gclient: Use proper time units in latency buckets chart
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 */
66 max_size = f->io_size;
67 if (max_size > f->real_file_size)
68 max_size = f->real_file_size;
69
70 if (td->o.zone_range)
71 max_size = td->o.zone_range;
72
73 if (td->o.min_bs[ddir] > td->o.ba[ddir])
74 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
75
76 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
77 if (!max_blocks)
78 return 0;
79
80 return max_blocks;
81}
82
83struct rand_off {
84 struct flist_head list;
85 uint64_t off;
86};
87
88static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
89 enum fio_ddir ddir, uint64_t *b,
90 uint64_t lastb)
91{
92 uint64_t r;
93
94 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
95 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
96
97 r = __rand(&td->random_state);
98
99 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
100
101 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
102 } else {
103 uint64_t off = 0;
104
105 assert(fio_file_lfsr(f));
106
107 if (lfsr_next(&f->lfsr, &off))
108 return 1;
109
110 *b = off;
111 }
112
113 /*
114 * if we are not maintaining a random map, we are done.
115 */
116 if (!file_randommap(td, f))
117 goto ret;
118
119 /*
120 * calculate map offset and check if it's free
121 */
122 if (random_map_free(f, *b))
123 goto ret;
124
125 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
126 (unsigned long long) *b);
127
128 *b = axmap_next_free(f->io_axmap, *b);
129 if (*b == (uint64_t) -1ULL)
130 return 1;
131ret:
132 return 0;
133}
134
135static int __get_next_rand_offset_zipf(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = zipf_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_pareto(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = pareto_next(&f->zipf);
148 return 0;
149}
150
151static int __get_next_rand_offset_gauss(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = gauss_next(&f->gauss);
156 return 0;
157}
158
159static int __get_next_rand_offset_zoned(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 unsigned int v, send, stotal;
164 uint64_t offset, lastb;
165 static int warned;
166 struct zone_split_index *zsi;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_perc_prev;
184 send = zsi->size_perc;
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!warned) {
191 log_err("fio: bug in zoned generation\n");
192 warned = 1;
193 }
194 goto bail;
195 }
196
197 /*
198 * 'send' is some percentage below or equal to 100 that
199 * marks the end of the current IO range. 'stotal' marks
200 * the start, in percent.
201 */
202 if (stotal)
203 offset = stotal * lastb / 100ULL;
204 else
205 offset = 0;
206
207 lastb = lastb * (send - stotal) / 100ULL;
208
209 /*
210 * Generate index from 0..send-of-lastb
211 */
212 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
213 return 1;
214
215 /*
216 * Add our start offset, if any
217 */
218 if (offset)
219 *b += offset;
220
221 return 0;
222}
223
224static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
225{
226 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
227 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
228
229 return r1->off - r2->off;
230}
231
232static int get_off_from_method(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
236 uint64_t lastb;
237
238 lastb = last_block(td, f, ddir);
239 if (!lastb)
240 return 1;
241
242 return __get_next_rand_offset(td, f, ddir, b, lastb);
243 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
244 return __get_next_rand_offset_zipf(td, f, ddir, b);
245 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
246 return __get_next_rand_offset_pareto(td, f, ddir, b);
247 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
248 return __get_next_rand_offset_gauss(td, f, ddir, b);
249 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
250 return __get_next_rand_offset_zoned(td, f, ddir, b);
251
252 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
253 return 1;
254}
255
256/*
257 * Sort the reads for a verify phase in batches of verifysort_nr, if
258 * specified.
259 */
260static inline bool should_sort_io(struct thread_data *td)
261{
262 if (!td->o.verifysort_nr || !td->o.do_verify)
263 return false;
264 if (!td_random(td))
265 return false;
266 if (td->runstate != TD_VERIFYING)
267 return false;
268 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
269 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
270 return false;
271
272 return true;
273}
274
275static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
276{
277 unsigned int v;
278
279 if (td->o.perc_rand[ddir] == 100)
280 return true;
281
282 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
283
284 return v <= td->o.perc_rand[ddir];
285}
286
287static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 struct rand_off *r;
291 int i, ret = 1;
292
293 if (!should_sort_io(td))
294 return get_off_from_method(td, f, ddir, b);
295
296 if (!flist_empty(&td->next_rand_list)) {
297fetch:
298 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
299 flist_del(&r->list);
300 *b = r->off;
301 free(r);
302 return 0;
303 }
304
305 for (i = 0; i < td->o.verifysort_nr; i++) {
306 r = malloc(sizeof(*r));
307
308 ret = get_off_from_method(td, f, ddir, &r->off);
309 if (ret) {
310 free(r);
311 break;
312 }
313
314 flist_add(&r->list, &td->next_rand_list);
315 }
316
317 if (ret && !i)
318 return ret;
319
320 assert(!flist_empty(&td->next_rand_list));
321 flist_sort(NULL, &td->next_rand_list, flist_cmp);
322 goto fetch;
323}
324
325static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
326 enum fio_ddir ddir, uint64_t *b)
327{
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330
331 if (td->o.time_based ||
332 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
333 fio_file_reset(td, f);
334 if (!get_next_rand_offset(td, f, ddir, b))
335 return 0;
336 }
337
338 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
339 f->file_name, (unsigned long long) f->last_pos[ddir],
340 (unsigned long long) f->real_file_size);
341 return 1;
342}
343
344static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
345 enum fio_ddir ddir, uint64_t *offset)
346{
347 struct thread_options *o = &td->o;
348
349 assert(ddir_rw(ddir));
350
351 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
352 o->time_based) {
353 struct thread_options *o = &td->o;
354 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
355
356 if (io_size > f->last_pos[ddir])
357 f->last_pos[ddir] = 0;
358 else
359 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
360 }
361
362 if (f->last_pos[ddir] < f->real_file_size) {
363 uint64_t pos;
364
365 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
366 if (f->real_file_size > f->io_size)
367 f->last_pos[ddir] = f->io_size;
368 else
369 f->last_pos[ddir] = f->real_file_size;
370 }
371
372 pos = f->last_pos[ddir] - f->file_offset;
373 if (pos && o->ddir_seq_add) {
374 pos += o->ddir_seq_add;
375
376 /*
377 * If we reach beyond the end of the file
378 * with holed IO, wrap around to the
379 * beginning again. If we're doing backwards IO,
380 * wrap to the end.
