os: make fio_cpu_isset() return a bool
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned(struct thread_data *td,
161 struct fio_file *f, enum fio_ddir ddir,
162 uint64_t *b)
163{
164 unsigned int v, send, stotal;
165 uint64_t offset, lastb;
166 static int warned;
167 struct zone_split_index *zsi;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 zsi = &td->zone_state_index[ddir][v - 1];
184 stotal = zsi->size_perc_prev;
185 send = zsi->size_perc;
186
187 /*
188 * Should never happen
189 */
190 if (send == -1U) {
191 if (!warned) {
192 log_err("fio: bug in zoned generation\n");
193 warned = 1;
194 }
195 goto bail;
196 }
197
198 /*
199 * 'send' is some percentage below or equal to 100 that
200 * marks the end of the current IO range. 'stotal' marks
201 * the start, in percent.
202 */
203 if (stotal)
204 offset = stotal * lastb / 100ULL;
205 else
206 offset = 0;
207
208 lastb = lastb * (send - stotal) / 100ULL;
209
210 /*
211 * Generate index from 0..send-of-lastb
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
214 return 1;
215
216 /*
217 * Add our start offset, if any
218 */
219 if (offset)
220 *b += offset;
221
222 return 0;
223}
224
225static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
226{
227 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
228 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
229
230 return r1->off - r2->off;
231}
232
233static int get_off_from_method(struct thread_data *td, struct fio_file *f,
234 enum fio_ddir ddir, uint64_t *b)
235{
236 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
237 uint64_t lastb;
238
239 lastb = last_block(td, f, ddir);
240 if (!lastb)
241 return 1;
242
243 return __get_next_rand_offset(td, f, ddir, b, lastb);
244 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
245 return __get_next_rand_offset_zipf(td, f, ddir, b);
246 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
247 return __get_next_rand_offset_pareto(td, f, ddir, b);
248 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
249 return __get_next_rand_offset_gauss(td, f, ddir, b);
250 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
251 return __get_next_rand_offset_zoned(td, f, ddir, b);
252
253 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
254 return 1;
255}
256
257/*
258 * Sort the reads for a verify phase in batches of verifysort_nr, if
259 * specified.
260 */
261static inline bool should_sort_io(struct thread_data *td)
262{
263 if (!td->o.verifysort_nr || !td->o.do_verify)
264 return false;
265 if (!td_random(td))
266 return false;
267 if (td->runstate != TD_VERIFYING)
268 return false;
269 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
270 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
271 return false;
272
273 return true;
274}
275
276static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
277{
278 unsigned int v;
279
280 if (td->o.perc_rand[ddir] == 100)
281 return true;
282
283 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
284
285 return v <= td->o.perc_rand[ddir];
286}
287
288static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
289 enum fio_ddir ddir, uint64_t *b)
290{
291 struct rand_off *r;
292 int i, ret = 1;
293
294 if (!should_sort_io(td))
295 return get_off_from_method(td, f, ddir, b);
296
297 if (!flist_empty(&td->next_rand_list)) {
298fetch:
299 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
300 flist_del(&r->list);
301 *b = r->off;
302 free(r);
303 return 0;
304 }
305
306 for (i = 0; i < td->o.verifysort_nr; i++) {
307 r = malloc(sizeof(*r));
308
309 ret = get_off_from_method(td, f, ddir, &r->off);
310 if (ret) {
311 free(r);
312 break;
313 }
314
315 flist_add(&r->list, &td->next_rand_list);
316 }
317
318 if (ret && !i)
319 return ret;
320
321 assert(!flist_empty(&td->next_rand_list));
322 flist_sort(NULL, &td->next_rand_list, flist_cmp);
323 goto fetch;
324}
325
326static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
327{
328 struct thread_options *o = &td->o;
329
330 if (o->invalidate_cache && !o->odirect) {
331 int fio_unused ret;
332
333 ret = file_invalidate_cache(td, f);
334 }
335}
336
337static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
338 enum fio_ddir ddir, uint64_t *b)
339{
340 if (!get_next_rand_offset(td, f, ddir, b))
341 return 0;
342
343 if (td->o.time_based ||
344 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
345 fio_file_reset(td, f);
346 if (!get_next_rand_offset(td, f, ddir, b))
347 return 0;
348 loop_cache_invalidate(td, f);
349 }
350
351 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
352 f->file_name, (unsigned long long) f->last_pos[ddir],
353 (unsigned long long) f->real_file_size);
354 return 1;
355}
356
357static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
358 enum fio_ddir ddir, uint64_t *offset)
359{
360 struct thread_options *o = &td->o;
361
362 assert(ddir_rw(ddir));
363
364 /*
365 * If we reach the end for a time based run, reset us back to 0
366 * and invalidate the cache, if we need to.
367 */
368 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
369 o->time_based) {
370 f->last_pos[ddir] = f->file_offset;
371 loop_cache_invalidate(td, f);
372 }
373
374 if (f->last_pos[ddir] < f->real_file_size) {
375 uint64_t pos;
376
377 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
378 if (f->real_file_size > f->io_size)
379 f->last_pos[ddir] = f->io_size;
380 else
381 f->last_pos[ddir] = f->real_file_size;
382 }
383
384 pos = f->last_pos[ddir] - f->file_offset;
385 if (pos && o->ddir_seq_add) {
386 pos += o->ddir_seq_add;
387
388 /*
389 * If we reach beyond the end of the file
390 * with holed IO, wrap around to the
391 * beginning again. If we're doing backwards IO,
392 * wrap to the end.
393 */
394 if (pos >= f->real_file_size) {
395 if (o->ddir_seq_add > 0)
396 pos = f->file_offset;
397 else {
398 if (f->real_file_size > f->io_size)
399 pos = f->io_size;
400 else
401 pos = f->real_file_size;
402
403 pos += o->ddir_seq_add;
404 }
405 }
406 }
407
408 *offset = pos;
409 return 0;
410 }
411
412 return 1;
413}
414
415static int get_next_block(struct thread_data *td, struct io_u *io_u,
416 enum fio_ddir ddir, int rw_seq,
417 unsigned int *is_random)
418{
419 struct fio_file *f = io_u->file;
420 uint64_t b, offset;
421 int ret;
422
423 assert(ddir_rw(ddir));
424
425 b = offset = -1ULL;
426
427 if (rw_seq) {
428 if (td_random(td)) {
429 if (should_do_random(td, ddir)) {
430 ret = get_next_rand_block(td, f, ddir, &b);
431 *is_random = 1;
432 } else {
433 *is_random = 0;
434 io_u_set(td, io_u, IO_U_F_BUSY_OK);
435 ret = get_next_seq_offset(td, f, ddir, &offset);
436 if (ret)
437 ret = get_next_rand_block(td, f, ddir, &b);
438 }
439 } else {
440 *is_random = 0;
441 ret = get_next_seq_offset(td, f, ddir, &offset);
442 }
443 } else {
444 io_u_set(td, io_u, IO_U_F_BUSY_OK);
445 *is_random = 0;
446
447 if (td->o.rw_seq == RW_SEQ_SEQ) {
448 ret = get_next_seq_offset(td, f, ddir, &offset);
449 if (ret) {
450 ret = get_next_rand_block(td, f, ddir, &b);
451 *is_random = 0;
452 }
453 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
454 if (f->last_start[ddir] != -1ULL)
455 offset = f->last_start[ddir] - f->file_offset;
456 else
457 offset = 0;
458 ret = 0;
459 } else {
460 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
461 ret = 1;
462 }
463 }
464
465 if (!ret) {
466 if (offset != -1ULL)
467 io_u->offset = offset;
468 else if (b != -1ULL)
469 io_u->offset = b * td->o.ba[ddir];
470 else {
471 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
472 ret = 1;
473 }
474 }
475
476 return ret;
477}
478
479/*
480 * For random io, generate a random new block and see if it's used. Repeat
481 * until we find a free one. For sequential io, just return the end of
482 * the last io issued.
