Replace list based free/busy/requeue list with FIFO + ring
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
129 (unsigned long long) *b);
130
131 *b = axmap_next_free(f->io_axmap, *b);
132 if (*b == (uint64_t) -1ULL)
133 return 1;
134ret:
135 return 0;
136}
137
138static int __get_next_rand_offset_zipf(struct thread_data *td,
139 struct fio_file *f, enum fio_ddir ddir,
140 uint64_t *b)
141{
142 *b = zipf_next(&f->zipf);
143 return 0;
144}
145
146static int __get_next_rand_offset_pareto(struct thread_data *td,
147 struct fio_file *f, enum fio_ddir ddir,
148 uint64_t *b)
149{
150 *b = pareto_next(&f->zipf);
151 return 0;
152}
153
154static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
155{
156 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
157 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
158
159 return r1->off - r2->off;
160}
161
162static int get_off_from_method(struct thread_data *td, struct fio_file *f,
163 enum fio_ddir ddir, uint64_t *b)
164{
165 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
166 return __get_next_rand_offset(td, f, ddir, b);
167 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
168 return __get_next_rand_offset_zipf(td, f, ddir, b);
169 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
170 return __get_next_rand_offset_pareto(td, f, ddir, b);
171
172 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
173 return 1;
174}
175
176/*
177 * Sort the reads for a verify phase in batches of verifysort_nr, if
178 * specified.
179 */
180static inline int should_sort_io(struct thread_data *td)
181{
182 if (!td->o.verifysort_nr || !td->o.do_verify)
183 return 0;
184 if (!td_random(td))
185 return 0;
186 if (td->runstate != TD_VERIFYING)
187 return 0;
188 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
189 return 0;
190
191 return 1;
192}
193
194static int should_do_random(struct thread_data *td)
195{
196 unsigned int v;
197 unsigned long r;
198
199 if (td->o.perc_rand == 100)
200 return 1;
201
202 if (td->o.use_os_rand) {
203 r = os_random_long(&td->seq_rand_state);
204 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
205 } else {
206 r = __rand(&td->__seq_rand_state);
207 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
208 }
209
210 return v <= td->o.perc_rand;
211}
212
213static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
214 enum fio_ddir ddir, uint64_t *b)
215{
216 struct rand_off *r;
217 int i, ret = 1;
218
219 if (!should_sort_io(td))
220 return get_off_from_method(td, f, ddir, b);
221
222 if (!flist_empty(&td->next_rand_list)) {
223 struct rand_off *r;
224fetch:
225 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
226 flist_del(&r->list);
227 *b = r->off;
228 free(r);
229 return 0;
230 }
231
232 for (i = 0; i < td->o.verifysort_nr; i++) {
233 r = malloc(sizeof(*r));
234
235 ret = get_off_from_method(td, f, ddir, &r->off);
236 if (ret) {
237 free(r);
238 break;
239 }
240
241 flist_add(&r->list, &td->next_rand_list);
242 }
243
244 if (ret && !i)
245 return ret;
246
247 assert(!flist_empty(&td->next_rand_list));
248 flist_sort(NULL, &td->next_rand_list, flist_cmp);
249 goto fetch;
250}
251
252static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
253 enum fio_ddir ddir, uint64_t *b)
254{
255 if (!get_next_rand_offset(td, f, ddir, b))
256 return 0;
257
258 if (td->o.time_based) {
259 fio_file_reset(td, f);
260 if (!get_next_rand_offset(td, f, ddir, b))
261 return 0;
262 }
263
264 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
265 f->file_name, (unsigned long long) f->last_pos,
266 (unsigned long long) f->real_file_size);
267 return 1;
268}
269
270static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
271 enum fio_ddir ddir, uint64_t *offset)
272{
273 assert(ddir_rw(ddir));
274
275 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
276 f->last_pos = f->last_pos - f->io_size;
277
278 if (f->last_pos < f->real_file_size) {
279 uint64_t pos;
280
281 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
282 f->last_pos = f->real_file_size;
283
284 pos = f->last_pos - f->file_offset;
285 if (pos)
286 pos += td->o.ddir_seq_add;
287
288 *offset = pos;
289 return 0;
290 }
291
292 return 1;
293}
294
295static int get_next_block(struct thread_data *td, struct io_u *io_u,
296 enum fio_ddir ddir, int rw_seq)
297{
298 struct fio_file *f = io_u->file;
299 uint64_t b, offset;
300 int ret;
301
302 assert(ddir_rw(ddir));
303
304 b = offset = -1ULL;
305
306 if (rw_seq) {
307 if (td_random(td)) {
308 if (should_do_random(td))
309 ret = get_next_rand_block(td, f, ddir, &b);
310 else {
311 io_u->flags |= IO_U_F_BUSY_OK;
312 ret = get_next_seq_offset(td, f, ddir, &offset);
313 if (ret)
314 ret = get_next_rand_block(td, f, ddir, &b);
315 }
316 } else
317 ret = get_next_seq_offset(td, f, ddir, &offset);
318 } else {
319 io_u->flags |= IO_U_F_BUSY_OK;
320
321 if (td->o.rw_seq == RW_SEQ_SEQ) {
322 ret = get_next_seq_offset(td, f, ddir, &offset);
323 if (ret)
324 ret = get_next_rand_block(td, f, ddir, &b);
325 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
326 if (f->last_start != -1ULL)
327 offset = f->last_start - f->file_offset;
328 else
329 offset = 0;
330 ret = 0;
331 } else {
332 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
333 ret = 1;
334 }
335 }
336
337 if (!ret) {
338 if (offset != -1ULL)
339 io_u->offset = offset;
340 else if (b != -1ULL)
341 io_u->offset = b * td->o.ba[ddir];
342 else {
343 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
344 ret = 1;
345 }
346 }
347
348 return ret;
349}
350
351/*
352 * For random io, generate a random new block and see if it's used. Repeat
353 * until we find a free one. For sequential io, just return the end of
354 * the last io issued.
