that should be the smallest block size
1172 * we can expect from a device.
1173 */
1174static void small_content_scramble(struct io_u *io_u)
1175{
1176 unsigned int i, nr_blocks = io_u->buflen / 512;
1177 uint64_t boffset;
1178 unsigned int offset;
1179 void *p, *end;
1180
1181 if (!nr_blocks)
1182 return;
1183
1184 p = io_u->xfer_buf;
1185 boffset = io_u->offset;
1186 io_u->buf_filled_len = 0;
1187
1188 for (i = 0; i < nr_blocks; i++) {
1189 /*
1190 * Fill the byte offset into a "random" start offset of
1191 * the buffer, given by the product of the usec time
1192 * and the actual offset.
1193 */
1194 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1195 offset &= ~(sizeof(uint64_t) - 1);
1196 if (offset >= 512 - sizeof(uint64_t))
1197 offset -= sizeof(uint64_t);
1198 memcpy(p + offset, &boffset, sizeof(boffset));
1199
1200 end = p + 512 - sizeof(io_u->start_time);
1201 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1202 p += 512;
1203 boffset += 512;
1204 }
1205}
1206
1207/*
1208 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1209 * etc. The returned io_u is fully ready to be prepped and submitted.
1210 */
1211struct io_u *get_io_u(struct thread_data *td)
1212{
1213 struct fio_file *f;
1214 struct io_u *io_u;
1215 int do_scramble = 0;
1216
1217 io_u = __get_io_u(td);
1218 if (!io_u) {
1219 dprint(FD_IO, "__get_io_u failed\n");
1220 return NULL;
1221 }
1222
1223 if (check_get_verify(td, io_u))
1224 goto out;
1225 if (check_get_trim(td, io_u))
1226 goto out;
1227
1228 /*
1229 * from a requeue, io_u already setup
1230 */
1231 if (io_u->file)
1232 goto out;
1233
1234 /*
1235 * If using an iolog, grab next piece if any available.
1236 */
1237 if (td->flags & TD_F_READ_IOLOG) {
1238 if (read_iolog_get(td, io_u))
1239 goto err_put;
1240 } else if (set_io_u_file(td, io_u)) {
1241 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1242 goto err_put;
1243 }
1244
1245 f = io_u->file;
1246 assert(fio_file_open(f));
1247
1248 if (ddir_rw(io_u->ddir)) {
1249 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1250 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1251 goto err_put;
1252 }
1253
1254 f->last_start = io_u->offset;
1255 f->last_pos = io_u->offset + io_u->buflen;
1256
1257 if (io_u->ddir == DDIR_WRITE) {
1258 if (td->flags & TD_F_REFILL_BUFFERS) {
1259 io_u_fill_buffer(td, io_u,
1260 io_u->xfer_buflen, io_u->xfer_buflen);
1261 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1262 do_scramble = 1;
1263 if (td->flags & TD_F_VER_NONE) {
1264 populate_verify_io_u(td, io_u);
1265 do_scramble = 0;
1266 }
1267 } else if (io_u->ddir == DDIR_READ) {
1268 /*
1269 * Reset the buf_filled parameters so next time if the
1270 * buffer is used for writes it is refilled.
1271 */
1272 io_u->buf_filled_len = 0;
1273 }
1274 }
1275
1276 /*
1277 * Set io data pointers.
