Detect Windows operating system in ./configure
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->io_axmap contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct fio_file *f, const uint64_t block)
29{
30 return !axmap_isset(f->io_axmap, block);
31}
32
33/*
34 * Mark a given offset as used in the map.
35 */
36static void mark_random_map(struct thread_data *td, struct io_u *io_u)
37{
38 unsigned int min_bs = td->o.rw_min_bs;
39 struct fio_file *f = io_u->file;
40 unsigned int nr_blocks;
41 uint64_t block;
42
43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
45
46 if (!(io_u->flags & IO_U_F_BUSY_OK))
47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
48
49 if ((nr_blocks * min_bs) < io_u->buflen)
50 io_u->buflen = nr_blocks * min_bs;
51}
52
53static uint64_t last_block(struct thread_data *td, struct fio_file *f,
54 enum fio_ddir ddir)
55{
56 uint64_t max_blocks;
57 uint64_t max_size;
58
59 assert(ddir_rw(ddir));
60
61 /*
62 * Hmm, should we make sure that ->io_size <= ->real_file_size?
63 */
64 max_size = f->io_size;
65 if (max_size > f->real_file_size)
66 max_size = f->real_file_size;
67
68 if (td->o.zone_range)
69 max_size = td->o.zone_range;
70
71 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
72 if (!max_blocks)
73 return 0;
74
75 return max_blocks;
76}
77
78struct rand_off {
79 struct flist_head list;
80 uint64_t off;
81};
82
83static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
84 enum fio_ddir ddir, uint64_t *b)
85{
86 uint64_t r, lastb;
87
88 lastb = last_block(td, f, ddir);
89 if (!lastb)
90 return 1;
91
92 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
93 uint64_t rmax;
94
95 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
96
97 if (td->o.use_os_rand) {
98 rmax = OS_RAND_MAX;
99 r = os_random_long(&td->random_state);
100 } else {
101 rmax = FRAND_MAX;
102 r = __rand(&td->__random_state);
103 }
104
105 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
106
107 *b = lastb * (r / ((uint64_t) rmax + 1.0));
108 } else {
109 uint64_t off = 0;
110
111 if (lfsr_next(&f->lfsr, &off, lastb))
112 return 1;
113
114 *b = off;
115 }
116
117 /*
118 * if we are not maintaining a random map, we are done.
119 */
120 if (!file_randommap(td, f))
121 goto ret;
122
123 /*
124 * calculate map offset and check if it's free
125 */
126 if (random_map_free(f, *b))
127 goto ret;
128
129 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
130 (unsigned long long) *b);
131
132 *b = axmap_next_free(f->io_axmap, *b);
133 if (*b == (uint64_t) -1ULL)
134 return 1;
135ret:
136 return 0;
137}
138
139static int __get_next_rand_offset_zipf(struct thread_data *td,
140 struct fio_file *f, enum fio_ddir ddir,
141 uint64_t *b)
142{
143 *b = zipf_next(&f->zipf);
144 return 0;
145}
146
147static int __get_next_rand_offset_pareto(struct thread_data *td,
148 struct fio_file *f, enum fio_ddir ddir,
149 uint64_t *b)
150{
151 *b = pareto_next(&f->zipf);
152 return 0;
153}
154
155static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
156{
157 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
158 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
159
160 return r1->off - r2->off;
161}
162
163static int get_off_from_method(struct thread_data *td, struct fio_file *f,
164 enum fio_ddir ddir, uint64_t *b)
165{
166 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
167 return __get_next_rand_offset(td, f, ddir, b);
168 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
169 return __get_next_rand_offset_zipf(td, f, ddir, b);
170 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
171 return __get_next_rand_offset_pareto(td, f, ddir, b);
172
173 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
174 return 1;
175}
176
177/*
178 * Sort the reads for a verify phase in batches of verifysort_nr, if
179 * specified.
180 */
181static inline int should_sort_io(struct thread_data *td)
182{
183 if (!td->o.verifysort_nr || !td->o.do_verify)
184 return 0;
185 if (!td_random(td))
186 return 0;
187 if (td->runstate != TD_VERIFYING)
188 return 0;
189 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
190 return 0;
191
192 return 1;
193}
194
195static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
196{
197 unsigned int v;
198 unsigned long r;
199
200 if (td->o.perc_rand[ddir] == 100)
201 return 1;
202
203 if (td->o.use_os_rand) {
204 r = os_random_long(&td->seq_rand_state[ddir]);
205 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
206 } else {
207 r = __rand(&td->__seq_rand_state[ddir]);
208 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
209 }
210
211 return v <= td->o.perc_rand[ddir];
212}
213
214static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
215 enum fio_ddir ddir, uint64_t *b)
216{
217 struct rand_off *r;
218 int i, ret = 1;
219
220 if (!should_sort_io(td))
221 return get_off_from_method(td, f, ddir, b);
222
223 if (!flist_empty(&td->next_rand_list)) {
224 struct rand_off *r;
225fetch:
226 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
227 flist_del(&r->list);
228 *b = r->off;
229 free(r);
230 return 0;
231 }
232
233 for (i = 0; i < td->o.verifysort_nr; i++) {
234 r = malloc(sizeof(*r));
235
236 ret = get_off_from_method(td, f, ddir, &r->off);
237 if (ret) {
238 free(r);
239 break;
240 }
241
242 flist_add(&r->list, &td->next_rand_list);
243 }
244
245 if (ret && !i)
246 return ret;
247
248 assert(!flist_empty(&td->next_rand_list));
249 flist_sort(NULL, &td->next_rand_list, flist_cmp);
250 goto fetch;
251}
252
253static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
254 enum fio_ddir ddir, uint64_t *b)
255{
256 if (!get_next_rand_offset(td, f, ddir, b))
257 return 0;
258
259 if (td->o.time_based) {
260 fio_file_reset(td, f);
261 if (!get_next_rand_offset(td, f, ddir, b))
262 return 0;
263 }
264
265 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
266 f->file_name, (unsigned long long) f->last_pos,
267 (unsigned long long) f->real_file_size);
268 return 1;
269}