355 */
356static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
357{
358 struct fio_file *f = io_u->file;
359 enum fio_ddir ddir = io_u->ddir;
360 int rw_seq_hit = 0;
361
362 assert(ddir_rw(ddir));
363
364 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
365 rw_seq_hit = 1;
366 td->ddir_seq_nr = td->o.ddir_seq_nr;
367 }
368
369 if (get_next_block(td, io_u, ddir, rw_seq_hit))
370 return 1;
371
372 if (io_u->offset >= f->io_size) {
373 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
374 (unsigned long long) io_u->offset,
375 (unsigned long long) f->io_size);
376 return 1;
377 }
378
379 io_u->offset += f->file_offset;
380 if (io_u->offset >= f->real_file_size) {
381 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
382 (unsigned long long) io_u->offset,
383 (unsigned long long) f->real_file_size);
384 return 1;
385 }
386
387 return 0;
388}
389
390static int get_next_offset(struct thread_data *td, struct io_u *io_u)
391{
392 if (td->flags & TD_F_PROFILE_OPS) {
393 struct prof_io_ops *ops = &td->prof_io_ops;
394
395 if (ops->fill_io_u_off)
396 return ops->fill_io_u_off(td, io_u);
397 }
398
399 return __get_next_offset(td, io_u);
400}
401
402static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
403 unsigned int buflen)
404{
405 struct fio_file *f = io_u->file;
406
407 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
408}
409
410static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
411{
412 const int ddir = io_u->ddir;
413 unsigned int buflen = 0;
414 unsigned int minbs, maxbs;
415 unsigned long r, rand_max;
416
417 assert(ddir_rw(ddir));
418
419 minbs = td->o.min_bs[ddir];
420 maxbs = td->o.max_bs[ddir];
421
422 if (minbs == maxbs)
423 return minbs;
424
425 /*
426 * If we can't satisfy the min block size from here, then fail
427 */
428 if (!io_u_fits(td, io_u, minbs))
429 return 0;
430
431 if (td->o.use_os_rand)
432 rand_max = OS_RAND_MAX;
433 else
434 rand_max = FRAND_MAX;
435
436 do {
437 if (td->o.use_os_rand)
438 r = os_random_long(&td->bsrange_state);
439 else
440 r = __rand(&td->__bsrange_state);
441
442 if (!td->o.bssplit_nr[ddir]) {
443 buflen = 1 + (unsigned int) ((double) maxbs *
444 (r / (rand_max + 1.0)));
445 if (buflen < minbs)
446 buflen = minbs;
447 } else {
448 long perc = 0;
449 unsigned int i;
450
451 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
452 struct bssplit *bsp = &td->o.bssplit[ddir][i];
453
454 buflen = bsp->bs;
455 perc += bsp->perc;
456 if ((r <= ((rand_max / 100L) * perc)) &&
457 io_u_fits(td, io_u, buflen))
458 break;
459 }
460 }
461
462 if (!td->o.bs_unaligned && is_power_of_2(minbs))
463 buflen = (buflen + minbs - 1) & ~(minbs - 1);
464
465 } while (!io_u_fits(td, io_u, buflen));
466
467 return buflen;
468}
469
470static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
471{
472 if (td->flags & TD_F_PROFILE_OPS) {
473 struct prof_io_ops *ops = &td->prof_io_ops;
474
475 if (ops->fill_io_u_size)
476 return ops->fill_io_u_size(td, io_u);
477 }
478
479 return __get_next_buflen(td, io_u);
480}
481
482static void set_rwmix_bytes(struct thread_data *td)
483{
484 unsigned int diff;
485
486 /*
487 * we do time or byte based switch. this is needed because
488 * buffered writes may issue a lot quicker than they complete,
489 * whereas reads do not.
490 */
491 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
492 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
493}
494
495static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
496{
497 unsigned int v;
498 unsigned long r;
499
500 if (td->o.use_os_rand) {
501 r = os_random_long(&td->rwmix_state);
502 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
503 } else {
504 r = __rand(&td->__rwmix_state);
505 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
506 }
507
508 if (v <= td->o.rwmix[DDIR_READ])
509 return DDIR_READ;
510
511 return DDIR_WRITE;
512}
513
514void io_u_quiesce(struct thread_data *td)
515{
516 /*
517 * We are going to sleep, ensure that we flush anything pending as
518 * not to skew our latency numbers.
