server: increase default max pdu length to 1024
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13
14struct io_completion_data {
15 int nr; /* input */
16 int account; /* input */
17
18 int error; /* output */
19 unsigned long bytes_done[2]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->file_map[] contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const unsigned long long block)
28{
29 unsigned int idx = RAND_MAP_IDX(f, block);
30 unsigned int bit = RAND_MAP_BIT(f, block);
31
32 dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks, nr_blocks;
46 int busy_check;
47
48 block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs;
49 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
50 blocks = 0;
51 busy_check = !(io_u->flags & IO_U_F_BUSY_OK);
52
53 while (nr_blocks) {
54 unsigned int idx, bit;
55 unsigned long mask, this_blocks;
56
57 /*
58 * If we have a mixed random workload, we may
59 * encounter blocks we already did IO to.
60 */
61 if (!busy_check) {
62 blocks = nr_blocks;
63 break;
64 }
65 if ((td->o.ddir_seq_nr == 1) && !random_map_free(f, block))
66 break;
67
68 idx = RAND_MAP_IDX(f, block);
69 bit = RAND_MAP_BIT(f, block);
70
71 fio_assert(td, idx < f->num_maps);
72
73 this_blocks = nr_blocks;
74 if (this_blocks + bit > BLOCKS_PER_MAP)
75 this_blocks = BLOCKS_PER_MAP - bit;
76
77 do {
78 if (this_blocks == BLOCKS_PER_MAP)
79 mask = -1UL;
80 else
81 mask = ((1UL << this_blocks) - 1) << bit;
82
83 if (!(f->file_map[idx] & mask))
84 break;
85
86 this_blocks--;
87 } while (this_blocks);
88
89 if (!this_blocks)
90 break;
91
92 f->file_map[idx] |= mask;
93 nr_blocks -= this_blocks;
94 blocks += this_blocks;
95 block += this_blocks;
96 }
97
98 if ((blocks * min_bs) < io_u->buflen)
99 io_u->buflen = blocks * min_bs;
100}
101
102static unsigned long long last_block(struct thread_data *td, struct fio_file *f,
103 enum fio_ddir ddir)
104{
105 unsigned long long max_blocks;
106 unsigned long long max_size;
107
108 assert(ddir_rw(ddir));
109
110 /*
111 * Hmm, should we make sure that ->io_size <= ->real_file_size?
112 */
113 max_size = f->io_size;
114 if (max_size > f->real_file_size)
115 max_size = f->real_file_size;
116
117 max_blocks = max_size / (unsigned long long) td->o.ba[ddir];
118 if (!max_blocks)
119 return 0;
120
121 return max_blocks;
122}
123
124/*
125 * Return the next free block in the map.
126 */
127static int get_next_free_block(struct thread_data *td, struct fio_file *f,
128 enum fio_ddir ddir, unsigned long long *b)
129{
130 unsigned long long block, min_bs = td->o.rw_min_bs, lastb;
131 int i;
132
133 lastb = last_block(td, f, ddir);
134 if (!lastb)
135 return 1;
136
137 i = f->last_free_lookup;
138 block = i * BLOCKS_PER_MAP;
139 while (block * min_bs < f->real_file_size &&
140 block * min_bs < f->io_size) {
141 if (f->file_map[i] != -1UL) {
142 block += ffz(f->file_map[i]);
143 if (block > lastb)
144 break;
145 f->last_free_lookup = i;
146 *b = block;
147 return 0;
148 }
149
150 block += BLOCKS_PER_MAP;
151 i++;
152 }
153
154 dprint(FD_IO, "failed finding a free block\n");
155 return 1;
156}
157
158static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
159 enum fio_ddir ddir, unsigned long long *b)
160{
161 unsigned long long r, lastb;
162 int loops = 5;
163
164 lastb = last_block(td, f, ddir);
165 if (!lastb)
166 return 1;
167
168 if (f->failed_rands >= 200)
169 goto ffz;
170
171 do {
172 if (td->o.use_os_rand) {
173 r = os_random_long(&td->random_state);
174 *b = (lastb - 1) * (r / ((unsigned long long) OS_RAND_MAX + 1.0));
175 } else {
176 r = __rand(&td->__random_state);
177 *b = (lastb - 1) * (r / ((unsigned long long) FRAND_MAX + 1.0));
178 }
179
180 dprint(FD_RANDOM, "off rand %llu\n", r);
181
182
183 /*
184 * if we are not maintaining a random map, we are done.
185 */
186 if (!file_randommap(td, f))
187 goto ret_good;
188
189 /*
190 * calculate map offset and check if it's free
191 */
192 if (random_map_free(f, *b))
193 goto ret_good;
194
195 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
196 *b);
197 } while (--loops);
198
199 if (!f->failed_rands++)
200 f->last_free_lookup = 0;
201
202 /*
203 * we get here, if we didn't suceed in looking up a block. generate
204 * a random start offset into the filemap, and find the first free
205 * block from there.
