Update fio io engine version
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "os.h"
10
11/*
12 * Change this define to play with the timeout handling
13 */
14#undef FIO_USE_TIMEOUT
15
16struct io_completion_data {
17 int nr; /* input */
18
19 int error; /* output */
20 unsigned long bytes_done[2]; /* output */
21 struct timeval time; /* output */
22};
23
24/*
25 * The ->file_map[] contains a map of blocks we have or have not done io
26 * to yet. Used to make sure we cover the entire range in a fair fashion.
27 */
28static int random_map_free(struct thread_data *td, struct fio_file *f,
29 unsigned long long block)
30{
31 unsigned int idx = RAND_MAP_IDX(td, f, block);
32 unsigned int bit = RAND_MAP_BIT(td, f, block);
33
34 return (f->file_map[idx] & (1UL << bit)) == 0;
35}
36
37/*
38 * Mark a given offset as used in the map.
39 */
40static void mark_random_map(struct thread_data *td, struct io_u *io_u)
41{
42 unsigned int min_bs = td->o.rw_min_bs;
43 struct fio_file *f = io_u->file;
44 unsigned long long block;
45 unsigned int blocks;
46 unsigned int nr_blocks;
47
48 block = io_u->offset / (unsigned long long) min_bs;
49 blocks = 0;
50 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
51
52 while (blocks < nr_blocks) {
53 unsigned int idx, bit;
54
55 /*
56 * If we have a mixed random workload, we may
57 * encounter blocks we already did IO to.
58 */
59 if (!td->o.ddir_nr && !random_map_free(td, f, block))
60 break;
61
62 idx = RAND_MAP_IDX(td, f, block);
63 bit = RAND_MAP_BIT(td, f, block);
64
65 fio_assert(td, idx < f->num_maps);
66
67 f->file_map[idx] |= (1UL << bit);
68 block++;
69 blocks++;
70 }
71
72 if ((blocks * min_bs) < io_u->buflen)
73 io_u->buflen = blocks * min_bs;
74}
75
76/*
77 * Return the next free block in the map.
78 */
79static int get_next_free_block(struct thread_data *td, struct fio_file *f,
80 unsigned long long *b)
81{
82 int i;
83
84 i = f->last_free_lookup;
85 *b = (i * BLOCKS_PER_MAP);
86 while ((*b) * td->o.rw_min_bs < f->real_file_size) {
87 if (f->file_map[i] != -1UL) {
88 *b += ffz(f->file_map[i]);
89 f->last_free_lookup = i;
90 return 0;
91 }
92
93 *b += BLOCKS_PER_MAP;
94 i++;
95 }
96
97 return 1;
98}
99
100static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
101 int ddir, unsigned long long *b)
102{
103 unsigned long long max_blocks = f->io_size / td->o.min_bs[ddir];
104 unsigned long long r, rb;
105 int loops = 5;
106
107 do {
108 r = os_random_long(&td->random_state);
109 if (!max_blocks)
110 *b = 0;
111 else
112 *b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
113 if (td->o.norandommap)
114 break;
115 rb = *b + (f->file_offset / td->o.min_bs[ddir]);
116 loops--;
117 } while (!random_map_free(td, f, rb) && loops);
118
119 /*
120 * if we failed to retrieve a truly random offset within
121 * the loops assigned, see if there are free ones left at all
122 */
123 if (!loops && get_next_free_block(td, f, b))
124 return 1;
125
126 return 0;
127}
128
129/*
130 * For random io, generate a random new block and see if it's used. Repeat
131 * until we find a free one. For sequential io, just return the end of
132 * the last io issued.
133 */
134static int get_next_offset(struct thread_data *td, struct io_u *io_u)
135{
136 struct fio_file *f = io_u->file;
137 const int ddir = io_u->ddir;
138 unsigned long long b;
139
140 if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) {
141 td->ddir_nr = td->o.ddir_nr;
142
143 if (get_next_rand_offset(td, f, ddir, &b))
144 return 1;
145 } else
146 b = f->last_pos / td->o.min_bs[ddir];
147
148 io_u->offset = (b * td->o.min_bs[ddir]) + f->file_offset;
149 if (io_u->offset >= f->real_file_size)
150 return 1;
151
152 return 0;
153}
154
155static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
156{
157 struct fio_file *f = io_u->file;
158 const int ddir = io_u->ddir;
159 unsigned int buflen;
160 long r;
161
162 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
163 buflen = td->o.min_bs[ddir];
164 else {
165 r = os_random_long(&td->bsrange_state);
166 buflen = (unsigned int) (1 + (double) (td->o.max_bs[ddir] - 1) * r / (RAND_MAX + 1.0));
167 if (!td->o.bs_unaligned)
168 buflen = (buflen + td->o.min_bs[ddir] - 1) & ~(td->o.min_bs[ddir] - 1);
169 }
170
171 while (buflen + io_u->offset > f->real_file_size) {
172 if (buflen == td->o.min_bs[ddir]) {
173 if (!td->o.odirect) {
174 assert(io_u->offset <= f->real_file_size);
175 buflen = f->real_file_size - io_u->offset;
176 return buflen;
177 }
178 return 0;
179 }
180
181 buflen = td->o.min_bs[ddir];
182 }
183
184 return buflen;
185}
186
187static void set_rwmix_bytes(struct thread_data *td)
188{
189 unsigned long long rbytes;
190 unsigned int diff;
191
192 /*
193 * we do time or byte based switch. this is needed because
194 * buffered writes may issue a lot quicker than they complete,
195 * whereas reads do not.
