Fio 1.41.6
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "lib/rand.h"
12
13struct io_completion_data {
14 int nr; /* input */
15
16 int error; /* output */
17 unsigned long bytes_done[2]; /* output */
18 struct timeval time; /* output */
19};
20
21/*
22 * The ->file_map[] contains a map of blocks we have or have not done io
23 * to yet. Used to make sure we cover the entire range in a fair fashion.
24 */
25static int random_map_free(struct fio_file *f, const unsigned long long block)
26{
27 unsigned int idx = RAND_MAP_IDX(f, block);
28 unsigned int bit = RAND_MAP_BIT(f, block);
29
30 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
31
32 return (f->file_map[idx] & (1 << bit)) == 0;
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned long long block;
43 unsigned int blocks, nr_blocks;
44
45 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47 blocks = 0;
48
49 while (nr_blocks) {
50 unsigned int this_blocks, mask;
51 unsigned int idx, bit;
52
53 /*
54 * If we have a mixed random workload, we may
55 * encounter blocks we already did IO to.
56 */
57 if ((td->o.ddir_nr == 1) && !random_map_free(f, block))
58 break;
59
60 idx = RAND_MAP_IDX(f, block);
61 bit = RAND_MAP_BIT(f, block);
62
63 fio_assert(td, idx < f->num_maps);
64
65 this_blocks = nr_blocks;
66 if (this_blocks + bit > BLOCKS_PER_MAP)
67 this_blocks = BLOCKS_PER_MAP - bit;
68
69 do {
70 if (this_blocks == BLOCKS_PER_MAP)
71 mask = -1U;
72 else
73 mask = ((1U << this_blocks) - 1) << bit;
74
75 if (!(f->file_map[idx] & mask))
76 break;
77
78 this_blocks--;
79 } while (this_blocks);
80
81 if (!this_blocks)
82 break;
83
84 f->file_map[idx] |= mask;
85 nr_blocks -= this_blocks;
86 blocks += this_blocks;
87 block += this_blocks;
88 }
89
90 if ((blocks * min_bs) < io_u->buflen)
91 io_u->buflen = blocks * min_bs;
92}
93
94static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
95 enum fio_ddir ddir)
96{
97 unsigned long long max_blocks;
98 unsigned long long max_size;
99
100 /*
101 * Hmm, should we make sure that ->io_size <= ->real_file_size?
102 */
103 max_size = f->io_size;
104 if (max_size > f->real_file_size)
105 max_size = f->real_file_size;
106
107 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
108 if (!max_blocks)
109 return 0;
110
111 return max_blocks;
112}
113
114/*
115 * Return the next free block in the map.
116 */
117static int get_next_free_block(struct thread_data *td, struct fio_file *f,
118 enum fio_ddir ddir, unsigned long long *b)
119{
120 unsigned long long min_bs = td->o.rw_min_bs;
121 int i;
122
123 i = f->last_free_lookup;
124 *b = (i * BLOCKS_PER_MAP);
125 while ((*b) * min_bs < f->real_file_size &&
126 (*b) * min_bs < f->io_size) {
127 if (f->file_map[i] != (unsigned int) -1) {
128 *b += ffz(f->file_map[i]);
129 if (*b > last_block(td, f, ddir))
130 break;
131 f->last_free_lookup = i;
132 return 0;
133 }
134
135 *b += BLOCKS_PER_MAP;
136 i++;
137 }
138
139 dprint(FD_IO, "failed finding a free block\n");
140 return 1;
141}
142
143static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
144 enum fio_ddir ddir, unsigned long long *b)
145{
146 unsigned long long r;
147 int loops = 5;
148
149 do {
150 r = os_random_long(&td->random_state);
151 dprint(FD_RANDOM, "off rand %llu\n", r);
152 *b = (last_block(td, f, ddir) - 1)
153 * (r / ((unsigned long long) OS_RAND_MAX + 1.0));
154
155 /*
156 * if we are not maintaining a random map, we are done.
157 */
158 if (!file_randommap(td, f))
159 return 0;
160
161 /*
162 * calculate map offset and check if it's free
163 */
164 if (random_map_free(f, *b))
165 return 0;
166
167 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
168 *b);
169 } while (--loops);
170
171 /*
172 * we get here, if we didn't suceed in looking up a block. generate
173 * a random start offset into the filemap, and find the first free
174 * block from there.