206 */
207 loops = 10;
208 do {
209 f->last_free_lookup = (f->num_maps - 1) *
210 (r / (OS_RAND_MAX + 1.0));
211 if (!get_next_free_block(td, f, ddir, b))
212 goto ret;
213
214 if (td->o.use_os_rand)
215 r = os_random_long(&td->random_state);
216 else
217 r = __rand(&td->__random_state);
218 } while (--loops);
219
220 /*
221 * that didn't work either, try exhaustive search from the start
222 */
223 f->last_free_lookup = 0;
224ffz:
225 if (!get_next_free_block(td, f, ddir, b))
226 return 0;
227 f->last_free_lookup = 0;
228 return get_next_free_block(td, f, ddir, b);
229ret_good:
230 f->failed_rands = 0;
231ret:
232 return 0;
233}
234
235static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
236 enum fio_ddir ddir, unsigned long long *b)
237{
238 if (get_next_rand_offset(td, f, ddir, b)) {
239 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
240 f->file_name, f->last_pos, f->real_file_size);
241 return 1;
242 }
243
244 return 0;
245}
246
247static int get_next_seq_block(struct thread_data *td, struct fio_file *f,
248 enum fio_ddir ddir, unsigned long long *b)
249{
250 assert(ddir_rw(ddir));
251
252 if (f->last_pos < f->real_file_size) {
253 unsigned long long pos;
254
255 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
256 f->last_pos = f->real_file_size;
257
258 pos = f->last_pos - f->file_offset;
259 if (pos)
260 pos += td->o.ddir_seq_add;
261
262 *b = pos / td->o.min_bs[ddir];
263 return 0;
264 }
265
266 return 1;
267}
268
269static int get_next_block(struct thread_data *td, struct io_u *io_u,
270 enum fio_ddir ddir, int rw_seq, unsigned long long *b)
271{
272 struct fio_file *f = io_u->file;
273 int ret;
274
275 assert(ddir_rw(ddir));
276
277 if (rw_seq) {
278 if (td_random(td))
279 ret = get_next_rand_block(td, f, ddir, b);
280 else
281 ret = get_next_seq_block(td, f, ddir, b);
282 } else {
283 io_u->flags |= IO_U_F_BUSY_OK;
284
285 if (td->o.rw_seq == RW_SEQ_SEQ) {
286 ret = get_next_seq_block(td, f, ddir, b);
287 if (ret)
288 ret = get_next_rand_block(td, f, ddir, b);
289 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
290 if (f->last_start != -1ULL)
291 *b = (f->last_start - f->file_offset)
292 / td->o.min_bs[ddir];
293 else
294 *b = 0;
295 ret = 0;
296 } else {
297 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
298 ret = 1;
299 }
300 }
301
302 return ret;
303}
304
305/*
306 * For random io, generate a random new block and see if it's used. Repeat
307 * until we find a free one. For sequential io, just return the end of
308 * the last io issued.
309 */
310static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
311{
312 struct fio_file *f = io_u->file;
313 unsigned long long b;
314 enum fio_ddir ddir = io_u->ddir;
315 int rw_seq_hit = 0;
316
317 assert(ddir_rw(ddir));
318
319 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
320 rw_seq_hit = 1;
321 td->ddir_seq_nr = td->o.ddir_seq_nr;
322 }
323
324 if (get_next_block(td, io_u, ddir, rw_seq_hit, &b))
325 return 1;
326
327 io_u->offset = b * td->o.ba[ddir];
328 if (io_u->offset >= f->io_size) {
329 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
330 io_u->offset, f->io_size);
331 return 1;
332 }
333
334 io_u->offset += f->file_offset;
335 if (io_u->offset >= f->real_file_size) {
336 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
337 io_u->offset, f->real_file_size);
338 return 1;
339 }
340
341 return 0;
342}
343
344static int get_next_offset(struct thread_data *td, struct io_u *io_u)
345{
346 struct prof_io_ops *ops = &td->prof_io_ops;
347
348 if (ops->fill_io_u_off)
349 return ops->fill_io_u_off(td, io_u);
350
351 return __get_next_offset(td, io_u);
352}
353
354static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
355 unsigned int buflen)
356{
357 struct fio_file *f = io_u->file;
358
359 return io_u->offset + buflen <= f->io_size + td->o.start_offset;
360}
361
362static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
363{
364 const int ddir = io_u->ddir;
365 unsigned int uninitialized_var(buflen);
366 unsigned int minbs, maxbs;
367 unsigned long r, rand_max;
368
369 assert(ddir_rw(ddir));
370
371 minbs = td->o.min_bs[ddir];
372 maxbs = td->o.max_bs[ddir];
373
374 if (minbs == maxbs)
375 return minbs;
376
377 if (td->o.use_os_rand)
378 rand_max = OS_RAND_MAX;
379 else
380 rand_max = FRAND_MAX;
381
382 do {
383 if (td->o.use_os_rand)
384 r = os_random_long(&td->bsrange_state);
385 else
386 r = __rand(&td->__bsrange_state);
387
388 if (!td->o.bssplit_nr[ddir]) {
389 buflen = 1 + (unsigned int) ((double) maxbs *
390 (r / (rand_max + 1.0)));
391 if (buflen < minbs)
392 buflen = minbs;
393 } else {
394 long perc = 0;
395 unsigned int i;
396
397 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
398 struct bssplit *bsp = &td->o.bssplit[ddir][i];
399
400 buflen = bsp->bs;
401 perc += bsp->perc;
402 if ((r <= ((rand_max / 100L) * perc)) &&
403 io_u_fits(td, io_u, buflen))
404 break;
405 }
406 }
407
408 if (!td->o.bs_unaligned && is_power_of_2(minbs))
409 buflen = (buflen + minbs - 1) & ~(minbs - 1);
410
411 } while (!io_u_fits(td, io_u, buflen));
412
413 return buflen;
414}
415
416static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
417{
418 struct prof_io_ops *ops = &td->prof_io_ops;
419
420 if (ops->fill_io_u_size)
421 return ops->fill_io_u_size(td, io_u);
422
423 return __get_next_buflen(td, io_u);
424}
425
426static void set_rwmix_bytes(struct thread_data *td)
427{
428 unsigned int diff;
429
430 /*
431 * we do time or byte based switch. this is needed because
432 * buffered writes may issue a lot quicker than they complete,
433 * whereas reads do not.