381 */
382 if (pos >= f->real_file_size) {
383 if (o->ddir_seq_add > 0)
384 pos = f->file_offset;
385 else {
386 if (f->real_file_size > f->io_size)
387 pos = f->io_size;
388 else
389 pos = f->real_file_size;
390
391 pos += o->ddir_seq_add;
392 }
393 }
394 }
395
396 *offset = pos;
397 return 0;
398 }
399
400 return 1;
401}
402
403static int get_next_block(struct thread_data *td, struct io_u *io_u,
404 enum fio_ddir ddir, int rw_seq,
405 unsigned int *is_random)
406{
407 struct fio_file *f = io_u->file;
408 uint64_t b, offset;
409 int ret;
410
411 assert(ddir_rw(ddir));
412
413 b = offset = -1ULL;
414
415 if (rw_seq) {
416 if (td_random(td)) {
417 if (should_do_random(td, ddir)) {
418 ret = get_next_rand_block(td, f, ddir, &b);
419 *is_random = 1;
420 } else {
421 *is_random = 0;
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 ret = get_next_seq_offset(td, f, ddir, &offset);
424 if (ret)
425 ret = get_next_rand_block(td, f, ddir, &b);
426 }
427 } else {
428 *is_random = 0;
429 ret = get_next_seq_offset(td, f, ddir, &offset);
430 }
431 } else {
432 io_u_set(td, io_u, IO_U_F_BUSY_OK);
433 *is_random = 0;
434
435 if (td->o.rw_seq == RW_SEQ_SEQ) {
436 ret = get_next_seq_offset(td, f, ddir, &offset);
437 if (ret) {
438 ret = get_next_rand_block(td, f, ddir, &b);
439 *is_random = 0;
440 }
441 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
442 if (f->last_start[ddir] != -1ULL)
443 offset = f->last_start[ddir] - f->file_offset;
444 else
445 offset = 0;
446 ret = 0;
447 } else {
448 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
449 ret = 1;
450 }
451 }
452
453 if (!ret) {
454 if (offset != -1ULL)
455 io_u->offset = offset;
456 else if (b != -1ULL)
457 io_u->offset = b * td->o.ba[ddir];
458 else {
459 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
460 ret = 1;
461 }
462 }
463
464 return ret;
465}
466
467/*
468 * For random io, generate a random new block and see if it's used. Repeat
469 * until we find a free one. For sequential io, just return the end of
470 * the last io issued.
471 */
472static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
473 unsigned int *is_random)
474{
475 struct fio_file *f = io_u->file;
476 enum fio_ddir ddir = io_u->ddir;
477 int rw_seq_hit = 0;
478
479 assert(ddir_rw(ddir));
480
481 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
482 rw_seq_hit = 1;
483 td->ddir_seq_nr = td->o.ddir_seq_nr;
484 }
485
486 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
487 return 1;
488
489 if (io_u->offset >= f->io_size) {
490 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
491 (unsigned long long) io_u->offset,
492 (unsigned long long) f->io_size);
493 return 1;
494 }
495
496 io_u->offset += f->file_offset;
497 if (io_u->offset >= f->real_file_size) {
498 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
499 (unsigned long long) io_u->offset,
500 (unsigned long long) f->real_file_size);
501 return 1;
502 }
503
504 return 0;
505}
506
507static int get_next_offset(struct thread_data *td, struct io_u *io_u,
508 unsigned int *is_random)
509{
510 if (td->flags & TD_F_PROFILE_OPS) {
511 struct prof_io_ops *ops = &td->prof_io_ops;
512
513 if (ops->fill_io_u_off)
514 return ops->fill_io_u_off(td, io_u, is_random);
515 }
516
517 return __get_next_offset(td, io_u, is_random);
518}
519
520static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
521 unsigned int buflen)
522{
523 struct fio_file *f = io_u->file;
524
525 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
526}
527
528static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
529 unsigned int is_random)
530{
531 int ddir = io_u->ddir;
532 unsigned int buflen = 0;
533 unsigned int minbs, maxbs;
534 uint64_t frand_max, r;
535
536 assert(ddir_rw(ddir));
537
538 if (td->o.bs_is_seq_rand)
539 ddir = is_random ? DDIR_WRITE: DDIR_READ;
540
541 minbs = td->o.min_bs[ddir];
542 maxbs = td->o.max_bs[ddir];
543
544 if (minbs == maxbs)
545 return minbs;
546
547 /*
548 * If we can't satisfy the min block size from here, then fail
549 */
550 if (!io_u_fits(td, io_u, minbs))
551 return 0;
552
553 frand_max = rand_max(&td->bsrange_state);
554 do {
555 r = __rand(&td->bsrange_state);
556
557 if (!td->o.bssplit_nr[ddir]) {
558 buflen = 1 + (unsigned int) ((double) maxbs *
559 (r / (frand_max + 1.0)));
560 if (buflen < minbs)
561 buflen = minbs;
562 } else {
563 long long perc = 0;
564 unsigned int i;
565
566 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
567 struct bssplit *bsp = &td->o.bssplit[ddir][i];
568
569 buflen = bsp->bs;
570 perc += bsp->perc;
571 if (!perc)
572 break;
573 if ((r / perc <= frand_max / 100ULL) &&
574 io_u_fits(td, io_u, buflen))
575 break;
576 }
577 }
578
579 if (td->o.verify != VERIFY_NONE)
580 buflen = (buflen + td->o.verify_interval - 1) &
581 ~(td->o.verify_interval - 1);
582
583 if (!td->o.bs_unaligned && is_power_of_2(minbs))
584 buflen &= ~(minbs - 1);
585
586 } while (!io_u_fits(td, io_u, buflen));
587
588 return buflen;
589}
590
591static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
592 unsigned int is_random)
593{
594 if (td->flags & TD_F_PROFILE_OPS) {
595 struct prof_io_ops *ops = &td->prof_io_ops;
596
597 if (ops->fill_io_u_size)
598 return ops->fill_io_u_size(td, io_u, is_random);
599 }
600
601 return __get_next_buflen(td, io_u, is_random);
602}
603
604static void set_rwmix_bytes(struct thread_data *td)
605{
606 unsigned int diff;
607
608 /*
609 * we do time or byte based switch. this is needed because
610 * buffered writes may issue a lot quicker than they complete,
611 * whereas reads do not.
612 */
613 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
614 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
615}
616
617static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
618{
619 unsigned int v;
620
621 v = rand32_between(&td->rwmix_state, 1, 100);
622
623 if (v <= td->o.rwmix[DDIR_READ])
624 return DDIR_READ;
625
626 return DDIR_WRITE;
627}
628
629int io_u_quiesce(struct thread_data *td)
630{
631 int completed = 0;
632
633 /*
634 * We are going to sleep, ensure that we flush anything pending as
635 * not to skew our latency numbers.
636 *
637 * Changed to only monitor 'in flight' requests here instead of the
638 * td->cur_depth, b/c td->cur_depth does not accurately represent
639 * io's that have been actually submitted to an async engine,
640 * and cur_depth is meaningless for sync engines.
