[PATCH] Don't hide pthread_mutex_setpshared in os-linux.h
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9
10/*
11 * Change this define to play with the timeout handling
12 */
13#undef FIO_USE_TIMEOUT
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct thread_data *td, struct fio_file *f,
28 unsigned long long block)
29{
30 unsigned int idx = RAND_MAP_IDX(td, f, block);
31 unsigned int bit = RAND_MAP_BIT(td, f, block);
32
33 return (f->file_map[idx] & (1UL << bit)) == 0;
34}
35
36/*
37 * Mark a given offset as used in the map.
38 */
39static void mark_random_map(struct thread_data *td, struct io_u *io_u)
40{
41 unsigned int min_bs = td->o.rw_min_bs;
42 struct fio_file *f = io_u->file;
43 unsigned long long block;
44 unsigned int blocks;
45 unsigned int nr_blocks;
46
47 block = io_u->offset / (unsigned long long) min_bs;
48 blocks = 0;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50
51 while (blocks < nr_blocks) {
52 unsigned int idx, bit;
53
54 /*
55 * If we have a mixed random workload, we may
56 * encounter blocks we already did IO to.
57 */
58 if (!td->o.ddir_nr && !random_map_free(td, f, block))
59 break;
60
61 idx = RAND_MAP_IDX(td, f, block);
62 bit = RAND_MAP_BIT(td, f, block);
63
64 fio_assert(td, idx < f->num_maps);
65
66 f->file_map[idx] |= (1UL << bit);
67 block++;
68 blocks++;
69 }
70
71 if ((blocks * min_bs) < io_u->buflen)
72 io_u->buflen = blocks * min_bs;
73}
74
75/*
76 * Return the next free block in the map.
77 */
78static int get_next_free_block(struct thread_data *td, struct fio_file *f,
79 unsigned long long *b)
80{
81 int i;
82
83 i = f->last_free_lookup;
84 *b = (i * BLOCKS_PER_MAP);
85 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
86 if (f->file_map[i] != -1UL) {
87 *b += fio_ffz(f->file_map[i]);
88 f->last_free_lookup = i;
89 return 0;
90 }
91
92 *b += BLOCKS_PER_MAP;
93 i++;
94 }
95
96 return 1;
97}
98
99static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
100 int ddir, unsigned long long *b)
101{
102 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
103 unsigned long long r, rb;
104 int loops = 5;
105
106 do {
107 r = os_random_long(&td->random_state);
108 if (!max_blocks)
109 *b = 0;
110 else
111 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
112 /*
113 * if we are not maintaining a random map, we are done.
114 */
115 if (td->o.norandommap)
116 return 0;
117
118 /*
119 * calculate map offset and chec if it's free
120 */
121 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
122 if (random_map_free(td, f, rb))
123 return 0;
124
125 } while (--loops);
126
127 /*
128 * we get here, if we didn't suceed in looking up a block. generate
129 * a random start offset into the filemap, and find the first free
130 * block from there.
131 */
132 loops = 10;
133 do {
134 f->last_free_lookup = (f->num_maps - 1) * (r / (RAND_MAX+1.0));
135 if (!get_next_free_block(td, f, b))
136 return 0;
137
138 r = os_random_long(&td->random_state);
139 } while (--loops);
140
141 /*
142 * that didn't work either, try exhaustive search from the start
143 */
144 f->last_free_lookup = 0;
145 return get_next_free_block(td, f, b);
146}
147
148/*
149 * For random io, generate a random new block and see if it's used. Repeat
150 * until we find a free one. For sequential io, just return the end of
151 * the last io issued.
152 */
153static int get_next_offset(struct thread_data *td, struct io_u *io_u)
154{
155 struct fio_file *f = io_u->file;
156 const int ddir = io_u->ddir;
157 unsigned long long b;
158
159 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
160 td->ddir_nr = td->o.ddir_nr;
161
162 if (get_next_rand_offset(td, f, ddir, &b))
163 return 1;
164 } else {
165 if (f->last_pos >= f->real_file_size)
166 return 1;
167
168 b = f->last_pos / td->o.min_bs[ddir];
169 }
170
171 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
172 if (io_u->offset >= f->real_file_size)
173 return 1;
174
175 return 0;
176}
177
178static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
179{
180 const int ddir = io_u->ddir;
181 unsigned int buflen;
182 long r;
183
184 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
185 buflen = td->o.min_bs[ddir];
186 else {
187 r = os_random_long(&td->bsrange_state);
188 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
189 if (!td->o.bs_unaligned)
190 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
191 }
192
193 return buflen;
194}
195
196static void set_rwmix_bytes(struct thread_data *td)
197{
198 unsigned long long rbytes;
199 unsigned int diff;
200
201 /*
202 * we do time or byte based switch. this is needed because
203 * buffered writes may issue a lot quicker than they complete,
204 * whereas reads do not.