175 */
176 loops = 10;
177 do {
178 f->last_free_lookup = (f->num_maps - 1) *
179 (r / (OS_RAND_MAX + 1.0));
180 if (!get_next_free_block(td, f, ddir, b))
181 return 0;
182
183 r = os_random_long(&td->random_state);
184 } while (--loops);
185
186 /*
187 * that didn't work either, try exhaustive search from the start
188 */
189 f->last_free_lookup = 0;
190 return get_next_free_block(td, f, ddir, b);
191}
192
193/*
194 * For random io, generate a random new block and see if it's used. Repeat
195 * until we find a free one. For sequential io, just return the end of
196 * the last io issued.
197 */
198static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
199{
200 struct fio_file *f = io_u->file;
201 unsigned long long b;
202 enum fio_ddir ddir = io_u->ddir;
203
204 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
205 td->ddir_nr = td->o.ddir_nr;
206
207 if (get_next_rand_offset(td, f, ddir, &b)) {
208 dprint(FD_IO, "%s: getting rand offset failed\n",
209 f->file_name);
210 return 1;
211 }
212 } else {
213 if (f->last_pos >= f->real_file_size) {
214 if (!td_random(td) ||
215 get_next_rand_offset(td, f, ddir, &b)) {
216 dprint(FD_IO, "%s: pos %llu > size %llu\n",
217 f->file_name, f->last_pos,
218 f->real_file_size);
219 return 1;
220 }
221 } else
222 b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir];
223 }
224
225 io_u->offset = b * td->o.ba[ddir];
226 if (io_u->offset >= f->io_size) {
227 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
228 io_u->offset, f->io_size);
229 return 1;
230 }
231
232 io_u->offset += f->file_offset;
233 if (io_u->offset >= f->real_file_size) {
234 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
235 io_u->offset, f->real_file_size);
236 return 1;
237 }
238
239 return 0;
240}
241
242static int get_next_offset(struct thread_data *td, struct io_u *io_u)
243{
244 struct prof_io_ops *ops = &td->prof_io_ops;
245
246 if (ops->fill_io_u_off)
247 return ops->fill_io_u_off(td, io_u);
248
249 return __get_next_offset(td, io_u);
250}
251
252static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
253{
254 const int ddir = io_u->ddir;
255 unsigned int uninitialized_var(buflen);
256 unsigned int minbs, maxbs;
257 long r;
258
259 minbs = td->o.min_bs[ddir];
260 maxbs = td->o.max_bs[ddir];
261
262 if (minbs == maxbs)
263 buflen = minbs;
264 else {
265 r = os_random_long(&td->bsrange_state);
266 if (!td->o.bssplit_nr[ddir]) {
267 buflen = 1 + (unsigned int) ((double) maxbs *
268 (r / (OS_RAND_MAX + 1.0)));
269 if (buflen < minbs)
270 buflen = minbs;
271 } else {
272 long perc = 0;
273 unsigned int i;
274
275 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
276 struct bssplit *bsp = &td->o.bssplit[ddir][i];
277
278 buflen = bsp->bs;
279 perc += bsp->perc;
280 if (r <= ((OS_RAND_MAX / 100L) * perc))
281 break;
282 }
283 }
284 if (!td->o.bs_unaligned && is_power_of_2(minbs))
285 buflen = (buflen + minbs - 1) & ~(minbs - 1);
286 }
287
288 if (io_u->offset + buflen > io_u->file->real_file_size) {
289 dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen,
290 minbs, ddir);
291 buflen = minbs;
292 }
293
294 return buflen;
295}
296
297static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
298{
299 struct prof_io_ops *ops = &td->prof_io_ops;
300
301 if (ops->fill_io_u_size)
302 return ops->fill_io_u_size(td, io_u);
303
304 return __get_next_buflen(td, io_u);
305}
306
307static void set_rwmix_bytes(struct thread_data *td)
308{
309 unsigned int diff;
310
311 /*
312 * we do time or byte based switch. this is needed because
313 * buffered writes may issue a lot quicker than they complete,
314 * whereas reads do not.