1278 */
1279 io_u->xfer_buf = io_u->buf;
1280 io_u->xfer_buflen = io_u->buflen;
1281
1282out:
1283 assert(io_u->file);
1284 if (!td_io_prep(td, io_u)) {
1285 if (!td->o.disable_slat)
1286 fio_gettime(&io_u->start_time, NULL);
1287 if (do_scramble)
1288 small_content_scramble(io_u);
1289 return io_u;
1290 }
1291err_put:
1292 dprint(FD_IO, "get_io_u failed\n");
1293 put_io_u(td, io_u);
1294 return NULL;
1295}
1296
1297void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1298{
1299 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1300 const char *msg[] = { "read", "write", "sync", "datasync",
1301 "sync_file_range", "wait", "trim" };
1302
1303 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1304 return;
1305
1306 log_err("fio: io_u error");
1307
1308 if (io_u->file)
1309 log_err(" on file %s", io_u->file->file_name);
1310
1311 log_err(": %s\n", strerror(io_u->error));
1312
1313 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1314 io_u->offset, io_u->xfer_buflen);
1315
1316 if (!td->error)
1317 td_verror(td, io_u->error, "io_u error");
1318}
1319
1320static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1321 struct io_completion_data *icd,
1322 const enum fio_ddir idx, unsigned int bytes)
1323{
1324 unsigned long lusec = 0;
1325
1326 if (!td->o.disable_clat || !td->o.disable_bw)
1327 lusec = utime_since(&io_u->issue_time, &icd->time);
1328
1329 if (!td->o.disable_lat) {
1330 unsigned long tusec;
1331
1332 tusec = utime_since(&io_u->start_time, &icd->time);
1333 add_lat_sample(td, idx, tusec, bytes);
1334
1335 if (td->o.max_latency && tusec > td->o.max_latency) {
1336 if (!td->error)
1337 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1338 td_verror(td, ETIMEDOUT, "max latency exceeded");
1339 icd->error = ETIMEDOUT;
1340 }
1341 }
1342
1343 if (!td->o.disable_clat) {
1344 add_clat_sample(td, idx, lusec, bytes);
1345 io_u_mark_latency(td, lusec);
1346 }
1347
1348 if (!td->o.disable_bw)
1349 add_bw_sample(td, idx, bytes, &icd->time);
1350
1351 add_iops_sample(td, idx, &icd->time);
1352}
1353
1354static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1355{
1356 uint64_t secs, remainder, bps, bytes;
1357
1358 bytes = td->this_io_bytes[ddir];
1359 bps = td->rate_bps[ddir];
1360 secs = bytes / bps;
1361 remainder = bytes % bps;
1362 return remainder * 1000000 / bps + secs * 1000000;
1363}
1364
1365static void io_completed(struct thread_data *td, struct io_u *io_u,
1366 struct io_completion_data *icd)
1367{
1368 struct fio_file *f;
1369
1370 dprint_io_u(io_u, "io complete");
1371
1372 td_io_u_lock(td);
1373 assert(io_u->flags & IO_U_F_FLIGHT);
1374 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1375 td_io_u_unlock(td);
1376
1377 if (ddir_sync(io_u->ddir)) {
1378 td->last_was_sync = 1;
1379 f = io_u->file;
1380 if (f) {
1381 f->first_write = -1ULL;
1382 f->last_write = -1ULL;
1383 }
1384 return;
1385 }
1386
1387 td->last_was_sync = 0;
1388 td->last_ddir = io_u->ddir;
1389
1390 if (!io_u->error && ddir_rw(io_u->ddir)) {
1391 unsigned int bytes = io_u->buflen - io_u->resid;
1392 const enum fio_ddir idx = io_u->ddir;
1393 const enum fio_ddir odx = io_u->ddir ^ 1;
1394 int ret;
1395
1396 td->io_blocks[idx]++;
1397 td->this_io_blocks[idx]++;
1398 td->io_bytes[idx] += bytes;
1399
1400 if (!(io_u->flags & IO_U_F_VER_LIST))
1401 td->this_io_bytes[idx] += bytes;
1402
1403 if (idx == DDIR_WRITE) {
1404 f = io_u->file;
1405 if (f) {
1406 if (f->first_write == -1ULL ||
1407 io_u->offset < f->first_write)
1408 f->first_write = io_u->offset;
1409 if (f->last_write == -1ULL ||
1410 ((io_u->offset + bytes) > f->last_write))
1411 f->last_write = io_u->offset + bytes;
1412 }
1413 }
1414
1415 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1416 td->runstate == TD_VERIFYING)) {
1417 account_io_completion(td, io_u, icd, idx, bytes);
1418
1419 if (__should_check_rate(td, idx)) {
1420 td->rate_pending_usleep[idx] =
1421 (usec_for_io(td, idx) -
1422 utime_since_now(&td->start));
1423 }
1424 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1425 td->rate_pending_usleep[odx] =
1426 (usec_for_io(td, odx) -
1427 utime_since_now(&td->start));
1428 }
1429
1430 if (td_write(td) && idx == DDIR_WRITE &&
1431 td->o.do_verify &&
1432 td->o.verify != VERIFY_NONE &&
1433 !td->o.experimental_verify)
1434 log_io_piece(td, io_u);
1435
1436 icd->bytes_done[idx] += bytes;
1437
1438 if (io_u->end_io) {
1439 ret = io_u->end_io(td, io_u);
1440 if (ret && !icd->error)
1441 icd->error = ret;
1442 }
1443 } else if (io_u->error) {
1444 icd->error = io_u->error;
1445 io_u_log_error(td, io_u);
1446 }
1447 if (icd->error) {
1448 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1449 if (!td_non_fatal_error(td, eb, icd->error))
1450 return;
1451 /*
1452 * If there is a non_fatal error, then add to the error count
1453 * and clear all the errors.