483 */
484static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
485 unsigned int *is_random)
486{
487 struct fio_file *f = io_u->file;
488 enum fio_ddir ddir = io_u->ddir;
489 int rw_seq_hit = 0;
490
491 assert(ddir_rw(ddir));
492
493 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
494 rw_seq_hit = 1;
495 td->ddir_seq_nr = td->o.ddir_seq_nr;
496 }
497
498 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
499 return 1;
500
501 if (io_u->offset >= f->io_size) {
502 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
503 (unsigned long long) io_u->offset,
504 (unsigned long long) f->io_size);
505 return 1;
506 }
507
508 io_u->offset += f->file_offset;
509 if (io_u->offset >= f->real_file_size) {
510 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
511 (unsigned long long) io_u->offset,
512 (unsigned long long) f->real_file_size);
513 return 1;
514 }
515
516 return 0;
517}
518
519static int get_next_offset(struct thread_data *td, struct io_u *io_u,
520 unsigned int *is_random)
521{
522 if (td->flags & TD_F_PROFILE_OPS) {
523 struct prof_io_ops *ops = &td->prof_io_ops;
524
525 if (ops->fill_io_u_off)
526 return ops->fill_io_u_off(td, io_u, is_random);
527 }
528
529 return __get_next_offset(td, io_u, is_random);
530}
531
532static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
533 unsigned int buflen)
534{
535 struct fio_file *f = io_u->file;
536
537 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
538}
539
540static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
541 unsigned int is_random)
542{
543 int ddir = io_u->ddir;
544 unsigned int buflen = 0;
545 unsigned int minbs, maxbs;
546 uint64_t frand_max, r;
547 bool power_2;
548
549 assert(ddir_rw(ddir));
550
551 if (td->o.bs_is_seq_rand)
552 ddir = is_random ? DDIR_WRITE: DDIR_READ;
553
554 minbs = td->o.min_bs[ddir];
555 maxbs = td->o.max_bs[ddir];
556
557 if (minbs == maxbs)
558 return minbs;
559
560 /*
561 * If we can't satisfy the min block size from here, then fail
562 */
563 if (!io_u_fits(td, io_u, minbs))
564 return 0;
565
566 frand_max = rand_max(&td->bsrange_state[ddir]);
567 do {
568 r = __rand(&td->bsrange_state[ddir]);
569
570 if (!td->o.bssplit_nr[ddir]) {
571 buflen = 1 + (unsigned int) ((double) maxbs *
572 (r / (frand_max + 1.0)));
573 if (buflen < minbs)
574 buflen = minbs;
575 } else {
576 long long perc = 0;
577 unsigned int i;
578
579 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
580 struct bssplit *bsp = &td->o.bssplit[ddir][i];
581
582 buflen = bsp->bs;
583 perc += bsp->perc;
584 if (!perc)
585 break;
586 if ((r / perc <= frand_max / 100ULL) &&
587 io_u_fits(td, io_u, buflen))
588 break;
589 }
590 }
591
592 power_2 = is_power_of_2(minbs);
593 if (!td->o.bs_unaligned && power_2)
594 buflen &= ~(minbs - 1);
595 else if (!td->o.bs_unaligned && !power_2)
596 buflen -= buflen % minbs;
597 } while (!io_u_fits(td, io_u, buflen));
598
599 return buflen;
600}
601
602static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
603 unsigned int is_random)
604{
605 if (td->flags & TD_F_PROFILE_OPS) {
606 struct prof_io_ops *ops = &td->prof_io_ops;
607
608 if (ops->fill_io_u_size)
609 return ops->fill_io_u_size(td, io_u, is_random);
610 }
611
612 return __get_next_buflen(td, io_u, is_random);
613}
614
615static void set_rwmix_bytes(struct thread_data *td)
616{
617 unsigned int diff;
618
619 /*
620 * we do time or byte based switch. this is needed because
621 * buffered writes may issue a lot quicker than they complete,
622 * whereas reads do not.
623 */
624 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
625 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
626}
627
628static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
629{
630 unsigned int v;
631
632 v = rand32_between(&td->rwmix_state, 1, 100);
633
634 if (v <= td->o.rwmix[DDIR_READ])
635 return DDIR_READ;
636
637 return DDIR_WRITE;
638}
639
640int io_u_quiesce(struct thread_data *td)
641{
642 int completed = 0;
643
644 /*
645 * We are going to sleep, ensure that we flush anything pending as
646 * not to skew our latency numbers.
647 *
648 * Changed to only monitor 'in flight' requests here instead of the
649 * td->cur_depth, b/c td->cur_depth does not accurately represent
650 * io's that have been actually submitted to an async engine,
651 * and cur_depth is meaningless for sync engines.
652 */
653 if (td->io_u_queued || td->cur_depth) {
654 int fio_unused ret;
655
656 ret = td_io_commit(td);
657 }
658
659 while (td->io_u_in_flight) {
660 int ret;
661
662 ret = io_u_queued_complete(td, 1);
663 if (ret > 0)
664 completed += ret;
665 }
666
667 if (td->flags & TD_F_REGROW_LOGS)
668 regrow_logs(td);
669
670 return completed;
671}
672
673static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
674{
675 enum fio_ddir odir = ddir ^ 1;
676 uint64_t usec;
677 uint64_t now;
678
679 assert(ddir_rw(ddir));
680 now = utime_since_now(&td->start);
681
682 /*
683 * if rate_next_io_time is in the past, need to catch up to rate
684 */
685 if (td->rate_next_io_time[ddir] <= now)
686 return ddir;
687
688 /*
689 * We are ahead of rate in this direction. See if we
690 * should switch.