519 *
520 * Changed to only monitor 'in flight' requests here instead of the
521 * td->cur_depth, b/c td->cur_depth does not accurately represent
522 * io's that have been actually submitted to an async engine,
523 * and cur_depth is meaningless for sync engines.
524 */
525 while (td->io_u_in_flight) {
526 int fio_unused ret;
527
528 ret = io_u_queued_complete(td, 1, NULL);
529 }
530}
531
532static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
533{
534 enum fio_ddir odir = ddir ^ 1;
535 struct timeval t;
536 long usec;
537
538 assert(ddir_rw(ddir));
539
540 if (td->rate_pending_usleep[ddir] <= 0)
541 return ddir;
542
543 /*
544 * We have too much pending sleep in this direction. See if we
545 * should switch.
546 */
547 if (td_rw(td) && td->o.rwmix[odir]) {
548 /*
549 * Other direction does not have too much pending, switch
550 */
551 if (td->rate_pending_usleep[odir] < 100000)
552 return odir;
553
554 /*
555 * Both directions have pending sleep. Sleep the minimum time
556 * and deduct from both.
557 */
558 if (td->rate_pending_usleep[ddir] <=
559 td->rate_pending_usleep[odir]) {
560 usec = td->rate_pending_usleep[ddir];
561 } else {
562 usec = td->rate_pending_usleep[odir];
563 ddir = odir;
564 }
565 } else
566 usec = td->rate_pending_usleep[ddir];
567
568 io_u_quiesce(td);
569
570 fio_gettime(&t, NULL);
571 usec_sleep(td, usec);
572 usec = utime_since_now(&t);
573
574 td->rate_pending_usleep[ddir] -= usec;
575
576 odir = ddir ^ 1;
577 if (td_rw(td) && __should_check_rate(td, odir))
578 td->rate_pending_usleep[odir] -= usec;
579
580 if (ddir_trim(ddir))
581 return ddir;
582
583 return ddir;
584}
585
586/*
587 * Return the data direction for the next io_u. If the job is a
588 * mixed read/write workload, check the rwmix cycle and switch if
589 * necessary.
590 */
591static enum fio_ddir get_rw_ddir(struct thread_data *td)
592{
593 enum fio_ddir ddir;
594
595 /*
596 * see if it's time to fsync
597 */
598 if (td->o.fsync_blocks &&
599 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
600 td->io_issues[DDIR_WRITE] && should_fsync(td))
601 return DDIR_SYNC;
602
603 /*
604 * see if it's time to fdatasync
605 */
606 if (td->o.fdatasync_blocks &&
607 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
608 td->io_issues[DDIR_WRITE] && should_fsync(td))
609 return DDIR_DATASYNC;
610
611 /*
612 * see if it's time to sync_file_range
613 */
614 if (td->sync_file_range_nr &&
615 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
616 td->io_issues[DDIR_WRITE] && should_fsync(td))
617 return DDIR_SYNC_FILE_RANGE;
618
619 if (td_rw(td)) {
620 /*
621 * Check if it's time to seed a new data direction.
622 */
623 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
624 /*
625 * Put a top limit on how many bytes we do for
626 * one data direction, to avoid overflowing the
627 * ranges too much
628 */
629 ddir = get_rand_ddir(td);
630
631 if (ddir != td->rwmix_ddir)
632 set_rwmix_bytes(td);
633
634 td->rwmix_ddir = ddir;
635 }
636 ddir = td->rwmix_ddir;
637 } else if (td_read(td))
638 ddir = DDIR_READ;
639 else if (td_write(td))
640 ddir = DDIR_WRITE;
641 else
642 ddir = DDIR_TRIM;
643
644 td->rwmix_ddir = rate_ddir(td, ddir);
645 return td->rwmix_ddir;
646}
647
648static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
649{
650 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
651
652 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
653 td->o.barrier_blocks &&
654 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
655 td->io_issues[DDIR_WRITE])
656 io_u->flags |= IO_U_F_BARRIER;
657}
658
659void put_file_log(struct thread_data *td, struct fio_file *f)
660{
661 int ret = put_file(td, f);
662
663 if (ret)
664 td_verror(td, ret, "file close");
665}
666
667void put_io_u(struct thread_data *td, struct io_u *io_u)
668{
669 td_io_u_lock(td);
670
671 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
672 put_file_log(td, io_u->file);
673 io_u->file = NULL;
674 io_u->flags &= ~IO_U_F_FREE_DEF;
675 io_u->flags |= IO_U_F_FREE;
676
677 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
678 td->cur_depth--;
679 io_u_qpush(&td->io_u_freelist, io_u);
680 td_io_u_unlock(td);
681 td_io_u_free_notify(td);
682}
683
684void clear_io_u(struct thread_data *td, struct io_u *io_u)
685{
686 io_u->flags &= ~IO_U_F_FLIGHT;
687 put_io_u(td, io_u);
688}
689
690void requeue_io_u(struct thread_data *td, struct io_u **io_u)
691{
692 struct io_u *__io_u = *io_u;
693 enum fio_ddir ddir = acct_ddir(__io_u);
694
695 dprint(FD_IO, "requeue %p\n", __io_u);
696
697 td_io_u_lock(td);
698
699 __io_u->flags |= IO_U_F_FREE;
700 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
701 td->io_issues[ddir]--;
702
703 __io_u->flags &= ~IO_U_F_FLIGHT;
704 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
705 td->cur_depth--;
706
707 io_u_rpush(&td->io_u_requeues, __io_u);
708 td_io_u_unlock(td);
709 *io_u = NULL;
710}
711
712static int fill_io_u(struct thread_data *td, struct io_u *io_u)
713{
714 if (td->io_ops->flags & FIO_NOIO)
715 goto out;
716
717 set_rw_ddir(td, io_u);
718
719 /*
720 * fsync() or fdatasync() or trim etc, we are done
721 */
722 if (!ddir_rw(io_u->ddir))
723 goto out;
724
725 /*
726 * See if it's time to switch to a new zone
727 */
728 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
729 td->zone_bytes = 0;
730 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
731 io_u->file->last_pos = io_u->file->file_offset;
732 td->io_skip_bytes += td->o.zone_skip;
733 }
734
735 /*
736 * No log, let the seq/rand engine retrieve the next buflen and
737 * position.
