Use ARRAY_SIZE()
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timeval time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.rw_min_bs;
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 */
66 max_size = f->io_size;
67 if (max_size > f->real_file_size)
68 max_size = f->real_file_size;
69
70 if (td->o.zone_range)
71 max_size = td->o.zone_range;
72
73 if (td->o.min_bs[ddir] > td->o.ba[ddir])
74 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
75
76 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
77 if (!max_blocks)
78 return 0;
79
80 return max_blocks;
81}
82
83struct rand_off {
84 struct flist_head list;
85 uint64_t off;
86};
87
88static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
89 enum fio_ddir ddir, uint64_t *b,
90 uint64_t lastb)
91{
92 uint64_t r;
93
94 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
95 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
96
97 r = __rand(&td->random_state);
98
99 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
100
101 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
102 } else {
103 uint64_t off = 0;
104
105 assert(fio_file_lfsr(f));
106
107 if (lfsr_next(&f->lfsr, &off))
108 return 1;
109
110 *b = off;
111 }
112
113 /*
114 * if we are not maintaining a random map, we are done.
115 */
116 if (!file_randommap(td, f))
117 goto ret;
118
119 /*
120 * calculate map offset and check if it's free
121 */
122 if (random_map_free(f, *b))
123 goto ret;
124
125 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
126 (unsigned long long) *b);
127
128 *b = axmap_next_free(f->io_axmap, *b);
129 if (*b == (uint64_t) -1ULL)
130 return 1;
131ret:
132 return 0;
133}
134
135static int __get_next_rand_offset_zipf(struct thread_data *td,
136 struct fio_file *f, enum fio_ddir ddir,
137 uint64_t *b)
138{
139 *b = zipf_next(&f->zipf);
140 return 0;
141}
142
143static int __get_next_rand_offset_pareto(struct thread_data *td,
144 struct fio_file *f, enum fio_ddir ddir,
145 uint64_t *b)
146{
147 *b = pareto_next(&f->zipf);
148 return 0;
149}
150
151static int __get_next_rand_offset_gauss(struct thread_data *td,
152 struct fio_file *f, enum fio_ddir ddir,
153 uint64_t *b)
154{
155 *b = gauss_next(&f->gauss);
156 return 0;
157}
158
159static int __get_next_rand_offset_zoned(struct thread_data *td,
160 struct fio_file *f, enum fio_ddir ddir,
161 uint64_t *b)
162{
163 unsigned int v, send, stotal;
164 uint64_t offset, lastb;
165 static int warned;
166 struct zone_split_index *zsi;
167
168 lastb = last_block(td, f, ddir);
169 if (!lastb)
170 return 1;
171
172 if (!td->o.zone_split_nr[ddir]) {
173bail:
174 return __get_next_rand_offset(td, f, ddir, b, lastb);
175 }
176
177 /*
178 * Generate a value, v, between 1 and 100, both inclusive
179 */
180 v = rand32_between(&td->zone_state, 1, 100);
181
182 zsi = &td->zone_state_index[ddir][v - 1];
183 stotal = zsi->size_perc_prev;
184 send = zsi->size_perc;
185
186 /*
187 * Should never happen
188 */
189 if (send == -1U) {
190 if (!warned) {
191 log_err("fio: bug in zoned generation\n");
192 warned = 1;
193 }
194 goto bail;
195 }
196
197 /*
198 * 'send' is some percentage below or equal to 100 that
199 * marks the end of the current IO range. 'stotal' marks
200 * the start, in percent.
201 */
202 if (stotal)
203 offset = stotal * lastb / 100ULL;
204 else
205 offset = 0;
206
207 lastb = lastb * (send - stotal) / 100ULL;
208
209 /*
210 * Generate index from 0..send-of-lastb
211 */
212 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
213 return 1;
214
215 /*
216 * Add our start offset, if any
217 */
218 if (offset)
219 *b += offset;
220
221 return 0;
222}
223
224static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
225{
226 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
227 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
228
229 return r1->off - r2->off;
230}
231
232static int get_off_from_method(struct thread_data *td, struct fio_file *f,
233 enum fio_ddir ddir, uint64_t *b)
234{
235 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
236 uint64_t lastb;
237
238 lastb = last_block(td, f, ddir);
239 if (!lastb)
240 return 1;
241
242 return __get_next_rand_offset(td, f, ddir, b, lastb);
243 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
244 return __get_next_rand_offset_zipf(td, f, ddir, b);
245 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
246 return __get_next_rand_offset_pareto(td, f, ddir, b);
247 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
248 return __get_next_rand_offset_gauss(td, f, ddir, b);
249 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
250 return __get_next_rand_offset_zoned(td, f, ddir, b);
251
252 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
253 return 1;
254}
255
256/*
257 * Sort the reads for a verify phase in batches of verifysort_nr, if
258 * specified.
259 */
260static inline bool should_sort_io(struct thread_data *td)
261{
262 if (!td->o.verifysort_nr || !td->o.do_verify)
263 return false;
264 if (!td_random(td))
265 return false;
266 if (td->runstate != TD_VERIFYING)
267 return false;
268 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
269 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
270 return false;
271
272 return true;
273}
274
275static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
276{
277 unsigned int v;
278
279 if (td->o.perc_rand[ddir] == 100)
280 return true;
281
282 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
283
284 return v <= td->o.perc_rand[ddir];
285}
286
287static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
288 enum fio_ddir ddir, uint64_t *b)
289{
290 struct rand_off *r;
291 int i, ret = 1;
292
293 if (!should_sort_io(td))
294 return get_off_from_method(td, f, ddir, b);
295
296 if (!flist_empty(&td->next_rand_list)) {
297fetch:
298 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
299 flist_del(&r->list);
300 *b = r->off;
301 free(r);
302 return 0;
303 }
304
305 for (i = 0; i < td->o.verifysort_nr; i++) {
306 r = malloc(sizeof(*r));
307
308 ret = get_off_from_method(td, f, ddir, &r->off);
309 if (ret) {
310 free(r);
311 break;
312 }
313
314 flist_add(&r->list, &td->next_rand_list);
315 }
316
317 if (ret && !i)
318 return ret;
319
320 assert(!flist_empty(&td->next_rand_list));
321 flist_sort(NULL, &td->next_rand_list, flist_cmp);
322 goto fetch;
323}
324
325static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
326 enum fio_ddir ddir, uint64_t *b)
327{
328 if (!get_next_rand_offset(td, f, ddir, b))
329 return 0;
330
331 if (td->o.time_based ||
332 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
333 fio_file_reset(td, f);
334 if (!get_next_rand_offset(td, f, ddir, b))
335 return 0;
336 }
337
338 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
339 f->file_name, (unsigned long long) f->last_pos[ddir],
340 (unsigned long long) f->real_file_size);
341 return 1;
342}
343
344static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
345 enum fio_ddir ddir, uint64_t *offset)
346{
347 struct thread_options *o = &td->o;
348
349 assert(ddir_rw(ddir));
350
351 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
352 o->time_based) {
353 struct thread_options *o = &td->o;
354 uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
355
356 if (io_size > f->last_pos[ddir])
357 f->last_pos[ddir] = 0;
358 else
359 f->last_pos[ddir] = f->last_pos[ddir] - io_size;
360 }
361
362 if (f->last_pos[ddir] < f->real_file_size) {
363 uint64_t pos;
364
365 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
366 if (f->real_file_size > f->io_size)
367 f->last_pos[ddir] = f->io_size;
368 else
369 f->last_pos[ddir] = f->real_file_size;
370 }
371
372 pos = f->last_pos[ddir] - f->file_offset;
373 if (pos && o->ddir_seq_add) {
374 pos += o->ddir_seq_add;
375
376 /*
377 * If we reach beyond the end of the file
378 * with holed IO, wrap around to the
379 * beginning again. If we're doing backwards IO,
380 * wrap to the end.
