Add basic DragonFly support
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
72 if (!max_blocks)
73 return 0;
74
75 return max_blocks;
76}
77
78struct rand_off {
79 struct flist_head list;
80 uint64_t off;
81};
82
83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
84 enum fio_ddir ddir, uint64_t *b)
85{
86 uint64_t r, lastb;
87
88 lastb = last_block(td, f, ddir);
89 if (!lastb)
90 return 1;
91
92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
93 uint64_t rmax;
94
95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
96
97 if (td->o.use_os_rand) {
98 rmax = OS_RAND_MAX;
99 r = os_random_long(&td->random_state);
100 } else {
101 rmax = FRAND_MAX;
102 r = __rand(&td->__random_state);
103 }
104
105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
106
107 *b = lastb * (r / ((uint64_t) rmax + 1.0));
108 } else {
109 uint64_t off = 0;
110
111 if (lfsr_next(&f->lfsr, &off, lastb))
112 return 1;
113
114 *b = off;
115 }
116
117 /*
118 * if we are not maintaining a random map, we are done.
119 */
120 if (!file_randommap(td, f))
121 goto ret;
122
123 /*
124 * calculate map offset and check if it's free
125 */
126 if (random_map_free(f, *b))
127 goto ret;
128
129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
130 (unsigned long long) *b);
131
132 *b = axmap_next_free(f->io_axmap, *b);
133 if (*b == (uint64_t) -1ULL)
134 return 1;
135ret:
136 return 0;
137}
138
139static int __get_next_rand_offset_zipf(struct thread_data *td,
140 struct fio_file *f, enum fio_ddir ddir,
141 uint64_t *b)
142{
143 *b = zipf_next(&f->zipf);
144 return 0;
145}
146
147static int __get_next_rand_offset_pareto(struct thread_data *td,
148 struct fio_file *f, enum fio_ddir ddir,
149 uint64_t *b)
150{
151 *b = pareto_next(&f->zipf);
152 return 0;
153}
154
155static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
156{
157 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
158 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
159
160 return r1->off - r2->off;
161}
162
163static int get_off_from_method(struct thread_data *td, struct fio_file *f,
164 enum fio_ddir ddir, uint64_t *b)
165{
166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
167 return __get_next_rand_offset(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
169 return __get_next_rand_offset_zipf(td, f, ddir, b);
170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
171 return __get_next_rand_offset_pareto(td, f, ddir, b);
172
173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
174 return 1;
175}
176
177/*
178 * Sort the reads for a verify phase in batches of verifysort_nr, if
179 * specified.
180 */
181static inline int should_sort_io(struct thread_data *td)
182{
183 if (!td->o.verifysort_nr || !td->o.do_verify)
184 return 0;
185 if (!td_random(td))
186 return 0;
187 if (td->runstate != TD_VERIFYING)
188 return 0;
189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
190 return 0;
191
192 return 1;
193}
194
195static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
196{
197 unsigned int v;
198 unsigned long r;
199
200 if (td->o.perc_rand[ddir] == 100)
201 return 1;
202
203 if (td->o.use_os_rand) {
204 r = os_random_long(&td->seq_rand_state[ddir]);
205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
206 } else {
207 r = __rand(&td->__seq_rand_state[ddir]);
208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
209 }
210
211 return v <= td->o.perc_rand[ddir];
212}
213
214static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
215 enum fio_ddir ddir, uint64_t *b)
216{
217 struct rand_off *r;
218 int i, ret = 1;
219
220 if (!should_sort_io(td))
221 return get_off_from_method(td, f, ddir, b);
222
223 if (!flist_empty(&td->next_rand_list)) {
224 struct rand_off *r;
225fetch:
226 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
227 flist_del(&r->list);
228 *b = r->off;
229 free(r);
230 return 0;
231 }
232
233 for (i = 0; i < td->o.verifysort_nr; i++) {
234 r = malloc(sizeof(*r));
235
236 ret = get_off_from_method(td, f, ddir, &r->off);
237 if (ret) {
238 free(r);
239 break;
240 }
241
242 flist_add(&r->list, &td->next_rand_list);
243 }
244
245 if (ret && !i)
246 return ret;
247
248 assert(!flist_empty(&td->next_rand_list));
249 flist_sort(NULL, &td->next_rand_list, flist_cmp);
250 goto fetch;
251}
252
253static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
254 enum fio_ddir ddir, uint64_t *b)
255{
256 if (!get_next_rand_offset(td, f, ddir, b))
257 return 0;
258
259 if (td->o.time_based) {
260 fio_file_reset(td, f);
261 if (!get_next_rand_offset(td, f, ddir, b))
262 return 0;
263 }
264
265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
266 f->file_name, (unsigned long long) f->last_pos,
267 (unsigned long long) f->real_file_size);
268 return 1;
269}
270
271static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
272 enum fio_ddir ddir, uint64_t *offset)
273{
274 struct thread_options *o = &td->o;
275
276 assert(ddir_rw(ddir));
277
278 if (f->last_pos >= f->io_size + get_start_offset(td, f) &&
279 o->time_based)
280 f->last_pos = f->last_pos - f->io_size;
281
282 if (f->last_pos < f->real_file_size) {
283 uint64_t pos;
284
285 if (f->last_pos == f->file_offset && o->ddir_seq_add < 0)
286 f->last_pos = f->real_file_size;
287
288 pos = f->last_pos - f->file_offset;
289 if (pos && o->ddir_seq_add) {
290 pos += o->ddir_seq_add;
291
292 /*
293 * If we reach beyond the end of the file
294 * with holed IO, wrap around to the
295 * beginning again.