691 */
692 if (td_rw(td) && td->o.rwmix[odir]) {
693 /*
694 * Other direction is behind rate, switch
695 */
696 if (td->rate_next_io_time[odir] <= now)
697 return odir;
698
699 /*
700 * Both directions are ahead of rate. sleep the min
701 * switch if necissary
702 */
703 if (td->rate_next_io_time[ddir] <=
704 td->rate_next_io_time[odir]) {
705 usec = td->rate_next_io_time[ddir] - now;
706 } else {
707 usec = td->rate_next_io_time[odir] - now;
708 ddir = odir;
709 }
710 } else
711 usec = td->rate_next_io_time[ddir] - now;
712
713 if (td->o.io_submit_mode == IO_MODE_INLINE)
714 io_u_quiesce(td);
715
716 usec = usec_sleep(td, usec);
717
718 return ddir;
719}
720
721/*
722 * Return the data direction for the next io_u. If the job is a
723 * mixed read/write workload, check the rwmix cycle and switch if
724 * necessary.
725 */
726static enum fio_ddir get_rw_ddir(struct thread_data *td)
727{
728 enum fio_ddir ddir;
729
730 /*
731 * See if it's time to fsync/fdatasync/sync_file_range first,
732 * and if not then move on to check regular I/Os.
733 */
734 if (should_fsync(td)) {
735 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
736 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
737 return DDIR_SYNC;
738
739 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
740 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
741 return DDIR_DATASYNC;
742
743 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
744 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
745 return DDIR_SYNC_FILE_RANGE;
746 }
747
748 if (td_rw(td)) {
749 /*
750 * Check if it's time to seed a new data direction.
751 */
752 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
753 /*
754 * Put a top limit on how many bytes we do for
755 * one data direction, to avoid overflowing the
756 * ranges too much
757 */
758 ddir = get_rand_ddir(td);
759
760 if (ddir != td->rwmix_ddir)
761 set_rwmix_bytes(td);
762
763 td->rwmix_ddir = ddir;
764 }
765 ddir = td->rwmix_ddir;
766 } else if (td_read(td))
767 ddir = DDIR_READ;
768 else if (td_write(td))
769 ddir = DDIR_WRITE;
770 else if (td_trim(td))
771 ddir = DDIR_TRIM;
772 else
773 ddir = DDIR_INVAL;
774
775 td->rwmix_ddir = rate_ddir(td, ddir);
776 return td->rwmix_ddir;
777}
778
779static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
780{
781 enum fio_ddir ddir = get_rw_ddir(td);
782
783 if (td_trimwrite(td)) {
784 struct fio_file *f = io_u->file;
785 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
786 ddir = DDIR_TRIM;
787 else
788 ddir = DDIR_WRITE;
789 }
790
791 io_u->ddir = io_u->acct_ddir = ddir;
792
793 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
794 td->o.barrier_blocks &&
795 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
796 td->io_issues[DDIR_WRITE])
797 io_u_set(td, io_u, IO_U_F_BARRIER);
798}
799
800void put_file_log(struct thread_data *td, struct fio_file *f)
801{
802 unsigned int ret = put_file(td, f);
803
804 if (ret)
805 td_verror(td, ret, "file close");
806}
807
808void put_io_u(struct thread_data *td, struct io_u *io_u)
809{
810 if (td->parent)
811 td = td->parent;
812
813 td_io_u_lock(td);
814
815 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
816 put_file_log(td, io_u->file);
817
818 io_u->file = NULL;
819 io_u_set(td, io_u, IO_U_F_FREE);
820
821 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
822 td->cur_depth--;
823 assert(!(td->flags & TD_F_CHILD));
824 }
825 io_u_qpush(&td->io_u_freelist, io_u);
826 td_io_u_unlock(td);
827 td_io_u_free_notify(td);
828}
829
830void clear_io_u(struct thread_data *td, struct io_u *io_u)
831{
832 io_u_clear(td, io_u, IO_U_F_FLIGHT);
833 put_io_u(td, io_u);
834}
835
836void requeue_io_u(struct thread_data *td, struct io_u **io_u)
837{
838 struct io_u *__io_u = *io_u;
839 enum fio_ddir ddir = acct_ddir(__io_u);
840
841 dprint(FD_IO, "requeue %p\n", __io_u);
842
843 if (td->parent)
844 td = td->parent;
845
846 td_io_u_lock(td);
847
848 io_u_set(td, __io_u, IO_U_F_FREE);
849 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
850 td->io_issues[ddir]--;
851
852 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
853 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
854 td->cur_depth--;
855 assert(!(td->flags & TD_F_CHILD));
856 }
857
858 io_u_rpush(&td->io_u_requeues, __io_u);
859 td_io_u_unlock(td);
860 td_io_u_free_notify(td);
861 *io_u = NULL;
862}
863
864static int fill_io_u(struct thread_data *td, struct io_u *io_u)
865{
866 unsigned int is_random;
867
868 if (td_ioengine_flagged(td, FIO_NOIO))
869 goto out;
870
871 set_rw_ddir(td, io_u);
872
873 /*
874 * fsync() or fdatasync() or trim etc, we are done
875 */
876 if (!ddir_rw(io_u->ddir))
877 goto out;
878
879 /*
880 * See if it's time to switch to a new zone
881 */
882 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
883 struct fio_file *f = io_u->file;
884
885 td->zone_bytes = 0;
886 f->file_offset += td->o.zone_range + td->o.zone_skip;
887
888 /*
889 * Wrap from the beginning, if we exceed the file size
890 */
891 if (f->file_offset >= f->real_file_size)
892 f->file_offset = f->real_file_size - f->file_offset;
893 f->last_pos[io_u->ddir] = f->file_offset;
894 td->io_skip_bytes += td->o.zone_skip;
895 }
896
897 /*
898 * No log, let the seq/rand engine retrieve the next buflen and
899 * position.