381 */
382 if (pos >= f->real_file_size) {
383 if (o->ddir_seq_add > 0)
384 pos = f->file_offset;
385 else {
386 if (f->real_file_size > f->io_size)
387 pos = f->io_size;
388 else
389 pos = f->real_file_size;
390
391 pos += o->ddir_seq_add;
392 }
393 }
394 }
395
396 *offset = pos;
397 return 0;
398 }
399
400 return 1;
401}
402
403static int get_next_block(struct thread_data *td, struct io_u *io_u,
404 enum fio_ddir ddir, int rw_seq,
405 unsigned int *is_random)
406{
407 struct fio_file *f = io_u->file;
408 uint64_t b, offset;
409 int ret;
410
411 assert(ddir_rw(ddir));
412
413 b = offset = -1ULL;
414
415 if (rw_seq) {
416 if (td_random(td)) {
417 if (should_do_random(td, ddir)) {
418 ret = get_next_rand_block(td, f, ddir, &b);
419 *is_random = 1;
420 } else {
421 *is_random = 0;
422 io_u_set(td, io_u, IO_U_F_BUSY_OK);
423 ret = get_next_seq_offset(td, f, ddir, &offset);
424 if (ret)
425 ret = get_next_rand_block(td, f, ddir, &b);
426 }
427 } else {
428 *is_random = 0;
429 ret = get_next_seq_offset(td, f, ddir, &offset);
430 }
431 } else {
432 io_u_set(td, io_u, IO_U_F_BUSY_OK);
433 *is_random = 0;
434
435 if (td->o.rw_seq == RW_SEQ_SEQ) {
436 ret = get_next_seq_offset(td, f, ddir, &offset);
437 if (ret) {
438 ret = get_next_rand_block(td, f, ddir, &b);
439 *is_random = 0;
440 }
441 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
442 if (f->last_start[ddir] != -1ULL)
443 offset = f->last_start[ddir] - f->file_offset;
444 else
445 offset = 0;
446 ret = 0;
447 } else {
448 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
449 ret = 1;
450 }
451 }
452
453 if (!ret) {
454 if (offset != -1ULL)
455 io_u->offset = offset;
456 else if (b != -1ULL)
457 io_u->offset = b * td->o.ba[ddir];
458 else {
459 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
460 ret = 1;
461 }
462 }
463
464 return ret;
465}
466
467/*
468 * For random io, generate a random new block and see if it's used. Repeat
469 * until we find a free one. For sequential io, just return the end of
470 * the last io issued.
471 */
472static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
473 unsigned int *is_random)
474{
475 struct fio_file *f = io_u->file;
476 enum fio_ddir ddir = io_u->ddir;
477 int rw_seq_hit = 0;
478
479 assert(ddir_rw(ddir));
480
481 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
482 rw_seq_hit = 1;
483 td->ddir_seq_nr = td->o.ddir_seq_nr;
484 }
485
486 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
487 return 1;
488
489 if (io_u->offset >= f->io_size) {
490 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
491 (unsigned long long) io_u->offset,
492 (unsigned long long) f->io_size);
493 return 1;
494 }
495
496 io_u->offset += f->file_offset;
497 if (io_u->offset >= f->real_file_size) {
498 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
499 (unsigned long long) io_u->offset,
500 (unsigned long long) f->real_file_size);
501 return 1;
502 }
503
504 return 0;
505}
506
507static int get_next_offset(struct thread_data *td, struct io_u *io_u,
508 unsigned int *is_random)
509{
510 if (td->flags & TD_F_PROFILE_OPS) {
511 struct prof_io_ops *ops = &td->prof_io_ops;
512
513 if (ops->fill_io_u_off)
514 return ops->fill_io_u_off(td, io_u, is_random);
515 }
516
517 return __get_next_offset(td, io_u, is_random);
518}
519
520static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
521 unsigned int buflen)
522{
523 struct fio_file *f = io_u->file;
524
525 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
526}
527
528static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
529 unsigned int is_random)
530{
531 int ddir = io_u->ddir;
532 unsigned int buflen = 0;
533 unsigned int minbs, maxbs;
534 uint64_t frand_max, r;
535
536 assert(ddir_rw(ddir));
537
538 if (td->o.bs_is_seq_rand)
539 ddir = is_random ? DDIR_WRITE: DDIR_READ;
540
541 minbs = td->o.min_bs[ddir];
542 maxbs = td->o.max_bs[ddir];
543
544 if (minbs == maxbs)
545 return minbs;
546
547 /*
548 * If we can't satisfy the min block size from here, then fail
549 */
550 if (!io_u_fits(td, io_u, minbs))
551 return 0;
552
553 frand_max = rand_max(&td->bsrange_state);
554 do {
555 r = __rand(&td->bsrange_state);
556
557 if (!td->o.bssplit_nr[ddir]) {
558 buflen = 1 + (unsigned int) ((double) maxbs *
559 (r / (frand_max + 1.0)));
560 if (buflen < minbs)
561 buflen = minbs;
562 } else {
563 long long perc = 0;
564 unsigned int i;
565
566 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
567 struct bssplit *bsp = &td->o.bssplit[ddir][i];
568
569 buflen = bsp->bs;
570 perc += bsp->perc;
571 if (!perc)
572 break;
573 if ((r / perc <= frand_max / 100ULL) &&
574 io_u_fits(td, io_u, buflen))
575 break;
576 }
577 }
578
579 if (!td->o.bs_unaligned && is_power_of_2(minbs))
580 buflen &= ~(minbs - 1);
581
582 } while (!io_u_fits(td, io_u, buflen));
583
584 return buflen;
585}
586
587static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
588 unsigned int is_random)
589{
590 if (td->flags & TD_F_PROFILE_OPS) {
591 struct prof_io_ops *ops = &td->prof_io_ops;
592
593 if (ops->fill_io_u_size)
594 return ops->fill_io_u_size(td, io_u, is_random);
595 }
596
597 return __get_next_buflen(td, io_u, is_random);
598}
599
600static void set_rwmix_bytes(struct thread_data *td)
601{
602 unsigned int diff;
603
604 /*
605 * we do time or byte based switch. this is needed because
606 * buffered writes may issue a lot quicker than they complete,
607 * whereas reads do not.