434 */
435 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
436 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
437}
438
439static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
440{
441 unsigned int v;
442 unsigned long r;
443
444 if (td->o.use_os_rand) {
445 r = os_random_long(&td->rwmix_state);
446 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
447 } else {
448 r = __rand(&td->__rwmix_state);
449 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
450 }
451
452 if (v <= td->o.rwmix[DDIR_READ])
453 return DDIR_READ;
454
455 return DDIR_WRITE;
456}
457
458static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
459{
460 enum fio_ddir odir = ddir ^ 1;
461 struct timeval t;
462 long usec;
463
464 assert(ddir_rw(ddir));
465
466 if (td->rate_pending_usleep[ddir] <= 0)
467 return ddir;
468
469 /*
470 * We have too much pending sleep in this direction. See if we
471 * should switch.
472 */
473 if (td_rw(td)) {
474 /*
475 * Other direction does not have too much pending, switch
476 */
477 if (td->rate_pending_usleep[odir] < 100000)
478 return odir;
479
480 /*
481 * Both directions have pending sleep. Sleep the minimum time
482 * and deduct from both.
483 */
484 if (td->rate_pending_usleep[ddir] <=
485 td->rate_pending_usleep[odir]) {
486 usec = td->rate_pending_usleep[ddir];
487 } else {
488 usec = td->rate_pending_usleep[odir];
489 ddir = odir;
490 }
491 } else
492 usec = td->rate_pending_usleep[ddir];
493
494 /*
495 * We are going to sleep, ensure that we flush anything pending as
496 * not to skew our latency numbers
497 */
498 if (td->cur_depth) {
499 int fio_unused ret;
500
501 ret = io_u_queued_complete(td, td->cur_depth, NULL);
502 }
503
504 fio_gettime(&t, NULL);
505 usec_sleep(td, usec);
506 usec = utime_since_now(&t);
507
508 td->rate_pending_usleep[ddir] -= usec;
509
510 odir = ddir ^ 1;
511 if (td_rw(td) && __should_check_rate(td, odir))
512 td->rate_pending_usleep[odir] -= usec;
513
514 return ddir;
515}
516
517/*
518 * Return the data direction for the next io_u. If the job is a
519 * mixed read/write workload, check the rwmix cycle and switch if
520 * necessary.
521 */
522static enum fio_ddir get_rw_ddir(struct thread_data *td)
523{
524 enum fio_ddir ddir;
525
526 /*
527 * see if it's time to fsync
528 */
529 if (td->o.fsync_blocks &&
530 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
531 td->io_issues[DDIR_WRITE] && should_fsync(td))
532 return DDIR_SYNC;
533
534 /*
535 * see if it's time to fdatasync
536 */
537 if (td->o.fdatasync_blocks &&
538 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
539 td->io_issues[DDIR_WRITE] && should_fsync(td))
540 return DDIR_DATASYNC;
541
542 /*
543 * see if it's time to sync_file_range
544 */
545 if (td->sync_file_range_nr &&
546 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
547 td->io_issues[DDIR_WRITE] && should_fsync(td))
548 return DDIR_SYNC_FILE_RANGE;
549
550 if (td_rw(td)) {
551 /*
552 * Check if it's time to seed a new data direction.