900 */
901 if (get_next_offset(td, io_u, &is_random)) {
902 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
903 return 1;
904 }
905
906 io_u->buflen = get_next_buflen(td, io_u, is_random);
907 if (!io_u->buflen) {
908 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
909 return 1;
910 }
911
912 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
913 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
914 io_u);
915 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
916 (unsigned long long) io_u->offset, io_u->buflen,
917 (unsigned long long) io_u->file->real_file_size);
918 return 1;
919 }
920
921 /*
922 * mark entry before potentially trimming io_u
923 */
924 if (td_random(td) && file_randommap(td, io_u->file))
925 mark_random_map(td, io_u);
926
927out:
928 dprint_io_u(io_u, "fill_io_u");
929 td->zone_bytes += io_u->buflen;
930 return 0;
931}
932
933static void __io_u_mark_map(unsigned int *map, unsigned int nr)
934{
935 int idx = 0;
936
937 switch (nr) {
938 default:
939 idx = 6;
940 break;
941 case 33 ... 64:
942 idx = 5;
943 break;
944 case 17 ... 32:
945 idx = 4;
946 break;
947 case 9 ... 16:
948 idx = 3;
949 break;
950 case 5 ... 8:
951 idx = 2;
952 break;
953 case 1 ... 4:
954 idx = 1;
955 case 0:
956 break;
957 }
958
959 map[idx]++;
960}
961
962void io_u_mark_submit(struct thread_data *td, unsigned int nr)
963{
964 __io_u_mark_map(td->ts.io_u_submit, nr);
965 td->ts.total_submit++;
966}
967
968void io_u_mark_complete(struct thread_data *td, unsigned int nr)
969{
970 __io_u_mark_map(td->ts.io_u_complete, nr);
971 td->ts.total_complete++;
972}
973
974void io_u_mark_depth(struct thread_data *td, unsigned int nr)
975{
976 int idx = 0;
977
978 switch (td->cur_depth) {
979 default:
980 idx = 6;
981 break;
982 case 32 ... 63:
983 idx = 5;
984 break;
985 case 16 ... 31:
986 idx = 4;
987 break;
988 case 8 ... 15:
989 idx = 3;
990 break;
991 case 4 ... 7:
992 idx = 2;
993 break;
994 case 2 ... 3:
995 idx = 1;
996 case 1:
997 break;
998 }
999
1000 td->ts.io_u_map[idx] += nr;
1001}
1002
1003static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1004{
1005 int idx = 0;
1006
1007 assert(nsec < 1000);
1008
1009 switch (nsec) {
1010 case 750 ... 999:
1011 idx = 9;
1012 break;
1013 case 500 ... 749:
1014 idx = 8;
1015 break;
1016 case 250 ... 499:
1017 idx = 7;
1018 break;
1019 case 100 ... 249:
1020 idx = 6;
1021 break;
1022 case 50 ... 99:
1023 idx = 5;
1024 break;
1025 case 20 ... 49:
1026 idx = 4;
1027 break;
1028 case 10 ... 19:
1029 idx = 3;
1030 break;
1031 case 4 ... 9:
1032 idx = 2;
1033 break;
1034 case 2 ... 3:
1035 idx = 1;
1036 case 0 ... 1:
1037 break;
1038 }
1039
1040 assert(idx < FIO_IO_U_LAT_N_NR);
1041 td->ts.io_u_lat_n[idx]++;
1042}
1043
1044static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1045{
1046 int idx = 0;
1047
1048 assert(usec < 1000 && usec >= 1);
1049
1050 switch (usec) {
1051 case 750 ... 999:
1052 idx = 9;
1053 break;
1054 case 500 ... 749:
1055 idx = 8;
1056 break;
1057 case 250 ... 499:
1058 idx = 7;
1059 break;
1060 case 100 ... 249:
1061 idx = 6;
1062 break;
1063 case 50 ... 99:
1064 idx = 5;
1065 break;
1066 case 20 ... 49:
1067 idx = 4;
1068 break;
1069 case 10 ... 19:
1070 idx = 3;
1071 break;
1072 case 4 ... 9:
1073 idx = 2;
1074 break;
1075 case 2 ... 3:
1076 idx = 1;
1077 case 0 ... 1:
1078 break;
1079 }
1080
1081 assert(idx < FIO_IO_U_LAT_U_NR);
1082 td->ts.io_u_lat_u[idx]++;
1083}
1084
1085static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1086{
1087 int idx = 0;
1088
1089 assert(msec >= 1);
1090
1091 switch (msec) {
1092 default:
1093 idx = 11;
1094 break;
1095 case 1000 ... 1999:
1096 idx = 10;
1097 break;
1098 case 750 ... 999:
1099 idx = 9;
1100 break;
1101 case 500 ... 749:
1102 idx = 8;
1103 break;
1104 case 250 ... 499:
1105 idx = 7;
1106 break;
1107 case 100 ... 249:
1108 idx = 6;
1109 break;
1110 case 50 ... 99:
1111 idx = 5;
1112 break;
1113 case 20 ... 49:
1114 idx = 4;
1115 break;
1116 case 10 ... 19:
1117 idx = 3;
1118 break;
1119 case 4 ... 9:
1120 idx = 2;
1121 break;
1122 case 2 ... 3:
1123 idx = 1;
1124 case 0 ... 1:
1125 break;
1126 }
1127
1128 assert(idx < FIO_IO_U_LAT_M_NR);
1129 td->ts.io_u_lat_m[idx]++;
1130}
1131
1132static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1133{
1134 if (nsec < 1000)
1135 io_u_mark_lat_nsec(td, nsec);
1136 else if (nsec < 1000000)
1137 io_u_mark_lat_usec(td, nsec / 1000);
1138 else
1139 io_u_mark_lat_msec(td, nsec / 1000000);
1140}
1141
1142static unsigned int __get_next_fileno_rand(struct thread_data *td)
1143{
1144 unsigned long fileno;
1145
1146 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1147 uint64_t frand_max = rand_max(&td->next_file_state);
1148 unsigned long r;
1149
1150 r = __rand(&td->next_file_state);
1151 return (unsigned int) ((double) td->o.nr_files
1152 * (r / (frand_max + 1.0)));
1153 }
1154
1155 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1156 fileno = zipf_next(&td->next_file_zipf);
1157 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1158 fileno = pareto_next(&td->next_file_zipf);
1159 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1160 fileno = gauss_next(&td->next_file_gauss);
1161 else {
1162 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1163 assert(0);
1164 return 0;
1165 }
1166
1167 return fileno >> FIO_FSERVICE_SHIFT;
1168}
1169
1170/*
1171 * Get next file to service by choosing one at random
1172 */
1173static struct fio_file *get_next_file_rand(struct thread_data *td,
1174 enum fio_file_flags goodf,
1175 enum fio_file_flags badf)
1176{
1177 struct fio_file *f;
1178 int fno;
1179
1180 do {
1181 int opened = 0;
1182
1183 fno = __get_next_fileno_rand(td);
1184
1185 f = td->files[fno];
1186 if (fio_file_done(f))
1187 continue;
1188
1189 if (!fio_file_open(f)) {
1190 int err;
1191
1192 if (td->nr_open_files >= td->o.open_files)
1193 return ERR_PTR(-EBUSY);
1194
1195 err = td_io_open_file(td, f);
1196 if (err)
1197 continue;
1198 opened = 1;
1199 }
1200
1201 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1202 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1203 return f;
1204 }
1205 if (opened)
1206 td_io_close_file(td, f);
1207 } while (1);
1208}
1209
1210/*
1211 * Get next file to service by doing round robin between all available ones
1212 */
1213static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1214 int badf)
1215{
1216 unsigned int old_next_file = td->next_file;
1217 struct fio_file *f;
1218
1219 do {
1220 int opened = 0;
1221
1222 f = td->files[td->next_file];
1223
1224 td->next_file++;
1225 if (td->next_file >= td->o.nr_files)
1226 td->next_file = 0;
1227
1228 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1229 if (fio_file_done(f)) {
1230 f = NULL;
1231 continue;
1232 }