296 */
297 if (pos >= f->real_file_size)
298 pos = f->file_offset;
299 }
300
301 *offset = pos;
302 return 0;
303 }
304
305 return 1;
306}
307
308static int get_next_block(struct thread_data *td, struct io_u *io_u,
309 enum fio_ddir ddir, int rw_seq,
310 unsigned int *is_random)
311{
312 struct fio_file *f = io_u->file;
313 uint64_t b, offset;
314 int ret;
315
316 assert(ddir_rw(ddir));
317
318 b = offset = -1ULL;
319
320 if (rw_seq) {
321 if (td_random(td)) {
322 if (should_do_random(td, ddir)) {
323 ret = get_next_rand_block(td, f, ddir, &b);
324 *is_random = 1;
325 } else {
326 *is_random = 0;
327 io_u->flags |= IO_U_F_BUSY_OK;
328 ret = get_next_seq_offset(td, f, ddir, &offset);
329 if (ret)
330 ret = get_next_rand_block(td, f, ddir, &b);
331 }
332 } else {
333 *is_random = 0;
334 ret = get_next_seq_offset(td, f, ddir, &offset);
335 }
336 } else {
337 io_u->flags |= IO_U_F_BUSY_OK;
338 *is_random = 0;
339
340 if (td->o.rw_seq == RW_SEQ_SEQ) {
341 ret = get_next_seq_offset(td, f, ddir, &offset);
342 if (ret) {
343 ret = get_next_rand_block(td, f, ddir, &b);
344 *is_random = 0;
345 }
346 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
347 if (f->last_start != -1ULL)
348 offset = f->last_start - f->file_offset;
349 else
350 offset = 0;
351 ret = 0;
352 } else {
353 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
354 ret = 1;
355 }
356 }
357
358 if (!ret) {
359 if (offset != -1ULL)
360 io_u->offset = offset;
361 else if (b != -1ULL)
362 io_u->offset = b * td->o.ba[ddir];
363 else {
364 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
365 ret = 1;
366 }
367 }
368
369 return ret;
370}
371
372/*
373 * For random io, generate a random new block and see if it's used. Repeat
374 * until we find a free one. For sequential io, just return the end of
375 * the last io issued.
376 */
377static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
378 unsigned int *is_random)
379{
380 struct fio_file *f = io_u->file;
381 enum fio_ddir ddir = io_u->ddir;
382 int rw_seq_hit = 0;
383
384 assert(ddir_rw(ddir));
385
386 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
387 rw_seq_hit = 1;
388 td->ddir_seq_nr = td->o.ddir_seq_nr;
389 }
390
391 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
392 return 1;
393
394 if (io_u->offset >= f->io_size) {
395 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
396 (unsigned long long) io_u->offset,
397 (unsigned long long) f->io_size);
398 return 1;
399 }
400
401 io_u->offset += f->file_offset;
402 if (io_u->offset >= f->real_file_size) {
403 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
404 (unsigned long long) io_u->offset,
405 (unsigned long long) f->real_file_size);
406 return 1;
407 }
408
409 return 0;
410}
411
412static int get_next_offset(struct thread_data *td, struct io_u *io_u,
413 unsigned int *is_random)
414{
415 if (td->flags & TD_F_PROFILE_OPS) {
416 struct prof_io_ops *ops = &td->prof_io_ops;
417
418 if (ops->fill_io_u_off)
419 return ops->fill_io_u_off(td, io_u, is_random);
420 }
421
422 return __get_next_offset(td, io_u, is_random);
423}
424
425static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
426 unsigned int buflen)
427{
428 struct fio_file *f = io_u->file;
429
430 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
431}
432
433static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
434 unsigned int is_random)
435{
436 int ddir = io_u->ddir;
437 unsigned int buflen = 0;
438 unsigned int minbs, maxbs;
439 unsigned long r, rand_max;
440
441 assert(ddir_rw(ddir));
442
443 if (td->o.bs_is_seq_rand)
444 ddir = is_random ? DDIR_WRITE: DDIR_READ;
445
446 minbs = td->o.min_bs[ddir];
447 maxbs = td->o.max_bs[ddir];
448
449 if (minbs == maxbs)
450 return minbs;
451
452 /*
453 * If we can't satisfy the min block size from here, then fail
454 */
455 if (!io_u_fits(td, io_u, minbs))
456 return 0;
457
458 if (td->o.use_os_rand)
459 rand_max = OS_RAND_MAX;
460 else
461 rand_max = FRAND_MAX;
462
463 do {
464 if (td->o.use_os_rand)
465 r = os_random_long(&td->bsrange_state);
466 else
467 r = __rand(&td->__bsrange_state);
468
469 if (!td->o.bssplit_nr[ddir]) {
470 buflen = 1 + (unsigned int) ((double) maxbs *
471 (r / (rand_max + 1.0)));
472 if (buflen < minbs)
473 buflen = minbs;
474 } else {
475 long perc = 0;
476 unsigned int i;
477
478 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
479 struct bssplit *bsp = &td->o.bssplit[ddir][i];
480
481 buflen = bsp->bs;
482 perc += bsp->perc;
483 if ((r <= ((rand_max / 100L) * perc)) &&
484 io_u_fits(td, io_u, buflen))
485 break;
486 }
487 }
488
489 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
490 buflen = (buflen + td->o.verify_interval - 1) &
491 ~(td->o.verify_interval - 1);
492
493 if (!td->o.bs_unaligned && is_power_of_2(minbs))
494 buflen = (buflen + minbs - 1) & ~(minbs - 1);
495
496 } while (!io_u_fits(td, io_u, buflen));
497
498 return buflen;
499}
500
501static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
502 unsigned int is_random)
503{
504 if (td->flags & TD_F_PROFILE_OPS) {
505 struct prof_io_ops *ops = &td->prof_io_ops;
506
507 if (ops->fill_io_u_size)
508 return ops->fill_io_u_size(td, io_u, is_random);
509 }
510
511 return __get_next_buflen(td, io_u, is_random);
512}
513
514static void set_rwmix_bytes(struct thread_data *td)
515{
516 unsigned int diff;
517
518 /*
519 * we do time or byte based switch. this is needed because
520 * buffered writes may issue a lot quicker than they complete,
521 * whereas reads do not.
522 */
523 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
524 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
525}
526
527static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
528{
529 unsigned int v;
530 unsigned long r;
531
532 if (td->o.use_os_rand) {
533 r = os_random_long(&td->rwmix_state);
534 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
535 } else {
536 r = __rand(&td->__rwmix_state);
537 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
538 }
539
540 if (v <= td->o.rwmix[DDIR_READ])
541 return DDIR_READ;
542
543 return DDIR_WRITE;
544}
545
546void io_u_quiesce(struct thread_data *td)
547{
548 /*
549 * We are going to sleep, ensure that we flush anything pending as
550 * not to skew our latency numbers.
551 *
552 * Changed to only monitor 'in flight' requests here instead of the
553 * td->cur_depth, b/c td->cur_depth does not accurately represent
554 * io's that have been actually submitted to an async engine,
555 * and cur_depth is meaningless for sync engines.