641 */
642 if (td->io_u_queued || td->cur_depth) {
643 int fio_unused ret;
644
645 ret = td_io_commit(td);
646 }
647
648 while (td->io_u_in_flight) {
649 int fio_unused ret;
650
651 ret = io_u_queued_complete(td, 1);
652 if (ret > 0)
653 completed += ret;
654 }
655
656 if (td->flags & TD_F_REGROW_LOGS)
657 regrow_logs(td);
658
659 return completed;
660}
661
662static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
663{
664 enum fio_ddir odir = ddir ^ 1;
665 long usec;
666 uint64_t now;
667
668 assert(ddir_rw(ddir));
669 now = utime_since_now(&td->start);
670
671 /*
672 * if rate_next_io_time is in the past, need to catch up to rate
673 */
674 if (td->rate_next_io_time[ddir] <= now)
675 return ddir;
676
677 /*
678 * We are ahead of rate in this direction. See if we
679 * should switch.
680 */
681 if (td_rw(td) && td->o.rwmix[odir]) {
682 /*
683 * Other direction is behind rate, switch
684 */
685 if (td->rate_next_io_time[odir] <= now)
686 return odir;
687
688 /*
689 * Both directions are ahead of rate. sleep the min
690 * switch if necissary
691 */
692 if (td->rate_next_io_time[ddir] <=
693 td->rate_next_io_time[odir]) {
694 usec = td->rate_next_io_time[ddir] - now;
695 } else {
696 usec = td->rate_next_io_time[odir] - now;
697 ddir = odir;
698 }
699 } else
700 usec = td->rate_next_io_time[ddir] - now;
701
702 if (td->o.io_submit_mode == IO_MODE_INLINE)
703 io_u_quiesce(td);
704
705 usec = usec_sleep(td, usec);
706
707 return ddir;
708}
709
710/*
711 * Return the data direction for the next io_u. If the job is a
712 * mixed read/write workload, check the rwmix cycle and switch if
713 * necessary.
714 */
715static enum fio_ddir get_rw_ddir(struct thread_data *td)
716{
717 enum fio_ddir ddir;
718
719 /*
720 * see if it's time to fsync
721 */
722 if (td->o.fsync_blocks &&
723 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
724 td->io_issues[DDIR_WRITE] && should_fsync(td))
725 return DDIR_SYNC;
726
727 /*
728 * see if it's time to fdatasync
729 */
730 if (td->o.fdatasync_blocks &&
731 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
732 td->io_issues[DDIR_WRITE] && should_fsync(td))
733 return DDIR_DATASYNC;
734
735 /*
736 * see if it's time to sync_file_range
737 */
738 if (td->sync_file_range_nr &&
739 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
740 td->io_issues[DDIR_WRITE] && should_fsync(td))
741 return DDIR_SYNC_FILE_RANGE;
742
743 if (td_rw(td)) {
744 /*
745 * Check if it's time to seed a new data direction.
746 */
747 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
748 /*
749 * Put a top limit on how many bytes we do for
750 * one data direction, to avoid overflowing the
751 * ranges too much
752 */
753 ddir = get_rand_ddir(td);
754
755 if (ddir != td->rwmix_ddir)
756 set_rwmix_bytes(td);
757
758 td->rwmix_ddir = ddir;
759 }
760 ddir = td->rwmix_ddir;
761 } else if (td_read(td))
762 ddir = DDIR_READ;
763 else if (td_write(td))
764 ddir = DDIR_WRITE;
765 else
766 ddir = DDIR_TRIM;
767
768 td->rwmix_ddir = rate_ddir(td, ddir);
769 return td->rwmix_ddir;
770}
771
772static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
773{
774 enum fio_ddir ddir = get_rw_ddir(td);
775
776 if (td_trimwrite(td)) {
777 struct fio_file *f = io_u->file;
778 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
779 ddir = DDIR_TRIM;
780 else
781 ddir = DDIR_WRITE;
782 }
783
784 io_u->ddir = io_u->acct_ddir = ddir;
785
786 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
787 td->o.barrier_blocks &&
788 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
789 td->io_issues[DDIR_WRITE])
790 io_u_set(td, io_u, IO_U_F_BARRIER);
791}
792
793void put_file_log(struct thread_data *td, struct fio_file *f)
794{
795 unsigned int ret = put_file(td, f);
796
797 if (ret)
798 td_verror(td, ret, "file close");
799}
800
801void put_io_u(struct thread_data *td, struct io_u *io_u)
802{
803 if (td->parent)
804 td = td->parent;
805
806 td_io_u_lock(td);
807
808 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
809 put_file_log(td, io_u->file);
810
811 io_u->file = NULL;
812 io_u_set(td, io_u, IO_U_F_FREE);
813
814 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
815 td->cur_depth--;
816 assert(!(td->flags & TD_F_CHILD));
817 }
818 io_u_qpush(&td->io_u_freelist, io_u);
819 td_io_u_unlock(td);
820 td_io_u_free_notify(td);
821}
822
823void clear_io_u(struct thread_data *td, struct io_u *io_u)
824{
825 io_u_clear(td, io_u, IO_U_F_FLIGHT);
826 put_io_u(td, io_u);
827}
828
829void requeue_io_u(struct thread_data *td, struct io_u **io_u)
830{
831 struct io_u *__io_u = *io_u;
832 enum fio_ddir ddir = acct_ddir(__io_u);
833
834 dprint(FD_IO, "requeue %p\n", __io_u);
835
836 if (td->parent)
837 td = td->parent;
838
839 td_io_u_lock(td);
840
841 io_u_set(td, __io_u, IO_U_F_FREE);
842 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
843 td->io_issues[ddir]--;
844
845 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
846 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
847 td->cur_depth--;
848 assert(!(td->flags & TD_F_CHILD));
849 }
850
851 io_u_rpush(&td->io_u_requeues, __io_u);
852 td_io_u_unlock(td);
853 td_io_u_free_notify(td);
854 *io_u = NULL;
855}
856
857static int fill_io_u(struct thread_data *td, struct io_u *io_u)
858{
859 unsigned int is_random;
860
861 if (td_ioengine_flagged(td, FIO_NOIO))
862 goto out;
863
864 set_rw_ddir(td, io_u);
865
866 /*
867 * fsync() or fdatasync() or trim etc, we are done
868 */
869 if (!ddir_rw(io_u->ddir))
870 goto out;
871
872 /*
873 * See if it's time to switch to a new zone
874 */
875 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
876 struct fio_file *f = io_u->file;
877
878 td->zone_bytes = 0;
879 f->file_offset += td->o.zone_range + td->o.zone_skip;
880
881 /*
882 * Wrap from the beginning, if we exceed the file size
883 */
884 if (f->file_offset >= f->real_file_size)
885 f->file_offset = f->real_file_size - f->file_offset;
886 f->last_pos[io_u->ddir] = f->file_offset;
887 td->io_skip_bytes += td->o.zone_skip;
888 }
889
890 /*
891 * No log, let the seq/rand engine retrieve the next buflen and
892 * position.