196 */
197 rbytes = td->io_bytes[td->rwmix_ddir] - td->rwmix_bytes;
198 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
199
200 td->rwmix_bytes = td->io_bytes[td->rwmix_ddir] + (rbytes * ((100 - diff)) / diff);
201}
202
203static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
204{
205 unsigned int v;
206 long r;
207
208 r = os_random_long(&td->rwmix_state);
209 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
210 if (v < td->o.rwmix[DDIR_READ])
211 return DDIR_READ;
212
213 return DDIR_WRITE;
214}
215
216/*
217 * Return the data direction for the next io_u. If the job is a
218 * mixed read/write workload, check the rwmix cycle and switch if
219 * necessary.
220 */
221static enum fio_ddir get_rw_ddir(struct thread_data *td)
222{
223 if (td_rw(td)) {
224 struct timeval now;
225 unsigned long elapsed;
226 unsigned int cycle;
227
228 fio_gettime(&now, NULL);
229 elapsed = mtime_since_now(&td->rwmix_switch);
230
231 /*
232 * if this is the first cycle, make it shorter
233 */
234 cycle = td->o.rwmixcycle;
235 if (!td->rwmix_bytes)
236 cycle /= 10;
237
238 /*
239 * Check if it's time to seed a new data direction.
240 */
241 if (elapsed >= cycle ||
242 td->io_bytes[td->rwmix_ddir] >= td->rwmix_bytes) {
243 unsigned long long max_bytes;
244 enum fio_ddir ddir;
245
246 /*
247 * Put a top limit on how many bytes we do for
248 * one data direction, to avoid overflowing the
249 * ranges too much
250 */
251 ddir = get_rand_ddir(td);
252 max_bytes = td->this_io_bytes[ddir];
253 if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) {
254 if (!td->rw_end_set[ddir]) {
255 td->rw_end_set[ddir] = 1;
256 memcpy(&td->rw_end[ddir], &now, sizeof(now));
257 }
258 ddir ^= 1;
259 }
260
261 if (ddir != td->rwmix_ddir)
262 set_rwmix_bytes(td);
263
264 td->rwmix_ddir = ddir;
265 memcpy(&td->rwmix_switch, &now, sizeof(now));
266 }
267 return td->rwmix_ddir;
268 } else if (td_read(td))
269 return DDIR_READ;
270 else
271 return DDIR_WRITE;
272}
273
274void put_io_u(struct thread_data *td, struct io_u *io_u)
275{
276 assert((io_u->flags & IO_U_F_FREE) == 0);
277 io_u->flags |= IO_U_F_FREE;
278
279 io_u->file = NULL;
280 list_del(&io_u->list);
281 list_add(&io_u->list, &td->io_u_freelist);
282 td->cur_depth--;
283}
284
285void requeue_io_u(struct thread_data *td, struct io_u **io_u)
286{
287 struct io_u *__io_u = *io_u;
288
289 __io_u->flags |= IO_U_F_FREE;
290 __io_u->flags &= ~IO_U_F_FLIGHT;
291
292 list_del(&__io_u->list);
293 list_add_tail(&__io_u->list, &td->io_u_requeues);
294 td->cur_depth--;
295 *io_u = NULL;
296}
297
298static int fill_io_u(struct thread_data *td, struct io_u *io_u)
299{
300 /*
301 * If using an iolog, grab next piece if any available.
302 */
303 if (td->o.read_iolog)
304 return read_iolog_get(td, io_u);
305
306 /*
307 * see if it's time to sync
308 */
309 if (td->o.fsync_blocks &&
310 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
311 td->io_issues[DDIR_WRITE] && should_fsync(td)) {
312 io_u->ddir = DDIR_SYNC;
313 goto out;
314 }
315
316 io_u->ddir = get_rw_ddir(td);
317
318 /*
319 * No log, let the seq/rand engine retrieve the next buflen and
320 * position.