205 */
206 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
207 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
208
209 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
210}
211
212static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
213{
214 unsigned int v;
215 long r;
216
217 r = os_random_long(&td->rwmix_state);
218 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
219 if (v < td->o.rwmix[DDIR_READ])
220 return DDIR_READ;
221
222 return DDIR_WRITE;
223}
224
225/*
226 * Return the data direction for the next io_u. If the job is a
227 * mixed read/write workload, check the rwmix cycle and switch if
228 * necessary.
229 */
230static enum fio_ddir get_rw_ddir(struct thread_data *td)
231{
232 if (td_rw(td)) {
233 struct timeval now;
234 unsigned long elapsed;
235 unsigned int cycle;
236
237 fio_gettime(&now, NULL);
238 elapsed = mtime_since_now(&td->rwmix_switch);
239
240 /*
241 * if this is the first cycle, make it shorter
242 */
243 cycle = td->o.rwmixcycle;
244 if (!td->rwmix_bytes)
245 cycle /= 10;
246
247 /*
248 * Check if it's time to seed a new data direction.
249 */
250 if (elapsed >= cycle ||
251 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
252 unsigned long long max_bytes;
253 enum fio_ddir ddir;
254
255 /*
256 * Put a top limit on how many bytes we do for
257 * one data direction, to avoid overflowing the
258 * ranges too much
259 */
260 ddir = get_rand_ddir(td);
261 max_bytes = td->this_io_bytes[ddir];
262 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
263 if (!td->rw_end_set[ddir]) {
264 td->rw_end_set[ddir] = 1;
265 memcpy(&td->rw_end[ddir], &now, sizeof(now));
266 }
267 ddir ^= 1;
268 }
269
270 if (ddir != td->rwmix_ddir)
271 set_rwmix_bytes(td);
272
273 td->rwmix_ddir = ddir;
274 memcpy(&td->rwmix_switch, &now, sizeof(now));
275 }
276 return td->rwmix_ddir;
277 } else if (td_read(td))
278 return DDIR_READ;
279 else
280 return DDIR_WRITE;
281}
282
283void put_io_u(struct thread_data *td, struct io_u *io_u)
284{
285 assert((io_u->flags & IO_U_F_FREE) == 0);
286 io_u->flags |= IO_U_F_FREE;
287
288 if (io_u->file)
289 put_file(td, io_u->file);
290
291 io_u->file = NULL;
292 list_del(&io_u->list);
293 list_add(&io_u->list, &td->io_u_freelist);
294 td->cur_depth--;
295}
296
297void requeue_io_u(struct thread_data *td, struct io_u **io_u)
298{
299 struct io_u *__io_u = *io_u;
300
301 __io_u->flags |= IO_U_F_FREE;
302 __io_u->flags &= ~IO_U_F_FLIGHT;
303
304 list_del(&__io_u->list);
305 list_add_tail(&__io_u->list, &td->io_u_requeues);
306 td->cur_depth--;
307 *io_u = NULL;
308}
309
310static int fill_io_u(struct thread_data *td, struct io_u *io_u)
311{
312 /*
313 * see if it's time to sync
314 */
315 if (td->o.fsync_blocks &&
316 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
317 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
318 io_u->ddir = DDIR_SYNC;
319 goto out;
320 }
321
322 io_u->ddir = get_rw_ddir(td);
323
324 /*
325 * See if it's time to switch to a new zone
326 */
327 if (td->zone_bytes >= td->o.zone_size) {
328 td->zone_bytes = 0;
329 io_u->file->last_pos += td->o.zone_skip;
330 td->io_skip_bytes += td->o.zone_skip;
331 }
332
333 /*
334 * No log, let the seq/rand engine retrieve the next buflen and
335 * position.
336 */
337 if (get_next_offset(td, io_u))
338 return 1;
339
340 io_u->buflen = get_next_buflen(td, io_u);
341 if (!io_u->buflen)
342 return 1;
343
344 /*
345 * mark entry before potentially trimming io_u
346 */
347 if (td_random(td) && !td->o.norandommap)
348 mark_random_map(td, io_u);
349
350 /*
351 * If using a write iolog, store this entry.