270
271static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
272 enum fio_ddir ddir, uint64_t *offset)
273{
274 assert(ddir_rw(ddir));
275
276 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
277 f->last_pos = f->last_pos - f->io_size;
278
279 if (f->last_pos < f->real_file_size) {
280 uint64_t pos;
281
282 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
283 f->last_pos = f->real_file_size;
284
285 pos = f->last_pos - f->file_offset;
286 if (pos)
287 pos += td->o.ddir_seq_add;
288
289 *offset = pos;
290 return 0;
291 }
292
293 return 1;
294}
295
296static int get_next_block(struct thread_data *td, struct io_u *io_u,
297 enum fio_ddir ddir, int rw_seq,
298 unsigned int *is_random)
299{
300 struct fio_file *f = io_u->file;
301 uint64_t b, offset;
302 int ret;
303
304 assert(ddir_rw(ddir));
305
306 b = offset = -1ULL;
307
308 if (rw_seq) {
309 if (td_random(td)) {
310 if (should_do_random(td, ddir)) {
311 ret = get_next_rand_block(td, f, ddir, &b);
312 *is_random = 1;
313 } else {
314 *is_random = 0;
315 io_u->flags |= IO_U_F_BUSY_OK;
316 ret = get_next_seq_offset(td, f, ddir, &offset);
317 if (ret)
318 ret = get_next_rand_block(td, f, ddir, &b);
319 }
320 } else {
321 *is_random = 0;
322 ret = get_next_seq_offset(td, f, ddir, &offset);
323 }
324 } else {
325 io_u->flags |= IO_U_F_BUSY_OK;
326 *is_random = 0;
327
328 if (td->o.rw_seq == RW_SEQ_SEQ) {
329 ret = get_next_seq_offset(td, f, ddir, &offset);
330 if (ret) {
331 ret = get_next_rand_block(td, f, ddir, &b);
332 *is_random = 0;
333 }
334 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
335 if (f->last_start != -1ULL)
336 offset = f->last_start - f->file_offset;
337 else
338 offset = 0;
339 ret = 0;
340 } else {
341 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
342 ret = 1;
343 }
344 }
345
346 if (!ret) {
347 if (offset != -1ULL)
348 io_u->offset = offset;
349 else if (b != -1ULL)
350 io_u->offset = b * td->o.ba[ddir];
351 else {
352 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
353 ret = 1;
354 }
355 }
356
357 return ret;
358}
359
360/*
361 * For random io, generate a random new block and see if it's used. Repeat
362 * until we find a free one. For sequential io, just return the end of
363 * the last io issued.
364 */
365static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
366 unsigned int *is_random)
367{
368 struct fio_file *f = io_u->file;
369 enum fio_ddir ddir = io_u->ddir;
370 int rw_seq_hit = 0;
371
372 assert(ddir_rw(ddir));
373
374 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
375 rw_seq_hit = 1;
376 td->ddir_seq_nr = td->o.ddir_seq_nr;
377 }
378
379 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
380 return 1;
381
382 if (io_u->offset >= f->io_size) {
383 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
384 (unsigned long long) io_u->offset,
385 (unsigned long long) f->io_size);
386 return 1;
387 }
388
389 io_u->offset += f->file_offset;
390 if (io_u->offset >= f->real_file_size) {
391 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
392 (unsigned long long) io_u->offset,
393 (unsigned long long) f->real_file_size);
394 return 1;
395 }
396
397 return 0;
398}
399
400static int get_next_offset(struct thread_data *td, struct io_u *io_u,
401 unsigned int *is_random)
402{
403 if (td->flags & TD_F_PROFILE_OPS) {
404 struct prof_io_ops *ops = &td->prof_io_ops;
405
406 if (ops->fill_io_u_off)
407 return ops->fill_io_u_off(td, io_u, is_random);
408 }
409
410 return __get_next_offset(td, io_u, is_random);
411}
412
413static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
414 unsigned int buflen)
415{
416 struct fio_file *f = io_u->file;
417
418 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
419}
420
421static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
422 unsigned int is_random)
423{
424 int ddir = io_u->ddir;
425 unsigned int buflen = 0;
426 unsigned int minbs, maxbs;
427 unsigned long r, rand_max;
428
429 assert(ddir_rw(io_u->ddir));
430
431 if (td->o.bs_is_seq_rand)
432 ddir = is_random ? DDIR_WRITE: DDIR_READ;
433 else
434 ddir = io_u->ddir;
435
436 minbs = td->o.min_bs[ddir];
437 maxbs = td->o.max_bs[ddir];
438
439 if (minbs == maxbs)
440 return minbs;
441
442 /*
443 * If we can't satisfy the min block size from here, then fail
444 */
445 if (!io_u_fits(td, io_u, minbs))
446 return 0;
447
448 if (td->o.use_os_rand)
449 rand_max = OS_RAND_MAX;
450 else
451 rand_max = FRAND_MAX;
452
453 do {
454 if (td->o.use_os_rand)
455 r = os_random_long(&td->bsrange_state);
456 else
457 r = __rand(&td->__bsrange_state);
458
459 if (!td->o.bssplit_nr[ddir]) {
460 buflen = 1 + (unsigned int) ((double) maxbs *
461 (r / (rand_max + 1.0)));
462 if (buflen < minbs)
463 buflen = minbs;
464 } else {
465 long perc = 0;
466 unsigned int i;
467
468 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
469 struct bssplit *bsp = &td->o.bssplit[ddir][i];
470
471 buflen = bsp->bs;
472 perc += bsp->perc;
473 if ((r <= ((rand_max / 100L) * perc)) &&
474 io_u_fits(td, io_u, buflen))
475 break;
476 }
477 }
478
479 if (td->o.do_verify && td->o.verify != VERIFY_NONE)
480 buflen = (buflen + td->o.verify_interval - 1) &
481 ~(td->o.verify_interval - 1);
482
483 if (!td->o.bs_unaligned && is_power_of_2(minbs))
484 buflen = (buflen + minbs - 1) & ~(minbs - 1);
485
486 } while (!io_u_fits(td, io_u, buflen));
487
488 return buflen;
489}
490
491static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
492 unsigned int is_random)
493{
494 if (td->flags & TD_F_PROFILE_OPS) {
495 struct prof_io_ops *ops = &td->prof_io_ops;
496
497 if (ops->fill_io_u_size)
498 return ops->fill_io_u_size(td, io_u, is_random);
499 }
500
501 return __get_next_buflen(td, io_u, is_random);
502}
503
504static void set_rwmix_bytes(struct thread_data *td)
505{
506 unsigned int diff;
507
508 /*
509 * we do time or byte based switch. this is needed because
510 * buffered writes may issue a lot quicker than they complete,
511 * whereas reads do not.