321 */
322 if (get_next_offset(td, io_u))
323 return 1;
324
325 io_u->buflen = get_next_buflen(td, io_u);
326 if (!io_u->buflen)
327 return 1;
328
329 /*
330 * mark entry before potentially trimming io_u
331 */
332 if (td_random(td) && !td->o.norandommap)
333 mark_random_map(td, io_u);
334
335 /*
336 * If using a write iolog, store this entry.
337 */
338out:
339 if (td->o.write_iolog_file)
340 write_iolog_put(td, io_u);
341
342 return 0;
343}
344
345void io_u_mark_depth(struct thread_data *td, struct io_u *io_u)
346{
347 int index = 0;
348
349 if (io_u->ddir == DDIR_SYNC)
350 return;
351
352 switch (td->cur_depth) {
353 default:
354 index++;
355 case 32 ... 63:
356 index++;
357 case 16 ... 31:
358 index++;
359 case 8 ... 15:
360 index++;
361 case 4 ... 7:
362 index++;
363 case 2 ... 3:
364 index++;
365 case 1:
366 break;
367 }
368
369 td->ts.io_u_map[index]++;
370 td->ts.total_io_u[io_u->ddir]++;
371}
372
373static void io_u_mark_latency(struct thread_data *td, unsigned long msec)
374{
375 int index = 0;
376
377 switch (msec) {
378 default:
379 index++;
380 case 1000 ... 1999:
381 index++;
382 case 750 ... 999:
383 index++;
384 case 500 ... 749:
385 index++;
386 case 250 ... 499:
387 index++;
388 case 100 ... 249:
389 index++;
390 case 50 ... 99:
391 index++;
392 case 20 ... 49:
393 index++;
394 case 10 ... 19:
395 index++;
396 case 4 ... 9:
397 index++;
398 case 2 ... 3:
399 index++;
400 case 0 ... 1:
401 break;
402 }
403
404 td->ts.io_u_lat[index]++;
405}
406
407/*
408 * Get next file to service by choosing one at random
409 */
410static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf,
411 int badf)
412{
413 struct fio_file *f;
414 int fno;
415
416 do {
417 long r = os_random_long(&td->next_file_state);
418
419 fno = (unsigned int) ((double) td->o.nr_files * (r / (RAND_MAX + 1.0)));
420 f = &td->files[fno];
421
422 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
423 return f;
424 } while (1);
425}
426
427/*
428 * Get next file to service by doing round robin between all available ones
429 */
430static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
431 int badf)
432{
433 unsigned int old_next_file = td->next_file;
434 struct fio_file *f;
435
436 do {
437 f = &td->files[td->next_file];
438
439 td->next_file++;
440 if (td->next_file >= td->o.nr_files)
441 td->next_file = 0;
442
443 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
444 break;
445
446 f = NULL;
447 } while (td->next_file != old_next_file);
448
449 return f;
450}
451
452static struct fio_file *get_next_file(struct thread_data *td)
453{
454 struct fio_file *f;
455
456 assert(td->o.nr_files <= td->files_index);
457
458 if (!td->nr_open_files)
459 return NULL;
460
461 f = td->file_service_file;
462 if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--)
463 return f;
464
465 if (td->o.file_service_type == FIO_FSERVICE_RR)
466 f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
467 else
468 f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING);
469
470 td->file_service_file = f;
471 td->file_service_left = td->file_service_nr - 1;
472 return f;
473}
474
475static struct fio_file *find_next_new_file(struct thread_data *td)
476{
477 struct fio_file *f;
478
479 if (td->o.file_service_type == FIO_FSERVICE_RR)
480 f = get_next_file_rr(td, 0, FIO_FILE_OPEN);
481 else
482 f = get_next_file_rand(td, 0, FIO_FILE_OPEN);
483
484 return f;
485}
486
487struct io_u *__get_io_u(struct thread_data *td)
488{
489 struct io_u *io_u = NULL;
490
491 if (!list_empty(&td->io_u_requeues))
492 io_u = list_entry(td->io_u_requeues.next, struct io_u, list);
493 else if (!queue_full(td)) {
494 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
495
496 io_u->buflen = 0;
497 io_u->resid = 0;
498 io_u->file = NULL;
499 io_u->end_io = NULL;
500 }
501
502 if (io_u) {
503 assert(io_u->flags & IO_U_F_FREE);
504 io_u->flags &= ~IO_U_F_FREE;
505
506 io_u->error = 0;
507 list_del(&io_u->list);
508 list_add(&io_u->list, &td->io_u_busylist);
509 td->cur_depth++;
510 }
511
512 return io_u;
513}
514
515/*
516 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
517 * etc. The returned io_u is fully ready to be prepped and submitted.