1454 */
1455 update_error_count(td, icd->error);
1456 td_clear_error(td);
1457 icd->error = 0;
1458 io_u->error = 0;
1459 }
1460}
1461
1462static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1463 int nr)
1464{
1465 int ddir;
1466 if (!td->o.disable_clat || !td->o.disable_bw)
1467 fio_gettime(&icd->time, NULL);
1468
1469 icd->nr = nr;
1470
1471 icd->error = 0;
1472 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1473 icd->bytes_done[ddir] = 0;
1474}
1475
1476static void ios_completed(struct thread_data *td,
1477 struct io_completion_data *icd)
1478{
1479 struct io_u *io_u;
1480 int i;
1481
1482 for (i = 0; i < icd->nr; i++) {
1483 io_u = td->io_ops->event(td, i);
1484
1485 io_completed(td, io_u, icd);
1486
1487 if (!(io_u->flags & IO_U_F_FREE_DEF))
1488 put_io_u(td, io_u);
1489 }
1490}
1491
1492/*
1493 * Complete a single io_u for the sync engines.
1494 */
1495int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1496 unsigned long *bytes)
1497{
1498 struct io_completion_data icd;
1499
1500 init_icd(td, &icd, 1);
1501 io_completed(td, io_u, &icd);
1502
1503 if (!(io_u->flags & IO_U_F_FREE_DEF))
1504 put_io_u(td, io_u);
1505
1506 if (icd.error) {
1507 td_verror(td, icd.error, "io_u_sync_complete");
1508 return -1;
1509 }
1510
1511 if (bytes) {
1512 int ddir;
1513
1514 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1515 bytes[ddir] += icd.bytes_done[ddir];
1516 }
1517
1518 return 0;
1519}
1520
1521/*
1522 * Called to complete min_events number of io for the async engines.
1523 */
1524int io_u_queued_complete(struct thread_data *td, int min_evts,
1525 unsigned long *bytes)
1526{
1527 struct io_completion_data icd;
1528 struct timespec *tvp = NULL;
1529 int ret;
1530 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1531
1532 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1533
1534 if (!min_evts)
1535 tvp = &ts;
1536
1537 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1538 if (ret < 0) {
1539 td_verror(td, -ret, "td_io_getevents");
1540 return ret;
1541 } else if (!ret)
1542 return ret;
1543
1544 init_icd(td, &icd, ret);
1545 ios_completed(td, &icd);
1546 if (icd.error) {
1547 td_verror(td, icd.error, "io_u_queued_complete");
1548 return -1;
1549 }
1550
1551 if (bytes) {
1552 int ddir;
1553
1554 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1555 bytes[ddir] += icd.bytes_done[ddir];
1556 }
1557
1558 return 0;
1559}
1560
1561/*
1562 * Call when io_u is really queued, to update the submission latency.
1563 */
1564void io_u_queued(struct thread_data *td, struct io_u *io_u)
1565{
1566 if (!td->o.disable_slat) {
1567 unsigned long slat_time;
1568
1569 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1570 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1571 }
1572}
1573
1574/*
1575 * "randomly" fill the buffer contents
1576 */
1577void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1578 unsigned int min_write, unsigned int max_bs)
1579{
1580 io_u->buf_filled_len = 0;
1581
1582 if (!td->o.zero_buffers) {
1583 unsigned int perc = td->o.compress_percentage;
1584
1585 if (perc) {
1586 unsigned int seg = min_write;
1587
1588 seg = min(min_write, td->o.compress_chunk);
1589 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1590 perc, seg, max_bs);
1591 } else
1592 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1593 } else
1594 memset(io_u->buf, 0, max_bs);
1595}