512 */
513 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
514 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
515}
516
517static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
518{
519 unsigned int v;
520 unsigned long r;
521
522 if (td->o.use_os_rand) {
523 r = os_random_long(&td->rwmix_state);
524 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
525 } else {
526 r = __rand(&td->__rwmix_state);
527 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
528 }
529
530 if (v <= td->o.rwmix[DDIR_READ])
531 return DDIR_READ;
532
533 return DDIR_WRITE;
534}
535
536void io_u_quiesce(struct thread_data *td)
537{
538 /*
539 * We are going to sleep, ensure that we flush anything pending as
540 * not to skew our latency numbers.
541 *
542 * Changed to only monitor 'in flight' requests here instead of the
543 * td->cur_depth, b/c td->cur_depth does not accurately represent
544 * io's that have been actually submitted to an async engine,
545 * and cur_depth is meaningless for sync engines.
546 */
547 while (td->io_u_in_flight) {
548 int fio_unused ret;
549
550 ret = io_u_queued_complete(td, 1, NULL);
551 }
552}
553
554static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
555{
556 enum fio_ddir odir = ddir ^ 1;
557 struct timeval t;
558 long usec;
559
560 assert(ddir_rw(ddir));
561
562 if (td->rate_pending_usleep[ddir] <= 0)
563 return ddir;
564
565 /*
566 * We have too much pending sleep in this direction. See if we
567 * should switch.
568 */
569 if (td_rw(td) && td->o.rwmix[odir]) {
570 /*
571 * Other direction does not have too much pending, switch
572 */
573 if (td->rate_pending_usleep[odir] < 100000)
574 return odir;
575
576 /*
577 * Both directions have pending sleep. Sleep the minimum time
578 * and deduct from both.
579 */
580 if (td->rate_pending_usleep[ddir] <=
581 td->rate_pending_usleep[odir]) {
582 usec = td->rate_pending_usleep[ddir];
583 } else {
584 usec = td->rate_pending_usleep[odir];
585 ddir = odir;
586 }
587 } else
588 usec = td->rate_pending_usleep[ddir];
589
590 io_u_quiesce(td);
591
592 fio_gettime(&t, NULL);
593 usec_sleep(td, usec);
594 usec = utime_since_now(&t);
595
596 td->rate_pending_usleep[ddir] -= usec;
597
598 odir = ddir ^ 1;
599 if (td_rw(td) && __should_check_rate(td, odir))
600 td->rate_pending_usleep[odir] -= usec;
601
602 if (ddir_trim(ddir))
603 return ddir;
604
605 return ddir;
606}
607
608/*
609 * Return the data direction for the next io_u. If the job is a
610 * mixed read/write workload, check the rwmix cycle and switch if
611 * necessary.
612 */
613static enum fio_ddir get_rw_ddir(struct thread_data *td)
614{
615 enum fio_ddir ddir;
616
617 /*
618 * see if it's time to fsync
619 */
620 if (td->o.fsync_blocks &&
621 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
622 td->io_issues[DDIR_WRITE] && should_fsync(td))
623 return DDIR_SYNC;
624
625 /*
626 * see if it's time to fdatasync
627 */
628 if (td->o.fdatasync_blocks &&
629 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
630 td->io_issues[DDIR_WRITE] && should_fsync(td))
631 return DDIR_DATASYNC;
632
633 /*
634 * see if it's time to sync_file_range
635 */
636 if (td->sync_file_range_nr &&
637 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
638 td->io_issues[DDIR_WRITE] && should_fsync(td))
639 return DDIR_SYNC_FILE_RANGE;
640
641 if (td_rw(td)) {
642 /*
643 * Check if it's time to seed a new data direction.
644 */
645 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
646 /*
647 * Put a top limit on how many bytes we do for
648 * one data direction, to avoid overflowing the
649 * ranges too much
650 */
651 ddir = get_rand_ddir(td);
652
653 if (ddir != td->rwmix_ddir)
654 set_rwmix_bytes(td);
655
656 td->rwmix_ddir = ddir;
657 }
658 ddir = td->rwmix_ddir;
659 } else if (td_read(td))
660 ddir = DDIR_READ;
661 else if (td_write(td))
662 ddir = DDIR_WRITE;
663 else
664 ddir = DDIR_TRIM;
665
666 td->rwmix_ddir = rate_ddir(td, ddir);
667 return td->rwmix_ddir;
668}
669
670static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
671{
672 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
673
674 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
675 td->o.barrier_blocks &&
676 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
677 td->io_issues[DDIR_WRITE])
678 io_u->flags |= IO_U_F_BARRIER;
679}
680
681void put_file_log(struct thread_data *td, struct fio_file *f)
682{
683 int ret = put_file(td, f);
684
685 if (ret)
686 td_verror(td, ret, "file close");
687}
688
689void put_io_u(struct thread_data *td, struct io_u *io_u)
690{
691 td_io_u_lock(td);
692
693 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
694 put_file_log(td, io_u->file);
695 io_u->file = NULL;
696 io_u->flags &= ~IO_U_F_FREE_DEF;
697 io_u->flags |= IO_U_F_FREE;
698
699 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
700 td->cur_depth--;
701 io_u_qpush(&td->io_u_freelist, io_u);
702 td_io_u_unlock(td);
703 td_io_u_free_notify(td);
704}
705
706void clear_io_u(struct thread_data *td, struct io_u *io_u)
707{
708 io_u->flags &= ~IO_U_F_FLIGHT;
709 put_io_u(td, io_u);
710}
711
712void requeue_io_u(struct thread_data *td, struct io_u **io_u)
713{
714 struct io_u *__io_u = *io_u;
715 enum fio_ddir ddir = acct_ddir(__io_u);
716
717 dprint(FD_IO, "requeue %p\n", __io_u);
718
719 td_io_u_lock(td);
720
721 __io_u->flags |= IO_U_F_FREE;
722 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
723 td->io_issues[ddir]--;
724
725 __io_u->flags &= ~IO_U_F_FLIGHT;
726 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
727 td->cur_depth--;
728
729 io_u_rpush(&td->io_u_requeues, __io_u);
730 td_io_u_unlock(td);
731 *io_u = NULL;
732}
733
734static int fill_io_u(struct thread_data *td, struct io_u *io_u)
735{
736 unsigned int is_random;
737
738 if (td->io_ops->flags & FIO_NOIO)
739 goto out;
740
741 set_rw_ddir(td, io_u);
742
743 /*
744 * fsync() or fdatasync() or trim etc, we are done
745 */
746 if (!ddir_rw(io_u->ddir))
747 goto out;
748
749 /*
750 * See if it's time to switch to a new zone
751 */
752 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
753 td->zone_bytes = 0;
754 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
755 io_u->file->last_pos = io_u->file->file_offset;
756 td->io_skip_bytes += td->o.zone_skip;
757 }
758
759 /*
760 * No log, let the seq/rand engine retrieve the next buflen and
761 * position.