893 */
894 if (get_next_offset(td, io_u, &is_random)) {
895 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
896 return 1;
897 }
898
899 io_u->buflen = get_next_buflen(td, io_u, is_random);
900 if (!io_u->buflen) {
901 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
902 return 1;
903 }
904
905 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
906 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
907 dprint(FD_IO, " off=%llu/%lu > %llu\n",
908 (unsigned long long) io_u->offset, io_u->buflen,
909 (unsigned long long) io_u->file->real_file_size);
910 return 1;
911 }
912
913 /*
914 * mark entry before potentially trimming io_u
915 */
916 if (td_random(td) && file_randommap(td, io_u->file))
917 mark_random_map(td, io_u);
918
919out:
920 dprint_io_u(io_u, "fill_io_u");
921 td->zone_bytes += io_u->buflen;
922 return 0;
923}
924
925static void __io_u_mark_map(unsigned int *map, unsigned int nr)
926{
927 int idx = 0;
928
929 switch (nr) {
930 default:
931 idx = 6;
932 break;
933 case 33 ... 64:
934 idx = 5;
935 break;
936 case 17 ... 32:
937 idx = 4;
938 break;
939 case 9 ... 16:
940 idx = 3;
941 break;
942 case 5 ... 8:
943 idx = 2;
944 break;
945 case 1 ... 4:
946 idx = 1;
947 case 0:
948 break;
949 }
950
951 map[idx]++;
952}
953
954void io_u_mark_submit(struct thread_data *td, unsigned int nr)
955{
956 __io_u_mark_map(td->ts.io_u_submit, nr);
957 td->ts.total_submit++;
958}
959
960void io_u_mark_complete(struct thread_data *td, unsigned int nr)
961{
962 __io_u_mark_map(td->ts.io_u_complete, nr);
963 td->ts.total_complete++;
964}
965
966void io_u_mark_depth(struct thread_data *td, unsigned int nr)
967{
968 int idx = 0;
969
970 switch (td->cur_depth) {
971 default:
972 idx = 6;
973 break;
974 case 32 ... 63:
975 idx = 5;
976 break;
977 case 16 ... 31:
978 idx = 4;
979 break;
980 case 8 ... 15:
981 idx = 3;
982 break;
983 case 4 ... 7:
984 idx = 2;
985 break;
986 case 2 ... 3:
987 idx = 1;
988 case 1:
989 break;
990 }
991
992 td->ts.io_u_map[idx] += nr;
993}
994
995static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
996{
997 int idx = 0;
998
999 assert(usec < 1000);
1000
1001 switch (usec) {
1002 case 750 ... 999:
1003 idx = 9;
1004 break;
1005 case 500 ... 749:
1006 idx = 8;
1007 break;
1008 case 250 ... 499:
1009 idx = 7;
1010 break;
1011 case 100 ... 249:
1012 idx = 6;
1013 break;
1014 case 50 ... 99:
1015 idx = 5;
1016 break;
1017 case 20 ... 49:
1018 idx = 4;
1019 break;
1020 case 10 ... 19:
1021 idx = 3;
1022 break;
1023 case 4 ... 9:
1024 idx = 2;
1025 break;
1026 case 2 ... 3:
1027 idx = 1;
1028 case 0 ... 1:
1029 break;
1030 }
1031
1032 assert(idx < FIO_IO_U_LAT_U_NR);
1033 td->ts.io_u_lat_u[idx]++;
1034}
1035
1036static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1037{
1038 int idx = 0;
1039
1040 switch (msec) {
1041 default:
1042 idx = 11;
1043 break;
1044 case 1000 ... 1999:
1045 idx = 10;
1046 break;
1047 case 750 ... 999:
1048 idx = 9;
1049 break;
1050 case 500 ... 749:
1051 idx = 8;
1052 break;
1053 case 250 ... 499:
1054 idx = 7;
1055 break;
1056 case 100 ... 249:
1057 idx = 6;
1058 break;
1059 case 50 ... 99:
1060 idx = 5;
1061 break;
1062 case 20 ... 49:
1063 idx = 4;
1064 break;
1065 case 10 ... 19:
1066 idx = 3;
1067 break;
1068 case 4 ... 9:
1069 idx = 2;
1070 break;
1071 case 2 ... 3:
1072 idx = 1;
1073 case 0 ... 1:
1074 break;
1075 }
1076
1077 assert(idx < FIO_IO_U_LAT_M_NR);
1078 td->ts.io_u_lat_m[idx]++;
1079}
1080
1081static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1082{
1083 if (usec < 1000)
1084 io_u_mark_lat_usec(td, usec);
1085 else
1086 io_u_mark_lat_msec(td, usec / 1000);
1087}
1088
1089static unsigned int __get_next_fileno_rand(struct thread_data *td)
1090{
1091 unsigned long fileno;
1092
1093 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1094 uint64_t frand_max = rand_max(&td->next_file_state);
1095 unsigned long r;
1096
1097 r = __rand(&td->next_file_state);
1098 return (unsigned int) ((double) td->o.nr_files
1099 * (r / (frand_max + 1.0)));
1100 }
1101
1102 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1103 fileno = zipf_next(&td->next_file_zipf);
1104 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1105 fileno = pareto_next(&td->next_file_zipf);
1106 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1107 fileno = gauss_next(&td->next_file_gauss);
1108 else {
1109 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1110 assert(0);
1111 return 0;
1112 }
1113
1114 return fileno >> FIO_FSERVICE_SHIFT;
1115}
1116
1117/*
1118 * Get next file to service by choosing one at random
1119 */
1120static struct fio_file *get_next_file_rand(struct thread_data *td,
1121 enum fio_file_flags goodf,
1122 enum fio_file_flags badf)
1123{
1124 struct fio_file *f;
1125 int fno;
1126
1127 do {
1128 int opened = 0;
1129
1130 fno = __get_next_fileno_rand(td);
1131
1132 f = td->files[fno];
1133 if (fio_file_done(f))
1134 continue;
1135
1136 if (!fio_file_open(f)) {
1137 int err;
1138
1139 if (td->nr_open_files >= td->o.open_files)
1140 return ERR_PTR(-EBUSY);
1141
1142 err = td_io_open_file(td, f);
1143 if (err)
1144 continue;
1145 opened = 1;
1146 }
1147
1148 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1149 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1150 return f;
1151 }
1152 if (opened)
1153 td_io_close_file(td, f);
1154 } while (1);
1155}
1156
1157/*
1158 * Get next file to service by doing round robin between all available ones
1159 */
1160static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1161 int badf)
1162{
1163 unsigned int old_next_file = td->next_file;
1164 struct fio_file *f;
1165
1166 do {
1167 int opened = 0;
1168
1169 f = td->files[td->next_file];
1170
1171 td->next_file++;
1172 if (td->next_file >= td->o.nr_files)