315 */
316 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
317 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
318}
319
320static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
321{
322 unsigned int v;
323 long r;
324
325 r = os_random_long(&td->rwmix_state);
326 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
327 if (v <= td->o.rwmix[DDIR_READ])
328 return DDIR_READ;
329
330 return DDIR_WRITE;
331}
332
333static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
334{
335 enum fio_ddir odir = ddir ^ 1;
336 struct timeval t;
337 long usec;
338
339 if (td->rate_pending_usleep[ddir] <= 0)
340 return ddir;
341
342 /*
343 * We have too much pending sleep in this direction. See if we
344 * should switch.
345 */
346 if (td_rw(td)) {
347 /*
348 * Other direction does not have too much pending, switch
349 */
350 if (td->rate_pending_usleep[odir] < 100000)
351 return odir;
352
353 /*
354 * Both directions have pending sleep. Sleep the minimum time
355 * and deduct from both.
356 */
357 if (td->rate_pending_usleep[ddir] <=
358 td->rate_pending_usleep[odir]) {
359 usec = td->rate_pending_usleep[ddir];
360 } else {
361 usec = td->rate_pending_usleep[odir];
362 ddir = odir;
363 }
364 } else
365 usec = td->rate_pending_usleep[ddir];
366
367 fio_gettime(&t, NULL);
368 usec_sleep(td, usec);
369 usec = utime_since_now(&t);
370
371 td->rate_pending_usleep[ddir] -= usec;
372
373 odir = ddir ^ 1;
374 if (td_rw(td) && __should_check_rate(td, odir))
375 td->rate_pending_usleep[odir] -= usec;
376
377 return ddir;
378}
379
380/*
381 * Return the data direction for the next io_u. If the job is a
382 * mixed read/write workload, check the rwmix cycle and switch if
383 * necessary.
384 */
385static enum fio_ddir get_rw_ddir(struct thread_data *td)
386{
387 enum fio_ddir ddir;
388
389 /*
390 * see if it's time to fsync
391 */
392 if (td->o.fsync_blocks &&
393 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
394 td->io_issues[DDIR_WRITE] && should_fsync(td))
395 return DDIR_SYNC;
396
397 /*
398 * see if it's time to fdatasync
399 */
400 if (td->o.fdatasync_blocks &&
401 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
402 td->io_issues[DDIR_WRITE] && should_fsync(td))
403 return DDIR_DATASYNC;
404
405 /*
406 * see if it's time to sync_file_range
407 */
408 if (td->sync_file_range_nr &&
409 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
410 td->io_issues[DDIR_WRITE] && should_fsync(td))
411 return DDIR_SYNC_FILE_RANGE;
412
413 if (td_rw(td)) {
414 /*
415 * Check if it's time to seed a new data direction.
416 */
417 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
418 /*
419 * Put a top limit on how many bytes we do for
420 * one data direction, to avoid overflowing the
421 * ranges too much
422 */
423 ddir = get_rand_ddir(td);
424
425 if (ddir != td->rwmix_ddir)
426 set_rwmix_bytes(td);
427
428 td->rwmix_ddir = ddir;
429 }
430 ddir = td->rwmix_ddir;
431 } else if (td_read(td))
432 ddir = DDIR_READ;
433 else
434 ddir = DDIR_WRITE;
435
436 td->rwmix_ddir = rate_ddir(td, ddir);
437 return td->rwmix_ddir;
438}
439
440void put_file_log(struct thread_data *td, struct fio_file *f)
441{
442 int ret = put_file(td, f);
443
444 if (ret)
445 td_verror(td, ret, "file close");
446}
447
448void put_io_u(struct thread_data *td, struct io_u *io_u)
449{
450 td_io_u_lock(td);
451
452 io_u->flags |= IO_U_F_FREE;
453 io_u->flags &= ~IO_U_F_FREE_DEF;
454
455 if (io_u->file)
456 put_file_log(td, io_u->file);
457
458 io_u->file = NULL;
459 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
460 td->cur_depth--;
461 flist_del_init(&io_u->list);
462 flist_add(&io_u->list, &td->io_u_freelist);
463 td_io_u_unlock(td);
464 td_io_u_free_notify(td);
465}
466
467void clear_io_u(struct thread_data *td, struct io_u *io_u)
