Catch the case where size= is less than the minimum block size
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14
15struct io_completion_data {
16 int nr; /* input */
17
18 int error; /* output */
19 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
20 struct timeval time; /* output */
21};
22
23/*
24 * The ->io_axmap contains a map of blocks we have or have not done io
25 * to yet. Used to make sure we cover the entire range in a fair fashion.
26 */
27static int random_map_free(struct fio_file *f, const uint64_t block)
28{
29 return !axmap_isset(f->io_axmap, block);
30}
31
32/*
33 * Mark a given offset as used in the map.
34 */
35static void mark_random_map(struct thread_data *td, struct io_u *io_u)
36{
37 unsigned int min_bs = td->o.rw_min_bs;
38 struct fio_file *f = io_u->file;
39 unsigned int nr_blocks;
40 uint64_t block;
41
42 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
43 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
44
45 if (!(io_u->flags & IO_U_F_BUSY_OK))
46 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
47
48 if ((nr_blocks * min_bs) < io_u->buflen)
49 io_u->buflen = nr_blocks * min_bs;
50}
51
52static uint64_t last_block(struct thread_data *td, struct fio_file *f,
53 enum fio_ddir ddir)
54{
55 uint64_t max_blocks;
56 uint64_t max_size;
57
58 assert(ddir_rw(ddir));
59
60 /*
61 * Hmm, should we make sure that ->io_size <= ->real_file_size?
62 */
63 max_size = f->io_size;
64 if (max_size > f->real_file_size)
65 max_size = f->real_file_size;
66
67 if (td->o.zone_range)
68 max_size = td->o.zone_range;
69
70 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
71 if (!max_blocks)
72 return 0;
73
74 return max_blocks;
75}
76
77struct rand_off {
78 struct flist_head list;
79 uint64_t off;
80};
81
82static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
83 enum fio_ddir ddir, uint64_t *b)
84{
85 uint64_t r, lastb;
86
87 lastb = last_block(td, f, ddir);
88 if (!lastb)
89 return 1;
90
91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
92 uint64_t rmax;
93
94 rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
95
96 if (td->o.use_os_rand) {
97 rmax = OS_RAND_MAX;
98 r = os_random_long(&td->random_state);
99 } else {
100 rmax = FRAND_MAX;
101 r = __rand(&td->__random_state);
102 }
103
104 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
105
106 *b = (lastb - 1) * (r / ((uint64_t) rmax + 1.0));
107 } else {
108 uint64_t off = 0;
109
110 if (lfsr_next(&f->lfsr, &off, lastb))
111 return 1;
112
113 *b = off;
114 }
115
116 /*
117 * if we are not maintaining a random map, we are done.
118 */
119 if (!file_randommap(td, f))
120 goto ret;
121
122 /*
123 * calculate map offset and check if it's free
124 */
125 if (random_map_free(f, *b))
126 goto ret;
127
128 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
129 (unsigned long long) *b);
130
131 *b = axmap_next_free(f->io_axmap, *b);
132 if (*b == (uint64_t) -1ULL)
133 return 1;
134ret:
135 return 0;
136}
137
138static int __get_next_rand_offset_zipf(struct thread_data *td,
139 struct fio_file *f, enum fio_ddir ddir,
140 uint64_t *b)
141{
142 *b = zipf_next(&f->zipf);
143 return 0;
144}
145
146static int __get_next_rand_offset_pareto(struct thread_data *td,
147 struct fio_file *f, enum fio_ddir ddir,
148 uint64_t *b)
149{
150 *b = pareto_next(&f->zipf);
151 return 0;
152}
153
154static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
155{
156 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
157 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
158
159 return r1->off - r2->off;
160}
161
162static int get_off_from_method(struct thread_data *td, struct fio_file *f,
163 enum fio_ddir ddir, uint64_t *b)
164{
165 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
166 return __get_next_rand_offset(td, f, ddir, b);
167 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
168 return __get_next_rand_offset_zipf(td, f, ddir, b);
169 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
170 return __get_next_rand_offset_pareto(td, f, ddir, b);
171
172 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
173 return 1;
174}
175
176/*
177 * Sort the reads for a verify phase in batches of verifysort_nr, if
178 * specified.