553 */
554 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
555 /*
556 * Put a top limit on how many bytes we do for
557 * one data direction, to avoid overflowing the
558 * ranges too much
559 */
560 ddir = get_rand_ddir(td);
561
562 if (ddir != td->rwmix_ddir)
563 set_rwmix_bytes(td);
564
565 td->rwmix_ddir = ddir;
566 }
567 ddir = td->rwmix_ddir;
568 } else if (td_read(td))
569 ddir = DDIR_READ;
570 else
571 ddir = DDIR_WRITE;
572
573 td->rwmix_ddir = rate_ddir(td, ddir);
574 return td->rwmix_ddir;
575}
576
577static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
578{
579 io_u->ddir = get_rw_ddir(td);
580
581 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
582 td->o.barrier_blocks &&
583 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
584 td->io_issues[DDIR_WRITE])
585 io_u->flags |= IO_U_F_BARRIER;
586}
587
588void put_file_log(struct thread_data *td, struct fio_file *f)
589{
590 int ret = put_file(td, f);
591
592 if (ret)
593 td_verror(td, ret, "file close");
594}
595
596void put_io_u(struct thread_data *td, struct io_u *io_u)
597{
598 td_io_u_lock(td);
599
600 io_u->flags |= IO_U_F_FREE;
601 io_u->flags &= ~IO_U_F_FREE_DEF;
602
603 if (io_u->file)
604 put_file_log(td, io_u->file);
605
606 io_u->file = NULL;
607 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
608 td->cur_depth--;
609 flist_del_init(&io_u->list);
610 flist_add(&io_u->list, &td->io_u_freelist);
611 td_io_u_unlock(td);
612 td_io_u_free_notify(td);
613}
614
615void clear_io_u(struct thread_data *td, struct io_u *io_u)
616{
617 io_u->flags &= ~IO_U_F_FLIGHT;
618 put_io_u(td, io_u);
619}
620
621void requeue_io_u(struct thread_data *td, struct io_u **io_u)
622{
623 struct io_u *__io_u = *io_u;
624
625 dprint(FD_IO, "requeue %p\n", __io_u);
626
627 td_io_u_lock(td);
628
629 __io_u->flags |= IO_U_F_FREE;
630 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(__io_u->ddir))
631 td->io_issues[__io_u->ddir]--;
632
633 __io_u->flags &= ~IO_U_F_FLIGHT;
634 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
635 td->cur_depth--;
636 flist_del(&__io_u->list);
637 flist_add_tail(&__io_u->list, &td->io_u_requeues);
638 td_io_u_unlock(td);
639 *io_u = NULL;
640}
641
642static int fill_io_u(struct thread_data *td, struct io_u *io_u)
643{
644 if (td->io_ops->flags & FIO_NOIO)
645 goto out;
646
647 set_rw_ddir(td, io_u);
648
649 /*
650 * fsync() or fdatasync() or trim etc, we are done
651 */
652 if (!ddir_rw(io_u->ddir))
653 goto out;
654
655 /*
656 * See if it's time to switch to a new zone
657 */
658 if (td->zone_bytes >= td->o.zone_size) {
659 td->zone_bytes = 0;
660 io_u->file->last_pos += td->o.zone_skip;
661 td->io_skip_bytes += td->o.zone_skip;
662 }
663
664 /*
665 * No log, let the seq/rand engine retrieve the next buflen and
666 * position.
667 */
668 if (get_next_offset(td, io_u)) {
669 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
670 return 1;
671 }
672
673 io_u->buflen = get_next_buflen(td, io_u);
674 if (!io_u->buflen) {
675 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
676 return 1;
677 }
678
679 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
680 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
681 dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset,
682 io_u->buflen, io_u->file->real_file_size);
683 return 1;
684 }
685
686 /*
687 * mark entry before potentially trimming io_u
688 */
689 if (td_random(td) && file_randommap(td, io_u->file))
690 mark_random_map(td, io_u);
691
692 /*
693 * If using a write iolog, store this entry.
694 */
695out:
696 dprint_io_u(io_u, "fill_io_u");
697 td->zone_bytes += io_u->buflen;
698 log_io_u(td, io_u);
699 return 0;
700}
701
702static void __io_u_mark_map(unsigned int *map, unsigned int nr)
703{
704 int idx = 0;
705
706 switch (nr) {
707 default:
708 idx = 6;
709 break;
710 case 33 ... 64:
711 idx = 5;
712 break;
713 case 17 ... 32:
714 idx = 4;
715 break;
716 case 9 ... 16:
717 idx = 3;
718 break;
719 case 5 ... 8:
720 idx = 2;
721 break;
722 case 1 ... 4:
723 idx = 1;
724 case 0:
725 break;
726 }
727
728 map[idx]++;
729}
730
731void io_u_mark_submit(struct thread_data *td, unsigned int nr)
732{
733 __io_u_mark_map(td->ts.io_u_submit, nr);
734 td->ts.total_submit++;
735}
736
737void io_u_mark_complete(struct thread_data *td, unsigned int nr)
738{
739 __io_u_mark_map(td->ts.io_u_complete, nr);
740 td->ts.total_complete++;
741}
742
743void io_u_mark_depth(struct thread_data *td, unsigned int nr)
744{
745 int idx = 0;
746
747 switch (td->cur_depth) {
748 default:
749 idx = 6;
750 break;
751 case 32 ... 63:
752 idx = 5;
753 break;
754 case 16 ... 31:
755 idx = 4;
756 break;
757 case 8 ... 15:
758 idx = 3;
759 break;
760 case 4 ... 7:
761 idx = 2;
762 break;
763 case 2 ... 3:
764 idx = 1;
765 case 1:
766 break;
767 }