738 */
739 if (get_next_offset(td, io_u)) {
740 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
741 return 1;
742 }
743
744 io_u->buflen = get_next_buflen(td, io_u);
745 if (!io_u->buflen) {
746 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
747 return 1;
748 }
749
750 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
751 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
752 dprint(FD_IO, " off=%llu/%lu > %llu\n",
753 (unsigned long long) io_u->offset, io_u->buflen,
754 (unsigned long long) io_u->file->real_file_size);
755 return 1;
756 }
757
758 /*
759 * mark entry before potentially trimming io_u
760 */
761 if (td_random(td) && file_randommap(td, io_u->file))
762 mark_random_map(td, io_u);
763
764out:
765 dprint_io_u(io_u, "fill_io_u");
766 td->zone_bytes += io_u->buflen;
767 return 0;
768}
769
770static void __io_u_mark_map(unsigned int *map, unsigned int nr)
771{
772 int idx = 0;
773
774 switch (nr) {
775 default:
776 idx = 6;
777 break;
778 case 33 ... 64:
779 idx = 5;
780 break;
781 case 17 ... 32:
782 idx = 4;
783 break;
784 case 9 ... 16:
785 idx = 3;
786 break;
787 case 5 ... 8:
788 idx = 2;
789 break;
790 case 1 ... 4:
791 idx = 1;
792 case 0:
793 break;
794 }
795
796 map[idx]++;
797}
798
799void io_u_mark_submit(struct thread_data *td, unsigned int nr)
800{
801 __io_u_mark_map(td->ts.io_u_submit, nr);
802 td->ts.total_submit++;
803}
804
805void io_u_mark_complete(struct thread_data *td, unsigned int nr)
806{
807 __io_u_mark_map(td->ts.io_u_complete, nr);
808 td->ts.total_complete++;
809}
810
811void io_u_mark_depth(struct thread_data *td, unsigned int nr)
812{
813 int idx = 0;
814
815 switch (td->cur_depth) {
816 default:
817 idx = 6;
818 break;
819 case 32 ... 63:
820 idx = 5;
821 break;
822 case 16 ... 31:
823 idx = 4;
824 break;
825 case 8 ... 15:
826 idx = 3;
827 break;
828 case 4 ... 7:
829 idx = 2;
830 break;
831 case 2 ... 3:
832 idx = 1;
833 case 1:
834 break;
835 }
836
837 td->ts.io_u_map[idx] += nr;
838}
839
840static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
841{
842 int idx = 0;
843
844 assert(usec < 1000);
845
846 switch (usec) {
847 case 750 ... 999:
848 idx = 9;
849 break;
850 case 500 ... 749:
851 idx = 8;
852 break;
853 case 250 ... 499:
854 idx = 7;
855 break;
856 case 100 ... 249:
857 idx = 6;
858 break;
859 case 50 ... 99:
860 idx = 5;
861 break;
862 case 20 ... 49:
863 idx = 4;
864 break;
865 case 10 ... 19:
866 idx = 3;
867 break;
868 case 4 ... 9:
869 idx = 2;
870 break;
871 case 2 ... 3:
872 idx = 1;
873 case 0 ... 1:
874 break;
875 }
876
877 assert(idx < FIO_IO_U_LAT_U_NR);
878 td->ts.io_u_lat_u[idx]++;
879}
880
881static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
882{
883 int idx = 0;
884
885 switch (msec) {
886 default:
887 idx = 11;
888 break;
889 case 1000 ... 1999:
890 idx = 10;
891 break;
892 case 750 ... 999:
893 idx = 9;
894 break;
895 case 500 ... 749:
896 idx = 8;
897 break;
898 case 250 ... 499:
899 idx = 7;
900 break;
901 case 100 ... 249:
902 idx = 6;
903 break;
904 case 50 ... 99:
905 idx = 5;
906 break;
907 case 20 ... 49:
908 idx = 4;
909 break;
910 case 10 ... 19:
911 idx = 3;
912 break;
913 case 4 ... 9:
914 idx = 2;
915 break;
916 case 2 ... 3:
917 idx = 1;
918 case 0 ... 1:
919 break;
920 }
921
922 assert(idx < FIO_IO_U_LAT_M_NR);
923 td->ts.io_u_lat_m[idx]++;
924}
925
926static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
927{
928 if (usec < 1000)
929 io_u_mark_lat_usec(td, usec);
930 else
931 io_u_mark_lat_msec(td, usec / 1000);
932}
933
934/*
935 * Get next file to service by choosing one at random
936 */
937static struct fio_file *get_next_file_rand(struct thread_data *td,
938 enum fio_file_flags goodf,
939 enum fio_file_flags badf)
940{
941 struct fio_file *f;
942 int fno;
943
944 do {
945 int opened = 0;
946 unsigned long r;
947
948 if (td->o.use_os_rand) {
949 r = os_random_long(&td->next_file_state);
950 fno = (unsigned int) ((double) td->o.nr_files
951 * (r / (OS_RAND_MAX + 1.0)));
952 } else {
953 r = __rand(&td->__next_file_state);
954 fno = (unsigned int) ((double) td->o.nr_files
955 * (r / (FRAND_MAX + 1.0)));
956 }
957
958 f = td->files[fno];
959 if (fio_file_done(f))
960 continue;
961
962 if (!fio_file_open(f)) {
963 int err;
964