518 */
519struct io_u *get_io_u(struct thread_data *td)
520{
521 struct fio_file *f;
522 struct io_u *io_u;
523 int ret;
524
525 io_u = __get_io_u(td);
526 if (!io_u)
527 return NULL;
528
529 /*
530 * from a requeue, io_u already setup
531 */
532 if (io_u->file)
533 goto out;
534
535 do {
536 f = get_next_file(td);
537 if (!f) {
538 put_io_u(td, io_u);
539 return NULL;
540 }
541
542set_file:
543 io_u->file = f;
544
545 if (!fill_io_u(td, io_u))
546 break;
547
548 /*
549 * No more to do for this file, close it
550 */
551 io_u->file = NULL;
552 td_io_close_file(td, f);
553
554 /*
555 * probably not the right place to do this, but see
556 * if we need to open a new file
557 */
558 if (td->nr_open_files < td->o.open_files &&
559 td->o.open_files != td->o.nr_files) {
560 f = find_next_new_file(td);
561
562 if (!f || (ret = td_io_open_file(td, f))) {
563 put_io_u(td, io_u);
564 return NULL;
565 }
566 goto set_file;
567 }
568 } while (1);
569
570 if (td->zone_bytes >= td->o.zone_size) {
571 td->zone_bytes = 0;
572 f->last_pos += td->o.zone_skip;
573 }
574
575 if (io_u->buflen + io_u->offset > f->real_file_size) {
576 if (td->io_ops->flags & FIO_RAWIO) {
577 put_io_u(td, io_u);
578 return NULL;
579 }
580
581 io_u->buflen = f->real_file_size - io_u->offset;
582 }
583
584 if (io_u->ddir != DDIR_SYNC) {
585 if (!io_u->buflen) {
586 put_io_u(td, io_u);
587 return NULL;
588 }
589
590 f->last_pos = io_u->offset + io_u->buflen;
591
592 if (td->o.verify != VERIFY_NONE)
593 populate_verify_io_u(td, io_u);
594 }
595
596 /*
597 * Set io data pointers.
598 */
599out:
600 io_u->xfer_buf = io_u->buf;
601 io_u->xfer_buflen = io_u->buflen;
602
603 if (td_io_prep(td, io_u)) {
604 put_io_u(td, io_u);
605 return NULL;
606 }
607
608 fio_gettime(&io_u->start_time, NULL);
609 return io_u;
610}
611
612void io_u_log_error(struct thread_data *td, struct io_u *io_u)
613{
614 const char *msg[] = { "read", "write", "sync" };
615
616 log_err("fio: io_u error");
617
618 if (io_u->file)
619 log_err(" on file %s", io_u->file->file_name);
620
621 log_err(": %s\n", strerror(io_u->error));
622
623 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen);
624
625 if (!td->error)
626 td_verror(td, io_u->error, "io_u error");
627}
628
629static void io_completed(struct thread_data *td, struct io_u *io_u,
630 struct io_completion_data *icd)
631{
632 unsigned long msec;
633
634 assert(io_u->flags & IO_U_F_FLIGHT);
635 io_u->flags &= ~IO_U_F_FLIGHT;
636
637 put_file(td, io_u->file);
638
639 if (io_u->ddir == DDIR_SYNC) {
640 td->last_was_sync = 1;
641 return;
642 }
643
644 td->last_was_sync = 0;
645
646 if (!io_u->error) {
647 unsigned int bytes = io_u->buflen - io_u->resid;
648 const enum fio_ddir idx = io_u->ddir;
649 int ret;
650
651 td->io_blocks[idx]++;
652 td->io_bytes[idx] += bytes;
653 td->zone_bytes += bytes;
654 td->this_io_bytes[idx] += bytes;
655
656 io_u->file->last_completed_pos = io_u->offset + io_u->buflen;
657
658 msec = mtime_since(&io_u->issue_time, &icd->time);
659
660 add_clat_sample(td, idx, msec);
661 add_bw_sample(td, idx, &icd->time);
662 io_u_mark_latency(td, msec);
663
664 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE &&
665 td->o.verify != VERIFY_NONE)
666 log_io_piece(td, io_u);
667
668 icd->bytes_done[idx] += bytes;
669
670 if (io_u->end_io) {
671 ret = io_u->end_io(td, io_u);
672 if (ret && !icd->error)
673 icd->error = ret;
674 }
675 } else {
676 icd->error = io_u->error;
677 io_u_log_error(td, io_u);
678 }
679}
680
681static void init_icd(struct io_completion_data *icd, int nr)
682{
683 fio_gettime(&icd->time, NULL);
684
685 icd->nr = nr;
686
687 icd->error = 0;
688 icd->bytes_done[0] = icd->bytes_done[1] = 0;
689}
690
691static void ios_completed(struct thread_data *td,
692 struct io_completion_data *icd)
693{
694 struct io_u *io_u;
695 int i;
696
697 for (i = 0; i < icd->nr; i++) {
698 io_u = td->io_ops->event(td, i);
699
700 io_completed(td, io_u, icd);
701 put_io_u(td, io_u);
702 }
703}
704
705/*
706 * Complete a single io_u for the sync engines.