1173 td->next_file = 0;
1174
1175 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1176 if (fio_file_done(f)) {
1177 f = NULL;
1178 continue;
1179 }
1180
1181 if (!fio_file_open(f)) {
1182 int err;
1183
1184 if (td->nr_open_files >= td->o.open_files)
1185 return ERR_PTR(-EBUSY);
1186
1187 err = td_io_open_file(td, f);
1188 if (err) {
1189 dprint(FD_FILE, "error %d on open of %s\n",
1190 err, f->file_name);
1191 f = NULL;
1192 continue;
1193 }
1194 opened = 1;
1195 }
1196
1197 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1198 f->flags);
1199 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1200 break;
1201
1202 if (opened)
1203 td_io_close_file(td, f);
1204
1205 f = NULL;
1206 } while (td->next_file != old_next_file);
1207
1208 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1209 return f;
1210}
1211
1212static struct fio_file *__get_next_file(struct thread_data *td)
1213{
1214 struct fio_file *f;
1215
1216 assert(td->o.nr_files <= td->files_index);
1217
1218 if (td->nr_done_files >= td->o.nr_files) {
1219 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1220 " nr_files=%d\n", td->nr_open_files,
1221 td->nr_done_files,
1222 td->o.nr_files);
1223 return NULL;
1224 }
1225
1226 f = td->file_service_file;
1227 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1228 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1229 goto out;
1230 if (td->file_service_left--)
1231 goto out;
1232 }
1233
1234 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1235 td->o.file_service_type == FIO_FSERVICE_SEQ)
1236 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1237 else
1238 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1239
1240 if (IS_ERR(f))
1241 return f;
1242
1243 td->file_service_file = f;
1244 td->file_service_left = td->file_service_nr - 1;
1245out:
1246 if (f)
1247 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1248 else
1249 dprint(FD_FILE, "get_next_file: NULL\n");
1250 return f;
1251}
1252
1253static struct fio_file *get_next_file(struct thread_data *td)
1254{
1255 if (td->flags & TD_F_PROFILE_OPS) {
1256 struct prof_io_ops *ops = &td->prof_io_ops;
1257
1258 if (ops->get_next_file)
1259 return ops->get_next_file(td);
1260 }
1261
1262 return __get_next_file(td);
1263}
1264
1265static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1266{
1267 struct fio_file *f;
1268
1269 do {
1270 f = get_next_file(td);
1271 if (IS_ERR_OR_NULL(f))
1272 return PTR_ERR(f);
1273
1274 io_u->file = f;
1275 get_file(f);
1276
1277 if (!fill_io_u(td, io_u))
1278 break;
1279
1280 put_file_log(td, f);
1281 td_io_close_file(td, f);
1282 io_u->file = NULL;
1283 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1284 fio_file_reset(td, f);
1285 else {
1286 fio_file_set_done(f);
1287 td->nr_done_files++;
1288 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1289 td->nr_done_files, td->o.nr_files);
1290 }
1291 } while (1);
1292
1293 return 0;
1294}
1295
1296static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1297 unsigned long tusec, unsigned long max_usec)
1298{
1299 if (!td->error)
1300 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1301 td_verror(td, ETIMEDOUT, "max latency exceeded");
1302 icd->error = ETIMEDOUT;
1303}
1304
1305static void lat_new_cycle(struct thread_data *td)
1306{
1307 fio_gettime(&td->latency_ts, NULL);
1308 td->latency_ios = ddir_rw_sum(td->io_blocks);
1309 td->latency_failed = 0;
1310}
1311
1312/*
1313 * We had an IO outside the latency target. Reduce the queue depth. If we
1314 * are at QD=1, then it's time to give up.
1315 */
1316static bool __lat_target_failed(struct thread_data *td)
1317{
1318 if (td->latency_qd == 1)
1319 return true;
1320
1321 td->latency_qd_high = td->latency_qd;
1322
1323 if (td->latency_qd == td->latency_qd_low)
1324 td->latency_qd_low--;
1325
1326 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1327
1328 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1329
1330 /*
1331 * When we ramp QD down, quiesce existing IO to prevent
1332 * a storm of ramp downs due to pending higher depth.
1333 */
1334 io_u_quiesce(td);
1335 lat_new_cycle(td);
1336 return false;
1337}
1338
1339static bool lat_target_failed(struct thread_data *td)
1340{
1341 if (td->o.latency_percentile.u.f == 100.0)
1342 return __lat_target_failed(td);
1343
1344 td->latency_failed++;
1345 return false;
1346}
1347
1348void lat_target_init(struct thread_data *td)
1349{
1350 td->latency_end_run = 0;
1351
1352 if (td->o.latency_target) {
1353 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1354 fio_gettime(&td->latency_ts, NULL);
1355 td->latency_qd = 1;
1356 td->latency_qd_high = td->o.iodepth;
1357 td->latency_qd_low = 1;
1358 td->latency_ios = ddir_rw_sum(td->io_blocks);
1359 } else
1360 td->latency_qd = td->o.iodepth;
1361}
1362
1363void lat_target_reset(struct thread_data *td)
1364{
1365 if (!td->latency_end_run)
1366 lat_target_init(td);
1367}
1368
1369static void lat_target_success(struct thread_data *td)
1370{
1371 const unsigned int qd = td->latency_qd;
1372 struct thread_options *o = &td->o;
1373
1374 td->latency_qd_low = td->latency_qd;
1375
1376 /*
1377 * If we haven't failed yet, we double up to a failing value instead
1378 * of bisecting from highest possible queue depth. If we have set
1379 * a limit other than td->o.iodepth, bisect between that.
1380 */
1381 if (td->latency_qd_high != o->iodepth)
1382 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1383 else
1384 td->latency_qd *= 2;
1385
1386 if (td->latency_qd > o->iodepth)
1387 td->latency_qd = o->iodepth;
1388
1389 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1390
1391 /*
1392 * Same as last one, we are done. Let it run a latency cycle, so
1393 * we get only the results from the targeted depth.