965 err = td_io_open_file(td, f);
966 if (err)
967 continue;
968 opened = 1;
969 }
970
971 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
972 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
973 return f;
974 }
975 if (opened)
976 td_io_close_file(td, f);
977 } while (1);
978}
979
980/*
981 * Get next file to service by doing round robin between all available ones
982 */
983static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
984 int badf)
985{
986 unsigned int old_next_file = td->next_file;
987 struct fio_file *f;
988
989 do {
990 int opened = 0;
991
992 f = td->files[td->next_file];
993
994 td->next_file++;
995 if (td->next_file >= td->o.nr_files)
996 td->next_file = 0;
997
998 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
999 if (fio_file_done(f)) {
1000 f = NULL;
1001 continue;
1002 }
1003
1004 if (!fio_file_open(f)) {
1005 int err;
1006
1007 err = td_io_open_file(td, f);
1008 if (err) {
1009 dprint(FD_FILE, "error %d on open of %s\n",
1010 err, f->file_name);
1011 f = NULL;
1012 continue;
1013 }
1014 opened = 1;
1015 }
1016
1017 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1018 f->flags);
1019 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1020 break;
1021
1022 if (opened)
1023 td_io_close_file(td, f);
1024
1025 f = NULL;
1026 } while (td->next_file != old_next_file);
1027
1028 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1029 return f;
1030}
1031
1032static struct fio_file *__get_next_file(struct thread_data *td)
1033{
1034 struct fio_file *f;
1035
1036 assert(td->o.nr_files <= td->files_index);
1037
1038 if (td->nr_done_files >= td->o.nr_files) {
1039 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1040 " nr_files=%d\n", td->nr_open_files,
1041 td->nr_done_files,
1042 td->o.nr_files);
1043 return NULL;
1044 }
1045
1046 f = td->file_service_file;
1047 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1048 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1049 goto out;
1050 if (td->file_service_left--)
1051 goto out;
1052 }
1053
1054 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1055 td->o.file_service_type == FIO_FSERVICE_SEQ)
1056 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1057 else
1058 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1059
1060 td->file_service_file = f;
1061 td->file_service_left = td->file_service_nr - 1;
1062out:
1063 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1064 return f;
1065}
1066
1067static struct fio_file *get_next_file(struct thread_data *td)
1068{
1069 if (!(td->flags & TD_F_PROFILE_OPS)) {
1070 struct prof_io_ops *ops = &td->prof_io_ops;
1071
1072 if (ops->get_next_file)
1073 return ops->get_next_file(td);
1074 }
1075
1076 return __get_next_file(td);
1077}
1078
1079static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1080{
1081 struct fio_file *f;
1082
1083 do {
1084 f = get_next_file(td);
1085 if (!f)
1086 return 1;
1087
1088 io_u->file = f;
1089 get_file(f);
1090
1091 if (!fill_io_u(td, io_u))
1092 break;
1093
1094 put_file_log(td, f);
1095 td_io_close_file(td, f);
1096 io_u->file = NULL;
1097 fio_file_set_done(f);
1098 td->nr_done_files++;
1099 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1100 td->nr_done_files, td->o.nr_files);
1101 } while (1);
1102
1103 return 0;
1104}
1105
1106
1107struct io_u *__get_io_u(struct thread_data *td)
1108{
1109 struct io_u *io_u;
1110
1111 td_io_u_lock(td);
1112
1113again:
1114 if (!io_u_rempty(&td->io_u_requeues))
1115 io_u = io_u_rpop(&td->io_u_requeues);
1116 else if (!io_u_qempty(&td->io_u_freelist))
1117 io_u = io_u_qpop(&td->io_u_freelist);
1118
1119 if (io_u) {
1120 io_u->buflen = 0;
1121 io_u->resid = 0;
1122 io_u->file = NULL;
1123 io_u->end_io = NULL;
1124 }
1125
1126 if (io_u) {
1127 assert(io_u->flags & IO_U_F_FREE);
1128 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1129 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1130 io_u->flags &= ~IO_U_F_VER_LIST;
1131
1132 io_u->error = 0;
1133 io_u->acct_ddir = -1;
1134 td->cur_depth++;
1135 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1136 } else if (td->o.verify_async) {
1137 /*
1138 * We ran out, wait for async verify threads to finish and
1139 * return one
1140 */
1141 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1142 goto again;