768
769 td->ts.io_u_map[idx] += nr;
770}
771
772static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
773{
774 int idx = 0;
775
776 assert(usec < 1000);
777
778 switch (usec) {
779 case 750 ... 999:
780 idx = 9;
781 break;
782 case 500 ... 749:
783 idx = 8;
784 break;
785 case 250 ... 499:
786 idx = 7;
787 break;
788 case 100 ... 249:
789 idx = 6;
790 break;
791 case 50 ... 99:
792 idx = 5;
793 break;
794 case 20 ... 49:
795 idx = 4;
796 break;
797 case 10 ... 19:
798 idx = 3;
799 break;
800 case 4 ... 9:
801 idx = 2;
802 break;
803 case 2 ... 3:
804 idx = 1;
805 case 0 ... 1:
806 break;
807 }
808
809 assert(idx < FIO_IO_U_LAT_U_NR);
810 td->ts.io_u_lat_u[idx]++;
811}
812
813static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
814{
815 int idx = 0;
816
817 switch (msec) {
818 default:
819 idx = 11;
820 break;
821 case 1000 ... 1999:
822 idx = 10;
823 break;
824 case 750 ... 999:
825 idx = 9;
826 break;
827 case 500 ... 749:
828 idx = 8;
829 break;
830 case 250 ... 499:
831 idx = 7;
832 break;
833 case 100 ... 249:
834 idx = 6;
835 break;
836 case 50 ... 99:
837 idx = 5;
838 break;
839 case 20 ... 49:
840 idx = 4;
841 break;
842 case 10 ... 19:
843 idx = 3;
844 break;
845 case 4 ... 9:
846 idx = 2;
847 break;
848 case 2 ... 3:
849 idx = 1;
850 case 0 ... 1:
851 break;
852 }
853
854 assert(idx < FIO_IO_U_LAT_M_NR);
855 td->ts.io_u_lat_m[idx]++;
856}
857
858static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
859{
860 if (usec < 1000)
861 io_u_mark_lat_usec(td, usec);
862 else
863 io_u_mark_lat_msec(td, usec / 1000);
864}
865
866/*
867 * Get next file to service by choosing one at random
868 */
869static struct fio_file *get_next_file_rand(struct thread_data *td,
870 enum fio_file_flags goodf,
871 enum fio_file_flags badf)
872{
873 struct fio_file *f;
874 int fno;
875
876 do {
877 int opened = 0;
878 unsigned long r;
879
880 if (td->o.use_os_rand) {
881 r = os_random_long(&td->next_file_state);
882 fno = (unsigned int) ((double) td->o.nr_files
883 * (r / (OS_RAND_MAX + 1.0)));
884 } else {
885 r = __rand(&td->__next_file_state);
886 fno = (unsigned int) ((double) td->o.nr_files
887 * (r / (FRAND_MAX + 1.0)));
888 }
889
890 f = td->files[fno];
891 if (fio_file_done(f))
892 continue;
893
894 if (!fio_file_open(f)) {
895 int err;
896
897 err = td_io_open_file(td, f);
898 if (err)
899 continue;
900 opened = 1;
901 }
902
903 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
904 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
905 return f;
906 }
907 if (opened)
908 td_io_close_file(td, f);
909 } while (1);
910}
911
912/*
913 * Get next file to service by doing round robin between all available ones
914 */
915static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
916 int badf)
917{
918 unsigned int old_next_file = td->next_file;
919 struct fio_file *f;
920
921 do {
922 int opened = 0;
923
924 f = td->files[td->next_file];
925
926 td->next_file++;
927 if (td->next_file >= td->o.nr_files)
928 td->next_file = 0;
929
930 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
931 if (fio_file_done(f)) {
932 f = NULL;
933 continue;
934 }
935
936 if (!fio_file_open(f)) {
937 int err;
938
939 err = td_io_open_file(td, f);
940 if (err) {
941 dprint(FD_FILE, "error %d on open of %s\n",
942 err, f->file_name);
943 f = NULL;
944 continue;
945 }
946 opened = 1;
947 }
948
949 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
950 f->flags);
951 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
952 break;
953
954 if (opened)
955 td_io_close_file(td, f);
956
957 f = NULL;
958 } while (td->next_file != old_next_file);
959
960 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
961 return f;
962}
963
964static struct fio_file *__get_next_file(struct thread_data *td)
965{
966 struct fio_file *f;
967
968 assert(td->o.nr_files <= td->files_index);
969
970 if (td->nr_done_files >= td->o.nr_files) {
971 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
972 " nr_files=%d\n", td->nr_open_files,
973 td->nr_done_files,
974 td->o.nr_files);
975 return NULL;
976 }
977
978 f = td->file_service_file;
979 if (f && fio_file_open(f) && !fio_file_closing(f)) {
980 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
981 goto out;
982 if (td->file_service_left--)
983 goto out;
984 }
985
986 if (td->o.file_service_type == FIO_FSERVICE_RR ||
987 td->o.file_service_type == FIO_FSERVICE_SEQ)
988 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
989 else
990 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
991
992 td->file_service_file = f;
993 td->file_service_left = td->file_service_nr - 1;
994out:
995 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
996 return f;
997}
998
999static struct fio_file *get_next_file(struct thread_data *td)
1000{