1394 */
1395 if (td->latency_qd == qd) {
1396 if (td->latency_end_run) {
1397 dprint(FD_RATE, "We are done\n");
1398 td->done = 1;
1399 } else {
1400 dprint(FD_RATE, "Quiesce and final run\n");
1401 io_u_quiesce(td);
1402 td->latency_end_run = 1;
1403 reset_all_stats(td);
1404 reset_io_stats(td);
1405 }
1406 }
1407
1408 lat_new_cycle(td);
1409}
1410
1411/*
1412 * Check if we can bump the queue depth
1413 */
1414void lat_target_check(struct thread_data *td)
1415{
1416 uint64_t usec_window;
1417 uint64_t ios;
1418 double success_ios;
1419
1420 usec_window = utime_since_now(&td->latency_ts);
1421 if (usec_window < td->o.latency_window)
1422 return;
1423
1424 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1425 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1426 success_ios *= 100.0;
1427
1428 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1429
1430 if (success_ios >= td->o.latency_percentile.u.f)
1431 lat_target_success(td);
1432 else
1433 __lat_target_failed(td);
1434}
1435
1436/*
1437 * If latency target is enabled, we might be ramping up or down and not
1438 * using the full queue depth available.
1439 */
1440bool queue_full(const struct thread_data *td)
1441{
1442 const int qempty = io_u_qempty(&td->io_u_freelist);
1443
1444 if (qempty)
1445 return true;
1446 if (!td->o.latency_target)
1447 return false;
1448
1449 return td->cur_depth >= td->latency_qd;
1450}
1451
1452struct io_u *__get_io_u(struct thread_data *td)
1453{
1454 struct io_u *io_u = NULL;
1455
1456 if (td->stop_io)
1457 return NULL;
1458
1459 td_io_u_lock(td);
1460
1461again:
1462 if (!io_u_rempty(&td->io_u_requeues))
1463 io_u = io_u_rpop(&td->io_u_requeues);
1464 else if (!queue_full(td)) {
1465 io_u = io_u_qpop(&td->io_u_freelist);
1466
1467 io_u->file = NULL;
1468 io_u->buflen = 0;
1469 io_u->resid = 0;
1470 io_u->end_io = NULL;
1471 }
1472
1473 if (io_u) {
1474 assert(io_u->flags & IO_U_F_FREE);
1475 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1476 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1477 IO_U_F_VER_LIST);
1478
1479 io_u->error = 0;
1480 io_u->acct_ddir = -1;
1481 td->cur_depth++;
1482 assert(!(td->flags & TD_F_CHILD));
1483 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1484 io_u->ipo = NULL;
1485 } else if (td_async_processing(td)) {
1486 /*
1487 * We ran out, wait for async verify threads to finish and
1488 * return one
1489 */
1490 assert(!(td->flags & TD_F_CHILD));
1491 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1492 goto again;
1493 }
1494
1495 td_io_u_unlock(td);
1496 return io_u;
1497}
1498
1499static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1500{
1501 if (!(td->flags & TD_F_TRIM_BACKLOG))
1502 return false;
1503
1504 if (td->trim_entries) {
1505 int get_trim = 0;
1506
1507 if (td->trim_batch) {
1508 td->trim_batch--;
1509 get_trim = 1;
1510 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1511 td->last_ddir != DDIR_READ) {
1512 td->trim_batch = td->o.trim_batch;
1513 if (!td->trim_batch)
1514 td->trim_batch = td->o.trim_backlog;
1515 get_trim = 1;
1516 }
1517
1518 if (get_trim && get_next_trim(td, io_u))
1519 return true;
1520 }
1521
1522 return false;
1523}
1524
1525static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1526{
1527 if (!(td->flags & TD_F_VER_BACKLOG))
1528 return false;
1529
1530 if (td->io_hist_len) {
1531 int get_verify = 0;
1532
1533 if (td->verify_batch)
1534 get_verify = 1;
1535 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1536 td->last_ddir != DDIR_READ) {
1537 td->verify_batch = td->o.verify_batch;
1538 if (!td->verify_batch)
1539 td->verify_batch = td->o.verify_backlog;
1540 get_verify = 1;
1541 }
1542
1543 if (get_verify && !get_next_verify(td, io_u)) {
1544 td->verify_batch--;
1545 return true;
1546 }
1547 }
1548
1549 return false;
1550}
1551
1552/*
1553 * Fill offset and start time into the buffer content, to prevent too
1554 * easy compressible data for simple de-dupe attempts. Do this for every
1555 * 512b block in the range, since that should be the smallest block size
1556 * we can expect from a device.
1557 */
1558static void small_content_scramble(struct io_u *io_u)
1559{
1560 unsigned int i, nr_blocks = io_u->buflen / 512;
1561 uint64_t boffset;
1562 unsigned int offset;
1563 void *p, *end;
1564
1565 if (!nr_blocks)
1566 return;
1567
1568 p = io_u->xfer_buf;
1569 boffset = io_u->offset;
1570 io_u->buf_filled_len = 0;
1571
1572 for (i = 0; i < nr_blocks; i++) {
1573 /*
1574 * Fill the byte offset into a "random" start offset of
1575 * the buffer, given by the product of the usec time
1576 * and the actual offset.
1577 */
1578 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1579 offset &= ~(sizeof(uint64_t) - 1);
1580 if (offset >= 512 - sizeof(uint64_t))
1581 offset -= sizeof(uint64_t);
1582 memcpy(p + offset, &boffset, sizeof(boffset));
1583
1584 end = p + 512 - sizeof(io_u->start_time);
1585 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1586 p += 512;
1587 boffset += 512;
1588 }
1589}
1590
1591/*
1592 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1593 * etc. The returned io_u is fully ready to be prepped and submitted.
1594 */
1595struct io_u *get_io_u(struct thread_data *td)
1596{
1597 struct fio_file *f;
1598 struct io_u *io_u;
1599 int do_scramble = 0;
1600 long ret = 0;
1601
1602 io_u = __get_io_u(td);
1603 if (!io_u) {
1604 dprint(FD_IO, "__get_io_u failed\n");
1605 return NULL;
1606 }
1607
1608 if (check_get_verify(td, io_u))
1609 goto out;
1610 if (check_get_trim(td, io_u))
1611 goto out;
1612
1613 /*
1614 * from a requeue, io_u already setup
1615 */
1616 if (io_u->file)
1617 goto out;
1618
1619 /*
1620 * If using an iolog, grab next piece if any available.