468{
469 io_u->flags &= ~IO_U_F_FLIGHT;
470 put_io_u(td, io_u);
471}
472
473void requeue_io_u(struct thread_data *td, struct io_u **io_u)
474{
475 struct io_u *__io_u = *io_u;
476
477 dprint(FD_IO, "requeue %p\n", __io_u);
478
479 td_io_u_lock(td);
480
481 __io_u->flags |= IO_U_F_FREE;
482 if ((__io_u->flags & IO_U_F_FLIGHT) && !ddir_sync(__io_u->ddir))
483 td->io_issues[__io_u->ddir]--;
484
485 __io_u->flags &= ~IO_U_F_FLIGHT;
486 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
487 td->cur_depth--;
488 flist_del(&__io_u->list);
489 flist_add_tail(&__io_u->list, &td->io_u_requeues);
490 td_io_u_unlock(td);
491 *io_u = NULL;
492}
493
494static int fill_io_u(struct thread_data *td, struct io_u *io_u)
495{
496 if (td->io_ops->flags & FIO_NOIO)
497 goto out;
498
499 io_u->ddir = get_rw_ddir(td);
500
501 /*
502 * fsync() or fdatasync(), we are done
503 */
504 if (ddir_sync(io_u->ddir))
505 goto out;
506
507 /*
508 * See if it's time to switch to a new zone
509 */
510 if (td->zone_bytes >= td->o.zone_size) {
511 td->zone_bytes = 0;
512 io_u->file->last_pos += td->o.zone_skip;
513 td->io_skip_bytes += td->o.zone_skip;
514 }
515
516 /*
517 * No log, let the seq/rand engine retrieve the next buflen and
518 * position.
519 */
520 if (get_next_offset(td, io_u)) {
521 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
522 return 1;
523 }
524
525 io_u->buflen = get_next_buflen(td, io_u);
526 if (!io_u->buflen) {
527 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
528 return 1;
529 }
530
531 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
532 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
533 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
534 io_u->buflen, io_u->file->real_file_size);
535 return 1;
536 }
537
538 /*
539 * mark entry before potentially trimming io_u
540 */
541 if (td_random(td) && file_randommap(td, io_u->file))
542 mark_random_map(td, io_u);
543
544 /*
545 * If using a write iolog, store this entry.
546 */
547out:
548 dprint_io_u(io_u, "fill_io_u");
549 td->zone_bytes += io_u->buflen;
550 log_io_u(td, io_u);
551 return 0;
552}
553
554static void __io_u_mark_map(unsigned int *map, unsigned int nr)
555{
556 int index = 0;
557
558 switch (nr) {
559 default:
560 index = 6;
561 break;
562 case 33 ... 64:
563 index = 5;
564 break;
565 case 17 ... 32:
566 index = 4;
567 break;
568 case 9 ... 16:
569 index = 3;
570 break;
571 case 5 ... 8:
572 index = 2;
573 break;
574 case 1 ... 4:
575 index = 1;
576 case 0:
577 break;
578 }
579
580 map[index]++;
581}
582
583void io_u_mark_submit(struct thread_data *td, unsigned int nr)
584{
585 __io_u_mark_map(td->ts.io_u_submit, nr);
586 td->ts.total_submit++;
587}
588
589void io_u_mark_complete(struct thread_data *td, unsigned int nr)
590{
591 __io_u_mark_map(td->ts.io_u_complete, nr);
592 td->ts.total_complete++;
593}
594
595void io_u_mark_depth(struct thread_data *td, unsigned int nr)
596{
597 int index = 0;
598
599 switch (td->cur_depth) {
600 default:
601 index = 6;
602 break;
603 case 32 ... 63:
604 index = 5;
605 break;
606 case 16 ... 31:
607 index = 4;
608 break;
609 case 8 ... 15:
610 index = 3;
611 break;
612 case 4 ... 7:
613 index = 2;
614 break;
615 case 2 ... 3:
616 index = 1;
617 case 1:
618 break;
619 }
620
621 td->ts.io_u_map[index] += nr;
622}
623
624static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
625{
626 int index = 0;
627
628 assert(usec < 1000);
629
630 switch (usec) {
631 case 750 ... 999:
632 index = 9;
633 break;
634 case 500 ... 749:
635 index = 8;
636 break;
637 case 250 ... 499:
638 index = 7;
639 break;
640 case 100 ... 249:
641 index = 6;
642 break;
643 case 50 ... 99:
644 index = 5;
645 break;
646 case 20 ... 49:
647 index = 4;
648 break;
649 case 10 ... 19:
650 index = 3;