762 */
763 if (get_next_offset(td, io_u, &is_random)) {
764 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
765 return 1;
766 }
767
768 io_u->buflen = get_next_buflen(td, io_u, is_random);
769 if (!io_u->buflen) {
770 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
771 return 1;
772 }
773
774 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
775 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
776 dprint(FD_IO, " off=%llu/%lu > %llu\n",
777 (unsigned long long) io_u->offset, io_u->buflen,
778 (unsigned long long) io_u->file->real_file_size);
779 return 1;
780 }
781
782 /*
783 * mark entry before potentially trimming io_u
784 */
785 if (td_random(td) && file_randommap(td, io_u->file))
786 mark_random_map(td, io_u);
787
788out:
789 dprint_io_u(io_u, "fill_io_u");
790 td->zone_bytes += io_u->buflen;
791 return 0;
792}
793
794static void __io_u_mark_map(unsigned int *map, unsigned int nr)
795{
796 int idx = 0;
797
798 switch (nr) {
799 default:
800 idx = 6;
801 break;
802 case 33 ... 64:
803 idx = 5;
804 break;
805 case 17 ... 32:
806 idx = 4;
807 break;
808 case 9 ... 16:
809 idx = 3;
810 break;
811 case 5 ... 8:
812 idx = 2;
813 break;
814 case 1 ... 4:
815 idx = 1;
816 case 0:
817 break;
818 }
819
820 map[idx]++;
821}
822
823void io_u_mark_submit(struct thread_data *td, unsigned int nr)
824{
825 __io_u_mark_map(td->ts.io_u_submit, nr);
826 td->ts.total_submit++;
827}
828
829void io_u_mark_complete(struct thread_data *td, unsigned int nr)
830{
831 __io_u_mark_map(td->ts.io_u_complete, nr);
832 td->ts.total_complete++;
833}
834
835void io_u_mark_depth(struct thread_data *td, unsigned int nr)
836{
837 int idx = 0;
838
839 switch (td->cur_depth) {
840 default:
841 idx = 6;
842 break;
843 case 32 ... 63:
844 idx = 5;
845 break;
846 case 16 ... 31:
847 idx = 4;
848 break;
849 case 8 ... 15:
850 idx = 3;
851 break;
852 case 4 ... 7:
853 idx = 2;
854 break;
855 case 2 ... 3:
856 idx = 1;
857 case 1:
858 break;
859 }
860
861 td->ts.io_u_map[idx] += nr;
862}
863
864static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
865{
866 int idx = 0;
867
868 assert(usec < 1000);
869
870 switch (usec) {
871 case 750 ... 999:
872 idx = 9;
873 break;
874 case 500 ... 749:
875 idx = 8;
876 break;
877 case 250 ... 499:
878 idx = 7;
879 break;
880 case 100 ... 249:
881 idx = 6;
882 break;
883 case 50 ... 99:
884 idx = 5;
885 break;
886 case 20 ... 49:
887 idx = 4;
888 break;
889 case 10 ... 19:
890 idx = 3;
891 break;
892 case 4 ... 9:
893 idx = 2;
894 break;
895 case 2 ... 3:
896 idx = 1;
897 case 0 ... 1:
898 break;
899 }
900
901 assert(idx < FIO_IO_U_LAT_U_NR);
902 td->ts.io_u_lat_u[idx]++;
903}
904
905static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
906{
907 int idx = 0;
908
909 switch (msec) {
910 default:
911 idx = 11;
912 break;
913 case 1000 ... 1999:
914 idx = 10;
915 break;
916 case 750 ... 999:
917 idx = 9;
918 break;
919 case 500 ... 749:
920 idx = 8;
921 break;
922 case 250 ... 499:
923 idx = 7;
924 break;
925 case 100 ... 249:
926 idx = 6;
927 break;
928 case 50 ... 99:
929 idx = 5;
930 break;
931 case 20 ... 49:
932 idx = 4;
933 break;
934 case 10 ... 19:
935 idx = 3;
936 break;
937 case 4 ... 9:
938 idx = 2;
939 break;
940 case 2 ... 3:
941 idx = 1;
942 case 0 ... 1:
943 break;
944 }
945
946 assert(idx < FIO_IO_U_LAT_M_NR);
947 td->ts.io_u_lat_m[idx]++;
948}
949
950static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
951{
952 if (usec < 1000)
953 io_u_mark_lat_usec(td, usec);
954 else
955 io_u_mark_lat_msec(td, usec / 1000);
956}
957
958/*
959 * Get next file to service by choosing one at random
960 */
961static struct fio_file *get_next_file_rand(struct thread_data *td,
962 enum fio_file_flags goodf,
963 enum fio_file_flags badf)
964{
965 struct fio_file *f;
966 int fno;
967
968 do {
969 int opened = 0;
970 unsigned long r;
971
972 if (td->o.use_os_rand) {
973 r = os_random_long(&td->next_file_state);
974 fno = (unsigned int) ((double) td->o.nr_files
975 * (r / (OS_RAND_MAX + 1.0)));
976 } else {
977 r = __rand(&td->__next_file_state);
978 fno = (unsigned int) ((double) td->o.nr_files
979 * (r / (FRAND_MAX + 1.0)));
980 }
981
982 f = td->files[fno];
983 if (fio_file_done(f))
984 continue;
985
986 if (!fio_file_open(f)) {
987 int err;
988
989 if (td->nr_open_files >= td->o.open_files)
990 return ERR_PTR(-EBUSY);
991
992 err = td_io_open_file(td, f);
993 if (err)
994 continue;
995 opened = 1;
996 }
997
998 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
999 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1000 return f;
1001 }
1002 if (opened)
1003 td_io_close_file(td, f);
1004 } while (1);
1005}
1006
1007/*
1008 * Get next file to service by doing round robin between all available ones
1009 */
1010static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1011 int badf)
1012{
1013 unsigned int old_next_file = td->next_file;
1014 struct fio_file *f;
1015
1016 do {
1017 int opened = 0;
1018
1019 f = td->files[td->next_file];
1020
1021 td->next_file++;
1022 if (td->next_file >= td->o.nr_files)
1023 td->next_file = 0;
1024
1025 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1026 if (fio_file_done(f)) {