556 */
557 while (td->io_u_in_flight) {
558 int fio_unused ret;
559
560 ret = io_u_queued_complete(td, 1, NULL);
561 }
562}
563
564static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
565{
566 enum fio_ddir odir = ddir ^ 1;
567 struct timeval t;
568 long usec;
569
570 assert(ddir_rw(ddir));
571
572 if (td->rate_pending_usleep[ddir] <= 0)
573 return ddir;
574
575 /*
576 * We have too much pending sleep in this direction. See if we
577 * should switch.
578 */
579 if (td_rw(td) && td->o.rwmix[odir]) {
580 /*
581 * Other direction does not have too much pending, switch
582 */
583 if (td->rate_pending_usleep[odir] < 100000)
584 return odir;
585
586 /*
587 * Both directions have pending sleep. Sleep the minimum time
588 * and deduct from both.
589 */
590 if (td->rate_pending_usleep[ddir] <=
591 td->rate_pending_usleep[odir]) {
592 usec = td->rate_pending_usleep[ddir];
593 } else {
594 usec = td->rate_pending_usleep[odir];
595 ddir = odir;
596 }
597 } else
598 usec = td->rate_pending_usleep[ddir];
599
600 io_u_quiesce(td);
601
602 fio_gettime(&t, NULL);
603 usec_sleep(td, usec);
604 usec = utime_since_now(&t);
605
606 td->rate_pending_usleep[ddir] -= usec;
607
608 odir = ddir ^ 1;
609 if (td_rw(td) && __should_check_rate(td, odir))
610 td->rate_pending_usleep[odir] -= usec;
611
612 if (ddir_trim(ddir))
613 return ddir;
614
615 return ddir;
616}
617
618/*
619 * Return the data direction for the next io_u. If the job is a
620 * mixed read/write workload, check the rwmix cycle and switch if
621 * necessary.
622 */
623static enum fio_ddir get_rw_ddir(struct thread_data *td)
624{
625 enum fio_ddir ddir;
626
627 /*
628 * see if it's time to fsync
629 */
630 if (td->o.fsync_blocks &&
631 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
632 td->io_issues[DDIR_WRITE] && should_fsync(td))
633 return DDIR_SYNC;
634
635 /*
636 * see if it's time to fdatasync
637 */
638 if (td->o.fdatasync_blocks &&
639 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
640 td->io_issues[DDIR_WRITE] && should_fsync(td))
641 return DDIR_DATASYNC;
642
643 /*
644 * see if it's time to sync_file_range
645 */
646 if (td->sync_file_range_nr &&
647 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
648 td->io_issues[DDIR_WRITE] && should_fsync(td))
649 return DDIR_SYNC_FILE_RANGE;
650
651 if (td_rw(td)) {
652 /*
653 * Check if it's time to seed a new data direction.
654 */
655 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
656 /*
657 * Put a top limit on how many bytes we do for
658 * one data direction, to avoid overflowing the
659 * ranges too much
660 */
661 ddir = get_rand_ddir(td);
662
663 if (ddir != td->rwmix_ddir)
664 set_rwmix_bytes(td);
665
666 td->rwmix_ddir = ddir;
667 }
668 ddir = td->rwmix_ddir;
669 } else if (td_read(td))
670 ddir = DDIR_READ;
671 else if (td_write(td))
672 ddir = DDIR_WRITE;
673 else
674 ddir = DDIR_TRIM;
675
676 td->rwmix_ddir = rate_ddir(td, ddir);
677 return td->rwmix_ddir;
678}
679
680static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
681{
682 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
683
684 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
685 td->o.barrier_blocks &&
686 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
687 td->io_issues[DDIR_WRITE])
688 io_u->flags |= IO_U_F_BARRIER;
689}
690
691void put_file_log(struct thread_data *td, struct fio_file *f)
692{
693 unsigned int ret = put_file(td, f);
694
695 if (ret)
696 td_verror(td, ret, "file close");
697}
698
699void put_io_u(struct thread_data *td, struct io_u *io_u)
700{
701 td_io_u_lock(td);
702
703 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
704 put_file_log(td, io_u->file);
705
706 io_u->file = NULL;
707 io_u->flags |= IO_U_F_FREE;
708
709 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
710 td->cur_depth--;
711 io_u_qpush(&td->io_u_freelist, io_u);
712 td_io_u_unlock(td);
713 td_io_u_free_notify(td);
714}
715
716void clear_io_u(struct thread_data *td, struct io_u *io_u)
717{
718 io_u->flags &= ~IO_U_F_FLIGHT;
719 put_io_u(td, io_u);
720}
721
722void requeue_io_u(struct thread_data *td, struct io_u **io_u)
723{
724 struct io_u *__io_u = *io_u;
725 enum fio_ddir ddir = acct_ddir(__io_u);
726
727 dprint(FD_IO, "requeue %p\n", __io_u);
728
729 td_io_u_lock(td);
730
731 __io_u->flags |= IO_U_F_FREE;
732 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
733 td->io_issues[ddir]--;
734
735 __io_u->flags &= ~IO_U_F_FLIGHT;
736 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
737 td->cur_depth--;
738
739 io_u_rpush(&td->io_u_requeues, __io_u);
740 td_io_u_unlock(td);
741 *io_u = NULL;
742}
743
744static int fill_io_u(struct thread_data *td, struct io_u *io_u)
745{
746 unsigned int is_random;
747
748 if (td->io_ops->flags & FIO_NOIO)
749 goto out;
750
751 set_rw_ddir(td, io_u);
752
753 /*
754 * fsync() or fdatasync() or trim etc, we are done
755 */
756 if (!ddir_rw(io_u->ddir))
757 goto out;
758
759 /*
760 * See if it's time to switch to a new zone
761 */
762 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
763 struct fio_file *f = io_u->file;
764
765 td->zone_bytes = 0;
766 f->file_offset += td->o.zone_range + td->o.zone_skip;
767
768 /*
769 * Wrap from the beginning, if we exceed the file size
770 */
771 if (f->file_offset >= f->real_file_size)
772 f->file_offset = f->real_file_size - f->file_offset;
773 f->last_pos = f->file_offset;
774 td->io_skip_bytes += td->o.zone_skip;
775 }
776
777 /*
778 * No log, let the seq/rand engine retrieve the next buflen and
779 * position.