651 break;
652 case 4 ... 9:
653 index = 2;
654 break;
655 case 2 ... 3:
656 index = 1;
657 case 0 ... 1:
658 break;
659 }
660
661 assert(index < FIO_IO_U_LAT_U_NR);
662 td->ts.io_u_lat_u[index]++;
663}
664
665static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
666{
667 int index = 0;
668
669 switch (msec) {
670 default:
671 index = 11;
672 break;
673 case 1000 ... 1999:
674 index = 10;
675 break;
676 case 750 ... 999:
677 index = 9;
678 break;
679 case 500 ... 749:
680 index = 8;
681 break;
682 case 250 ... 499:
683 index = 7;
684 break;
685 case 100 ... 249:
686 index = 6;
687 break;
688 case 50 ... 99:
689 index = 5;
690 break;
691 case 20 ... 49:
692 index = 4;
693 break;
694 case 10 ... 19:
695 index = 3;
696 break;
697 case 4 ... 9:
698 index = 2;
699 break;
700 case 2 ... 3:
701 index = 1;
702 case 0 ... 1:
703 break;
704 }
705
706 assert(index < FIO_IO_U_LAT_M_NR);
707 td->ts.io_u_lat_m[index]++;
708}
709
710static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
711{
712 if (usec < 1000)
713 io_u_mark_lat_usec(td, usec);
714 else
715 io_u_mark_lat_msec(td, usec / 1000);
716}
717
718/*
719 * Get next file to service by choosing one at random
720 */
721static struct fio_file *get_next_file_rand(struct thread_data *td,
722 enum fio_file_flags goodf,
723 enum fio_file_flags badf)
724{
725 struct fio_file *f;
726 int fno;
727
728 do {
729 long r = os_random_long(&td->next_file_state);
730 int opened = 0;
731
732 fno = (unsigned int) ((double) td->o.nr_files
733 * (r / (OS_RAND_MAX + 1.0)));
734 f = td->files[fno];
735 if (fio_file_done(f))
736 continue;
737
738 if (!fio_file_open(f)) {
739 int err;
740
741 err = td_io_open_file(td, f);
742 if (err)
743 continue;
744 opened = 1;
745 }
746
747 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
748 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
749 return f;
750 }
751 if (opened)
752 td_io_close_file(td, f);
753 } while (1);
754}
755
756/*
757 * Get next file to service by doing round robin between all available ones
758 */
759static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
760 int badf)
761{
762 unsigned int old_next_file = td->next_file;
763 struct fio_file *f;
764
765 do {
766 int opened = 0;
767
768 f = td->files[td->next_file];
769
770 td->next_file++;
771 if (td->next_file >= td->o.nr_files)
772 td->next_file = 0;
773
774 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
775 if (fio_file_done(f)) {
776 f = NULL;
777 continue;
778 }
779
780 if (!fio_file_open(f)) {
781 int err;
782
783 err = td_io_open_file(td, f);
784 if (err) {
785 dprint(FD_FILE, "error %d on open of %s\n",
786 err, f->file_name);
787 f = NULL;
788 continue;
789 }
790 opened = 1;
791 }
792
793 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
794 f->flags);
795 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
796 break;
797
798 if (opened)
799 td_io_close_file(td, f);
800
801 f = NULL;
802 } while (td->next_file != old_next_file);
803
804 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
805 return f;
806}
807
808static struct fio_file *__get_next_file(struct thread_data *td)
809{
810 struct fio_file *f;
811
812 assert(td->o.nr_files <= td->files_index);
813
814 if (td->nr_done_files >= td->o.nr_files) {
815 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
816 " nr_files=%d\n", td->nr_open_files,
817 td->nr_done_files,
818 td->o.nr_files);
819 return NULL;
820 }
821
822 f = td->file_service_file;
823 if (f && fio_file_open(f) && !fio_file_closing(f)) {
824 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
825 goto out;
826 if (td->file_service_left--)
827 goto out;
828 }
829
830 if (td->o.file_service_type == FIO_FSERVICE_RR ||
831 td->o.file_service_type == FIO_FSERVICE_SEQ)