1027 f = NULL;
1028 continue;
1029 }
1030
1031 if (!fio_file_open(f)) {
1032 int err;
1033
1034 if (td->nr_open_files >= td->o.open_files)
1035 return ERR_PTR(-EBUSY);
1036
1037 err = td_io_open_file(td, f);
1038 if (err) {
1039 dprint(FD_FILE, "error %d on open of %s\n",
1040 err, f->file_name);
1041 f = NULL;
1042 continue;
1043 }
1044 opened = 1;
1045 }
1046
1047 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1048 f->flags);
1049 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1050 break;
1051
1052 if (opened)
1053 td_io_close_file(td, f);
1054
1055 f = NULL;
1056 } while (td->next_file != old_next_file);
1057
1058 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1059 return f;
1060}
1061
1062static struct fio_file *__get_next_file(struct thread_data *td)
1063{
1064 struct fio_file *f;
1065
1066 assert(td->o.nr_files <= td->files_index);
1067
1068 if (td->nr_done_files >= td->o.nr_files) {
1069 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1070 " nr_files=%d\n", td->nr_open_files,
1071 td->nr_done_files,
1072 td->o.nr_files);
1073 return NULL;
1074 }
1075
1076 f = td->file_service_file;
1077 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1078 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1079 goto out;
1080 if (td->file_service_left--)
1081 goto out;
1082 }
1083
1084 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1085 td->o.file_service_type == FIO_FSERVICE_SEQ)
1086 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1087 else
1088 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1089
1090 if (IS_ERR(f))
1091 return f;
1092
1093 td->file_service_file = f;
1094 td->file_service_left = td->file_service_nr - 1;
1095out:
1096 if (f)
1097 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1098 else
1099 dprint(FD_FILE, "get_next_file: NULL\n");
1100 return f;
1101}
1102
1103static struct fio_file *get_next_file(struct thread_data *td)
1104{
1105 if (!(td->flags & TD_F_PROFILE_OPS)) {
1106 struct prof_io_ops *ops = &td->prof_io_ops;
1107
1108 if (ops->get_next_file)
1109 return ops->get_next_file(td);
1110 }
1111
1112 return __get_next_file(td);
1113}
1114
1115static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1116{
1117 struct fio_file *f;
1118
1119 do {
1120 f = get_next_file(td);
1121 if (IS_ERR_OR_NULL(f))
1122 return PTR_ERR(f);
1123
1124 io_u->file = f;
1125 get_file(f);
1126
1127 if (!fill_io_u(td, io_u))
1128 break;
1129
1130 put_file_log(td, f);
1131 td_io_close_file(td, f);
1132 io_u->file = NULL;
1133 fio_file_set_done(f);
1134 td->nr_done_files++;
1135 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1136 td->nr_done_files, td->o.nr_files);
1137 } while (1);
1138
1139 return 0;
1140}
1141
1142static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1143 unsigned long tusec, unsigned long max_usec)
1144{
1145 if (!td->error)
1146 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1147 td_verror(td, ETIMEDOUT, "max latency exceeded");
1148 icd->error = ETIMEDOUT;
1149}
1150
1151static void lat_new_cycle(struct thread_data *td)
1152{
1153 fio_gettime(&td->latency_ts, NULL);
1154 td->latency_ios = ddir_rw_sum(td->io_blocks);
1155 td->latency_failed = 0;
1156}
1157
1158/*
1159 * We had an IO outside the latency target. Reduce the queue depth. If we
1160 * are at QD=1, then it's time to give up.
1161 */
1162static int __lat_target_failed(struct thread_data *td)
1163{
1164 if (td->latency_qd == 1)
1165 return 1;
1166
1167 td->latency_qd_high = td->latency_qd;
1168
1169 if (td->latency_qd == td->latency_qd_low)
1170 td->latency_qd_low--;
1171
1172 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1173
1174 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1175
1176 /*
1177 * When we ramp QD down, quiesce existing IO to prevent
1178 * a storm of ramp downs due to pending higher depth.
1179 */
1180 io_u_quiesce(td);
1181 lat_new_cycle(td);
1182 return 0;
1183}
1184
1185static int lat_target_failed(struct thread_data *td)
1186{
1187 if (td->o.latency_percentile.u.f == 100.0)
1188 return __lat_target_failed(td);
1189
1190 td->latency_failed++;
1191 return 0;
1192}
1193
1194void lat_target_init(struct thread_data *td)
1195{
1196 td->latency_end_run = 0;
1197
1198 if (td->o.latency_target) {
1199 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1200 fio_gettime(&td->latency_ts, NULL);
1201 td->latency_qd = 1;
1202 td->latency_qd_high = td->o.iodepth;
1203 td->latency_qd_low = 1;
1204 td->latency_ios = ddir_rw_sum(td->io_blocks);
1205 } else
1206 td->latency_qd = td->o.iodepth;
1207}
1208
1209void lat_target_reset(struct thread_data *td)
1210{
1211 if (!td->latency_end_run)
1212 lat_target_init(td);
1213}
1214
1215static void lat_target_success(struct thread_data *td)
1216{
1217 const unsigned int qd = td->latency_qd;
1218 struct thread_options *o = &td->o;
1219
1220 td->latency_qd_low = td->latency_qd;
1221
1222 /*
1223 * If we haven't failed yet, we double up to a failing value instead
1224 * of bisecting from highest possible queue depth. If we have set
1225 * a limit other than td->o.iodepth, bisect between that.