608 */
609 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
610 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
611}
612
613static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
614{
615 unsigned int v;
616
617 v = rand32_between(&td->rwmix_state, 1, 100);
618
619 if (v <= td->o.rwmix[DDIR_READ])
620 return DDIR_READ;
621
622 return DDIR_WRITE;
623}
624
625int io_u_quiesce(struct thread_data *td)
626{
627 int completed = 0;
628
629 /*
630 * We are going to sleep, ensure that we flush anything pending as
631 * not to skew our latency numbers.
632 *
633 * Changed to only monitor 'in flight' requests here instead of the
634 * td->cur_depth, b/c td->cur_depth does not accurately represent
635 * io's that have been actually submitted to an async engine,
636 * and cur_depth is meaningless for sync engines.
637 */
638 if (td->io_u_queued || td->cur_depth) {
639 int fio_unused ret;
640
641 ret = td_io_commit(td);
642 }
643
644 while (td->io_u_in_flight) {
645 int fio_unused ret;
646
647 ret = io_u_queued_complete(td, 1);
648 if (ret > 0)
649 completed += ret;
650 }
651
652 if (td->flags & TD_F_REGROW_LOGS)
653 regrow_logs(td);
654
655 return completed;
656}
657
658static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
659{
660 enum fio_ddir odir = ddir ^ 1;
661 long usec;
662 uint64_t now;
663
664 assert(ddir_rw(ddir));
665 now = utime_since_now(&td->start);
666
667 /*
668 * if rate_next_io_time is in the past, need to catch up to rate
669 */
670 if (td->rate_next_io_time[ddir] <= now)
671 return ddir;
672
673 /*
674 * We are ahead of rate in this direction. See if we
675 * should switch.
676 */
677 if (td_rw(td) && td->o.rwmix[odir]) {
678 /*
679 * Other direction is behind rate, switch
680 */
681 if (td->rate_next_io_time[odir] <= now)
682 return odir;
683
684 /*
685 * Both directions are ahead of rate. sleep the min
686 * switch if necissary
687 */
688 if (td->rate_next_io_time[ddir] <=
689 td->rate_next_io_time[odir]) {
690 usec = td->rate_next_io_time[ddir] - now;
691 } else {
692 usec = td->rate_next_io_time[odir] - now;
693 ddir = odir;
694 }
695 } else
696 usec = td->rate_next_io_time[ddir] - now;
697
698 if (td->o.io_submit_mode == IO_MODE_INLINE)
699 io_u_quiesce(td);
700
701 usec = usec_sleep(td, usec);
702
703 return ddir;
704}
705
706/*
707 * Return the data direction for the next io_u. If the job is a
708 * mixed read/write workload, check the rwmix cycle and switch if
709 * necessary.
710 */
711static enum fio_ddir get_rw_ddir(struct thread_data *td)
712{
713 enum fio_ddir ddir;
714
715 /*
716 * see if it's time to fsync
717 */
718 if (td->o.fsync_blocks &&
719 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
720 td->io_issues[DDIR_WRITE] && should_fsync(td))
721 return DDIR_SYNC;
722
723 /*
724 * see if it's time to fdatasync
725 */
726 if (td->o.fdatasync_blocks &&
727 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
728 td->io_issues[DDIR_WRITE] && should_fsync(td))
729 return DDIR_DATASYNC;
730
731 /*
732 * see if it's time to sync_file_range
733 */
734 if (td->sync_file_range_nr &&
735 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
736 td->io_issues[DDIR_WRITE] && should_fsync(td))
737 return DDIR_SYNC_FILE_RANGE;
738
739 if (td_rw(td)) {
740 /*
741 * Check if it's time to seed a new data direction.
742 */
743 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
744 /*
745 * Put a top limit on how many bytes we do for
746 * one data direction, to avoid overflowing the
747 * ranges too much
748 */
749 ddir = get_rand_ddir(td);
750
751 if (ddir != td->rwmix_ddir)
752 set_rwmix_bytes(td);
753
754 td->rwmix_ddir = ddir;
755 }
756 ddir = td->rwmix_ddir;
757 } else if (td_read(td))
758 ddir = DDIR_READ;
759 else if (td_write(td))
760 ddir = DDIR_WRITE;
761 else
762 ddir = DDIR_TRIM;
763
764 td->rwmix_ddir = rate_ddir(td, ddir);
765 return td->rwmix_ddir;
766}
767
768static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
769{
770 enum fio_ddir ddir = get_rw_ddir(td);
771
772 if (td_trimwrite(td)) {
773 struct fio_file *f = io_u->file;
774 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
775 ddir = DDIR_TRIM;
776 else
777 ddir = DDIR_WRITE;
778 }
779
780 io_u->ddir = io_u->acct_ddir = ddir;
781
782 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
783 td->o.barrier_blocks &&
784 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
785 td->io_issues[DDIR_WRITE])
786 io_u_set(td, io_u, IO_U_F_BARRIER);
787}
788
789void put_file_log(struct thread_data *td, struct fio_file *f)
790{
791 unsigned int ret = put_file(td, f);
792
793 if (ret)
794 td_verror(td, ret, "file close");
795}
796
797void put_io_u(struct thread_data *td, struct io_u *io_u)
798{
799 if (td->parent)
800 td = td->parent;
801
802 td_io_u_lock(td);
803
804 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
805 put_file_log(td, io_u->file);
806
807 io_u->file = NULL;
808 io_u_set(td, io_u, IO_U_F_FREE);
809
810 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
811 td->cur_depth--;
812 assert(!(td->flags & TD_F_CHILD));
813 }
814 io_u_qpush(&td->io_u_freelist, io_u);
815 td_io_u_unlock(td);
816 td_io_u_free_notify(td);
817}
818
819void clear_io_u(struct thread_data *td, struct io_u *io_u)
820{
821 io_u_clear(td, io_u, IO_U_F_FLIGHT);
822 put_io_u(td, io_u);
823}
824
825void requeue_io_u(struct thread_data *td, struct io_u **io_u)
826{
827 struct io_u *__io_u = *io_u;
828 enum fio_ddir ddir = acct_ddir(__io_u);
829
830 dprint(FD_IO, "requeue %p\n", __io_u);
831
832 if (td->parent)
833 td = td->parent;
834
835 td_io_u_lock(td);
836
837 io_u_set(td, __io_u, IO_U_F_FREE);
838 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
839 td->io_issues[ddir]--;
840
841 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
842 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
843 td->cur_depth--;
844 assert(!(td->flags & TD_F_CHILD));
845 }
846
847 io_u_rpush(&td->io_u_requeues, __io_u);
848 td_io_u_unlock(td);
849 td_io_u_free_notify(td);
850 *io_u = NULL;
851}
852
853static int fill_io_u(struct thread_data *td, struct io_u *io_u)
854{
855 unsigned int is_random;
856
857 if (td_ioengine_flagged(td, FIO_NOIO))
858 goto out;
859
860 set_rw_ddir(td, io_u);
861
862 /*
863 * fsync() or fdatasync() or trim etc, we are done
864 */
865 if (!ddir_rw(io_u->ddir))
866 goto out;
867
868 /*
869 * See if it's time to switch to a new zone
870 */
871 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
872 struct fio_file *f = io_u->file;
873
874 td->zone_bytes = 0;
875 f->file_offset += td->o.zone_range + td->o.zone_skip;
876
877 /*
878 * Wrap from the beginning, if we exceed the file size
879 */
880 if (f->file_offset >= f->real_file_size)
881 f->file_offset = f->real_file_size - f->file_offset;
882 f->last_pos[io_u->ddir] = f->file_offset;
883 td->io_skip_bytes += td->o.zone_skip;
884 }
885
886 /*
887 * No log, let the seq/rand engine retrieve the next buflen and
888 * position.