832 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
833 else
834 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
835
836 td->file_service_file = f;
837 td->file_service_left = td->file_service_nr - 1;
838out:
839 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
840 return f;
841}
842
843static struct fio_file *get_next_file(struct thread_data *td)
844{
845 struct prof_io_ops *ops = &td->prof_io_ops;
846
847 if (ops->get_next_file)
848 return ops->get_next_file(td);
849
850 return __get_next_file(td);
851}
852
853static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
854{
855 struct fio_file *f;
856
857 do {
858 f = get_next_file(td);
859 if (!f)
860 return 1;
861
862 io_u->file = f;
863 get_file(f);
864
865 if (!fill_io_u(td, io_u))
866 break;
867
868 put_file_log(td, f);
869 td_io_close_file(td, f);
870 io_u->file = NULL;
871 fio_file_set_done(f);
872 td->nr_done_files++;
873 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
874 td->nr_done_files, td->o.nr_files);
875 } while (1);
876
877 return 0;
878}
879
880
881struct io_u *__get_io_u(struct thread_data *td)
882{
883 struct io_u *io_u = NULL;
884
885 td_io_u_lock(td);
886
887again:
888 if (!flist_empty(&td->io_u_requeues))
889 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
890 else if (!queue_full(td)) {
891 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
892
893 io_u->buflen = 0;
894 io_u->resid = 0;
895 io_u->file = NULL;
896 io_u->end_io = NULL;
897 }
898
899 if (io_u) {
900 assert(io_u->flags & IO_U_F_FREE);
901 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
902
903 io_u->error = 0;
904 flist_del(&io_u->list);
905 flist_add(&io_u->list, &td->io_u_busylist);
906 td->cur_depth++;
907 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
908 } else if (td->o.verify_async) {
909 /*
910 * We ran out, wait for async verify threads to finish and
911 * return one
912 */
913 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
914 goto again;
915 }
916
917 td_io_u_unlock(td);
918 return io_u;
919}
920
921/*
922 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
923 * etc. The returned io_u is fully ready to be prepped and submitted.
924 */
925struct io_u *get_io_u(struct thread_data *td)
926{
927 struct fio_file *f;
928 struct io_u *io_u;
929
930 io_u = __get_io_u(td);
931 if (!io_u) {
932 dprint(FD_IO, "__get_io_u failed\n");
933 return NULL;
934 }
935
936 if (td->o.verify_backlog && td->io_hist_len) {
937 int get_verify = 0;
938
939 if (td->verify_batch) {
940 td->verify_batch--;
941 get_verify = 1;
942 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
943 td->last_ddir != DDIR_READ) {
944 td->verify_batch = td->o.verify_batch;
945 if (!td->verify_batch)
946 td->verify_batch = td->o.verify_backlog;
947 get_verify = 1;
948 }
949
950 if (get_verify && !get_next_verify(td, io_u))
951 goto out;
952 }
953
954 /*
955 * from a requeue, io_u already setup
956 */
957 if (io_u->file)
958 goto out;
959
960 /*
961 * If using an iolog, grab next piece if any available.
962 */
963 if (td->o.read_iolog_file) {
964 if (read_iolog_get(td, io_u))
965 goto err_put;
966 } else if (set_io_u_file(td, io_u)) {
967 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
968 goto err_put;
969 }
970
971 f = io_u->file;
972 assert(fio_file_open(f));
973
974 if (!ddir_sync(io_u->ddir)) {
975 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
976 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
977 goto err_put;
978 }
979
980 f->last_pos = io_u->offset + io_u->buflen;
981
982 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_WRITE)
983 populate_verify_io_u(td, io_u);
984 else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE)
985 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
986 }
987
988 /*
989 * Set io data pointers.