707 */
708long io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
709{
710 struct io_completion_data icd;
711
712 init_icd(&icd, 1);
713 io_completed(td, io_u, &icd);
714 put_io_u(td, io_u);
715
716 if (!icd.error)
717 return icd.bytes_done[0] + icd.bytes_done[1];
718
719 td_verror(td, icd.error, "io_u_sync_complete");
720 return -1;
721}
722
723/*
724 * Called to complete min_events number of io for the async engines.
725 */
726long io_u_queued_complete(struct thread_data *td, int min_events)
727{
728 struct io_completion_data icd;
729 struct timespec *tvp = NULL;
730 int ret;
731 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
732
733 if (!min_events)
734 tvp = &ts;
735
736 ret = td_io_getevents(td, min_events, td->cur_depth, tvp);
737 if (ret < 0) {
738 td_verror(td, -ret, "td_io_getevents");
739 return ret;
740 } else if (!ret)
741 return ret;
742
743 init_icd(&icd, ret);
744 ios_completed(td, &icd);
745 if (!icd.error)
746 return icd.bytes_done[0] + icd.bytes_done[1];
747
748 td_verror(td, icd.error, "io_u_queued_complete");
749 return -1;
750}
751
752/*
753 * Call when io_u is really queued, to update the submission latency.
754 */
755void io_u_queued(struct thread_data *td, struct io_u *io_u)
756{
757 unsigned long slat_time;
758
759 slat_time = mtime_since(&io_u->start_time, &io_u->issue_time);
760 add_slat_sample(td, io_u->ddir, slat_time);
761}
762
763#ifdef FIO_USE_TIMEOUT
764void io_u_set_timeout(struct thread_data *td)
765{
766 assert(td->cur_depth);
767
768 td->timer.it_interval.tv_sec = 0;
769 td->timer.it_interval.tv_usec = 0;
770 td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC;
771 td->timer.it_value.tv_usec = 0;
772 setitimer(ITIMER_REAL, &td->timer, NULL);
773 fio_gettime(&td->timeout_end, NULL);
774}
775
776static void io_u_dump(struct io_u *io_u)
777{
778 unsigned long t_start = mtime_since_now(&io_u->start_time);
779 unsigned long t_issue = mtime_since_now(&io_u->issue_time);
780
781 log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue);
782 log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset);
783 log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name);
784}
785#else
786void io_u_set_timeout(struct thread_data fio_unused *td)
787{
788}
789#endif
790
791#ifdef FIO_USE_TIMEOUT
792static void io_u_timeout_handler(int fio_unused sig)
793{
794 struct thread_data *td, *__td;
795 pid_t pid = getpid();
796 struct list_head *entry;
797 struct io_u *io_u;
798 int i;
799
800 log_err("fio: io_u timeout\n");
801
802 /*
803 * TLS would be nice...
804 */
805 td = NULL;
806 for_each_td(__td, i) {
807 if (__td->pid == pid) {
808 td = __td;
809 break;
810 }
811 }
812
813 if (!td) {
814 log_err("fio: io_u timeout, can't find job\n");
815 exit(1);
816 }
817
818 if (!td->cur_depth) {
819 log_err("fio: timeout without pending work?\n");
820 return;
821 }
822
823 log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid);
824
825 list_for_each(entry, &td->io_u_busylist) {
826 io_u = list_entry(entry, struct io_u, list);
827
828 io_u_dump(io_u);
829 }
830
831 td_verror(td, ETIMEDOUT, "io_u timeout");
832 exit(1);
833}
834#endif
835
836void io_u_init_timeout(void)
837{
838#ifdef FIO_USE_TIMEOUT
839 signal(SIGALRM, io_u_timeout_handler);
840#endif
841}