1233
1234 if (!fio_file_open(f)) {
1235 int err;
1236
1237 if (td->nr_open_files >= td->o.open_files)
1238 return ERR_PTR(-EBUSY);
1239
1240 err = td_io_open_file(td, f);
1241 if (err) {
1242 dprint(FD_FILE, "error %d on open of %s\n",
1243 err, f->file_name);
1244 f = NULL;
1245 continue;
1246 }
1247 opened = 1;
1248 }
1249
1250 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1251 f->flags);
1252 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1253 break;
1254
1255 if (opened)
1256 td_io_close_file(td, f);
1257
1258 f = NULL;
1259 } while (td->next_file != old_next_file);
1260
1261 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1262 return f;
1263}
1264
1265static struct fio_file *__get_next_file(struct thread_data *td)
1266{
1267 struct fio_file *f;
1268
1269 assert(td->o.nr_files <= td->files_index);
1270
1271 if (td->nr_done_files >= td->o.nr_files) {
1272 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1273 " nr_files=%d\n", td->nr_open_files,
1274 td->nr_done_files,
1275 td->o.nr_files);
1276 return NULL;
1277 }
1278
1279 f = td->file_service_file;
1280 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1281 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1282 goto out;
1283 if (td->file_service_left--)
1284 goto out;
1285 }
1286
1287 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1288 td->o.file_service_type == FIO_FSERVICE_SEQ)
1289 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1290 else
1291 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1292
1293 if (IS_ERR(f))
1294 return f;
1295
1296 td->file_service_file = f;
1297 td->file_service_left = td->file_service_nr - 1;
1298out:
1299 if (f)
1300 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1301 else
1302 dprint(FD_FILE, "get_next_file: NULL\n");
1303 return f;
1304}
1305
1306static struct fio_file *get_next_file(struct thread_data *td)
1307{
1308 if (td->flags & TD_F_PROFILE_OPS) {
1309 struct prof_io_ops *ops = &td->prof_io_ops;
1310
1311 if (ops->get_next_file)
1312 return ops->get_next_file(td);
1313 }
1314
1315 return __get_next_file(td);
1316}
1317
1318static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1319{
1320 struct fio_file *f;
1321
1322 do {
1323 f = get_next_file(td);
1324 if (IS_ERR_OR_NULL(f))
1325 return PTR_ERR(f);
1326
1327 io_u->file = f;
1328 get_file(f);
1329
1330 if (!fill_io_u(td, io_u))
1331 break;
1332
1333 put_file_log(td, f);
1334 td_io_close_file(td, f);
1335 io_u->file = NULL;
1336 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1337 fio_file_reset(td, f);
1338 else {
1339 fio_file_set_done(f);
1340 td->nr_done_files++;
1341 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1342 td->nr_done_files, td->o.nr_files);
1343 }
1344 } while (1);
1345
1346 return 0;
1347}
1348
1349static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1350 unsigned long tusec, unsigned long max_usec)
1351{
1352 if (!td->error)
1353 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1354 td_verror(td, ETIMEDOUT, "max latency exceeded");
1355 icd->error = ETIMEDOUT;
1356}
1357
1358static void lat_new_cycle(struct thread_data *td)
1359{
1360 fio_gettime(&td->latency_ts, NULL);
1361 td->latency_ios = ddir_rw_sum(td->io_blocks);
1362 td->latency_failed = 0;
1363}
1364
1365/*
1366 * We had an IO outside the latency target. Reduce the queue depth. If we
1367 * are at QD=1, then it's time to give up.
1368 */
1369static bool __lat_target_failed(struct thread_data *td)
1370{
1371 if (td->latency_qd == 1)
1372 return true;
1373
1374 td->latency_qd_high = td->latency_qd;
1375
1376 if (td->latency_qd == td->latency_qd_low)
1377 td->latency_qd_low--;
1378
1379 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1380
1381 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1382
1383 /*
1384 * When we ramp QD down, quiesce existing IO to prevent
1385 * a storm of ramp downs due to pending higher depth.
1386 */
1387 io_u_quiesce(td);
1388 lat_new_cycle(td);
1389 return false;
1390}
1391
1392static bool lat_target_failed(struct thread_data *td)
1393{
1394 if (td->o.latency_percentile.u.f == 100.0)
1395 return __lat_target_failed(td);
1396
1397 td->latency_failed++;
1398 return false;
1399}
1400
1401void lat_target_init(struct thread_data *td)
1402{
1403 td->latency_end_run = 0;
1404
1405 if (td->o.latency_target) {
1406 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1407 fio_gettime(&td->latency_ts, NULL);
1408 td->latency_qd = 1;
1409 td->latency_qd_high = td->o.iodepth;
1410 td->latency_qd_low = 1;
1411 td->latency_ios = ddir_rw_sum(td->io_blocks);
1412 } else
1413 td->latency_qd = td->o.iodepth;
1414}
1415
1416void lat_target_reset(struct thread_data *td)
1417{
1418 if (!td->latency_end_run)
1419 lat_target_init(td);
1420}
1421
1422static void lat_target_success(struct thread_data *td)
1423{
1424 const unsigned int qd = td->latency_qd;
1425 struct thread_options *o = &td->o;
1426
1427 td->latency_qd_low = td->latency_qd;
1428
1429 /*
1430 * If we haven't failed yet, we double up to a failing value instead
1431 * of bisecting from highest possible queue depth. If we have set
1432 * a limit other than td->o.iodepth, bisect between that.
1433 */
1434 if (td->latency_qd_high != o->iodepth)
1435 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1436 else
1437 td->latency_qd *= 2;
1438
1439 if (td->latency_qd > o->iodepth)
1440 td->latency_qd = o->iodepth;
1441
1442 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1443
1444 /*
1445 * Same as last one, we are done. Let it run a latency cycle, so
1446 * we get only the results from the targeted depth.
1447 */
1448 if (td->latency_qd == qd) {
1449 if (td->latency_end_run) {
1450 dprint(FD_RATE, "We are done\n");
1451 td->done = 1;
1452 } else {
1453 dprint(FD_RATE, "Quiesce and final run\n");
1454 io_u_quiesce(td);
1455 td->latency_end_run = 1;
1456 reset_all_stats(td);
1457 reset_io_stats(td);
1458 }
1459 }
1460
1461 lat_new_cycle(td);
1462}
1463
1464/*
1465 * Check if we can bump the queue depth
1466 */
1467void lat_target_check(struct thread_data *td)
1468{
1469 uint64_t usec_window;
1470 uint64_t ios;
1471 double success_ios;
1472
1473 usec_window = utime_since_now(&td->latency_ts);
1474 if (usec_window < td->o.latency_window)
1475 return;
1476
1477 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1478 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1479 success_ios *= 100.0;
1480
1481 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1482
1483 if (success_ios >= td->o.latency_percentile.u.f)
1484 lat_target_success(td);
1485 else
1486 __lat_target_failed(td);
1487}
1488
1489/*
1490 * If latency target is enabled, we might be ramping up or down and not
1491 * using the full queue depth available.