1001 struct prof_io_ops *ops = &td->prof_io_ops;
1002
1003 if (ops->get_next_file)
1004 return ops->get_next_file(td);
1005
1006 return __get_next_file(td);
1007}
1008
1009static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1010{
1011 struct fio_file *f;
1012
1013 do {
1014 f = get_next_file(td);
1015 if (!f)
1016 return 1;
1017
1018 io_u->file = f;
1019 get_file(f);
1020
1021 if (!fill_io_u(td, io_u))
1022 break;
1023
1024 put_file_log(td, f);
1025 td_io_close_file(td, f);
1026 io_u->file = NULL;
1027 fio_file_set_done(f);
1028 td->nr_done_files++;
1029 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1030 td->nr_done_files, td->o.nr_files);
1031 } while (1);
1032
1033 return 0;
1034}
1035
1036
1037struct io_u *__get_io_u(struct thread_data *td)
1038{
1039 struct io_u *io_u = NULL;
1040
1041 td_io_u_lock(td);
1042
1043again:
1044 if (!flist_empty(&td->io_u_requeues))
1045 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1046 else if (!queue_full(td)) {
1047 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1048
1049 io_u->buflen = 0;
1050 io_u->resid = 0;
1051 io_u->file = NULL;
1052 io_u->end_io = NULL;
1053 }
1054
1055 if (io_u) {
1056 assert(io_u->flags & IO_U_F_FREE);
1057 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1058 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1059
1060 io_u->error = 0;
1061 flist_del(&io_u->list);
1062 flist_add(&io_u->list, &td->io_u_busylist);
1063 td->cur_depth++;
1064 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1065 } else if (td->o.verify_async) {
1066 /*
1067 * We ran out, wait for async verify threads to finish and
1068 * return one
1069 */
1070 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1071 goto again;
1072 }
1073
1074 td_io_u_unlock(td);
1075 return io_u;
1076}
1077
1078static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1079{
1080 if (td->o.trim_backlog && td->trim_entries) {
1081 int get_trim = 0;
1082
1083 if (td->trim_batch) {
1084 td->trim_batch--;
1085 get_trim = 1;
1086 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1087 td->last_ddir != DDIR_READ) {
1088 td->trim_batch = td->o.trim_batch;
1089 if (!td->trim_batch)
1090 td->trim_batch = td->o.trim_backlog;
1091 get_trim = 1;
1092 }
1093
1094 if (get_trim && !get_next_trim(td, io_u))
1095 return 1;
1096 }
1097
1098 return 0;
1099}
1100
1101static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1102{
1103 if (td->o.verify_backlog && td->io_hist_len) {
1104 int get_verify = 0;
1105
1106 if (td->verify_batch) {
1107 td->verify_batch--;
1108 get_verify = 1;
1109 } else if (!(td->io_hist_len % td->o.verify_backlog) &&
1110 td->last_ddir != DDIR_READ) {
1111 td->verify_batch = td->o.verify_batch;
1112 if (!td->verify_batch)
1113 td->verify_batch = td->o.verify_backlog;
1114 get_verify = 1;
1115 }
1116
1117 if (get_verify && !get_next_verify(td, io_u))
1118 return 1;
1119 }
1120
1121 return 0;
1122}
1123
1124/*
1125 * Fill offset and start time into the buffer content, to prevent too
1126 * easy compressible data for simple de-dupe attempts. Do this for every
1127 * 512b block in the range, since that should be the smallest block size
1128 * we can expect from a device.
1129 */
1130static void small_content_scramble(struct io_u *io_u)
1131{
1132 unsigned int i, nr_blocks = io_u->buflen / 512;
1133 unsigned long long boffset;
1134 unsigned int offset;
1135 void *p, *end;
1136
1137 if (!nr_blocks)
1138 return;
1139
1140 p = io_u->xfer_buf;
1141 boffset = io_u->offset;
1142
1143 for (i = 0; i < nr_blocks; i++) {
1144 /*
1145 * Fill the byte offset into a "random" start offset of
1146 * the buffer, given by the product of the usec time
1147 * and the actual offset.
1148 */
1149 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1150 offset &= ~(sizeof(unsigned long long) - 1);
1151 if (offset >= 512 - sizeof(unsigned long long))
1152 offset -= sizeof(unsigned long long);
1153 memcpy(p + offset, &boffset, sizeof(boffset));
1154
1155 end = p + 512 - sizeof(io_u->start_time);
1156 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1157 p += 512;
1158 boffset += 512;
1159 }
1160}
1161
1162/*
1163 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1164 * etc. The returned io_u is fully ready to be prepped and submitted.
1165 */
1166struct io_u *get_io_u(struct thread_data *td)
1167{
1168 struct fio_file *f;
1169 struct io_u *io_u;
1170 int do_scramble = 0;
1171
1172 io_u = __get_io_u(td);
1173 if (!io_u) {
1174 dprint(FD_IO, "__get_io_u failed\n");
1175 return NULL;
1176 }
1177
1178 if (check_get_verify(td, io_u))
1179 goto out;
1180 if (check_get_trim(td, io_u))
1181 goto out;
1182
1183 /*
1184 * from a requeue, io_u already setup
1185 */
1186 if (io_u->file)
1187 goto out;
1188
1189 /*
1190 * If using an iolog, grab next piece if any available.