990 */
991 io_u->xfer_buf = io_u->buf;
992 io_u->xfer_buflen = io_u->buflen;
993
994out:
995 if (!td_io_prep(td, io_u)) {
996 if (!td->o.disable_slat)
997 fio_gettime(&io_u->start_time, NULL);
998 return io_u;
999 }
1000err_put:
1001 dprint(FD_IO, "get_io_u failed\n");
1002 put_io_u(td, io_u);
1003 return NULL;
1004}
1005
1006void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1007{
1008 const char *msg[] = { "read", "write", "sync" };
1009
1010 log_err("fio: io_u error");
1011
1012 if (io_u->file)
1013 log_err(" on file %s", io_u->file->file_name);
1014
1015 log_err(": %s\n", strerror(io_u->error));
1016
1017 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1018 io_u->offset, io_u->xfer_buflen);
1019
1020 if (!td->error)
1021 td_verror(td, io_u->error, "io_u error");
1022}
1023
1024static void io_completed(struct thread_data *td, struct io_u *io_u,
1025 struct io_completion_data *icd)
1026{
1027 /*
1028 * Older gcc's are too dumb to realize that usec is always used
1029 * initialized, silence that warning.
1030 */
1031 unsigned long uninitialized_var(usec);
1032 struct fio_file *f;
1033
1034 dprint_io_u(io_u, "io complete");
1035
1036 td_io_u_lock(td);
1037 assert(io_u->flags & IO_U_F_FLIGHT);
1038 io_u->flags &= ~IO_U_F_FLIGHT;
1039 td_io_u_unlock(td);
1040
1041 if (ddir_sync(io_u->ddir)) {
1042 td->last_was_sync = 1;
1043 f = io_u->file;
1044 if (f) {
1045 f->first_write = -1ULL;
1046 f->last_write = -1ULL;
1047 }
1048 return;
1049 }
1050
1051 td->last_was_sync = 0;
1052 td->last_ddir = io_u->ddir;
1053
1054 if (!io_u->error) {
1055 unsigned int bytes = io_u->buflen - io_u->resid;
1056 const enum fio_ddir idx = io_u->ddir;
1057 const enum fio_ddir odx = io_u->ddir ^ 1;
1058 int ret;
1059
1060 td->io_blocks[idx]++;
1061 td->io_bytes[idx] += bytes;
1062 td->this_io_bytes[idx] += bytes;
1063
1064 if (idx == DDIR_WRITE) {
1065 f = io_u->file;
1066 if (f) {
1067 if (f->first_write == -1ULL ||
1068 io_u->offset < f->first_write)
1069 f->first_write = io_u->offset;
1070 if (f->last_write == -1ULL ||
1071 ((io_u->offset + bytes) > f->last_write))
1072 f->last_write = io_u->offset + bytes;
1073 }
1074 }
1075
1076 if (ramp_time_over(td)) {
1077 unsigned long uninitialized_var(lusec);
1078
1079 if (!td->o.disable_clat || !td->o.disable_bw)
1080 lusec = utime_since(&io_u->issue_time,
1081 &icd->time);
1082 if (!td->o.disable_lat) {
1083 unsigned long tusec;
1084
1085 tusec = utime_since(&io_u->start_time,
1086 &icd->time);
1087 add_lat_sample(td, idx, tusec, bytes);
1088 }
1089 if (!td->o.disable_clat) {
1090 add_clat_sample(td, idx, lusec, bytes);
1091 io_u_mark_latency(td, lusec);
1092 }
1093 if (!td->o.disable_bw)
1094 add_bw_sample(td, idx, bytes, &icd->time);
1095 if (__should_check_rate(td, idx)) {
1096 td->rate_pending_usleep[idx] =
1097 ((td->this_io_bytes[idx] *
1098 td->rate_nsec_cycle[idx]) / 1000 -
1099 utime_since_now(&td->start));
1100 }
1101 if (__should_check_rate(td, idx ^ 1))
1102 td->rate_pending_usleep[odx] =
1103 ((td->this_io_bytes[odx] *
1104 td->rate_nsec_cycle[odx]) / 1000 -
1105 utime_since_now(&td->start));
1106 }
1107
1108 if (td_write(td) && idx == DDIR_WRITE &&
1109 td->o.do_verify &&
1110 td->o.verify != VERIFY_NONE)
1111 log_io_piece(td, io_u);
1112
1113 icd->bytes_done[idx] += bytes;
1114
1115 if (io_u->end_io) {
1116 ret = io_u->end_io(td, io_u);
1117 if (ret && !icd->error)
1118 icd->error = ret;
1119 }
1120 } else {
1121 icd->error = io_u->error;
1122 io_u_log_error(td, io_u);
1123 }
1124 if (td->o.continue_on_error && icd->error &&
1125 td_non_fatal_error(icd->error)) {
1126 /*
1127 * If there is a non_fatal error, then add to the error count
1128 * and clear all the errors.