889 */
890 if (get_next_offset(td, io_u, &is_random)) {
891 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
892 return 1;
893 }
894
895 io_u->buflen = get_next_buflen(td, io_u, is_random);
896 if (!io_u->buflen) {
897 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
898 return 1;
899 }
900
901 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
902 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
903 dprint(FD_IO, " off=%llu/%lu > %llu\n",
904 (unsigned long long) io_u->offset, io_u->buflen,
905 (unsigned long long) io_u->file->real_file_size);
906 return 1;
907 }
908
909 /*
910 * mark entry before potentially trimming io_u
911 */
912 if (td_random(td) && file_randommap(td, io_u->file))
913 mark_random_map(td, io_u);
914
915out:
916 dprint_io_u(io_u, "fill_io_u");
917 td->zone_bytes += io_u->buflen;
918 return 0;
919}
920
921static void __io_u_mark_map(unsigned int *map, unsigned int nr)
922{
923 int idx = 0;
924
925 switch (nr) {
926 default:
927 idx = 6;
928 break;
929 case 33 ... 64:
930 idx = 5;
931 break;
932 case 17 ... 32:
933 idx = 4;
934 break;
935 case 9 ... 16:
936 idx = 3;
937 break;
938 case 5 ... 8:
939 idx = 2;
940 break;
941 case 1 ... 4:
942 idx = 1;
943 case 0:
944 break;
945 }
946
947 map[idx]++;
948}
949
950void io_u_mark_submit(struct thread_data *td, unsigned int nr)
951{
952 __io_u_mark_map(td->ts.io_u_submit, nr);
953 td->ts.total_submit++;
954}
955
956void io_u_mark_complete(struct thread_data *td, unsigned int nr)
957{
958 __io_u_mark_map(td->ts.io_u_complete, nr);
959 td->ts.total_complete++;
960}
961
962void io_u_mark_depth(struct thread_data *td, unsigned int nr)
963{
964 int idx = 0;
965
966 switch (td->cur_depth) {
967 default:
968 idx = 6;
969 break;
970 case 32 ... 63:
971 idx = 5;
972 break;
973 case 16 ... 31:
974 idx = 4;
975 break;
976 case 8 ... 15:
977 idx = 3;
978 break;
979 case 4 ... 7:
980 idx = 2;
981 break;
982 case 2 ... 3:
983 idx = 1;
984 case 1:
985 break;
986 }
987
988 td->ts.io_u_map[idx] += nr;
989}
990
991static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
992{
993 int idx = 0;
994
995 assert(usec < 1000);
996
997 switch (usec) {
998 case 750 ... 999:
999 idx = 9;
1000 break;
1001 case 500 ... 749:
1002 idx = 8;
1003 break;
1004 case 250 ... 499:
1005 idx = 7;
1006 break;
1007 case 100 ... 249:
1008 idx = 6;
1009 break;
1010 case 50 ... 99:
1011 idx = 5;
1012 break;
1013 case 20 ... 49:
1014 idx = 4;
1015 break;
1016 case 10 ... 19:
1017 idx = 3;
1018 break;
1019 case 4 ... 9:
1020 idx = 2;
1021 break;
1022 case 2 ... 3:
1023 idx = 1;
1024 case 0 ... 1:
1025 break;
1026 }
1027
1028 assert(idx < FIO_IO_U_LAT_U_NR);
1029 td->ts.io_u_lat_u[idx]++;
1030}
1031
1032static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
1033{
1034 int idx = 0;
1035
1036 switch (msec) {
1037 default:
1038 idx = 11;
1039 break;
1040 case 1000 ... 1999:
1041 idx = 10;
1042 break;
1043 case 750 ... 999:
1044 idx = 9;
1045 break;
1046 case 500 ... 749:
1047 idx = 8;
1048 break;
1049 case 250 ... 499:
1050 idx = 7;
1051 break;
1052 case 100 ... 249:
1053 idx = 6;
1054 break;
1055 case 50 ... 99:
1056 idx = 5;
1057 break;
1058 case 20 ... 49:
1059 idx = 4;
1060 break;
1061 case 10 ... 19:
1062 idx = 3;
1063 break;
1064 case 4 ... 9:
1065 idx = 2;
1066 break;
1067 case 2 ... 3:
1068 idx = 1;
1069 case 0 ... 1:
1070 break;
1071 }
1072
1073 assert(idx < FIO_IO_U_LAT_M_NR);
1074 td->ts.io_u_lat_m[idx]++;
1075}
1076
1077static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
1078{
1079 if (usec < 1000)
1080 io_u_mark_lat_usec(td, usec);
1081 else
1082 io_u_mark_lat_msec(td, usec / 1000);
1083}
1084
1085static unsigned int __get_next_fileno_rand(struct thread_data *td)
1086{
1087 unsigned long fileno;
1088
1089 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1090 uint64_t frand_max = rand_max(&td->next_file_state);
1091 unsigned long r;
1092
1093 r = __rand(&td->next_file_state);
1094 return (unsigned int) ((double) td->o.nr_files
1095 * (r / (frand_max + 1.0)));
1096 }
1097
1098 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1099 fileno = zipf_next(&td->next_file_zipf);
1100 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1101 fileno = pareto_next(&td->next_file_zipf);
1102 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1103 fileno = gauss_next(&td->next_file_gauss);
1104 else {
1105 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1106 assert(0);
1107 return 0;
1108 }
1109
1110 return fileno >> FIO_FSERVICE_SHIFT;
1111}
1112
1113/*
1114 * Get next file to service by choosing one at random
1115 */
1116static struct fio_file *get_next_file_rand(struct thread_data *td,
1117 enum fio_file_flags goodf,
1118 enum fio_file_flags badf)
1119{
1120 struct fio_file *f;
1121 int fno;
1122
1123 do {
1124 int opened = 0;
1125
1126 fno = __get_next_fileno_rand(td);
1127
1128 f = td->files[fno];
1129 if (fio_file_done(f))
1130 continue;
1131
1132 if (!fio_file_open(f)) {
1133 int err;
1134
1135 if (td->nr_open_files >= td->o.open_files)
1136 return ERR_PTR(-EBUSY);
1137
1138 err = td_io_open_file(td, f);
1139 if (err)
1140 continue;
1141 opened = 1;
1142 }
1143
1144 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1145 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1146 return f;
1147 }
1148 if (opened)
1149 td_io_close_file(td, f);
1150 } while (1);
1151}
1152
1153/*
1154 * Get next file to service by doing round robin between all available ones
1155 */
1156static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1157 int badf)
1158{