1621 */
1622 if (td->flags & TD_F_READ_IOLOG) {
1623 if (read_iolog_get(td, io_u))
1624 goto err_put;
1625 } else if (set_io_u_file(td, io_u)) {
1626 ret = -EBUSY;
1627 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1628 goto err_put;
1629 }
1630
1631 f = io_u->file;
1632 if (!f) {
1633 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1634 goto err_put;
1635 }
1636
1637 assert(fio_file_open(f));
1638
1639 if (ddir_rw(io_u->ddir)) {
1640 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1641 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1642 goto err_put;
1643 }
1644
1645 f->last_start[io_u->ddir] = io_u->offset;
1646 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1647
1648 if (io_u->ddir == DDIR_WRITE) {
1649 if (td->flags & TD_F_REFILL_BUFFERS) {
1650 io_u_fill_buffer(td, io_u,
1651 td->o.min_bs[DDIR_WRITE],
1652 io_u->buflen);
1653 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1654 !(td->flags & TD_F_COMPRESS))
1655 do_scramble = 1;
1656 if (td->flags & TD_F_VER_NONE) {
1657 populate_verify_io_u(td, io_u);
1658 do_scramble = 0;
1659 }
1660 } else if (io_u->ddir == DDIR_READ) {
1661 /*
1662 * Reset the buf_filled parameters so next time if the
1663 * buffer is used for writes it is refilled.
1664 */
1665 io_u->buf_filled_len = 0;
1666 }
1667 }
1668
1669 /*
1670 * Set io data pointers.
1671 */
1672 io_u->xfer_buf = io_u->buf;
1673 io_u->xfer_buflen = io_u->buflen;
1674
1675out:
1676 assert(io_u->file);
1677 if (!td_io_prep(td, io_u)) {
1678 if (!td->o.disable_lat)
1679 fio_gettime(&io_u->start_time, NULL);
1680 if (do_scramble)
1681 small_content_scramble(io_u);
1682 return io_u;
1683 }
1684err_put:
1685 dprint(FD_IO, "get_io_u failed\n");
1686 put_io_u(td, io_u);
1687 return ERR_PTR(ret);
1688}
1689
1690static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1691{
1692 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1693
1694 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1695 return;
1696
1697 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1698 io_u->file ? " on file " : "",
1699 io_u->file ? io_u->file->file_name : "",
1700 strerror(io_u->error),
1701 io_ddir_name(io_u->ddir),
1702 io_u->offset, io_u->xfer_buflen);
1703
1704 if (td->io_ops->errdetails) {
1705 char *err = td->io_ops->errdetails(io_u);
1706
1707 log_err("fio: %s\n", err);
1708 free(err);
1709 }
1710
1711 if (!td->error)
1712 td_verror(td, io_u->error, "io_u error");
1713}
1714
1715void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1716{
1717 __io_u_log_error(td, io_u);
1718 if (td->parent)
1719 __io_u_log_error(td->parent, io_u);
1720}
1721
1722static inline bool gtod_reduce(struct thread_data *td)
1723{
1724 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1725 || td->o.gtod_reduce;
1726}
1727
1728static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1729 struct io_completion_data *icd,
1730 const enum fio_ddir idx, unsigned int bytes)
1731{
1732 const int no_reduce = !gtod_reduce(td);
1733 unsigned long lusec = 0;
1734
1735 if (td->parent)
1736 td = td->parent;
1737
1738 if (no_reduce)
1739 lusec = utime_since(&io_u->issue_time, &icd->time);
1740
1741 if (!td->o.disable_lat) {
1742 unsigned long tusec;
1743
1744 tusec = utime_since(&io_u->start_time, &icd->time);
1745 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1746
1747 if (td->flags & TD_F_PROFILE_OPS) {
1748 struct prof_io_ops *ops = &td->prof_io_ops;
1749
1750 if (ops->io_u_lat)
1751 icd->error = ops->io_u_lat(td, tusec);
1752 }
1753
1754 if (td->o.max_latency && tusec > td->o.max_latency)
1755 lat_fatal(td, icd, tusec, td->o.max_latency);
1756 if (td->o.latency_target && tusec > td->o.latency_target) {
1757 if (lat_target_failed(td))
1758 lat_fatal(td, icd, tusec, td->o.latency_target);
1759 }
1760 }
1761
1762 if (ddir_rw(idx)) {
1763 if (!td->o.disable_clat) {
1764 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1765 io_u_mark_latency(td, lusec);
1766 }
1767
1768 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1769 add_bw_sample(td, io_u, bytes, lusec);
1770
1771 if (no_reduce && per_unit_log(td->iops_log))
1772 add_iops_sample(td, io_u, bytes);
1773 }
1774
1775 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1776 uint32_t *info = io_u_block_info(td, io_u);
1777 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1778 if (io_u->ddir == DDIR_TRIM) {
1779 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1780 BLOCK_INFO_TRIMS(*info) + 1);
1781 } else if (io_u->ddir == DDIR_WRITE) {
1782 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1783 *info);
1784 }
1785 }
1786 }
1787}
1788
1789static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1790 uint64_t offset, unsigned int bytes)
1791{
1792 int idx;
1793
1794 if (!f)
1795 return;
1796
1797 if (f->first_write == -1ULL || offset < f->first_write)
1798 f->first_write = offset;
1799 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1800 f->last_write = offset + bytes;
1801
1802 if (!f->last_write_comp)
1803 return;
1804
1805 idx = f->last_write_idx++;
1806 f->last_write_comp[idx] = offset;
1807 if (f->last_write_idx == td->o.iodepth)
1808 f->last_write_idx = 0;
1809}
1810
1811static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1812 struct io_completion_data *icd)
1813{
1814 struct io_u *io_u = *io_u_ptr;
1815 enum fio_ddir ddir = io_u->ddir;
1816 struct fio_file *f = io_u->file;
1817
1818 dprint_io_u(io_u, "io complete");
1819
1820 assert(io_u->flags & IO_U_F_FLIGHT);
1821 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1822
1823 /*
1824 * Mark IO ok to verify
1825 */
1826 if (io_u->ipo) {
1827 /*
1828 * Remove errored entry from the verification list
1829 */
1830 if (io_u->error)
1831 unlog_io_piece(td, io_u);
1832 else {
1833 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1834 write_barrier();
1835 }
1836 }
1837
1838 if (ddir_sync(ddir)) {
1839 td->last_was_sync = 1;
1840 if (f) {
1841 f->first_write = -1ULL;
1842 f->last_write = -1ULL;
1843 }
1844 return;
1845 }
1846
1847 td->last_was_sync = 0;
1848 td->last_ddir = ddir;
1849
1850 if (!io_u->error && ddir_rw(ddir)) {
1851 unsigned int bytes = io_u->buflen - io_u->resid;
1852 int ret;
1853
1854 td->io_blocks[ddir]++;
1855 td->this_io_blocks[ddir]++;
1856 td->io_bytes[ddir] += bytes;
1857
1858 if (!(io_u->flags & IO_U_F_VER_LIST))
1859 td->this_io_bytes[ddir] += bytes;
1860
1861 if (ddir == DDIR_WRITE)
1862 file_log_write_comp(td, f, io_u->offset, bytes);
1863
1864 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1865 td->runstate == TD_VERIFYING))
1866 account_io_completion(td, io_u, icd, ddir, bytes);
1867
1868 icd->bytes_done[ddir] += bytes;
1869
1870 if (io_u->end_io) {
1871 ret = io_u->end_io(td, io_u_ptr);
1872 io_u = *io_u_ptr;
1873 if (ret && !icd->error)
1874 icd->error = ret;
1875 }
1876 } else if (io_u->error) {
1877 icd->error = io_u->error;
1878 io_u_log_error(td, io_u);
1879 }
1880 if (icd->error) {
1881 enum error_type_bit eb = td_error_type(ddir, icd->error);
1882
1883 if (!td_non_fatal_error(td, eb, icd->error))
1884 return;
1885
1886 /*
1887 * If there is a non_fatal error, then add to the error count
1888 * and clear all the errors.