780 */
781 if (get_next_offset(td, io_u, &is_random)) {
782 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
783 return 1;
784 }
785
786 io_u->buflen = get_next_buflen(td, io_u, is_random);
787 if (!io_u->buflen) {
788 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
789 return 1;
790 }
791
792 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
793 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
794 dprint(FD_IO, " off=%llu/%lu > %llu\n",
795 (unsigned long long) io_u->offset, io_u->buflen,
796 (unsigned long long) io_u->file->real_file_size);
797 return 1;
798 }
799
800 /*
801 * mark entry before potentially trimming io_u
802 */
803 if (td_random(td) && file_randommap(td, io_u->file))
804 mark_random_map(td, io_u);
805
806out:
807 dprint_io_u(io_u, "fill_io_u");
808 td->zone_bytes += io_u->buflen;
809 return 0;
810}
811
812static void __io_u_mark_map(unsigned int *map, unsigned int nr)
813{
814 int idx = 0;
815
816 switch (nr) {
817 default:
818 idx = 6;
819 break;
820 case 33 ... 64:
821 idx = 5;
822 break;
823 case 17 ... 32:
824 idx = 4;
825 break;
826 case 9 ... 16:
827 idx = 3;
828 break;
829 case 5 ... 8:
830 idx = 2;
831 break;
832 case 1 ... 4:
833 idx = 1;
834 case 0:
835 break;
836 }
837
838 map[idx]++;
839}
840
841void io_u_mark_submit(struct thread_data *td, unsigned int nr)
842{
843 __io_u_mark_map(td->ts.io_u_submit, nr);
844 td->ts.total_submit++;
845}
846
847void io_u_mark_complete(struct thread_data *td, unsigned int nr)
848{
849 __io_u_mark_map(td->ts.io_u_complete, nr);
850 td->ts.total_complete++;
851}
852
853void io_u_mark_depth(struct thread_data *td, unsigned int nr)
854{
855 int idx = 0;
856
857 switch (td->cur_depth) {
858 default:
859 idx = 6;
860 break;
861 case 32 ... 63:
862 idx = 5;
863 break;
864 case 16 ... 31:
865 idx = 4;
866 break;
867 case 8 ... 15:
868 idx = 3;
869 break;
870 case 4 ... 7:
871 idx = 2;
872 break;
873 case 2 ... 3:
874 idx = 1;
875 case 1:
876 break;
877 }
878
879 td->ts.io_u_map[idx] += nr;
880}
881
882static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
883{
884 int idx = 0;
885
886 assert(usec < 1000);
887
888 switch (usec) {
889 case 750 ... 999:
890 idx = 9;
891 break;
892 case 500 ... 749:
893 idx = 8;
894 break;
895 case 250 ... 499:
896 idx = 7;
897 break;
898 case 100 ... 249:
899 idx = 6;
900 break;
901 case 50 ... 99:
902 idx = 5;
903 break;
904 case 20 ... 49:
905 idx = 4;
906 break;
907 case 10 ... 19:
908 idx = 3;
909 break;
910 case 4 ... 9:
911 idx = 2;
912 break;
913 case 2 ... 3:
914 idx = 1;
915 case 0 ... 1:
916 break;
917 }
918
919 assert(idx < FIO_IO_U_LAT_U_NR);
920 td->ts.io_u_lat_u[idx]++;
921}
922
923static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
924{
925 int idx = 0;
926
927 switch (msec) {
928 default:
929 idx = 11;
930 break;
931 case 1000 ... 1999:
932 idx = 10;
933 break;
934 case 750 ... 999:
935 idx = 9;
936 break;
937 case 500 ... 749:
938 idx = 8;
939 break;
940 case 250 ... 499:
941 idx = 7;
942 break;
943 case 100 ... 249:
944 idx = 6;
945 break;
946 case 50 ... 99:
947 idx = 5;
948 break;
949 case 20 ... 49:
950 idx = 4;
951 break;
952 case 10 ... 19:
953 idx = 3;
954 break;
955 case 4 ... 9:
956 idx = 2;
957 break;
958 case 2 ... 3:
959 idx = 1;
960 case 0 ... 1:
961 break;
962 }
963
964 assert(idx < FIO_IO_U_LAT_M_NR);
965 td->ts.io_u_lat_m[idx]++;
966}
967
968static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
969{
970 if (usec < 1000)
971 io_u_mark_lat_usec(td, usec);
972 else
973 io_u_mark_lat_msec(td, usec / 1000);
974}
975
976/*
977 * Get next file to service by choosing one at random
978 */
979static struct fio_file *get_next_file_rand(struct thread_data *td,
980 enum fio_file_flags goodf,
981 enum fio_file_flags badf)
982{
983 struct fio_file *f;
984 int fno;
985
986 do {
987 int opened = 0;
988 unsigned long r;
989
990 if (td->o.use_os_rand) {
991 r = os_random_long(&td->next_file_state);
992 fno = (unsigned int) ((double) td->o.nr_files
993 * (r / (OS_RAND_MAX + 1.0)));
994 } else {
995 r = __rand(&td->__next_file_state);
996 fno = (unsigned int) ((double) td->o.nr_files
997 * (r / (FRAND_MAX + 1.0)));
998 }
999
1000 f = td->files[fno];
1001 if (fio_file_done(f))
1002 continue;
1003
1004 if (!fio_file_open(f)) {
1005 int err;
1006
1007 if (td->nr_open_files >= td->o.open_files)
1008 return ERR_PTR(-EBUSY);
1009
1010 err = td_io_open_file(td, f);
1011 if (err)
1012 continue;
1013 opened = 1;
1014 }
1015
1016 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1017 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1018 return f;
1019 }
1020 if (opened)
1021 td_io_close_file(td, f);
1022 } while (1);
1023}
1024
1025/*
1026 * Get next file to service by doing round robin between all available ones
1027 */
1028static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1029 int badf)
1030{
1031 unsigned int old_next_file = td->next_file;
1032 struct fio_file *f;
1033
1034 do {
1035 int opened = 0;
1036
1037 f = td->files[td->next_file];
1038
1039 td->next_file++;
1040 if (td->next_file >= td->o.nr_files)
1041 td->next_file = 0;
1042
1043 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1044 if (fio_file_done(f)) {
1045 f = NULL;
1046 continue;
1047 }
1048
1049 if (!fio_file_open(f)) {
1050 int err;
1051
1052 if (td->nr_open_files >= td->o.open_files)
1053 return ERR_PTR(-EBUSY);