1159 unsigned int old_next_file = td->next_file;
1160 struct fio_file *f;
1161
1162 do {
1163 int opened = 0;
1164
1165 f = td->files[td->next_file];
1166
1167 td->next_file++;
1168 if (td->next_file >= td->o.nr_files)
1169 td->next_file = 0;
1170
1171 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1172 if (fio_file_done(f)) {
1173 f = NULL;
1174 continue;
1175 }
1176
1177 if (!fio_file_open(f)) {
1178 int err;
1179
1180 if (td->nr_open_files >= td->o.open_files)
1181 return ERR_PTR(-EBUSY);
1182
1183 err = td_io_open_file(td, f);
1184 if (err) {
1185 dprint(FD_FILE, "error %d on open of %s\n",
1186 err, f->file_name);
1187 f = NULL;
1188 continue;
1189 }
1190 opened = 1;
1191 }
1192
1193 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1194 f->flags);
1195 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1196 break;
1197
1198 if (opened)
1199 td_io_close_file(td, f);
1200
1201 f = NULL;
1202 } while (td->next_file != old_next_file);
1203
1204 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1205 return f;
1206}
1207
1208static struct fio_file *__get_next_file(struct thread_data *td)
1209{
1210 struct fio_file *f;
1211
1212 assert(td->o.nr_files <= td->files_index);
1213
1214 if (td->nr_done_files >= td->o.nr_files) {
1215 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1216 " nr_files=%d\n", td->nr_open_files,
1217 td->nr_done_files,
1218 td->o.nr_files);
1219 return NULL;
1220 }
1221
1222 f = td->file_service_file;
1223 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1224 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1225 goto out;
1226 if (td->file_service_left--)
1227 goto out;
1228 }
1229
1230 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1231 td->o.file_service_type == FIO_FSERVICE_SEQ)
1232 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1233 else
1234 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1235
1236 if (IS_ERR(f))
1237 return f;
1238
1239 td->file_service_file = f;
1240 td->file_service_left = td->file_service_nr - 1;
1241out:
1242 if (f)
1243 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1244 else
1245 dprint(FD_FILE, "get_next_file: NULL\n");
1246 return f;
1247}
1248
1249static struct fio_file *get_next_file(struct thread_data *td)
1250{
1251 if (td->flags & TD_F_PROFILE_OPS) {
1252 struct prof_io_ops *ops = &td->prof_io_ops;
1253
1254 if (ops->get_next_file)
1255 return ops->get_next_file(td);
1256 }
1257
1258 return __get_next_file(td);
1259}
1260
1261static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1262{
1263 struct fio_file *f;
1264
1265 do {
1266 f = get_next_file(td);
1267 if (IS_ERR_OR_NULL(f))
1268 return PTR_ERR(f);
1269
1270 io_u->file = f;
1271 get_file(f);
1272
1273 if (!fill_io_u(td, io_u))
1274 break;
1275
1276 put_file_log(td, f);
1277 td_io_close_file(td, f);
1278 io_u->file = NULL;
1279 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1280 fio_file_reset(td, f);
1281 else {
1282 fio_file_set_done(f);
1283 td->nr_done_files++;
1284 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1285 td->nr_done_files, td->o.nr_files);
1286 }
1287 } while (1);
1288
1289 return 0;
1290}
1291
1292static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1293 unsigned long tusec, unsigned long max_usec)
1294{
1295 if (!td->error)
1296 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1297 td_verror(td, ETIMEDOUT, "max latency exceeded");
1298 icd->error = ETIMEDOUT;
1299}
1300
1301static void lat_new_cycle(struct thread_data *td)
1302{
1303 fio_gettime(&td->latency_ts, NULL);
1304 td->latency_ios = ddir_rw_sum(td->io_blocks);
1305 td->latency_failed = 0;
1306}
1307
1308/*
1309 * We had an IO outside the latency target. Reduce the queue depth. If we
1310 * are at QD=1, then it's time to give up.
1311 */
1312static bool __lat_target_failed(struct thread_data *td)
1313{
1314 if (td->latency_qd == 1)
1315 return true;
1316
1317 td->latency_qd_high = td->latency_qd;
1318
1319 if (td->latency_qd == td->latency_qd_low)
1320 td->latency_qd_low--;
1321
1322 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1323
1324 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1325
1326 /*
1327 * When we ramp QD down, quiesce existing IO to prevent
1328 * a storm of ramp downs due to pending higher depth.
1329 */
1330 io_u_quiesce(td);
1331 lat_new_cycle(td);
1332 return false;
1333}
1334
1335static bool lat_target_failed(struct thread_data *td)
1336{
1337 if (td->o.latency_percentile.u.f == 100.0)
1338 return __lat_target_failed(td);
1339
1340 td->latency_failed++;
1341 return false;
1342}
1343
1344void lat_target_init(struct thread_data *td)
1345{
1346 td->latency_end_run = 0;
1347
1348 if (td->o.latency_target) {
1349 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1350 fio_gettime(&td->latency_ts, NULL);
1351 td->latency_qd = 1;
1352 td->latency_qd_high = td->o.iodepth;
1353 td->latency_qd_low = 1;
1354 td->latency_ios = ddir_rw_sum(td->io_blocks);
1355 } else
1356 td->latency_qd = td->o.iodepth;
1357}
1358
1359void lat_target_reset(struct thread_data *td)
1360{
1361 if (!td->latency_end_run)
1362 lat_target_init(td);
1363}
1364
1365static void lat_target_success(struct thread_data *td)
1366{
1367 const unsigned int qd = td->latency_qd;
1368 struct thread_options *o = &td->o;
1369
1370 td->latency_qd_low = td->latency_qd;
1371
1372 /*
1373 * If we haven't failed yet, we double up to a failing value instead
1374 * of bisecting from highest possible queue depth. If we have set
1375 * a limit other than td->o.iodepth, bisect between that.