1191 */
1192 if (td->o.read_iolog_file) {
1193 if (read_iolog_get(td, io_u))
1194 goto err_put;
1195 } else if (set_io_u_file(td, io_u)) {
1196 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1197 goto err_put;
1198 }
1199
1200 f = io_u->file;
1201 assert(fio_file_open(f));
1202
1203 if (ddir_rw(io_u->ddir)) {
1204 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1205 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1206 goto err_put;
1207 }
1208
1209 f->last_start = io_u->offset;
1210 f->last_pos = io_u->offset + io_u->buflen;
1211
1212 if (io_u->ddir == DDIR_WRITE) {
1213 if (td->o.verify != VERIFY_NONE)
1214 populate_verify_io_u(td, io_u);
1215 else if (td->o.refill_buffers)
1216 io_u_fill_buffer(td, io_u, io_u->xfer_buflen);
1217 else if (td->o.scramble_buffers)
1218 do_scramble = 1;
1219 } else if (io_u->ddir == DDIR_READ) {
1220 /*
1221 * Reset the buf_filled parameters so next time if the
1222 * buffer is used for writes it is refilled.
1223 */
1224 io_u->buf_filled_len = 0;
1225 }
1226 }
1227
1228 /*
1229 * Set io data pointers.
1230 */
1231 io_u->xfer_buf = io_u->buf;
1232 io_u->xfer_buflen = io_u->buflen;
1233
1234out:
1235 assert(io_u->file);
1236 if (!td_io_prep(td, io_u)) {
1237 if (!td->o.disable_slat)
1238 fio_gettime(&io_u->start_time, NULL);
1239 if (do_scramble)
1240 small_content_scramble(io_u);
1241 return io_u;
1242 }
1243err_put:
1244 dprint(FD_IO, "get_io_u failed\n");
1245 put_io_u(td, io_u);
1246 return NULL;
1247}
1248
1249void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1250{
1251 const char *msg[] = { "read", "write", "sync", "datasync",
1252 "sync_file_range", "wait", "trim" };
1253
1254
1255
1256 log_err("fio: io_u error");
1257
1258 if (io_u->file)
1259 log_err(" on file %s", io_u->file->file_name);
1260
1261 log_err(": %s\n", strerror(io_u->error));
1262
1263 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1264 io_u->offset, io_u->xfer_buflen);
1265
1266 if (!td->error)
1267 td_verror(td, io_u->error, "io_u error");
1268}
1269
1270static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1271 struct io_completion_data *icd,
1272 const enum fio_ddir idx, unsigned int bytes)
1273{
1274 unsigned long uninitialized_var(lusec);
1275
1276 if (!icd->account)
1277 return;
1278
1279 if (!td->o.disable_clat || !td->o.disable_bw)
1280 lusec = utime_since(&io_u->issue_time, &icd->time);
1281
1282 if (!td->o.disable_lat) {
1283 unsigned long tusec;
1284
1285 tusec = utime_since(&io_u->start_time, &icd->time);
1286 add_lat_sample(td, idx, tusec, bytes);
1287 }
1288
1289 if (!td->o.disable_clat) {
1290 add_clat_sample(td, idx, lusec, bytes);
1291 io_u_mark_latency(td, lusec);
1292 }
1293
1294 if (!td->o.disable_bw)
1295 add_bw_sample(td, idx, bytes, &icd->time);
1296
1297 add_iops_sample(td, idx, &icd->time);
1298}
1299
1300static void io_completed(struct thread_data *td, struct io_u *io_u,
1301 struct io_completion_data *icd)
1302{
1303 /*
1304 * Older gcc's are too dumb to realize that usec is always used
1305 * initialized, silence that warning.