352 */
353out:
354 log_io_u(td, io_u);
355 return 0;
356}
357
358void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
359{
360 int index = 0;
361
362 if (io_u->ddir == DDIR_SYNC)
363 return;
364
365 switch (td->cur_depth) {
366 default:
367 index = 6;
368 break;
369 case 32 ... 63:
370 index = 5;
371 break;
372 case 16 ... 31:
373 index = 4;
374 break;
375 case 8 ... 15:
376 index = 3;
377 break;
378 case 4 ... 7:
379 index = 2;
380 break;
381 case 2 ... 3:
382 index = 1;
383 case 1:
384 break;
385 }
386
387 td->ts.io_u_map[index]++;
388 td->ts.total_io_u[io_u->ddir]++;
389}
390
391static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
392{
393 int index = 0;
394
395 assert(usec < 1000);
396
397 switch (usec) {
398 case 750 ... 999:
399 index = 9;
400 break;
401 case 500 ... 749:
402 index = 8;
403 break;
404 case 250 ... 499:
405 index = 7;
406 break;
407 case 100 ... 249:
408 index = 6;
409 break;
410 case 50 ... 99:
411 index = 5;
412 break;
413 case 20 ... 49:
414 index = 4;
415 break;
416 case 10 ... 19:
417 index = 3;
418 break;
419 case 4 ... 9:
420 index = 2;
421 break;
422 case 2 ... 3:
423 index = 1;
424 case 0 ... 1:
425 break;
426 }
427
428 assert(index < FIO_IO_U_LAT_U_NR);
429 td->ts.io_u_lat_u[index]++;
430}
431
432static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
433{
434 int index = 0;
435
436 switch (msec) {
437 default:
438 index = 11;
439 break;
440 case 1000 ... 1999:
441 index = 10;
442 break;
443 case 750 ... 999:
444 index = 9;
445 break;
446 case 500 ... 749:
447 index = 8;
448 break;
449 case 250 ... 499:
450 index = 7;
451 break;
452 case 100 ... 249:
453 index = 6;
454 break;
455 case 50 ... 99:
456 index = 5;
457 break;
458 case 20 ... 49:
459 index = 4;
460 break;
461 case 10 ... 19:
462 index = 3;
463 break;
464 case 4 ... 9:
465 index = 2;
466 break;
467 case 2 ... 3:
468 index = 1;
469 case 0 ... 1:
470 break;
471 }
472
473 assert(index < FIO_IO_U_LAT_M_NR);
474 td->ts.io_u_lat_m[index]++;
475}
476
477static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
478{
479 if (usec < 1000)
480 io_u_mark_lat_usec(td, usec);
481 else
482 io_u_mark_lat_msec(td, usec / 1000);
483}
484
485/*
486 * Get next file to service by choosing one at random
487 */
488static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
489 int badf)
490{
491 struct fio_file *f;
492 int fno;
493
494 do {
495 long r = os_random_long(&td->next_file_state);
496
497 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
498 f = &td->files[fno];
499 if (f->flags & FIO_FILE_DONE)
500 continue;
501
502 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
503 return f;
504 } while (1);
505}
506
507/*
508 * Get next file to service by doing round robin between all available ones
509 */
510static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
511 int badf)
512{
513 unsigned int old_next_file = td->next_file;
514 struct fio_file *f;
515
516 do {
517 f = &td->files[td->next_file];
518
519 td->next_file++;
520 if (td->next_file >= td->o.nr_files)
521 td->next_file = 0;
522
523 if (f->flags & FIO_FILE_DONE) {
524 f = NULL;
525 continue;
526 }
527
528 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
529 break;
530
531 f = NULL;
532 } while (td->next_file != old_next_file);
533
534 return f;
535}
536
537static struct fio_file *get_next_file(struct thread_data *td)
538{
539 struct fio_file *f;
540
541 assert(td->o.nr_files <= td->files_index);
542
543 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
544 return NULL;
545
546 f = td->file_service_file;
547 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
548 return f;
549
550 if (td->o.file_service_type == FIO_FSERVICE_RR)
551 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
552 else
553 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
554
555 td->file_service_file = f;
556 td->file_service_left = td->file_service_nr - 1;
557 return f;
558}
559
560static struct fio_file *find_next_new_file(struct thread_data *td)
561{
562 struct fio_file *f;
563
564 if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files)
565 return NULL;
566
567 if (td->o.file_service_type == FIO_FSERVICE_RR)
568 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
569 else
570 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
571
572 return f;
573}
574
575static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
576{
577 struct fio_file *f;
578
579 do {
580 f = get_next_file(td);
581 if (!f)
582 return 1;
583
584set_file:
585 io_u->file = f;
586 get_file(f);
587
588 if (!fill_io_u(td, io_u))
589 break;
590
591 /*
592 * td_io_close() does a put_file() as well, so no need to
593 * do that here.