1226 */
1227 if (td->latency_qd_high != o->iodepth)
1228 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1229 else
1230 td->latency_qd *= 2;
1231
1232 if (td->latency_qd > o->iodepth)
1233 td->latency_qd = o->iodepth;
1234
1235 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1236
1237 /*
1238 * Same as last one, we are done. Let it run a latency cycle, so
1239 * we get only the results from the targeted depth.
1240 */
1241 if (td->latency_qd == qd) {
1242 if (td->latency_end_run) {
1243 dprint(FD_RATE, "We are done\n");
1244 td->done = 1;
1245 } else {
1246 dprint(FD_RATE, "Quiesce and final run\n");
1247 io_u_quiesce(td);
1248 td->latency_end_run = 1;
1249 reset_all_stats(td);
1250 reset_io_stats(td);
1251 }
1252 }
1253
1254 lat_new_cycle(td);
1255}
1256
1257/*
1258 * Check if we can bump the queue depth
1259 */
1260void lat_target_check(struct thread_data *td)
1261{
1262 uint64_t usec_window;
1263 uint64_t ios;
1264 double success_ios;
1265
1266 usec_window = utime_since_now(&td->latency_ts);
1267 if (usec_window < td->o.latency_window)
1268 return;
1269
1270 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1271 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1272 success_ios *= 100.0;
1273
1274 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1275
1276 if (success_ios >= td->o.latency_percentile.u.f)
1277 lat_target_success(td);
1278 else
1279 __lat_target_failed(td);
1280}
1281
1282/*
1283 * If latency target is enabled, we might be ramping up or down and not
1284 * using the full queue depth available.
1285 */
1286int queue_full(struct thread_data *td)
1287{
1288 const int qempty = io_u_qempty(&td->io_u_freelist);
1289
1290 if (qempty)
1291 return 1;
1292 if (!td->o.latency_target)
1293 return 0;
1294
1295 return td->cur_depth >= td->latency_qd;
1296}
1297
1298struct io_u *__get_io_u(struct thread_data *td)
1299{
1300 struct io_u *io_u = NULL;
1301
1302 td_io_u_lock(td);
1303
1304again:
1305 if (!io_u_rempty(&td->io_u_requeues))
1306 io_u = io_u_rpop(&td->io_u_requeues);
1307 else if (!queue_full(td)) {
1308 io_u = io_u_qpop(&td->io_u_freelist);
1309
1310 io_u->file = NULL;
1311 io_u->buflen = 0;
1312 io_u->resid = 0;
1313 io_u->end_io = NULL;
1314 }
1315
1316 if (io_u) {
1317 assert(io_u->flags & IO_U_F_FREE);
1318 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1319 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1320 io_u->flags &= ~IO_U_F_VER_LIST;
1321
1322 io_u->error = 0;
1323 io_u->acct_ddir = -1;
1324 td->cur_depth++;
1325 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1326 io_u->ipo = NULL;
1327 } else if (td->o.verify_async) {
1328 /*
1329 * We ran out, wait for async verify threads to finish and
1330 * return one
1331 */
1332 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1333 goto again;
1334 }
1335
1336 td_io_u_unlock(td);
1337 return io_u;
1338}
1339
1340static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1341{
1342 if (!(td->flags & TD_F_TRIM_BACKLOG))
1343 return 0;
1344
1345 if (td->trim_entries) {
1346 int get_trim = 0;
1347
1348 if (td->trim_batch) {
1349 td->trim_batch--;
1350 get_trim = 1;
1351 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1352 td->last_ddir != DDIR_READ) {
1353 td->trim_batch = td->o.trim_batch;
1354 if (!td->trim_batch)
1355 td->trim_batch = td->o.trim_backlog;
1356 get_trim = 1;
1357 }
1358
1359 if (get_trim && !get_next_trim(td, io_u))
1360 return 1;
1361 }
1362
1363 return 0;
1364}
1365
1366static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1367{
1368 if (!(td->flags & TD_F_VER_BACKLOG))
1369 return 0;
1370
1371 if (td->io_hist_len) {
1372 int get_verify = 0;
1373
1374 if (td->verify_batch)
1375 get_verify = 1;
1376 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1377 td->last_ddir != DDIR_READ) {
1378 td->verify_batch = td->o.verify_batch;
1379 if (!td->verify_batch)
1380 td->verify_batch = td->o.verify_backlog;
1381 get_verify = 1;
1382 }
1383
1384 if (get_verify && !get_next_verify(td, io_u)) {
1385 td->verify_batch--;
1386 return 1;
1387 }
1388 }
1389
1390 return 0;
1391}
1392
1393/*
1394 * Fill offset and start time into the buffer content, to prevent too
1395 * easy compressible data for simple de-dupe attempts. Do this for every
1396 * 512b block in the range, since that should be the smallest block size
1397 * we can expect from a device.
1398 */
1399static void small_content_scramble(struct io_u *io_u)
1400{
1401 unsigned int i, nr_blocks = io_u->buflen / 512;
1402 uint64_t boffset;
1403 unsigned int offset;
1404 void *p, *end;
1405
1406 if (!nr_blocks)
1407 return;
1408
1409 p = io_u->xfer_buf;
1410 boffset = io_u->offset;
1411 io_u->buf_filled_len = 0;
1412
1413 for (i = 0; i < nr_blocks; i++) {
1414 /*
1415 * Fill the byte offset into a "random" start offset of
1416 * the buffer, given by the product of the usec time
1417 * and the actual offset.
1418 */
1419 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1420 offset &= ~(sizeof(uint64_t) - 1);
1421 if (offset >= 512 - sizeof(uint64_t))
1422 offset -= sizeof(uint64_t);
1423 memcpy(p + offset, &boffset, sizeof(boffset));
1424
1425 end = p + 512 - sizeof(io_u->start_time);
1426 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1427 p += 512;
1428 boffset += 512;
1429 }
1430}
1431
1432/*
1433 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1434 * etc. The returned io_u is fully ready to be prepped and submitted.