1054
1055 err = td_io_open_file(td, f);
1056 if (err) {
1057 dprint(FD_FILE, "error %d on open of %s\n",
1058 err, f->file_name);
1059 f = NULL;
1060 continue;
1061 }
1062 opened = 1;
1063 }
1064
1065 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1066 f->flags);
1067 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1068 break;
1069
1070 if (opened)
1071 td_io_close_file(td, f);
1072
1073 f = NULL;
1074 } while (td->next_file != old_next_file);
1075
1076 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1077 return f;
1078}
1079
1080static struct fio_file *__get_next_file(struct thread_data *td)
1081{
1082 struct fio_file *f;
1083
1084 assert(td->o.nr_files <= td->files_index);
1085
1086 if (td->nr_done_files >= td->o.nr_files) {
1087 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1088 " nr_files=%d\n", td->nr_open_files,
1089 td->nr_done_files,
1090 td->o.nr_files);
1091 return NULL;
1092 }
1093
1094 f = td->file_service_file;
1095 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1096 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1097 goto out;
1098 if (td->file_service_left--)
1099 goto out;
1100 }
1101
1102 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1103 td->o.file_service_type == FIO_FSERVICE_SEQ)
1104 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1105 else
1106 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1107
1108 if (IS_ERR(f))
1109 return f;
1110
1111 td->file_service_file = f;
1112 td->file_service_left = td->file_service_nr - 1;
1113out:
1114 if (f)
1115 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1116 else
1117 dprint(FD_FILE, "get_next_file: NULL\n");
1118 return f;
1119}
1120
1121static struct fio_file *get_next_file(struct thread_data *td)
1122{
1123 if (td->flags & TD_F_PROFILE_OPS) {
1124 struct prof_io_ops *ops = &td->prof_io_ops;
1125
1126 if (ops->get_next_file)
1127 return ops->get_next_file(td);
1128 }
1129
1130 return __get_next_file(td);
1131}
1132
1133static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1134{
1135 struct fio_file *f;
1136
1137 do {
1138 f = get_next_file(td);
1139 if (IS_ERR_OR_NULL(f))
1140 return PTR_ERR(f);
1141
1142 io_u->file = f;
1143 get_file(f);
1144
1145 if (!fill_io_u(td, io_u))
1146 break;
1147
1148 put_file_log(td, f);
1149 td_io_close_file(td, f);
1150 io_u->file = NULL;
1151 fio_file_set_done(f);
1152 td->nr_done_files++;
1153 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1154 td->nr_done_files, td->o.nr_files);
1155 } while (1);
1156
1157 return 0;
1158}
1159
1160static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1161 unsigned long tusec, unsigned long max_usec)
1162{
1163 if (!td->error)
1164 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1165 td_verror(td, ETIMEDOUT, "max latency exceeded");
1166 icd->error = ETIMEDOUT;
1167}
1168
1169static void lat_new_cycle(struct thread_data *td)
1170{
1171 fio_gettime(&td->latency_ts, NULL);
1172 td->latency_ios = ddir_rw_sum(td->io_blocks);
1173 td->latency_failed = 0;
1174}
1175
1176/*
1177 * We had an IO outside the latency target. Reduce the queue depth. If we
1178 * are at QD=1, then it's time to give up.
1179 */
1180static int __lat_target_failed(struct thread_data *td)
1181{
1182 if (td->latency_qd == 1)
1183 return 1;
1184
1185 td->latency_qd_high = td->latency_qd;
1186
1187 if (td->latency_qd == td->latency_qd_low)
1188 td->latency_qd_low--;
1189
1190 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1191
1192 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1193
1194 /*
1195 * When we ramp QD down, quiesce existing IO to prevent
1196 * a storm of ramp downs due to pending higher depth.
1197 */
1198 io_u_quiesce(td);
1199 lat_new_cycle(td);
1200 return 0;
1201}
1202
1203static int lat_target_failed(struct thread_data *td)
1204{
1205 if (td->o.latency_percentile.u.f == 100.0)
1206 return __lat_target_failed(td);
1207
1208 td->latency_failed++;
1209 return 0;
1210}
1211
1212void lat_target_init(struct thread_data *td)
1213{
1214 td->latency_end_run = 0;
1215
1216 if (td->o.latency_target) {
1217 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1218 fio_gettime(&td->latency_ts, NULL);
1219 td->latency_qd = 1;
1220 td->latency_qd_high = td->o.iodepth;
1221 td->latency_qd_low = 1;
1222 td->latency_ios = ddir_rw_sum(td->io_blocks);
1223 } else
1224 td->latency_qd = td->o.iodepth;
1225}
1226
1227void lat_target_reset(struct thread_data *td)
1228{
1229 if (!td->latency_end_run)
1230 lat_target_init(td);
1231}
1232
1233static void lat_target_success(struct thread_data *td)
1234{
1235 const unsigned int qd = td->latency_qd;
1236 struct thread_options *o = &td->o;
1237
1238 td->latency_qd_low = td->latency_qd;
1239
1240 /*
1241 * If we haven't failed yet, we double up to a failing value instead
1242 * of bisecting from highest possible queue depth. If we have set
1243 * a limit other than td->o.iodepth, bisect between that.
1244 */
1245 if (td->latency_qd_high != o->iodepth)
1246 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1247 else
1248 td->latency_qd *= 2;
1249
1250 if (td->latency_qd > o->iodepth)
1251 td->latency_qd = o->iodepth;
1252
1253 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1254
1255 /*
1256 * Same as last one, we are done. Let it run a latency cycle, so
1257 * we get only the results from the targeted depth.