1143 }
1144
1145 td_io_u_unlock(td);
1146 return io_u;
1147}
1148
1149static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1150{
1151 if (!(td->flags & TD_F_TRIM_BACKLOG))
1152 return 0;
1153
1154 if (td->trim_entries) {
1155 int get_trim = 0;
1156
1157 if (td->trim_batch) {
1158 td->trim_batch--;
1159 get_trim = 1;
1160 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1161 td->last_ddir != DDIR_READ) {
1162 td->trim_batch = td->o.trim_batch;
1163 if (!td->trim_batch)
1164 td->trim_batch = td->o.trim_backlog;
1165 get_trim = 1;
1166 }
1167
1168 if (get_trim && !get_next_trim(td, io_u))
1169 return 1;
1170 }
1171
1172 return 0;
1173}
1174
1175static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1176{
1177 if (!(td->flags & TD_F_VER_BACKLOG))
1178 return 0;
1179
1180 if (td->io_hist_len) {
1181 int get_verify = 0;
1182
1183 if (td->verify_batch)
1184 get_verify = 1;
1185 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1186 td->last_ddir != DDIR_READ) {
1187 td->verify_batch = td->o.verify_batch;
1188 if (!td->verify_batch)
1189 td->verify_batch = td->o.verify_backlog;
1190 get_verify = 1;
1191 }
1192
1193 if (get_verify && !get_next_verify(td, io_u)) {
1194 td->verify_batch--;
1195 return 1;
1196 }
1197 }
1198
1199 return 0;
1200}
1201
1202/*
1203 * Fill offset and start time into the buffer content, to prevent too
1204 * easy compressible data for simple de-dupe attempts. Do this for every
1205 * 512b block in the range, since that should be the smallest block size
1206 * we can expect from a device.
1207 */
1208static void small_content_scramble(struct io_u *io_u)
1209{
1210 unsigned int i, nr_blocks = io_u->buflen / 512;
1211 uint64_t boffset;
1212 unsigned int offset;
1213 void *p, *end;
1214
1215 if (!nr_blocks)
1216 return;
1217
1218 p = io_u->xfer_buf;
1219 boffset = io_u->offset;
1220 io_u->buf_filled_len = 0;
1221
1222 for (i = 0; i < nr_blocks; i++) {
1223 /*
1224 * Fill the byte offset into a "random" start offset of
1225 * the buffer, given by the product of the usec time
1226 * and the actual offset.
1227 */
1228 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1229 offset &= ~(sizeof(uint64_t) - 1);
1230 if (offset >= 512 - sizeof(uint64_t))
1231 offset -= sizeof(uint64_t);
1232 memcpy(p + offset, &boffset, sizeof(boffset));
1233
1234 end = p + 512 - sizeof(io_u->start_time);
1235 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1236 p += 512;
1237 boffset += 512;
1238 }
1239}
1240
1241/*
1242 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1243 * etc. The returned io_u is fully ready to be prepped and submitted.
1244 */
1245struct io_u *get_io_u(struct thread_data *td)
1246{
1247 struct fio_file *f;
1248 struct io_u *io_u;
1249 int do_scramble = 0;
1250
1251 io_u = __get_io_u(td);
1252 if (!io_u) {
1253 dprint(FD_IO, "__get_io_u failed\n");
1254 return NULL;
1255 }
1256
1257 if (check_get_verify(td, io_u))
1258 goto out;
1259 if (check_get_trim(td, io_u))
1260 goto out;
1261
1262 /*
1263 * from a requeue, io_u already setup
1264 */
1265 if (io_u->file)
1266 goto out;
1267
1268 /*
1269 * If using an iolog, grab next piece if any available.
1270 */
1271 if (td->flags & TD_F_READ_IOLOG) {
1272 if (read_iolog_get(td, io_u))
1273 goto err_put;
1274 } else if (set_io_u_file(td, io_u)) {
1275 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1276 goto err_put;
1277 }
1278
1279 f = io_u->file;
1280 assert(fio_file_open(f));
1281
1282 if (ddir_rw(io_u->ddir)) {
1283 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1284 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1285 goto err_put;
1286 }
1287
1288 f->last_start = io_u->offset;
1289 f->last_pos = io_u->offset + io_u->buflen;
1290
1291 if (io_u->ddir == DDIR_WRITE) {
1292 if (td->flags & TD_F_REFILL_BUFFERS) {
1293 io_u_fill_buffer(td, io_u,
1294 io_u->xfer_buflen, io_u->xfer_buflen);
1295 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1296 do_scramble = 1;
1297 if (td->flags & TD_F_VER_NONE) {
1298 populate_verify_io_u(td, io_u);
1299 do_scramble = 0;
1300 }
1301 } else if (io_u->ddir == DDIR_READ) {
1302 /*
1303 * Reset the buf_filled parameters so next time if the
1304 * buffer is used for writes it is refilled.