1435 */
1436struct io_u *get_io_u(struct thread_data *td)
1437{
1438 struct fio_file *f;
1439 struct io_u *io_u;
1440 int do_scramble = 0;
1441 long ret = 0;
1442
1443 io_u = __get_io_u(td);
1444 if (!io_u) {
1445 dprint(FD_IO, "__get_io_u failed\n");
1446 return NULL;
1447 }
1448
1449 if (check_get_verify(td, io_u))
1450 goto out;
1451 if (check_get_trim(td, io_u))
1452 goto out;
1453
1454 /*
1455 * from a requeue, io_u already setup
1456 */
1457 if (io_u->file)
1458 goto out;
1459
1460 /*
1461 * If using an iolog, grab next piece if any available.
1462 */
1463 if (td->flags & TD_F_READ_IOLOG) {
1464 if (read_iolog_get(td, io_u))
1465 goto err_put;
1466 } else if (set_io_u_file(td, io_u)) {
1467 ret = -EBUSY;
1468 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1469 goto err_put;
1470 }
1471
1472 f = io_u->file;
1473 if (!f) {
1474 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1475 goto err_put;
1476 }
1477
1478 assert(fio_file_open(f));
1479
1480 if (ddir_rw(io_u->ddir)) {
1481 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1482 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1483 goto err_put;
1484 }
1485
1486 f->last_start = io_u->offset;
1487 f->last_pos = io_u->offset + io_u->buflen;
1488
1489 if (io_u->ddir == DDIR_WRITE) {
1490 if (td->flags & TD_F_REFILL_BUFFERS) {
1491 io_u_fill_buffer(td, io_u,
1492 io_u->xfer_buflen, io_u->xfer_buflen);
1493 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1494 do_scramble = 1;
1495 if (td->flags & TD_F_VER_NONE) {
1496 populate_verify_io_u(td, io_u);
1497 do_scramble = 0;
1498 }
1499 } else if (io_u->ddir == DDIR_READ) {
1500 /*
1501 * Reset the buf_filled parameters so next time if the
1502 * buffer is used for writes it is refilled.
1503 */
1504 io_u->buf_filled_len = 0;
1505 }
1506 }
1507
1508 /*
1509 * Set io data pointers.
1510 */
1511 io_u->xfer_buf = io_u->buf;
1512 io_u->xfer_buflen = io_u->buflen;
1513
1514out:
1515 assert(io_u->file);
1516 if (!td_io_prep(td, io_u)) {
1517 if (!td->o.disable_slat)
1518 fio_gettime(&io_u->start_time, NULL);
1519 if (do_scramble)
1520 small_content_scramble(io_u);
1521 return io_u;
1522 }
1523err_put:
1524 dprint(FD_IO, "get_io_u failed\n");
1525 put_io_u(td, io_u);
1526 return ERR_PTR(ret);
1527}
1528
1529void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1530{
1531 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1532 const char *msg[] = { "read", "write", "sync", "datasync",
1533 "sync_file_range", "wait", "trim" };
1534
1535 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1536 return;
1537
1538 log_err("fio: io_u error");
1539
1540 if (io_u->file)
1541 log_err(" on file %s", io_u->file->file_name);
1542
1543 log_err(": %s\n", strerror(io_u->error));
1544
1545 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1546 io_u->offset, io_u->xfer_buflen);
1547
1548 if (!td->error)
1549 td_verror(td, io_u->error, "io_u error");
1550}
1551
1552static inline int gtod_reduce(struct thread_data *td)
1553{
1554 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
1555 && td->o.disable_bw;
1556}
1557
1558static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1559 struct io_completion_data *icd,
1560 const enum fio_ddir idx, unsigned int bytes)
1561{
1562 unsigned long lusec = 0;
1563
1564 if (!gtod_reduce(td))
1565 lusec = utime_since(&io_u->issue_time, &icd->time);
1566
1567 if (!td->o.disable_lat) {
1568 unsigned long tusec;
1569
1570 tusec = utime_since(&io_u->start_time, &icd->time);
1571 add_lat_sample(td, idx, tusec, bytes);
1572
1573 if (td->flags & TD_F_PROFILE_OPS) {
1574 struct prof_io_ops *ops = &td->prof_io_ops;
1575
1576 if (ops->io_u_lat)
1577 icd->error = ops->io_u_lat(td, tusec);
1578 }
1579
1580 if (td->o.max_latency && tusec > td->o.max_latency)
1581 lat_fatal(td, icd, tusec, td->o.max_latency);
1582 if (td->o.latency_target && tusec > td->o.latency_target) {
1583 if (lat_target_failed(td))
1584 lat_fatal(td, icd, tusec, td->o.latency_target);
1585 }
1586 }
1587
1588 if (!td->o.disable_clat) {
1589 add_clat_sample(td, idx, lusec, bytes);
1590 io_u_mark_latency(td, lusec);
1591 }
1592
1593 if (!td->o.disable_bw)
1594 add_bw_sample(td, idx, bytes, &icd->time);
1595
1596 if (!gtod_reduce(td))
1597 add_iops_sample(td, idx, bytes, &icd->time);
1598
1599 if (td->o.number_ios && !--td->o.number_ios)
1600 td->done = 1;
1601}
1602
1603static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1604{
1605 uint64_t secs, remainder, bps, bytes;
1606
1607 bytes = td->this_io_bytes[ddir];
1608 bps = td->rate_bps[ddir];
1609 secs = bytes / bps;
1610 remainder = bytes % bps;
1611 return remainder * 1000000 / bps + secs * 1000000;
1612}
1613
1614static void io_completed(struct thread_data *td, struct io_u *io_u,
1615 struct io_completion_data *icd)
1616{
1617 struct fio_file *f;
1618
1619 dprint_io_u(io_u, "io complete");
1620
1621 td_io_u_lock(td);
1622 assert(io_u->flags & IO_U_F_FLIGHT);
1623 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1624
1625 /*
1626 * Mark IO ok to verify
1627 */
1628 if (io_u->ipo) {
1629 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1630 write_barrier();
1631 }
1632
1633 td_io_u_unlock(td);
1634
1635 if (ddir_sync(io_u->ddir)) {
1636 td->last_was_sync = 1;
1637 f = io_u->file;
1638 if (f) {
1639 f->first_write = -1ULL;
1640 f->last_write = -1ULL;
1641 }
1642 return;
1643 }
1644