1258 */
1259 if (td->latency_qd == qd) {
1260 if (td->latency_end_run) {
1261 dprint(FD_RATE, "We are done\n");
1262 td->done = 1;
1263 } else {
1264 dprint(FD_RATE, "Quiesce and final run\n");
1265 io_u_quiesce(td);
1266 td->latency_end_run = 1;
1267 reset_all_stats(td);
1268 reset_io_stats(td);
1269 }
1270 }
1271
1272 lat_new_cycle(td);
1273}
1274
1275/*
1276 * Check if we can bump the queue depth
1277 */
1278void lat_target_check(struct thread_data *td)
1279{
1280 uint64_t usec_window;
1281 uint64_t ios;
1282 double success_ios;
1283
1284 usec_window = utime_since_now(&td->latency_ts);
1285 if (usec_window < td->o.latency_window)
1286 return;
1287
1288 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1289 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1290 success_ios *= 100.0;
1291
1292 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1293
1294 if (success_ios >= td->o.latency_percentile.u.f)
1295 lat_target_success(td);
1296 else
1297 __lat_target_failed(td);
1298}
1299
1300/*
1301 * If latency target is enabled, we might be ramping up or down and not
1302 * using the full queue depth available.
1303 */
1304int queue_full(const struct thread_data *td)
1305{
1306 const int qempty = io_u_qempty(&td->io_u_freelist);
1307
1308 if (qempty)
1309 return 1;
1310 if (!td->o.latency_target)
1311 return 0;
1312
1313 return td->cur_depth >= td->latency_qd;
1314}
1315
1316struct io_u *__get_io_u(struct thread_data *td)
1317{
1318 struct io_u *io_u = NULL;
1319
1320 td_io_u_lock(td);
1321
1322again:
1323 if (!io_u_rempty(&td->io_u_requeues))
1324 io_u = io_u_rpop(&td->io_u_requeues);
1325 else if (!queue_full(td)) {
1326 io_u = io_u_qpop(&td->io_u_freelist);
1327
1328 io_u->file = NULL;
1329 io_u->buflen = 0;
1330 io_u->resid = 0;
1331 io_u->end_io = NULL;
1332 }
1333
1334 if (io_u) {
1335 assert(io_u->flags & IO_U_F_FREE);
1336 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1337 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1338 IO_U_F_VER_LIST);
1339
1340 io_u->error = 0;
1341 io_u->acct_ddir = -1;
1342 td->cur_depth++;
1343 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1344 io_u->ipo = NULL;
1345 } else if (td->o.verify_async) {
1346 /*
1347 * We ran out, wait for async verify threads to finish and
1348 * return one
1349 */
1350 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1351 goto again;
1352 }
1353
1354 td_io_u_unlock(td);
1355 return io_u;
1356}
1357
1358static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1359{
1360 if (!(td->flags & TD_F_TRIM_BACKLOG))
1361 return 0;
1362
1363 if (td->trim_entries) {
1364 int get_trim = 0;
1365
1366 if (td->trim_batch) {
1367 td->trim_batch--;
1368 get_trim = 1;
1369 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1370 td->last_ddir != DDIR_READ) {
1371 td->trim_batch = td->o.trim_batch;
1372 if (!td->trim_batch)
1373 td->trim_batch = td->o.trim_backlog;
1374 get_trim = 1;
1375 }
1376
1377 if (get_trim && !get_next_trim(td, io_u))
1378 return 1;
1379 }
1380
1381 return 0;
1382}
1383
1384static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1385{
1386 if (!(td->flags & TD_F_VER_BACKLOG))
1387 return 0;
1388
1389 if (td->io_hist_len) {
1390 int get_verify = 0;
1391
1392 if (td->verify_batch)
1393 get_verify = 1;
1394 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1395 td->last_ddir != DDIR_READ) {
1396 td->verify_batch = td->o.verify_batch;
1397 if (!td->verify_batch)
1398 td->verify_batch = td->o.verify_backlog;
1399 get_verify = 1;
1400 }
1401
1402 if (get_verify && !get_next_verify(td, io_u)) {
1403 td->verify_batch--;
1404 return 1;
1405 }
1406 }
1407
1408 return 0;
1409}
1410
1411/*
1412 * Fill offset and start time into the buffer content, to prevent too
1413 * easy compressible data for simple de-dupe attempts. Do this for every
1414 * 512b block in the range, since that should be the smallest block size
1415 * we can expect from a device.
1416 */
1417static void small_content_scramble(struct io_u *io_u)
1418{
1419 unsigned int i, nr_blocks = io_u->buflen / 512;
1420 uint64_t boffset;
1421 unsigned int offset;
1422 void *p, *end;
1423
1424 if (!nr_blocks)
1425 return;
1426
1427 p = io_u->xfer_buf;
1428 boffset = io_u->offset;
1429 io_u->buf_filled_len = 0;
1430
1431 for (i = 0; i < nr_blocks; i++) {
1432 /*
1433 * Fill the byte offset into a "random" start offset of
1434 * the buffer, given by the product of the usec time
1435 * and the actual offset.
1436 */
1437 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1438 offset &= ~(sizeof(uint64_t) - 1);
1439 if (offset >= 512 - sizeof(uint64_t))
1440 offset -= sizeof(uint64_t);
1441 memcpy(p + offset, &boffset, sizeof(boffset));
1442
1443 end = p + 512 - sizeof(io_u->start_time);
1444 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1445 p += 512;
1446 boffset += 512;
1447 }
1448}
1449
1450/*
1451 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1452 * etc. The returned io_u is fully ready to be prepped and submitted.
1453 */
1454struct io_u *get_io_u(struct thread_data *td)
1455{
1456 struct fio_file *f;
1457 struct io_u *io_u;
1458 int do_scramble = 0;
1459 long ret = 0;
1460
1461 io_u = __get_io_u(td);
1462 if (!io_u) {
1463 dprint(FD_IO, "__get_io_u failed\n");
1464 return NULL;
1465 }
1466
1467 if (check_get_verify(td, io_u))
1468 goto out;
1469 if (check_get_trim(td, io_u))
1470 goto out;
1471
1472 /*
1473 * from a requeue, io_u already setup
1474 */
1475 if (io_u->file)
1476 goto out;
1477
1478 /*
1479 * If using an iolog, grab next piece if any available.