1305 */
1306 io_u->buf_filled_len = 0;
1307 }
1308 }
1309
1310 /*
1311 * Set io data pointers.
1312 */
1313 io_u->xfer_buf = io_u->buf;
1314 io_u->xfer_buflen = io_u->buflen;
1315
1316out:
1317 assert(io_u->file);
1318 if (!td_io_prep(td, io_u)) {
1319 if (!td->o.disable_slat)
1320 fio_gettime(&io_u->start_time, NULL);
1321 if (do_scramble)
1322 small_content_scramble(io_u);
1323 return io_u;
1324 }
1325err_put:
1326 dprint(FD_IO, "get_io_u failed\n");
1327 put_io_u(td, io_u);
1328 return NULL;
1329}
1330
1331void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1332{
1333 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1334 const char *msg[] = { "read", "write", "sync", "datasync",
1335 "sync_file_range", "wait", "trim" };
1336
1337 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1338 return;
1339
1340 log_err("fio: io_u error");
1341
1342 if (io_u->file)
1343 log_err(" on file %s", io_u->file->file_name);
1344
1345 log_err(": %s\n", strerror(io_u->error));
1346
1347 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1348 io_u->offset, io_u->xfer_buflen);
1349
1350 if (!td->error)
1351 td_verror(td, io_u->error, "io_u error");
1352}
1353
1354static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1355 struct io_completion_data *icd,
1356 const enum fio_ddir idx, unsigned int bytes)
1357{
1358 unsigned long lusec = 0;
1359
1360 if (!td->o.disable_clat || !td->o.disable_bw)
1361 lusec = utime_since(&io_u->issue_time, &icd->time);
1362
1363 if (!td->o.disable_lat) {
1364 unsigned long tusec;
1365
1366 tusec = utime_since(&io_u->start_time, &icd->time);
1367 add_lat_sample(td, idx, tusec, bytes);
1368
1369 if (td->flags & TD_F_PROFILE_OPS) {
1370 struct prof_io_ops *ops = &td->prof_io_ops;
1371
1372 if (ops->io_u_lat)
1373 icd->error = ops->io_u_lat(td, tusec);
1374 }
1375
1376 if (td->o.max_latency && tusec > td->o.max_latency) {
1377 if (!td->error)
1378 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1379 td_verror(td, ETIMEDOUT, "max latency exceeded");
1380 icd->error = ETIMEDOUT;
1381 }
1382 }
1383
1384 if (!td->o.disable_clat) {
1385 add_clat_sample(td, idx, lusec, bytes);
1386 io_u_mark_latency(td, lusec);
1387 }
1388
1389 if (!td->o.disable_bw)
1390 add_bw_sample(td, idx, bytes, &icd->time);
1391
1392 add_iops_sample(td, idx, &icd->time);
1393}
1394
1395static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1396{
1397 uint64_t secs, remainder, bps, bytes;
1398
1399 bytes = td->this_io_bytes[ddir];
1400 bps = td->rate_bps[ddir];
1401 secs = bytes / bps;
1402 remainder = bytes % bps;
1403 return remainder * 1000000 / bps + secs * 1000000;
1404}
1405
1406static void io_completed(struct thread_data *td, struct io_u *io_u,
1407 struct io_completion_data *icd)
1408{
1409 struct fio_file *f;
1410
1411 dprint_io_u(io_u, "io complete");
1412
1413 td_io_u_lock(td);
1414 assert(io_u->flags & IO_U_F_FLIGHT);
1415 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1416 td_io_u_unlock(td);
1417
1418 if (ddir_sync(io_u->ddir)) {
1419 td->last_was_sync = 1;
1420 f = io_u->file;
1421 if (f) {
1422 f->first_write = -1ULL;
1423 f->last_write = -1ULL;
1424 }
1425 return;
1426 }
1427
1428 td->last_was_sync = 0;
1429 td->last_ddir = io_u->ddir;
1430
1431 if (!io_u->error && ddir_rw(io_u->ddir)) {
1432 unsigned int bytes = io_u->buflen - io_u->resid;
1433 const enum fio_ddir idx = io_u->ddir;
1434 const enum fio_ddir odx = io_u->ddir ^ 1;
1435 int ret;
1436
1437 td->io_blocks[idx]++;
1438 td->this_io_blocks[idx]++;
1439 td->io_bytes[idx] += bytes;
1440
1441 if (!(io_u->flags & IO_U_F_VER_LIST))
1442 td->this_io_bytes[idx] += bytes;
1443
1444 if (idx == DDIR_WRITE) {
1445 f = io_u->file;
1446 if (f) {
1447 if (f->first_write == -1ULL ||
1448 io_u->offset < f->first_write)
1449 f->first_write = io_u->offset;
1450 if (f->last_write == -1ULL ||
1451 ((io_u->offset + bytes) > f->last_write))
1452 f->last_write = io_u->offset + bytes;
1453 }
1454 }
1455
1456 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1457 td->runstate == TD_VERIFYING)) {
1458 account_io_completion(td, io_u, icd, idx, bytes);
1459
1460 if (__should_check_rate(td, idx)) {
1461 td->rate_pending_usleep[idx] =
1462 (usec_for_io(td, idx) -
1463 utime_since_now(&td->start));
1464 }
1465 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1466 td->rate_pending_usleep[odx] =
1467 (usec_for_io(td, odx) -
1468 utime_since_now(&td->start));
1469 }
1470
1471 if (td_write(td) && idx == DDIR_WRITE &&
1472 td->o.do_verify &&
1473 td->o.verify != VERIFY_NONE &&
1474 !td->o.experimental_verify)
1475 log_io_piece(td, io_u);
1476
1477 icd->bytes_done[idx] += bytes;
1478
1479 if (io_u->end_io) {
1480 ret = io_u->end_io(td, io_u);
1481 if (ret && !icd->error)
1482 icd->error = ret;
1483 }
1484 } else if (io_u->error) {
1485 icd->error = io_u->error;
1486 io_u_log_error(td, io_u);
1487 }
1488 if (icd->error) {
1489 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1490 if (!td_non_fatal_error(td, eb, icd->error))
1491 return;
1492 /*
1493 * If there is a non_fatal error, then add to the error count
1494 * and clear all the errors.