1306 */
1307 unsigned long uninitialized_var(usec);
1308 struct fio_file *f;
1309
1310 dprint_io_u(io_u, "io complete");
1311
1312 td_io_u_lock(td);
1313 assert(io_u->flags & IO_U_F_FLIGHT);
1314 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1315 td_io_u_unlock(td);
1316
1317 if (ddir_sync(io_u->ddir)) {
1318 td->last_was_sync = 1;
1319 f = io_u->file;
1320 if (f) {
1321 f->first_write = -1ULL;
1322 f->last_write = -1ULL;
1323 }
1324 return;
1325 }
1326
1327 td->last_was_sync = 0;
1328 td->last_ddir = io_u->ddir;
1329
1330 if (!io_u->error && ddir_rw(io_u->ddir)) {
1331 unsigned int bytes = io_u->buflen - io_u->resid;
1332 const enum fio_ddir idx = io_u->ddir;
1333 const enum fio_ddir odx = io_u->ddir ^ 1;
1334 int ret;
1335
1336 td->io_blocks[idx]++;
1337 td->this_io_blocks[idx]++;
1338 td->io_bytes[idx] += bytes;
1339 td->this_io_bytes[idx] += bytes;
1340
1341 if (idx == DDIR_WRITE) {
1342 f = io_u->file;
1343 if (f) {
1344 if (f->first_write == -1ULL ||
1345 io_u->offset < f->first_write)
1346 f->first_write = io_u->offset;
1347 if (f->last_write == -1ULL ||
1348 ((io_u->offset + bytes) > f->last_write))
1349 f->last_write = io_u->offset + bytes;
1350 }
1351 }
1352
1353 if (ramp_time_over(td) && td->runstate == TD_RUNNING) {
1354 account_io_completion(td, io_u, icd, idx, bytes);
1355
1356 if (__should_check_rate(td, idx)) {
1357 td->rate_pending_usleep[idx] =
1358 ((td->this_io_bytes[idx] *
1359 td->rate_nsec_cycle[idx]) / 1000 -
1360 utime_since_now(&td->start));
1361 }
1362 if (__should_check_rate(td, idx ^ 1))
1363 td->rate_pending_usleep[odx] =
1364 ((td->this_io_bytes[odx] *
1365 td->rate_nsec_cycle[odx]) / 1000 -
1366 utime_since_now(&td->start));
1367 }
1368
1369 if (td_write(td) && idx == DDIR_WRITE &&
1370 td->o.do_verify &&
1371 td->o.verify != VERIFY_NONE)
1372 log_io_piece(td, io_u);
1373
1374 icd->bytes_done[idx] += bytes;
1375
1376 if (io_u->end_io) {
1377 ret = io_u->end_io(td, io_u);
1378 if (ret && !icd->error)
1379 icd->error = ret;
1380 }
1381 } else if (io_u->error) {
1382 icd->error = io_u->error;
1383 io_u_log_error(td, io_u);
1384 }
1385 if (td->o.continue_on_error && icd->error &&
1386 td_non_fatal_error(icd->error)) {
1387 /*
1388 * If there is a non_fatal error, then add to the error count
1389 * and clear all the errors.
1390 */
1391 update_error_count(td, icd->error);
1392 td_clear_error(td);
1393 icd->error = 0;
1394 io_u->error = 0;
1395 }
1396}
1397
1398static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1399 int nr)
1400{
1401 if (!td->o.disable_clat || !td->o.disable_bw)
1402 fio_gettime(&icd->time, NULL);
1403
1404 icd->nr = nr;
1405 icd->account = 1;
1406
1407 icd->error = 0;
1408 icd->bytes_done[0] = icd->bytes_done[1] = 0;
1409}
1410
1411static void ios_completed(struct thread_data *td,
1412 struct io_completion_data *icd)
1413{
1414 struct io_u *io_u;
1415 int i;
1416
1417 for (i = 0; i < icd->nr; i++) {
1418 io_u = td->io_ops->event(td, i);
1419
1420 io_completed(td, io_u, icd);
1421
1422 if (!(io_u->flags & IO_U_F_FREE_DEF))
1423 put_io_u(td, io_u);
1424
1425 icd->account = 0;
1426 }
1427}
1428
1429/*
1430 * Complete a single io_u for the sync engines.
1431 */
1432int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1433 unsigned long *bytes)
1434{
1435 struct io_completion_data icd;
1436
1437 init_icd(td, &icd, 1);
1438 io_completed(td, io_u, &icd);
1439
1440 if (!(io_u->flags & IO_U_F_FREE_DEF))
1441 put_io_u(td, io_u);
1442
1443 if (icd.error) {
1444 td_verror(td, icd.error, "io_u_sync_complete");
1445 return -1;
1446 }
1447
1448 if (bytes) {
1449 bytes[0] += icd.bytes_done[0];
1450 bytes[1] += icd.bytes_done[1];
1451 }
1452
1453 return 0;
1454}
1455
1456/*
1457 * Called to complete min_events number of io for the async engines.
1458 */
1459int io_u_queued_complete(struct thread_data *td, int min_evts,
1460 unsigned long *bytes)
1461{
1462 struct io_completion_data icd;
1463 struct timespec *tvp = NULL;
1464 int ret;
1465 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1466
1467 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1468
1469 if (!min_evts)
1470 tvp = &ts;
1471
1472 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1473 if (ret < 0) {
1474 td_verror(td, -ret, "td_io_getevents");
1475 return ret;
1476 } else if (!ret)
1477 return ret;
1478
1479 init_icd(td, &icd, ret);
1480 ios_completed(td, &icd);
1481 if (icd.error) {
1482 td_verror(td, icd.error, "io_u_queued_complete");
1483 return -1;
1484 }
1485
1486 if (bytes) {
1487 bytes[0] += icd.bytes_done[0];
1488 bytes[1] += icd.bytes_done[1];
1489 }
1490
1491 return 0;
1492}
1493
1494/*
1495 * Call when io_u is really queued, to update the submission latency.
1496 */
1497void io_u_queued(struct thread_data *td, struct io_u *io_u)
1498{
1499 if (!td->o.disable_slat) {
1500 unsigned long slat_time;
1501
1502 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1503 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1504 }
1505}
1506
1507/*
1508 * "randomly" fill the buffer contents
1509 */
1510void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1511 unsigned int max_bs)
1512{
1513 io_u->buf_filled_len = 0;
1514
1515 if (!td->o.zero_buffers)
1516 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1517 else
1518 memset(io_u->buf, 0, max_bs);
1519}