1480 */
1481 if (td->flags & TD_F_READ_IOLOG) {
1482 if (read_iolog_get(td, io_u))
1483 goto err_put;
1484 } else if (set_io_u_file(td, io_u)) {
1485 ret = -EBUSY;
1486 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1487 goto err_put;
1488 }
1489
1490 f = io_u->file;
1491 if (!f) {
1492 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1493 goto err_put;
1494 }
1495
1496 assert(fio_file_open(f));
1497
1498 if (ddir_rw(io_u->ddir)) {
1499 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1500 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1501 goto err_put;
1502 }
1503
1504 f->last_start = io_u->offset;
1505 f->last_pos = io_u->offset + io_u->buflen;
1506
1507 if (io_u->ddir == DDIR_WRITE) {
1508 if (td->flags & TD_F_REFILL_BUFFERS) {
1509 io_u_fill_buffer(td, io_u,
1510 td->o.min_bs[DDIR_WRITE],
1511 io_u->xfer_buflen);
1512 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1513 !(td->flags & TD_F_COMPRESS))
1514 do_scramble = 1;
1515 if (td->flags & TD_F_VER_NONE) {
1516 populate_verify_io_u(td, io_u);
1517 do_scramble = 0;
1518 }
1519 } else if (io_u->ddir == DDIR_READ) {
1520 /*
1521 * Reset the buf_filled parameters so next time if the
1522 * buffer is used for writes it is refilled.
1523 */
1524 io_u->buf_filled_len = 0;
1525 }
1526 }
1527
1528 /*
1529 * Set io data pointers.
1530 */
1531 io_u->xfer_buf = io_u->buf;
1532 io_u->xfer_buflen = io_u->buflen;
1533
1534out:
1535 assert(io_u->file);
1536 if (!td_io_prep(td, io_u)) {
1537 if (!td->o.disable_slat)
1538 fio_gettime(&io_u->start_time, NULL);
1539 if (do_scramble)
1540 small_content_scramble(io_u);
1541 return io_u;
1542 }
1543err_put:
1544 dprint(FD_IO, "get_io_u failed\n");
1545 put_io_u(td, io_u);
1546 return ERR_PTR(ret);
1547}
1548
1549void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1550{
1551 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1552
1553 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1554 return;
1555
1556 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1557 io_u->file ? " on file " : "",
1558 io_u->file ? io_u->file->file_name : "",
1559 strerror(io_u->error),
1560 io_ddir_name(io_u->ddir),
1561 io_u->offset, io_u->xfer_buflen);
1562
1563 if (!td->error)
1564 td_verror(td, io_u->error, "io_u error");
1565}
1566
1567static inline int gtod_reduce(struct thread_data *td)
1568{
1569 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1570 && td->o.disable_bw;
1571}
1572
1573static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1574 struct io_completion_data *icd,
1575 const enum fio_ddir idx, unsigned int bytes)
1576{
1577 unsigned long lusec = 0;
1578
1579 if (!gtod_reduce(td))
1580 lusec = utime_since(&io_u->issue_time, &icd->time);
1581
1582 if (!td->o.disable_lat) {
1583 unsigned long tusec;
1584
1585 tusec = utime_since(&io_u->start_time, &icd->time);
1586 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1587
1588 if (td->flags & TD_F_PROFILE_OPS) {
1589 struct prof_io_ops *ops = &td->prof_io_ops;
1590
1591 if (ops->io_u_lat)
1592 icd->error = ops->io_u_lat(td, tusec);
1593 }
1594
1595 if (td->o.max_latency && tusec > td->o.max_latency)
1596 lat_fatal(td, icd, tusec, td->o.max_latency);
1597 if (td->o.latency_target && tusec > td->o.latency_target) {
1598 if (lat_target_failed(td))
1599 lat_fatal(td, icd, tusec, td->o.latency_target);
1600 }
1601 }
1602
1603 if (!td->o.disable_clat) {
1604 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1605 io_u_mark_latency(td, lusec);
1606 }
1607
1608 if (!td->o.disable_bw)
1609 add_bw_sample(td, idx, bytes, &icd->time);
1610
1611 if (!gtod_reduce(td))
1612 add_iops_sample(td, idx, bytes, &icd->time);
1613}
1614
1615static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1616{
1617 uint64_t secs, remainder, bps, bytes;
1618
1619 bytes = td->this_io_bytes[ddir];
1620 bps = td->rate_bps[ddir];
1621 secs = bytes / bps;
1622 remainder = bytes % bps;
1623 return remainder * 1000000 / bps + secs * 1000000;
1624}
1625
1626static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1627 struct io_completion_data *icd)
1628{
1629 struct io_u *io_u = *io_u_ptr;
1630 enum fio_ddir ddir = io_u->ddir;
1631 struct fio_file *f = io_u->file;
1632
1633 dprint_io_u(io_u, "io complete");
1634
1635 td_io_u_lock(td);
1636 assert(io_u->flags & IO_U_F_FLIGHT);
1637 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1638
1639 /*
1640 * Mark IO ok to verify
1641 */
1642 if (io_u->ipo) {
1643 /*
1644 * Remove errored entry from the verification list
1645 */
1646 if (io_u->error)
1647 unlog_io_piece(td, io_u);
1648 else {
1649 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1650 write_barrier();
1651 }
1652 }
1653
1654 td_io_u_unlock(td);
1655
1656 if (ddir_sync(ddir)) {
1657 td->last_was_sync = 1;
1658 if (f) {
1659 f->first_write = -1ULL;
1660 f->last_write = -1ULL;
1661 }
1662 return;
1663 }
1664
1665 td->last_was_sync = 0;
1666 td->last_ddir = ddir;
1667
1668 if (!io_u->error && ddir_rw(ddir)) {
1669 unsigned int bytes = io_u->buflen - io_u->resid;
1670 const enum fio_ddir oddir = ddir ^ 1;
1671 int ret;
1672
1673 td->io_blocks[ddir]++;
1674 td->this_io_blocks[ddir]++;
1675 td->io_bytes[ddir] += bytes;
1676
1677 if (!(io_u->flags & IO_U_F_VER_LIST))
1678 td->this_io_bytes[ddir] += bytes;
1679
1680 if (ddir == DDIR_WRITE && f) {
1681 if (f->first_write == -1ULL ||
1682 io_u->offset < f->first_write)
1683 f->first_write = io_u->offset;
1684 if (f->last_write == -1ULL ||
1685 ((io_u->offset + bytes) > f->last_write))
1686 f->last_write = io_u->offset + bytes;
1687 }
1688
1689 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1690 td->runstate == TD_VERIFYING)) {
1691 account_io_completion(td, io_u, icd, ddir, bytes);
1692
1693 if (__should_check_rate(td, ddir)) {
1694 td->rate_pending_usleep[ddir] =
1695 (usec_for_io(td, ddir) -
1696 utime_since_now(&td->start));
1697 }
1698 if (ddir != DDIR_TRIM &&
1699 __should_check_rate(td, oddir)) {
1700 td->rate_pending_usleep[oddir] =
1701 (usec_for_io(td, oddir) -
1702 utime_since_now(&td->start));
1703 }
1704 }
1705
1706 icd->bytes_done[ddir] += bytes;
1707
1708 if (io_u->end_io) {
1709 ret = io_u->end_io(td, io_u_ptr);
1710 io_u = *io_u_ptr;
1711 if (ret && !icd->error)
1712 icd->error = ret;
1713 }
1714 } else if (io_u->error) {
1715 icd->error = io_u->error;
1716 io_u_log_error(td, io_u);
1717 }
1718 if (icd->error) {
1719 enum error_type_bit eb = td_error_type(ddir, icd->error);
1720
1721 if (!td_non_fatal_error(td, eb, icd->error))
1722 return;
1723
1724 /*
1725 * If there is a non_fatal error, then add to the error count
1726 * and clear all the errors.