1376 */
1377 if (td->latency_qd_high != o->iodepth)
1378 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1379 else
1380 td->latency_qd *= 2;
1381
1382 if (td->latency_qd > o->iodepth)
1383 td->latency_qd = o->iodepth;
1384
1385 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1386
1387 /*
1388 * Same as last one, we are done. Let it run a latency cycle, so
1389 * we get only the results from the targeted depth.
1390 */
1391 if (td->latency_qd == qd) {
1392 if (td->latency_end_run) {
1393 dprint(FD_RATE, "We are done\n");
1394 td->done = 1;
1395 } else {
1396 dprint(FD_RATE, "Quiesce and final run\n");
1397 io_u_quiesce(td);
1398 td->latency_end_run = 1;
1399 reset_all_stats(td);
1400 reset_io_stats(td);
1401 }
1402 }
1403
1404 lat_new_cycle(td);
1405}
1406
1407/*
1408 * Check if we can bump the queue depth
1409 */
1410void lat_target_check(struct thread_data *td)
1411{
1412 uint64_t usec_window;
1413 uint64_t ios;
1414 double success_ios;
1415
1416 usec_window = utime_since_now(&td->latency_ts);
1417 if (usec_window < td->o.latency_window)
1418 return;
1419
1420 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1421 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1422 success_ios *= 100.0;
1423
1424 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1425
1426 if (success_ios >= td->o.latency_percentile.u.f)
1427 lat_target_success(td);
1428 else
1429 __lat_target_failed(td);
1430}
1431
1432/*
1433 * If latency target is enabled, we might be ramping up or down and not
1434 * using the full queue depth available.
1435 */
1436bool queue_full(const struct thread_data *td)
1437{
1438 const int qempty = io_u_qempty(&td->io_u_freelist);
1439
1440 if (qempty)
1441 return true;
1442 if (!td->o.latency_target)
1443 return false;
1444
1445 return td->cur_depth >= td->latency_qd;
1446}
1447
1448struct io_u *__get_io_u(struct thread_data *td)
1449{
1450 struct io_u *io_u = NULL;
1451
1452 if (td->stop_io)
1453 return NULL;
1454
1455 td_io_u_lock(td);
1456
1457again:
1458 if (!io_u_rempty(&td->io_u_requeues))
1459 io_u = io_u_rpop(&td->io_u_requeues);
1460 else if (!queue_full(td)) {
1461 io_u = io_u_qpop(&td->io_u_freelist);
1462
1463 io_u->file = NULL;
1464 io_u->buflen = 0;
1465 io_u->resid = 0;
1466 io_u->end_io = NULL;
1467 }
1468
1469 if (io_u) {
1470 assert(io_u->flags & IO_U_F_FREE);
1471 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1472 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1473 IO_U_F_VER_LIST);
1474
1475 io_u->error = 0;
1476 io_u->acct_ddir = -1;
1477 td->cur_depth++;
1478 assert(!(td->flags & TD_F_CHILD));
1479 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1480 io_u->ipo = NULL;
1481 } else if (td_async_processing(td)) {
1482 /*
1483 * We ran out, wait for async verify threads to finish and
1484 * return one
1485 */
1486 assert(!(td->flags & TD_F_CHILD));
1487 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1488 goto again;
1489 }
1490
1491 td_io_u_unlock(td);
1492 return io_u;
1493}
1494
1495static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1496{
1497 if (!(td->flags & TD_F_TRIM_BACKLOG))
1498 return false;
1499
1500 if (td->trim_entries) {
1501 int get_trim = 0;
1502
1503 if (td->trim_batch) {
1504 td->trim_batch--;
1505 get_trim = 1;
1506 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1507 td->last_ddir != DDIR_READ) {
1508 td->trim_batch = td->o.trim_batch;
1509 if (!td->trim_batch)
1510 td->trim_batch = td->o.trim_backlog;
1511 get_trim = 1;
1512 }
1513
1514 if (get_trim && get_next_trim(td, io_u))
1515 return true;
1516 }
1517
1518 return false;
1519}
1520
1521static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1522{
1523 if (!(td->flags & TD_F_VER_BACKLOG))
1524 return false;
1525
1526 if (td->io_hist_len) {
1527 int get_verify = 0;
1528
1529 if (td->verify_batch)
1530 get_verify = 1;
1531 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1532 td->last_ddir != DDIR_READ) {
1533 td->verify_batch = td->o.verify_batch;
1534 if (!td->verify_batch)
1535 td->verify_batch = td->o.verify_backlog;
1536 get_verify = 1;
1537 }
1538
1539 if (get_verify && !get_next_verify(td, io_u)) {
1540 td->verify_batch--;
1541 return true;
1542 }
1543 }
1544
1545 return false;
1546}
1547
1548/*
1549 * Fill offset and start time into the buffer content, to prevent too
1550 * easy compressible data for simple de-dupe attempts. Do this for every
1551 * 512b block in the range, since that should be the smallest block size
1552 * we can expect from a device.
1553 */
1554static void small_content_scramble(struct io_u *io_u)
1555{
1556 unsigned int i, nr_blocks = io_u->buflen / 512;
1557 uint64_t boffset;
1558 unsigned int offset;
1559 void *p, *end;
1560
1561 if (!nr_blocks)
1562 return;
1563
1564 p = io_u->xfer_buf;
1565 boffset = io_u->offset;
1566 io_u->buf_filled_len = 0;
1567
1568 for (i = 0; i < nr_blocks; i++) {
1569 /*
1570 * Fill the byte offset into a "random" start offset of
1571 * the buffer, given by the product of the usec time
1572 * and the actual offset.
1573 */
1574 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1575 offset &= ~(sizeof(uint64_t) - 1);
1576 if (offset >= 512 - sizeof(uint64_t))
1577 offset -= sizeof(uint64_t);
1578 memcpy(p + offset, &boffset, sizeof(boffset));
1579
1580 end = p + 512 - sizeof(io_u->start_time);
1581 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1582 p += 512;
1583 boffset += 512;
1584 }
1585}
1586
1587/*
1588 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1589 * etc. The returned io_u is fully ready to be prepped and submitted.
1590 */
1591struct io_u *get_io_u(struct thread_data *td)
1592{
1593 struct fio_file *f;
1594 struct io_u *io_u;
1595 int do_scramble = 0;
1596 long ret = 0;
1597
1598 io_u = __get_io_u(td);
1599 if (!io_u) {
1600 dprint(FD_IO, "__get_io_u failed\n");
1601 return NULL;
1602 }
1603
1604 if (check_get_verify(td, io_u))
1605 goto out;
1606 if (check_get_trim(td, io_u))
1607 goto out;
1608
1609 /*
1610 * from a requeue, io_u already setup
1611 */
1612 if (io_u->file)
1613 goto out;
1614
1615 /*
1616 * If using an iolog, grab next piece if any available.