1889 */
1890 update_error_count(td, icd->error);
1891 td_clear_error(td);
1892 icd->error = 0;
1893 if (io_u)
1894 io_u->error = 0;
1895 }
1896}
1897
1898static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1899 int nr)
1900{
1901 int ddir;
1902
1903 if (!gtod_reduce(td))
1904 fio_gettime(&icd->time, NULL);
1905
1906 icd->nr = nr;
1907
1908 icd->error = 0;
1909 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1910 icd->bytes_done[ddir] = 0;
1911}
1912
1913static void ios_completed(struct thread_data *td,
1914 struct io_completion_data *icd)
1915{
1916 struct io_u *io_u;
1917 int i;
1918
1919 for (i = 0; i < icd->nr; i++) {
1920 io_u = td->io_ops->event(td, i);
1921
1922 io_completed(td, &io_u, icd);
1923
1924 if (io_u)
1925 put_io_u(td, io_u);
1926 }
1927}
1928
1929/*
1930 * Complete a single io_u for the sync engines.
1931 */
1932int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1933{
1934 struct io_completion_data icd;
1935 int ddir;
1936
1937 init_icd(td, &icd, 1);
1938 io_completed(td, &io_u, &icd);
1939
1940 if (io_u)
1941 put_io_u(td, io_u);
1942
1943 if (icd.error) {
1944 td_verror(td, icd.error, "io_u_sync_complete");
1945 return -1;
1946 }
1947
1948 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1949 td->bytes_done[ddir] += icd.bytes_done[ddir];
1950
1951 return 0;
1952}
1953
1954/*
1955 * Called to complete min_events number of io for the async engines.
1956 */
1957int io_u_queued_complete(struct thread_data *td, int min_evts)
1958{
1959 struct io_completion_data icd;
1960 struct timespec *tvp = NULL;
1961 int ret, ddir;
1962 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1963
1964 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1965
1966 if (!min_evts)
1967 tvp = &ts;
1968 else if (min_evts > td->cur_depth)
1969 min_evts = td->cur_depth;
1970
1971 /* No worries, td_io_getevents fixes min and max if they are
1972 * set incorrectly */
1973 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1974 if (ret < 0) {
1975 td_verror(td, -ret, "td_io_getevents");
1976 return ret;
1977 } else if (!ret)
1978 return ret;
1979
1980 init_icd(td, &icd, ret);
1981 ios_completed(td, &icd);
1982 if (icd.error) {
1983 td_verror(td, icd.error, "io_u_queued_complete");
1984 return -1;
1985 }
1986
1987 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1988 td->bytes_done[ddir] += icd.bytes_done[ddir];
1989
1990 return ret;
1991}
1992
1993/*
1994 * Call when io_u is really queued, to update the submission latency.
1995 */
1996void io_u_queued(struct thread_data *td, struct io_u *io_u)
1997{
1998 if (!td->o.disable_slat) {
1999 unsigned long slat_time;
2000
2001 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
2002
2003 if (td->parent)
2004 td = td->parent;
2005
2006 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2007 io_u->offset);
2008 }
2009}
2010
2011/*
2012 * See if we should reuse the last seed, if dedupe is enabled
2013 */
2014static struct frand_state *get_buf_state(struct thread_data *td)
2015{
2016 unsigned int v;
2017
2018 if (!td->o.dedupe_percentage)
2019 return &td->buf_state;
2020 else if (td->o.dedupe_percentage == 100) {
2021 frand_copy(&td->buf_state_prev, &td->buf_state);
2022 return &td->buf_state;
2023 }
2024
2025 v = rand32_between(&td->dedupe_state, 1, 100);
2026
2027 if (v <= td->o.dedupe_percentage)
2028 return &td->buf_state_prev;
2029
2030 return &td->buf_state;
2031}
2032
2033static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2034{
2035 if (td->o.dedupe_percentage == 100)
2036 frand_copy(rs, &td->buf_state_prev);
2037 else if (rs == &td->buf_state)
2038 frand_copy(&td->buf_state_prev, rs);
2039}
2040
2041void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2042 unsigned int max_bs)
2043{
2044 struct thread_options *o = &td->o;
2045
2046 if (o->compress_percentage || o->dedupe_percentage) {
2047 unsigned int perc = td->o.compress_percentage;
2048 struct frand_state *rs;
2049 unsigned int left = max_bs;
2050 unsigned int this_write;
2051
2052 do {
2053 rs = get_buf_state(td);
2054
2055 min_write = min(min_write, left);
2056
2057 if (perc) {
2058 this_write = min_not_zero(min_write,
2059 td->o.compress_chunk);
2060
2061 fill_random_buf_percentage(rs, buf, perc,
2062 this_write, this_write,
2063 o->buffer_pattern,
2064 o->buffer_pattern_bytes);
2065 } else {
2066 fill_random_buf(rs, buf, min_write);
2067 this_write = min_write;
2068 }
2069
2070 buf += this_write;
2071 left -= this_write;
2072 save_buf_state(td, rs);
2073 } while (left);
2074 } else if (o->buffer_pattern_bytes)
2075 fill_buffer_pattern(td, buf, max_bs);
2076 else if (o->zero_buffers)
2077 memset(buf, 0, max_bs);
2078 else
2079 fill_random_buf(get_buf_state(td), buf, max_bs);
2080}
2081
2082/*
2083 * "randomly" fill the buffer contents
2084 */
2085void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2086 unsigned int min_write, unsigned int max_bs)
2087{
2088 io_u->buf_filled_len = 0;
2089 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2090}