1727 */
1728 update_error_count(td, icd->error);
1729 td_clear_error(td);
1730 icd->error = 0;
1731 if (io_u)
1732 io_u->error = 0;
1733 }
1734}
1735
1736static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1737 int nr)
1738{
1739 int ddir;
1740
1741 if (!gtod_reduce(td))
1742 fio_gettime(&icd->time, NULL);
1743
1744 icd->nr = nr;
1745
1746 icd->error = 0;
1747 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1748 icd->bytes_done[ddir] = 0;
1749}
1750
1751static void ios_completed(struct thread_data *td,
1752 struct io_completion_data *icd)
1753{
1754 struct io_u *io_u;
1755 int i;
1756
1757 for (i = 0; i < icd->nr; i++) {
1758 io_u = td->io_ops->event(td, i);
1759
1760 io_completed(td, &io_u, icd);
1761
1762 if (io_u)
1763 put_io_u(td, io_u);
1764 }
1765}
1766
1767/*
1768 * Complete a single io_u for the sync engines.
1769 */
1770int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1771 uint64_t *bytes)
1772{
1773 struct io_completion_data icd;
1774
1775 init_icd(td, &icd, 1);
1776 io_completed(td, &io_u, &icd);
1777
1778 if (io_u)
1779 put_io_u(td, io_u);
1780
1781 if (icd.error) {
1782 td_verror(td, icd.error, "io_u_sync_complete");
1783 return -1;
1784 }
1785
1786 if (bytes) {
1787 int ddir;
1788
1789 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1790 bytes[ddir] += icd.bytes_done[ddir];
1791 }
1792
1793 return 0;
1794}
1795
1796/*
1797 * Called to complete min_events number of io for the async engines.
1798 */
1799int io_u_queued_complete(struct thread_data *td, int min_evts,
1800 uint64_t *bytes)
1801{
1802 struct io_completion_data icd;
1803 struct timespec *tvp = NULL;
1804 int ret;
1805 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1806
1807 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1808
1809 if (!min_evts)
1810 tvp = &ts;
1811 else if (min_evts > td->cur_depth)
1812 min_evts = td->cur_depth;
1813
1814 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1815 if (ret < 0) {
1816 td_verror(td, -ret, "td_io_getevents");
1817 return ret;
1818 } else if (!ret)
1819 return ret;
1820
1821 init_icd(td, &icd, ret);
1822 ios_completed(td, &icd);
1823 if (icd.error) {
1824 td_verror(td, icd.error, "io_u_queued_complete");
1825 return -1;
1826 }
1827
1828 if (bytes) {
1829 int ddir;
1830
1831 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1832 bytes[ddir] += icd.bytes_done[ddir];
1833 }
1834
1835 return 0;
1836}
1837
1838/*
1839 * Call when io_u is really queued, to update the submission latency.
1840 */
1841void io_u_queued(struct thread_data *td, struct io_u *io_u)
1842{
1843 if (!td->o.disable_slat) {
1844 unsigned long slat_time;
1845
1846 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1847 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
1848 io_u->offset);
1849 }
1850}
1851
1852/*
1853 * See if we should reuse the last seed, if dedupe is enabled
1854 */
1855static struct frand_state *get_buf_state(struct thread_data *td)
1856{
1857 unsigned int v;
1858 unsigned long r;
1859
1860 if (!td->o.dedupe_percentage)
1861 return &td->buf_state;
1862 else if (td->o.dedupe_percentage == 100)
1863 return &td->buf_state_prev;
1864
1865 r = __rand(&td->dedupe_state);
1866 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
1867
1868 if (v <= td->o.dedupe_percentage)
1869 return &td->buf_state_prev;
1870
1871 return &td->buf_state;
1872}
1873
1874static void save_buf_state(struct thread_data *td, struct frand_state *rs)
1875{
1876 if (rs == &td->buf_state)
1877 frand_copy(&td->buf_state_prev, rs);
1878}
1879
1880void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1881 unsigned int max_bs)
1882{
1883 if (td->o.buffer_pattern_bytes)
1884 fill_buffer_pattern(td, buf, max_bs);
1885 else if (!td->o.zero_buffers) {
1886 unsigned int perc = td->o.compress_percentage;
1887 struct frand_state *rs;
1888 unsigned int left = max_bs;
1889
1890 do {
1891 rs = get_buf_state(td);
1892
1893 min_write = min(min_write, left);
1894
1895 if (perc) {
1896 unsigned int seg = min_write;
1897
1898 seg = min(min_write, td->o.compress_chunk);
1899 if (!seg)
1900 seg = min_write;
1901
1902 fill_random_buf_percentage(rs, buf, perc, seg,
1903 min_write);
1904 } else
1905 fill_random_buf(rs, buf, min_write);
1906
1907 buf += min_write;
1908 left -= min_write;
1909 save_buf_state(td, rs);
1910 } while (left);
1911 } else
1912 memset(buf, 0, max_bs);
1913}
1914
1915/*
1916 * "randomly" fill the buffer contents
1917 */
1918void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1919 unsigned int min_write, unsigned int max_bs)
1920{
1921 io_u->buf_filled_len = 0;
1922 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1923}