1495 */
1496 update_error_count(td, icd->error);
1497 td_clear_error(td);
1498 icd->error = 0;
1499 io_u->error = 0;
1500 }
1501}
1502
1503static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1504 int nr)
1505{
1506 int ddir;
1507 if (!td->o.disable_clat || !td->o.disable_bw)
1508 fio_gettime(&icd->time, NULL);
1509
1510 icd->nr = nr;
1511
1512 icd->error = 0;
1513 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1514 icd->bytes_done[ddir] = 0;
1515}
1516
1517static void ios_completed(struct thread_data *td,
1518 struct io_completion_data *icd)
1519{
1520 struct io_u *io_u;
1521 int i;
1522
1523 for (i = 0; i < icd->nr; i++) {
1524 io_u = td->io_ops->event(td, i);
1525
1526 io_completed(td, io_u, icd);
1527
1528 if (!(io_u->flags & IO_U_F_FREE_DEF))
1529 put_io_u(td, io_u);
1530 }
1531}
1532
1533/*
1534 * Complete a single io_u for the sync engines.
1535 */
1536int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1537 uint64_t *bytes)
1538{
1539 struct io_completion_data icd;
1540
1541 init_icd(td, &icd, 1);
1542 io_completed(td, io_u, &icd);
1543
1544 if (!(io_u->flags & IO_U_F_FREE_DEF))
1545 put_io_u(td, io_u);
1546
1547 if (icd.error) {
1548 td_verror(td, icd.error, "io_u_sync_complete");
1549 return -1;
1550 }
1551
1552 if (bytes) {
1553 int ddir;
1554
1555 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1556 bytes[ddir] += icd.bytes_done[ddir];
1557 }
1558
1559 return 0;
1560}
1561
1562/*
1563 * Called to complete min_events number of io for the async engines.
1564 */
1565int io_u_queued_complete(struct thread_data *td, int min_evts,
1566 uint64_t *bytes)
1567{
1568 struct io_completion_data icd;
1569 struct timespec *tvp = NULL;
1570 int ret;
1571 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1572
1573 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1574
1575 if (!min_evts)
1576 tvp = &ts;
1577
1578 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1579 if (ret < 0) {
1580 td_verror(td, -ret, "td_io_getevents");
1581 return ret;
1582 } else if (!ret)
1583 return ret;
1584
1585 init_icd(td, &icd, ret);
1586 ios_completed(td, &icd);
1587 if (icd.error) {
1588 td_verror(td, icd.error, "io_u_queued_complete");
1589 return -1;
1590 }
1591
1592 if (bytes) {
1593 int ddir;
1594
1595 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1596 bytes[ddir] += icd.bytes_done[ddir];
1597 }
1598
1599 return 0;
1600}
1601
1602/*
1603 * Call when io_u is really queued, to update the submission latency.
1604 */
1605void io_u_queued(struct thread_data *td, struct io_u *io_u)
1606{
1607 if (!td->o.disable_slat) {
1608 unsigned long slat_time;
1609
1610 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1611 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1612 }
1613}
1614
1615void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1616 unsigned int max_bs)
1617{
1618 if (!td->o.zero_buffers) {
1619 unsigned int perc = td->o.compress_percentage;
1620
1621 if (perc) {
1622 unsigned int seg = min_write;
1623
1624 seg = min(min_write, td->o.compress_chunk);
1625 if (!seg)
1626 seg = min_write;
1627
1628 fill_random_buf_percentage(&td->buf_state, buf,
1629 perc, seg, max_bs);
1630 } else
1631 fill_random_buf(&td->buf_state, buf, max_bs);
1632 } else
1633 memset(buf, 0, max_bs);
1634}
1635
1636/*
1637 * "randomly" fill the buffer contents
1638 */
1639void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1640 unsigned int min_write, unsigned int max_bs)
1641{
1642 io_u->buf_filled_len = 0;
1643 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1644}