1617 */
1618 if (td->flags & TD_F_READ_IOLOG) {
1619 if (read_iolog_get(td, io_u))
1620 goto err_put;
1621 } else if (set_io_u_file(td, io_u)) {
1622 ret = -EBUSY;
1623 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1624 goto err_put;
1625 }
1626
1627 f = io_u->file;
1628 if (!f) {
1629 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1630 goto err_put;
1631 }
1632
1633 assert(fio_file_open(f));
1634
1635 if (ddir_rw(io_u->ddir)) {
1636 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1637 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1638 goto err_put;
1639 }
1640
1641 f->last_start[io_u->ddir] = io_u->offset;
1642 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1643
1644 if (io_u->ddir == DDIR_WRITE) {
1645 if (td->flags & TD_F_REFILL_BUFFERS) {
1646 io_u_fill_buffer(td, io_u,
1647 td->o.min_bs[DDIR_WRITE],
1648 io_u->buflen);
1649 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1650 !(td->flags & TD_F_COMPRESS))
1651 do_scramble = 1;
1652 if (td->flags & TD_F_VER_NONE) {
1653 populate_verify_io_u(td, io_u);
1654 do_scramble = 0;
1655 }
1656 } else if (io_u->ddir == DDIR_READ) {
1657 /*
1658 * Reset the buf_filled parameters so next time if the
1659 * buffer is used for writes it is refilled.
1660 */
1661 io_u->buf_filled_len = 0;
1662 }
1663 }
1664
1665 /*
1666 * Set io data pointers.
1667 */
1668 io_u->xfer_buf = io_u->buf;
1669 io_u->xfer_buflen = io_u->buflen;
1670
1671out:
1672 assert(io_u->file);
1673 if (!td_io_prep(td, io_u)) {
1674 if (!td->o.disable_lat)
1675 fio_gettime(&io_u->start_time, NULL);
1676 if (do_scramble)
1677 small_content_scramble(io_u);
1678 return io_u;
1679 }
1680err_put:
1681 dprint(FD_IO, "get_io_u failed\n");
1682 put_io_u(td, io_u);
1683 return ERR_PTR(ret);
1684}
1685
1686static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1687{
1688 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1689
1690 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1691 return;
1692
1693 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1694 io_u->file ? " on file " : "",
1695 io_u->file ? io_u->file->file_name : "",
1696 strerror(io_u->error),
1697 io_ddir_name(io_u->ddir),
1698 io_u->offset, io_u->xfer_buflen);
1699
1700 if (td->io_ops->errdetails) {
1701 char *err = td->io_ops->errdetails(io_u);
1702
1703 log_err("fio: %s\n", err);
1704 free(err);
1705 }
1706
1707 if (!td->error)
1708 td_verror(td, io_u->error, "io_u error");
1709}
1710
1711void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1712{
1713 __io_u_log_error(td, io_u);
1714 if (td->parent)
1715 __io_u_log_error(td->parent, io_u);
1716}
1717
1718static inline bool gtod_reduce(struct thread_data *td)
1719{
1720 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1721 || td->o.gtod_reduce;
1722}
1723
1724static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1725 struct io_completion_data *icd,
1726 const enum fio_ddir idx, unsigned int bytes)
1727{
1728 const int no_reduce = !gtod_reduce(td);
1729 unsigned long lusec = 0;
1730
1731 if (td->parent)
1732 td = td->parent;
1733
1734 if (no_reduce)
1735 lusec = utime_since(&io_u->issue_time, &icd->time);
1736
1737 if (!td->o.disable_lat) {
1738 unsigned long tusec;
1739
1740 tusec = utime_since(&io_u->start_time, &icd->time);
1741 add_lat_sample(td, idx, tusec, bytes, io_u->offset);
1742
1743 if (td->flags & TD_F_PROFILE_OPS) {
1744 struct prof_io_ops *ops = &td->prof_io_ops;
1745
1746 if (ops->io_u_lat)
1747 icd->error = ops->io_u_lat(td, tusec);
1748 }
1749
1750 if (td->o.max_latency && tusec > td->o.max_latency)
1751 lat_fatal(td, icd, tusec, td->o.max_latency);
1752 if (td->o.latency_target && tusec > td->o.latency_target) {
1753 if (lat_target_failed(td))
1754 lat_fatal(td, icd, tusec, td->o.latency_target);
1755 }
1756 }
1757
1758 if (ddir_rw(idx)) {
1759 if (!td->o.disable_clat) {
1760 add_clat_sample(td, idx, lusec, bytes, io_u->offset);
1761 io_u_mark_latency(td, lusec);
1762 }
1763
1764 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1765 add_bw_sample(td, io_u, bytes, lusec);
1766
1767 if (no_reduce && per_unit_log(td->iops_log))
1768 add_iops_sample(td, io_u, bytes);
1769 }
1770
1771 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1772 uint32_t *info = io_u_block_info(td, io_u);
1773 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1774 if (io_u->ddir == DDIR_TRIM) {
1775 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1776 BLOCK_INFO_TRIMS(*info) + 1);
1777 } else if (io_u->ddir == DDIR_WRITE) {
1778 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1779 *info);
1780 }
1781 }
1782 }
1783}
1784
1785static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1786 uint64_t offset, unsigned int bytes)
1787{
1788 int idx;
1789
1790 if (!f)
1791 return;
1792
1793 if (f->first_write == -1ULL || offset < f->first_write)
1794 f->first_write = offset;
1795 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1796 f->last_write = offset + bytes;
1797
1798 if (!f->last_write_comp)
1799 return;
1800
1801 idx = f->last_write_idx++;
1802 f->last_write_comp[idx] = offset;
1803 if (f->last_write_idx == td->o.iodepth)
1804 f->last_write_idx = 0;
1805}
1806
1807static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1808 struct io_completion_data *icd)
1809{
1810 struct io_u *io_u = *io_u_ptr;
1811 enum fio_ddir ddir = io_u->ddir;
1812 struct fio_file *f = io_u->file;
1813
1814 dprint_io_u(io_u, "io complete");
1815
1816 assert(io_u->flags & IO_U_F_FLIGHT);
1817 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1818
1819 /*
1820 * Mark IO ok to verify
1821 */
1822 if (io_u->ipo) {
1823 /*
1824 * Remove errored entry from the verification list
1825 */
1826 if (io_u->error)
1827 unlog_io_piece(td, io_u);
1828 else {
1829 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1830 write_barrier();
1831 }
1832 }
1833
1834 if (ddir_sync(ddir)) {
1835 td->last_was_sync = 1;
1836 if (f) {
1837 f->first_write = -1ULL;
1838 f->last_write = -1ULL;
1839 }
1840 return;
1841 }
1842
1843 td->last_was_sync = 0;
1844 td->last_ddir = ddir;
1845
1846 if (!io_u->error && ddir_rw(ddir)) {
1847 unsigned int bytes = io_u->buflen - io_u->resid;
1848 int ret;
1849
1850 td->io_blocks[ddir]++;
1851 td->this_io_blocks[ddir]++;
1852 td->io_bytes[ddir] += bytes;
1853
1854 if (!(io_u->flags & IO_U_F_VER_LIST))
1855 td->this_io_bytes[ddir] += bytes;
1856
1857 if (ddir == DDIR_WRITE)
1858 file_log_write_comp(td, f, io_u->offset, bytes);
1859
1860 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1861 td->runstate == TD_VERIFYING))
1862 account_io_completion(td, io_u, icd, ddir, bytes);
1863
1864 icd->bytes_done[ddir] += bytes;
1865
1866 if (io_u->end_io) {
1867 ret = io_u->end_io(td, io_u_ptr);
1868 io_u = *io_u_ptr;
1869 if (ret && !icd->error)
1870 icd->error = ret;
1871 }
1872 } else if (io_u->error) {
1873 icd->error = io_u->error;
1874 io_u_log_error(td, io_u);
1875 }
1876 if (icd->error) {
1877 enum error_type_bit eb = td_error_type(ddir, icd->error);
1878
1879 if (!td_non_fatal_error(td, eb, icd->error))
1880 return;
1881
1882 /*
1883 * If there is a non_fatal error, then add to the error count
1884 * and clear all the errors.