1492 */
1493bool queue_full(const struct thread_data *td)
1494{
1495 const int qempty = io_u_qempty(&td->io_u_freelist);
1496
1497 if (qempty)
1498 return true;
1499 if (!td->o.latency_target)
1500 return false;
1501
1502 return td->cur_depth >= td->latency_qd;
1503}
1504
1505struct io_u *__get_io_u(struct thread_data *td)
1506{
1507 struct io_u *io_u = NULL;
1508
1509 if (td->stop_io)
1510 return NULL;
1511
1512 td_io_u_lock(td);
1513
1514again:
1515 if (!io_u_rempty(&td->io_u_requeues))
1516 io_u = io_u_rpop(&td->io_u_requeues);
1517 else if (!queue_full(td)) {
1518 io_u = io_u_qpop(&td->io_u_freelist);
1519
1520 io_u->file = NULL;
1521 io_u->buflen = 0;
1522 io_u->resid = 0;
1523 io_u->end_io = NULL;
1524 }
1525
1526 if (io_u) {
1527 assert(io_u->flags & IO_U_F_FREE);
1528 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1529 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1530 IO_U_F_VER_LIST);
1531
1532 io_u->error = 0;
1533 io_u->acct_ddir = -1;
1534 td->cur_depth++;
1535 assert(!(td->flags & TD_F_CHILD));
1536 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1537 io_u->ipo = NULL;
1538 } else if (td_async_processing(td)) {
1539 /*
1540 * We ran out, wait for async verify threads to finish and
1541 * return one
1542 */
1543 assert(!(td->flags & TD_F_CHILD));
1544 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1545 goto again;
1546 }
1547
1548 td_io_u_unlock(td);
1549 return io_u;
1550}
1551
1552static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1553{
1554 if (!(td->flags & TD_F_TRIM_BACKLOG))
1555 return false;
1556
1557 if (td->trim_entries) {
1558 int get_trim = 0;
1559
1560 if (td->trim_batch) {
1561 td->trim_batch--;
1562 get_trim = 1;
1563 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1564 td->last_ddir != DDIR_READ) {
1565 td->trim_batch = td->o.trim_batch;
1566 if (!td->trim_batch)
1567 td->trim_batch = td->o.trim_backlog;
1568 get_trim = 1;
1569 }
1570
1571 if (get_trim && get_next_trim(td, io_u))
1572 return true;
1573 }
1574
1575 return false;
1576}
1577
1578static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1579{
1580 if (!(td->flags & TD_F_VER_BACKLOG))
1581 return false;
1582
1583 if (td->io_hist_len) {
1584 int get_verify = 0;
1585
1586 if (td->verify_batch)
1587 get_verify = 1;
1588 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1589 td->last_ddir != DDIR_READ) {
1590 td->verify_batch = td->o.verify_batch;
1591 if (!td->verify_batch)
1592 td->verify_batch = td->o.verify_backlog;
1593 get_verify = 1;
1594 }
1595
1596 if (get_verify && !get_next_verify(td, io_u)) {
1597 td->verify_batch--;
1598 return true;
1599 }
1600 }
1601
1602 return false;
1603}
1604
1605/*
1606 * Fill offset and start time into the buffer content, to prevent too
1607 * easy compressible data for simple de-dupe attempts. Do this for every
1608 * 512b block in the range, since that should be the smallest block size
1609 * we can expect from a device.
1610 */
1611static void small_content_scramble(struct io_u *io_u)
1612{
1613 unsigned int i, nr_blocks = io_u->buflen / 512;
1614 uint64_t boffset;
1615 unsigned int offset;
1616 char *p, *end;
1617
1618 if (!nr_blocks)
1619 return;
1620
1621 p = io_u->xfer_buf;
1622 boffset = io_u->offset;
1623 io_u->buf_filled_len = 0;
1624
1625 for (i = 0; i < nr_blocks; i++) {
1626 /*
1627 * Fill the byte offset into a "random" start offset of
1628 * the buffer, given by the product of the usec time
1629 * and the actual offset.
1630 */
1631 offset = ((io_u->start_time.tv_nsec/1000) ^ boffset) & 511;
1632 offset &= ~(sizeof(uint64_t) - 1);
1633 if (offset >= 512 - sizeof(uint64_t))
1634 offset -= sizeof(uint64_t);
1635 memcpy(p + offset, &boffset, sizeof(boffset));
1636
1637 end = p + 512 - sizeof(io_u->start_time);
1638 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1639 p += 512;
1640 boffset += 512;
1641 }
1642}
1643
1644/*
1645 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1646 * etc. The returned io_u is fully ready to be prepped and submitted.
1647 */
1648struct io_u *get_io_u(struct thread_data *td)
1649{
1650 struct fio_file *f;
1651 struct io_u *io_u;
1652 int do_scramble = 0;
1653 long ret = 0;
1654
1655 io_u = __get_io_u(td);
1656 if (!io_u) {
1657 dprint(FD_IO, "__get_io_u failed\n");
1658 return NULL;
1659 }
1660
1661 if (check_get_verify(td, io_u))
1662 goto out;
1663 if (check_get_trim(td, io_u))
1664 goto out;
1665
1666 /*
1667 * from a requeue, io_u already setup
1668 */
1669 if (io_u->file)
1670 goto out;
1671
1672 /*
1673 * If using an iolog, grab next piece if any available.
1674 */
1675 if (td->flags & TD_F_READ_IOLOG) {
1676 if (read_iolog_get(td, io_u))
1677 goto err_put;
1678 } else if (set_io_u_file(td, io_u)) {
1679 ret = -EBUSY;
1680 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1681 goto err_put;
1682 }
1683
1684 f = io_u->file;
1685 if (!f) {
1686 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1687 goto err_put;
1688 }
1689
1690 assert(fio_file_open(f));
1691
1692 if (ddir_rw(io_u->ddir)) {
1693 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1694 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1695 goto err_put;
1696 }
1697
1698 f->last_start[io_u->ddir] = io_u->offset;
1699 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1700
1701 if (io_u->ddir == DDIR_WRITE) {
1702 if (td->flags & TD_F_REFILL_BUFFERS) {
1703 io_u_fill_buffer(td, io_u,
1704 td->o.min_bs[DDIR_WRITE],
1705 io_u->buflen);
1706 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1707 !(td->flags & TD_F_COMPRESS))
1708 do_scramble = 1;
1709 if (td->flags & TD_F_VER_NONE) {
1710 populate_verify_io_u(td, io_u);
1711 do_scramble = 0;
1712 }
1713 } else if (io_u->ddir == DDIR_READ) {
1714 /*
1715 * Reset the buf_filled parameters so next time if the
1716 * buffer is used for writes it is refilled.