1129 */
1130 update_error_count(td, icd->error);
1131 td_clear_error(td);
1132 icd->error = 0;
1133 io_u->error = 0;
1134 }
1135}
1136
1137static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1138 int nr)
1139{
1140 if (!td->o.disable_clat || !td->o.disable_bw)
1141 fio_gettime(&icd->time, NULL);
1142
1143 icd->nr = nr;
1144
1145 icd->error = 0;
1146 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1147}
1148
1149static void ios_completed(struct thread_data *td,
1150 struct io_completion_data *icd)
1151{
1152 struct io_u *io_u;
1153 int i;
1154
1155 for (i = 0; i < icd->nr; i++) {
1156 io_u = td->io_ops->event(td, i);
1157
1158 io_completed(td, io_u, icd);
1159
1160 if (!(io_u->flags & IO_U_F_FREE_DEF))
1161 put_io_u(td, io_u);
1162 }
1163}
1164
1165/*
1166 * Complete a single io_u for the sync engines.
1167 */
1168int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1169 unsigned long *bytes)
1170{
1171 struct io_completion_data icd;
1172
1173 init_icd(td, &icd, 1);
1174 io_completed(td, io_u, &icd);
1175
1176 if (!(io_u->flags & IO_U_F_FREE_DEF))
1177 put_io_u(td, io_u);
1178
1179 if (icd.error) {
1180 td_verror(td, icd.error, "io_u_sync_complete");
1181 return -1;
1182 }
1183
1184 if (bytes) {
1185 bytes[0] += icd.bytes_done[0];
1186 bytes[1] += icd.bytes_done[1];
1187 }
1188
1189 return 0;
1190}
1191
1192/*
1193 * Called to complete min_events number of io for the async engines.
1194 */
1195int io_u_queued_complete(struct thread_data *td, int min_evts,
1196 unsigned long *bytes)
1197{
1198 struct io_completion_data icd;
1199 struct timespec *tvp = NULL;
1200 int ret;
1201 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1202
1203 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1204
1205 if (!min_evts)
1206 tvp = &ts;
1207
1208 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1209 if (ret < 0) {
1210 td_verror(td, -ret, "td_io_getevents");
1211 return ret;
1212 } else if (!ret)
1213 return ret;
1214
1215 init_icd(td, &icd, ret);
1216 ios_completed(td, &icd);
1217 if (icd.error) {
1218 td_verror(td, icd.error, "io_u_queued_complete");
1219 return -1;
1220 }
1221
1222 if (bytes) {
1223 bytes[0] += icd.bytes_done[0];
1224 bytes[1] += icd.bytes_done[1];
1225 }
1226
1227 return 0;
1228}
1229
1230/*
1231 * Call when io_u is really queued, to update the submission latency.
1232 */
1233void io_u_queued(struct thread_data *td, struct io_u *io_u)
1234{
1235 if (!td->o.disable_slat) {
1236 unsigned long slat_time;
1237
1238 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1239 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1240 }
1241}
1242
1243/*
1244 * "randomly" fill the buffer contents
1245 */
1246void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1247 unsigned int max_bs)
1248{
1249 if (!td->o.zero_buffers)
1250 fill_random_buf(io_u->buf, max_bs);
1251 else
1252 memset(io_u->buf, 0, max_bs);
1253}