594 */
595 io_u->file = NULL;
596 td_io_close_file(td, f);
597 f->flags |= FIO_FILE_DONE;
598 td->nr_done_files++;
599
600 /*
601 * probably not the right place to do this, but see
602 * if we need to open a new file
603 */
604 if (td->nr_open_files < td->o.open_files &&
605 td->o.open_files != td->o.nr_files) {
606 f = find_next_new_file(td);
607
608 if (!f || td_io_open_file(td, f))
609 return 1;
610
611 goto set_file;
612 }
613 } while (1);
614
615 return 0;
616}
617
618
619struct io_u *__get_io_u(struct thread_data *td)
620{
621 struct io_u *io_u = NULL;
622
623 if (!list_empty(&td->io_u_requeues))
624 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
625 else if (!queue_full(td)) {
626 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
627
628 io_u->buflen = 0;
629 io_u->resid = 0;
630 io_u->file = NULL;
631 io_u->end_io = NULL;
632 }
633
634 if (io_u) {
635 assert(io_u->flags & IO_U_F_FREE);
636 io_u->flags &= ~IO_U_F_FREE;
637
638 io_u->error = 0;
639 list_del(&io_u->list);
640 list_add(&io_u->list, &td->io_u_busylist);
641 td->cur_depth++;
642 }
643
644 return io_u;
645}
646
647/*
648 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
649 * etc. The returned io_u is fully ready to be prepped and submitted.
650 */
651struct io_u *get_io_u(struct thread_data *td)
652{
653 struct fio_file *f;
654 struct io_u *io_u;
655
656 io_u = __get_io_u(td);
657 if (!io_u)
658 return NULL;
659
660 /*
661 * from a requeue, io_u already setup
662 */
663 if (io_u->file)
664 goto out;
665
666 /*
667 * If using an iolog, grab next piece if any available.
668 */
669 if (td->o.read_iolog_file) {
670 if (read_iolog_get(td, io_u))
671 goto err_put;
672 } else if (set_io_u_file(td, io_u))
673 goto err_put;
674
675 f = io_u->file;
676 assert(f->flags & FIO_FILE_OPEN);
677
678 if (io_u->ddir != DDIR_SYNC) {
679 if (!io_u->buflen)
680 goto err_put;
681
682 f->last_pos = io_u->offset + io_u->buflen;
683
684 if (td->o.verify != VERIFY_NONE)
685 populate_verify_io_u(td, io_u);
686 }
687
688 /*
689 * Set io data pointers.
690 */
691 io_u->endpos = io_u->offset + io_u->buflen;
692out:
693 io_u->xfer_buf = io_u->buf;
694 io_u->xfer_buflen = io_u->buflen;
695
696 if (!td_io_prep(td, io_u)) {
697 fio_gettime(&io_u->start_time, NULL);
698 return io_u;
699 }
700err_put:
701 put_io_u(td, io_u);
702 return NULL;
703}
704
705void io_u_log_error(struct thread_data *td, struct io_u *io_u)
706{
707 const char *msg[] = { "read", "write", "sync" };
708
709 log_err("fio: io_u error");
710
711 if (io_u->file)
712 log_err(" on file %s", io_u->file->file_name);
713
714 log_err(": %s\n", strerror(io_u->error));
715
716 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
717
718 if (!td->error)
719 td_verror(td, io_u->error, "io_u error");
720}
721
722static void io_completed(struct thread_data *td, struct io_u *io_u,
723 struct io_completion_data *icd)
724{
725 unsigned long usec;
726
727 assert(io_u->flags & IO_U_F_FLIGHT);
728 io_u->flags &= ~IO_U_F_FLIGHT;
729
730 if (io_u->ddir == DDIR_SYNC) {
731 td->last_was_sync = 1;
732 return;
733 }
734
735 td->last_was_sync = 0;
736
737 if (!io_u->error) {
738 unsigned int bytes = io_u->buflen - io_u->resid;
739 const enum fio_ddir idx = io_u->ddir;
740 int ret;
741
742 td->io_blocks[idx]++;
743 td->io_bytes[idx] += bytes;
744 td->zone_bytes += bytes;
745 td->this_io_bytes[idx] += bytes;
746
747 io_u->file->last_completed_pos = io_u->endpos;
748
749 usec = utime_since(&io_u->issue_time, &icd->time);
750
751 add_clat_sample(td, idx, usec);
752 add_bw_sample(td, idx, &icd->time);
753 io_u_mark_latency(td, usec);
754
755 if (td_write(td) && idx == DDIR_WRITE &&
756 td->o.verify != VERIFY_NONE)
757 log_io_piece(td, io_u);
758
759 icd->bytes_done[idx] += bytes;
760
761 if (io_u->end_io) {
762 ret = io_u->end_io(td, io_u);
763 if (ret && !icd->error)
764 icd->error = ret;
765 }
766 } else {
767 icd->error = io_u->error;
768 io_u_log_error(td, io_u);
769 }
770}
771
772static void init_icd(struct io_completion_data *icd, int nr)
773{
774 fio_gettime(&icd->time, NULL);
775
776 icd->nr = nr;
777
778 icd->error = 0;
779 icd->bytes_done[0] = icd->bytes_done[1] = 0;
780}
781
782static void ios_completed(struct thread_data *td,
783 struct io_completion_data *icd)
784{
785 struct io_u *io_u;
786 int i;
787
788 for (i = 0; i < icd->nr; i++) {
789 io_u = td->io_ops->event(td, i);
790
791 io_completed(td, io_u, icd);
792 put_io_u(td, io_u);
793 }
794}
795
796/*
797 * Complete a single io_u for the sync engines.