1885 */
1886 update_error_count(td, icd->error);
1887 td_clear_error(td);
1888 icd->error = 0;
1889 if (io_u)
1890 io_u->error = 0;
1891 }
1892}
1893
1894static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1895 int nr)
1896{
1897 int ddir;
1898
1899 if (!gtod_reduce(td))
1900 fio_gettime(&icd->time, NULL);
1901
1902 icd->nr = nr;
1903
1904 icd->error = 0;
1905 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1906 icd->bytes_done[ddir] = 0;
1907}
1908
1909static void ios_completed(struct thread_data *td,
1910 struct io_completion_data *icd)
1911{
1912 struct io_u *io_u;
1913 int i;
1914
1915 for (i = 0; i < icd->nr; i++) {
1916 io_u = td->io_ops->event(td, i);
1917
1918 io_completed(td, &io_u, icd);
1919
1920 if (io_u)
1921 put_io_u(td, io_u);
1922 }
1923}
1924
1925/*
1926 * Complete a single io_u for the sync engines.
1927 */
1928int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
1929{
1930 struct io_completion_data icd;
1931 int ddir;
1932
1933 init_icd(td, &icd, 1);
1934 io_completed(td, &io_u, &icd);
1935
1936 if (io_u)
1937 put_io_u(td, io_u);
1938
1939 if (icd.error) {
1940 td_verror(td, icd.error, "io_u_sync_complete");
1941 return -1;
1942 }
1943
1944 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1945 td->bytes_done[ddir] += icd.bytes_done[ddir];
1946
1947 return 0;
1948}
1949
1950/*
1951 * Called to complete min_events number of io for the async engines.
1952 */
1953int io_u_queued_complete(struct thread_data *td, int min_evts)
1954{
1955 struct io_completion_data icd;
1956 struct timespec *tvp = NULL;
1957 int ret, ddir;
1958 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1959
1960 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1961
1962 if (!min_evts)
1963 tvp = &ts;
1964 else if (min_evts > td->cur_depth)
1965 min_evts = td->cur_depth;
1966
1967 /* No worries, td_io_getevents fixes min and max if they are
1968 * set incorrectly */
1969 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
1970 if (ret < 0) {
1971 td_verror(td, -ret, "td_io_getevents");
1972 return ret;
1973 } else if (!ret)
1974 return ret;
1975
1976 init_icd(td, &icd, ret);
1977 ios_completed(td, &icd);
1978 if (icd.error) {
1979 td_verror(td, icd.error, "io_u_queued_complete");
1980 return -1;
1981 }
1982
1983 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1984 td->bytes_done[ddir] += icd.bytes_done[ddir];
1985
1986 return ret;
1987}
1988
1989/*
1990 * Call when io_u is really queued, to update the submission latency.
1991 */
1992void io_u_queued(struct thread_data *td, struct io_u *io_u)
1993{
1994 if (!td->o.disable_slat) {
1995 unsigned long slat_time;
1996
1997 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1998
1999 if (td->parent)
2000 td = td->parent;
2001
2002 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2003 io_u->offset);
2004 }
2005}
2006
2007/*
2008 * See if we should reuse the last seed, if dedupe is enabled
2009 */
2010static struct frand_state *get_buf_state(struct thread_data *td)
2011{
2012 unsigned int v;
2013
2014 if (!td->o.dedupe_percentage)
2015 return &td->buf_state;
2016 else if (td->o.dedupe_percentage == 100) {
2017 frand_copy(&td->buf_state_prev, &td->buf_state);
2018 return &td->buf_state;
2019 }
2020
2021 v = rand32_between(&td->dedupe_state, 1, 100);
2022
2023 if (v <= td->o.dedupe_percentage)
2024 return &td->buf_state_prev;
2025
2026 return &td->buf_state;
2027}
2028
2029static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2030{
2031 if (td->o.dedupe_percentage == 100)
2032 frand_copy(rs, &td->buf_state_prev);
2033 else if (rs == &td->buf_state)
2034 frand_copy(&td->buf_state_prev, rs);
2035}
2036
2037void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2038 unsigned int max_bs)
2039{
2040 struct thread_options *o = &td->o;
2041
2042 if (o->compress_percentage || o->dedupe_percentage) {
2043 unsigned int perc = td->o.compress_percentage;
2044 struct frand_state *rs;
2045 unsigned int left = max_bs;
2046 unsigned int this_write;
2047
2048 do {
2049 rs = get_buf_state(td);
2050
2051 min_write = min(min_write, left);
2052
2053 if (perc) {
2054 this_write = min_not_zero(min_write,
2055 td->o.compress_chunk);
2056
2057 fill_random_buf_percentage(rs, buf, perc,
2058 this_write, this_write,
2059 o->buffer_pattern,
2060 o->buffer_pattern_bytes);
2061 } else {
2062 fill_random_buf(rs, buf, min_write);
2063 this_write = min_write;
2064 }
2065
2066 buf += this_write;
2067 left -= this_write;
2068 save_buf_state(td, rs);
2069 } while (left);
2070 } else if (o->buffer_pattern_bytes)
2071 fill_buffer_pattern(td, buf, max_bs);
2072 else if (o->zero_buffers)
2073 memset(buf, 0, max_bs);
2074 else
2075 fill_random_buf(get_buf_state(td), buf, max_bs);
2076}
2077
2078/*
2079 * "randomly" fill the buffer contents
2080 */
2081void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2082 unsigned int min_write, unsigned int max_bs)
2083{
2084 io_u->buf_filled_len = 0;
2085 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2086}