1717 */
1718 io_u->buf_filled_len = 0;
1719 }
1720 }
1721
1722 /*
1723 * Set io data pointers.
1724 */
1725 io_u->xfer_buf = io_u->buf;
1726 io_u->xfer_buflen = io_u->buflen;
1727
1728out:
1729 assert(io_u->file);
1730 if (!td_io_prep(td, io_u)) {
1731 if (!td->o.disable_lat)
1732 fio_gettime(&io_u->start_time, NULL);
1733
1734 if (do_scramble)
1735 small_content_scramble(io_u);
1736
1737 return io_u;
1738 }
1739err_put:
1740 dprint(FD_IO, "get_io_u failed\n");
1741 put_io_u(td, io_u);
1742 return ERR_PTR(ret);
1743}
1744
1745static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1746{
1747 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1748
1749 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1750 return;
1751
1752 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1753 io_u->file ? " on file " : "",
1754 io_u->file ? io_u->file->file_name : "",
1755 strerror(io_u->error),
1756 io_ddir_name(io_u->ddir),
1757 io_u->offset, io_u->xfer_buflen);
1758
1759 if (td->io_ops->errdetails) {
1760 char *err = td->io_ops->errdetails(io_u);
1761
1762 log_err("fio: %s\n", err);
1763 free(err);
1764 }
1765
1766 if (!td->error)
1767 td_verror(td, io_u->error, "io_u error");
1768}
1769
1770void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1771{
1772 __io_u_log_error(td, io_u);
1773 if (td->parent)
1774 __io_u_log_error(td->parent, io_u);
1775}
1776
1777static inline bool gtod_reduce(struct thread_data *td)
1778{
1779 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1780 || td->o.gtod_reduce;
1781}
1782
1783static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1784 struct io_completion_data *icd,
1785 const enum fio_ddir idx, unsigned int bytes)
1786{
1787 const int no_reduce = !gtod_reduce(td);
1788 unsigned long long llnsec = 0;
1789
1790 if (td->parent)
1791 td = td->parent;
1792
1793 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1794 return;
1795
1796 if (no_reduce)
1797 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1798
1799 if (!td->o.disable_lat) {
1800 unsigned long long tnsec;
1801
1802 tnsec = ntime_since(&io_u->start_time, &icd->time);
1803 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1804
1805 if (td->flags & TD_F_PROFILE_OPS) {
1806 struct prof_io_ops *ops = &td->prof_io_ops;
1807
1808 if (ops->io_u_lat)
1809 icd->error = ops->io_u_lat(td, tnsec/1000);
1810 }
1811
1812 if (td->o.max_latency && tnsec/1000 > td->o.max_latency)
1813 lat_fatal(td, icd, tnsec/1000, td->o.max_latency);
1814 if (td->o.latency_target && tnsec/1000 > td->o.latency_target) {
1815 if (lat_target_failed(td))
1816 lat_fatal(td, icd, tnsec/1000, td->o.latency_target);
1817 }
1818 }
1819
1820 if (ddir_rw(idx)) {
1821 if (!td->o.disable_clat) {
1822 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1823 io_u_mark_latency(td, llnsec);
1824 }
1825
1826 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1827 add_bw_sample(td, io_u, bytes, llnsec);
1828
1829 if (no_reduce && per_unit_log(td->iops_log))
1830 add_iops_sample(td, io_u, bytes);
1831 }
1832
1833 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1834 uint32_t *info = io_u_block_info(td, io_u);
1835 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1836 if (io_u->ddir == DDIR_TRIM) {
1837 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1838 BLOCK_INFO_TRIMS(*info) + 1);
1839 } else if (io_u->ddir == DDIR_WRITE) {
1840 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1841 *info);
1842 }
1843 }
1844 }
1845}
1846
1847static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1848 uint64_t offset, unsigned int bytes)
1849{
1850 int idx;
1851
1852 if (!f)
1853 return;
1854
1855 if (f->first_write == -1ULL || offset < f->first_write)
1856 f->first_write = offset;
1857 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1858 f->last_write = offset + bytes;
1859
1860 if (!f->last_write_comp)
1861 return;
1862
1863 idx = f->last_write_idx++;
1864 f->last_write_comp[idx] = offset;
1865 if (f->last_write_idx == td->o.iodepth)
1866 f->last_write_idx = 0;
1867}
1868
1869static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1870 struct io_completion_data *icd)
1871{
1872 struct io_u *io_u = *io_u_ptr;
1873 enum fio_ddir ddir = io_u->ddir;
1874 struct fio_file *f = io_u->file;
1875
1876 dprint_io_u(io_u, "io complete");
1877
1878 assert(io_u->flags & IO_U_F_FLIGHT);
1879 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1880
1881 /*
1882 * Mark IO ok to verify
1883 */
1884 if (io_u->ipo) {
1885 /*
1886 * Remove errored entry from the verification list
1887 */
1888 if (io_u->error)
1889 unlog_io_piece(td, io_u);
1890 else {
1891 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1892 write_barrier();
1893 }
1894 }
1895
1896 if (ddir_sync(ddir)) {
1897 td->last_was_sync = 1;
1898 if (f) {
1899 f->first_write = -1ULL;
1900 f->last_write = -1ULL;
1901 }
1902 return;
1903 }
1904
1905 td->last_was_sync = 0;
1906 td->last_ddir = ddir;
1907
1908 if (!io_u->error && ddir_rw(ddir)) {
1909 unsigned int bytes = io_u->buflen - io_u->resid;
1910 int ret;
1911
1912 td->io_blocks[ddir]++;
1913 td->this_io_blocks[ddir]++;
1914 td->io_bytes[ddir] += bytes;
1915
1916 if (!(io_u->flags & IO_U_F_VER_LIST))
1917 td->this_io_bytes[ddir] += bytes;
1918
1919 if (ddir == DDIR_WRITE)
1920 file_log_write_comp(td, f, io_u->offset, bytes);
1921
1922 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1923 td->runstate == TD_VERIFYING))
1924 account_io_completion(td, io_u, icd, ddir, bytes);
1925
1926 icd->bytes_done[ddir] += bytes;
1927
1928 if (io_u->end_io) {
1929 ret = io_u->end_io(td, io_u_ptr);
1930 io_u = *io_u_ptr;
1931 if (ret && !icd->error)
1932 icd->error = ret;
1933 }
1934 } else if (io_u->error) {
1935 icd->error = io_u->error;
1936 io_u_log_error(td, io_u);
1937 }
1938 if (icd->error) {
1939 enum error_type_bit eb = td_error_type(ddir, icd->error);
1940
1941 if (!td_non_fatal_error(td, eb, icd->error))
1942 return;
1943
1944 /*
1945 * If there is a non_fatal error, then add to the error count
1946 * and clear all the errors.