1645 td->last_was_sync = 0;
1646 td->last_ddir = io_u->ddir;
1647
1648 if (!io_u->error && ddir_rw(io_u->ddir)) {
1649 unsigned int bytes = io_u->buflen - io_u->resid;
1650 const enum fio_ddir idx = io_u->ddir;
1651 const enum fio_ddir odx = io_u->ddir ^ 1;
1652 int ret;
1653
1654 td->io_blocks[idx]++;
1655 td->this_io_blocks[idx]++;
1656 td->io_bytes[idx] += bytes;
1657
1658 if (!(io_u->flags & IO_U_F_VER_LIST))
1659 td->this_io_bytes[idx] += bytes;
1660
1661 if (idx == DDIR_WRITE) {
1662 f = io_u->file;
1663 if (f) {
1664 if (f->first_write == -1ULL ||
1665 io_u->offset < f->first_write)
1666 f->first_write = io_u->offset;
1667 if (f->last_write == -1ULL ||
1668 ((io_u->offset + bytes) > f->last_write))
1669 f->last_write = io_u->offset + bytes;
1670 }
1671 }
1672
1673 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1674 td->runstate == TD_VERIFYING)) {
1675 account_io_completion(td, io_u, icd, idx, bytes);
1676
1677 if (__should_check_rate(td, idx)) {
1678 td->rate_pending_usleep[idx] =
1679 (usec_for_io(td, idx) -
1680 utime_since_now(&td->start));
1681 }
1682 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1683 td->rate_pending_usleep[odx] =
1684 (usec_for_io(td, odx) -
1685 utime_since_now(&td->start));
1686 }
1687
1688 icd->bytes_done[idx] += bytes;
1689
1690 if (io_u->end_io) {
1691 ret = io_u->end_io(td, io_u);
1692 if (ret && !icd->error)
1693 icd->error = ret;
1694 }
1695 } else if (io_u->error) {
1696 icd->error = io_u->error;
1697 io_u_log_error(td, io_u);
1698 }
1699 if (icd->error) {
1700 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1701 if (!td_non_fatal_error(td, eb, icd->error))
1702 return;
1703 /*
1704 * If there is a non_fatal error, then add to the error count
1705 * and clear all the errors.
1706 */
1707 update_error_count(td, icd->error);
1708 td_clear_error(td);
1709 icd->error = 0;
1710 io_u->error = 0;
1711 }
1712}
1713
1714static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1715 int nr)
1716{
1717 int ddir;
1718
1719 if (!gtod_reduce(td))
1720 fio_gettime(&icd->time, NULL);
1721
1722 icd->nr = nr;
1723
1724 icd->error = 0;
1725 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1726 icd->bytes_done[ddir] = 0;
1727}
1728
1729static void ios_completed(struct thread_data *td,
1730 struct io_completion_data *icd)
1731{
1732 struct io_u *io_u;
1733 int i;
1734
1735 for (i = 0; i < icd->nr; i++) {
1736 io_u = td->io_ops->event(td, i);
1737
1738 io_completed(td, io_u, icd);
1739
1740 if (!(io_u->flags & IO_U_F_FREE_DEF))
1741 put_io_u(td, io_u);
1742 }
1743}
1744
1745/*
1746 * Complete a single io_u for the sync engines.
1747 */
1748int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1749 uint64_t *bytes)
1750{
1751 struct io_completion_data icd;
1752
1753 init_icd(td, &icd, 1);
1754 io_completed(td, io_u, &icd);
1755
1756 if (!(io_u->flags & IO_U_F_FREE_DEF))
1757 put_io_u(td, io_u);
1758
1759 if (icd.error) {
1760 td_verror(td, icd.error, "io_u_sync_complete");
1761 return -1;
1762 }
1763
1764 if (bytes) {
1765 int ddir;
1766
1767 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1768 bytes[ddir] += icd.bytes_done[ddir];
1769 }
1770
1771 return 0;
1772}
1773
1774/*
1775 * Called to complete min_events number of io for the async engines.
1776 */
1777int io_u_queued_complete(struct thread_data *td, int min_evts,
1778 uint64_t *bytes)
1779{
1780 struct io_completion_data icd;
1781 struct timespec *tvp = NULL;
1782 int ret;
1783 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1784
1785 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1786
1787 if (!min_evts)
1788 tvp = &ts;
1789
1790 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1791 if (ret < 0) {
1792 td_verror(td, -ret, "td_io_getevents");
1793 return ret;
1794 } else if (!ret)
1795 return ret;
1796
1797 init_icd(td, &icd, ret);
1798 ios_completed(td, &icd);
1799 if (icd.error) {
1800 td_verror(td, icd.error, "io_u_queued_complete");
1801 return -1;
1802 }
1803
1804 if (bytes) {
1805 int ddir;
1806
1807 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1808 bytes[ddir] += icd.bytes_done[ddir];
1809 }
1810
1811 return 0;
1812}
1813
1814/*
1815 * Call when io_u is really queued, to update the submission latency.
1816 */
1817void io_u_queued(struct thread_data *td, struct io_u *io_u)
1818{
1819 if (!td->o.disable_slat) {
1820 unsigned long slat_time;
1821
1822 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1823 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1824 }
1825}
1826
1827void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
1828 unsigned int max_bs)
1829{
1830 if (td->o.buffer_pattern_bytes)
1831 fill_buffer_pattern(td, buf, max_bs);
1832 else if (!td->o.zero_buffers) {
1833 unsigned int perc = td->o.compress_percentage;
1834
1835 if (perc) {
1836 unsigned int seg = min_write;
1837
1838 seg = min(min_write, td->o.compress_chunk);
1839 if (!seg)
1840 seg = min_write;
1841
1842 fill_random_buf_percentage(&td->buf_state, buf,
1843 perc, seg, max_bs);
1844 } else
1845 fill_random_buf(&td->buf_state, buf, max_bs);
1846 } else
1847 memset(buf, 0, max_bs);
1848}
1849
1850/*
1851 * "randomly" fill the buffer contents
1852 */
1853void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1854 unsigned int min_write, unsigned int max_bs)
1855{
1856 io_u->buf_filled_len = 0;
1857 fill_io_buffer(td, io_u->buf, min_write, max_bs);
1858}