798 */
799long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
800{
801 struct io_completion_data icd;
802
803 init_icd(&icd, 1);
804 io_completed(td, io_u, &icd);
805 put_io_u(td, io_u);
806
807 if (!icd.error)
808 return icd.bytes_done[0] + icd.bytes_done[1];
809
810 td_verror(td, icd.error, "io_u_sync_complete");
811 return -1;
812}
813
814/*
815 * Called to complete min_events number of io for the async engines.
816 */
817long io_u_queued_complete(struct thread_data *td, int min_events)
818{
819 struct io_completion_data icd;
820 struct timespec *tvp = NULL;
821 int ret;
822 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
823
824 if (!min_events)
825 tvp = &ts;
826
827 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
828 if (ret < 0) {
829 td_verror(td, -ret, "td_io_getevents");
830 return ret;
831 } else if (!ret)
832 return ret;
833
834 init_icd(&icd, ret);
835 ios_completed(td, &icd);
836 if (!icd.error)
837 return icd.bytes_done[0] + icd.bytes_done[1];
838
839 td_verror(td, icd.error, "io_u_queued_complete");
840 return -1;
841}
842
843/*
844 * Call when io_u is really queued, to update the submission latency.
845 */
846void io_u_queued(struct thread_data *td, struct io_u *io_u)
847{
848 unsigned long slat_time;
849
850 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
851 add_slat_sample(td, io_u->ddir, slat_time);
852}
853
854#ifdef FIO_USE_TIMEOUT
855void io_u_set_timeout(struct thread_data *td)
856{
857 assert(td->cur_depth);
858
859 td->timer.it_interval.tv_sec = 0;
860 td->timer.it_interval.tv_usec = 0;
861 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
862 td->timer.it_value.tv_usec = 0;
863 setitimer(ITIMER_REAL, &td->timer, NULL);
864 fio_gettime(&td->timeout_end, NULL);
865}
866
867static void io_u_dump(struct io_u *io_u)
868{
869 unsigned long t_start = mtime_since_now(&io_u->start_time);
870 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
871
872 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
873 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
874 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
875}
876#else
877void io_u_set_timeout(struct thread_data fio_unused *td)
878{
879}
880#endif
881
882#ifdef FIO_USE_TIMEOUT
883static void io_u_timeout_handler(int fio_unused sig)
884{
885 struct thread_data *td, *__td;
886 pid_t pid = getpid();
887 struct list_head *entry;
888 struct io_u *io_u;
889 int i;
890
891 log_err("fio: io_u timeout\n");
892
893 /*
894 * TLS would be nice...
895 */
896 td = NULL;
897 for_each_td(__td, i) {
898 if (__td->pid == pid) {
899 td = __td;
900 break;
901 }
902 }
903
904 if (!td) {
905 log_err("fio: io_u timeout, can't find job\n");
906 exit(1);
907 }
908
909 if (!td->cur_depth) {
910 log_err("fio: timeout without pending work?\n");
911 return;
912 }
913
914 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
915
916 list_for_each(entry, &td->io_u_busylist) {
917 io_u = list_entry(entry, struct io_u, list);
918
919 io_u_dump(io_u);
920 }
921
922 td_verror(td, ETIMEDOUT, "io_u timeout");
923 exit(1);
924}
925#endif
926
927void io_u_init_timeout(void)
928{
929#ifdef FIO_USE_TIMEOUT
930 signal(SIGALRM, io_u_timeout_handler);
931#endif
932}