1947 */
1948 update_error_count(td, icd->error);
1949 td_clear_error(td);
1950 icd->error = 0;
1951 if (io_u)
1952 io_u->error = 0;
1953 }
1954}
1955
1956static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1957 int nr)
1958{
1959 int ddir;
1960
1961 if (!gtod_reduce(td))
1962 fio_gettime(&icd->time, NULL);
1963
1964 icd->nr = nr;
1965
1966 icd->error = 0;
1967 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
1968 icd->bytes_done[ddir] = 0;
1969}
1970
1971static void ios_completed(struct thread_data *td,
1972 struct io_completion_data *icd)
1973{
1974 struct io_u *io_u;
1975 int i;
1976
1977 for (i = 0; i < icd->nr; i++) {
1978 io_u = td->io_ops->event(td, i);
1979
1980 io_completed(td, &io_u, icd);
1981
1982 if (io_u)
1983 put_io_u(td, io_u);
1984 }
1985}
1986
1987/*
1988 * Complete a single io_u for the sync engines.
1989 */
1990int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1991{
1992 struct io_completion_data icd;
1993 int ddir;
1994
1995 init_icd(td, &icd, 1);
1996 io_completed(td, &io_u, &icd);
1997
1998 if (io_u)
1999 put_io_u(td, io_u);
2000
2001 if (icd.error) {
2002 td_verror(td, icd.error, "io_u_sync_complete");
2003 return -1;
2004 }
2005
2006 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2007 td->bytes_done[ddir] += icd.bytes_done[ddir];
2008
2009 return 0;
2010}
2011
2012/*
2013 * Called to complete min_events number of io for the async engines.
2014 */
2015int io_u_queued_complete(struct thread_data *td, int min_evts)
2016{
2017 struct io_completion_data icd;
2018 struct timespec *tvp = NULL;
2019 int ret, ddir;
2020 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2021
2022 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2023
2024 if (!min_evts)
2025 tvp = &ts;
2026 else if (min_evts > td->cur_depth)
2027 min_evts = td->cur_depth;
2028
2029 /* No worries, td_io_getevents fixes min and max if they are
2030 * set incorrectly */
2031 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2032 if (ret < 0) {
2033 td_verror(td, -ret, "td_io_getevents");
2034 return ret;
2035 } else if (!ret)
2036 return ret;
2037
2038 init_icd(td, &icd, ret);
2039 ios_completed(td, &icd);
2040 if (icd.error) {
2041 td_verror(td, icd.error, "io_u_queued_complete");
2042 return -1;
2043 }
2044
2045 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2046 td->bytes_done[ddir] += icd.bytes_done[ddir];
2047
2048 return ret;
2049}
2050
2051/*
2052 * Call when io_u is really queued, to update the submission latency.
2053 */
2054void io_u_queued(struct thread_data *td, struct io_u *io_u)
2055{
2056 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2057 unsigned long slat_time;
2058
2059 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2060
2061 if (td->parent)
2062 td = td->parent;
2063
2064 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2065 io_u->offset);
2066 }
2067}
2068
2069/*
2070 * See if we should reuse the last seed, if dedupe is enabled
2071 */
2072static struct frand_state *get_buf_state(struct thread_data *td)
2073{
2074 unsigned int v;
2075
2076 if (!td->o.dedupe_percentage)
2077 return &td->buf_state;
2078 else if (td->o.dedupe_percentage == 100) {
2079 frand_copy(&td->buf_state_prev, &td->buf_state);
2080 return &td->buf_state;
2081 }
2082
2083 v = rand32_between(&td->dedupe_state, 1, 100);
2084
2085 if (v <= td->o.dedupe_percentage)
2086 return &td->buf_state_prev;
2087
2088 return &td->buf_state;
2089}
2090
2091static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2092{
2093 if (td->o.dedupe_percentage == 100)
2094 frand_copy(rs, &td->buf_state_prev);
2095 else if (rs == &td->buf_state)
2096 frand_copy(&td->buf_state_prev, rs);
2097}
2098
2099void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2100 unsigned int max_bs)
2101{
2102 struct thread_options *o = &td->o;
2103
2104 if (o->mem_type == MEM_CUDA_MALLOC)
2105 return;
2106
2107 if (o->compress_percentage || o->dedupe_percentage) {
2108 unsigned int perc = td->o.compress_percentage;
2109 struct frand_state *rs;
2110 unsigned int left = max_bs;
2111 unsigned int this_write;
2112
2113 do {
2114 rs = get_buf_state(td);
2115
2116 min_write = min(min_write, left);
2117
2118 if (perc) {
2119 this_write = min_not_zero(min_write,
2120 td->o.compress_chunk);
2121
2122 fill_random_buf_percentage(rs, buf, perc,
2123 this_write, this_write,
2124 o->buffer_pattern,
2125 o->buffer_pattern_bytes);
2126 } else {
2127 fill_random_buf(rs, buf, min_write);
2128 this_write = min_write;
2129 }
2130
2131 buf += this_write;
2132 left -= this_write;
2133 save_buf_state(td, rs);
2134 } while (left);
2135 } else if (o->buffer_pattern_bytes)
2136 fill_buffer_pattern(td, buf, max_bs);
2137 else if (o->zero_buffers)
2138 memset(buf, 0, max_bs);
2139 else
2140 fill_random_buf(get_buf_state(td), buf, max_bs);
2141}
2142
2143/*
2144 * "randomly" fill the buffer contents
2145 */
2146void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2147 unsigned int min_write, unsigned int max_bs)
2148{
2149 io_u->buf_filled_len = 0;
2150 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2151}
2152
2153static int do_sync_file_range(const struct thread_data *td,
2154 struct fio_file *f)
2155{
2156 off64_t offset, nbytes;
2157
2158 offset = f->first_write;
2159 nbytes = f->last_write - f->first_write;
2160
2161 if (!nbytes)
2162 return 0;
2163
2164 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2165}
2166
2167int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2168{
2169 int ret;
2170
2171 if (io_u->ddir == DDIR_SYNC) {
2172 ret = fsync(io_u->file->fd);
2173 } else if (io_u->ddir == DDIR_DATASYNC) {
2174#ifdef CONFIG_FDATASYNC
2175 ret = fdatasync(io_u->file->fd);
2176#else
2177 ret = io_u->xfer_buflen;
2178 io_u->error = EINVAL;
2179#endif
2180 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2181 ret = do_sync_file_range(td, io_u->file);
2182 else {
2183 ret = io_u->xfer_buflen;
2184 io_u->error = EINVAL;
2185 }
2186
2187 if (ret < 0)
2188 io_u->error = errno;
2189
2190 return ret;
2191}
2192
2193int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2194{
2195#ifndef FIO_HAVE_TRIM
2196 io_u->error = EINVAL;
2197 return 0;
2198#else
2199 struct fio_file *f = io_u->file;
2200 int ret;
2201
2202 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2203 if (!ret)
2204 return io_u->xfer_buflen;
2205
2206 io_u->error = ret;
2207 return 0;
2208#endif
2209}