179 */
180static inline int should_sort_io(struct thread_data *td)
181{
182 if (!td->o.verifysort_nr || !td->o.do_verify)
183 return 0;
184 if (!td_random(td))
185 return 0;
186 if (td->runstate != TD_VERIFYING)
187 return 0;
188 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
189 return 0;
190
191 return 1;
192}
193
194static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
195 enum fio_ddir ddir, uint64_t *b)
196{
197 struct rand_off *r;
198 int i, ret = 1;
199
200 if (!should_sort_io(td))
201 return get_off_from_method(td, f, ddir, b);
202
203 if (!flist_empty(&td->next_rand_list)) {
204 struct rand_off *r;
205fetch:
206 r = flist_entry(td->next_rand_list.next, struct rand_off, list);
207 flist_del(&r->list);
208 *b = r->off;
209 free(r);
210 return 0;
211 }
212
213 for (i = 0; i < td->o.verifysort_nr; i++) {
214 r = malloc(sizeof(*r));
215
216 ret = get_off_from_method(td, f, ddir, &r->off);
217 if (ret) {
218 free(r);
219 break;
220 }
221
222 flist_add(&r->list, &td->next_rand_list);
223 }
224
225 if (ret && !i)
226 return ret;
227
228 assert(!flist_empty(&td->next_rand_list));
229 flist_sort(NULL, &td->next_rand_list, flist_cmp);
230 goto fetch;
231}
232
233static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
234 enum fio_ddir ddir, uint64_t *b)
235{
236 if (!get_next_rand_offset(td, f, ddir, b))
237 return 0;
238
239 if (td->o.time_based) {
240 fio_file_reset(td, f);
241 if (!get_next_rand_offset(td, f, ddir, b))
242 return 0;
243 }
244
245 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
246 f->file_name, (unsigned long long) f->last_pos,
247 (unsigned long long) f->real_file_size);
248 return 1;
249}
250
251static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
252 enum fio_ddir ddir, uint64_t *offset)
253{
254 assert(ddir_rw(ddir));
255
256 if (f->last_pos >= f->io_size + get_start_offset(td) && td->o.time_based)
257 f->last_pos = f->last_pos - f->io_size;
258
259 if (f->last_pos < f->real_file_size) {
260 uint64_t pos;
261
262 if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
263 f->last_pos = f->real_file_size;
264
265 pos = f->last_pos - f->file_offset;
266 if (pos)
267 pos += td->o.ddir_seq_add;
268
269 *offset = pos;
270 return 0;
271 }
272
273 return 1;
274}
275
276static int get_next_block(struct thread_data *td, struct io_u *io_u,
277 enum fio_ddir ddir, int rw_seq)
278{
279 struct fio_file *f = io_u->file;
280 uint64_t b, offset;
281 int ret;
282
283 assert(ddir_rw(ddir));
284
285 b = offset = -1ULL;
286
287 if (rw_seq) {
288 if (td_random(td))
289 ret = get_next_rand_block(td, f, ddir, &b);
290 else
291 ret = get_next_seq_offset(td, f, ddir, &offset);
292 } else {
293 io_u->flags |= IO_U_F_BUSY_OK;
294
295 if (td->o.rw_seq == RW_SEQ_SEQ) {
296 ret = get_next_seq_offset(td, f, ddir, &offset);
297 if (ret)
298 ret = get_next_rand_block(td, f, ddir, &b);
299 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
300 if (f->last_start != -1ULL)
301 offset = f->last_start - f->file_offset;
302 else
303 offset = 0;
304 ret = 0;
305 } else {
306 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
307 ret = 1;
308 }
309 }
310
311 if (!ret) {
312 if (offset != -1ULL)
313 io_u->offset = offset;
314 else if (b != -1ULL)
315 io_u->offset = b * td->o.ba[ddir];
316 else {
317 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
318 ret = 1;
319 }
320 }
321
322 return ret;
323}
324
325/*
326 * For random io, generate a random new block and see if it's used. Repeat
327 * until we find a free one. For sequential io, just return the end of
328 * the last io issued.
329 */
330static int __get_next_offset(struct thread_data *td, struct io_u *io_u)
331{
332 struct fio_file *f = io_u->file;
333 enum fio_ddir ddir = io_u->ddir;
334 int rw_seq_hit = 0;
335
336 assert(ddir_rw(ddir));
337
338 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
339 rw_seq_hit = 1;
340 td->ddir_seq_nr = td->o.ddir_seq_nr;
341 }
342
343 if (get_next_block(td, io_u, ddir, rw_seq_hit))
344 return 1;
345
346 if (io_u->offset >= f->io_size) {
347 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
348 (unsigned long long) io_u->offset,
349 (unsigned long long) f->io_size);
350 return 1;
351 }
352
353 io_u->offset += f->file_offset;
354 if (io_u->offset >= f->real_file_size) {
355 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
356 (unsigned long long) io_u->offset,
357 (unsigned long long) f->real_file_size);
358 return 1;
359 }
360
361 return 0;
362}
363
364static int get_next_offset(struct thread_data *td, struct io_u *io_u)
365{
366 if (td->flags & TD_F_PROFILE_OPS) {
367 struct prof_io_ops *ops = &td->prof_io_ops;
368
369 if (ops->fill_io_u_off)
370 return ops->fill_io_u_off(td, io_u);
371 }
372
373 return __get_next_offset(td, io_u);
374}
375
376static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
377 unsigned int buflen)
378{
379 struct fio_file *f = io_u->file;
380
381 return io_u->offset + buflen <= f->io_size + get_start_offset(td);
382}
383
384static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u)
385{
386 const int ddir = io_u->ddir;
387 unsigned int buflen = 0;
388 unsigned int minbs, maxbs;
389 unsigned long r, rand_max;
390
391 assert(ddir_rw(ddir));
392
393 minbs = td->o.min_bs[ddir];
394 maxbs = td->o.max_bs[ddir];
395
396 if (minbs == maxbs)
397 return minbs;
398
399 /*
400 * If we can't satisfy the min block size from here, then fail
401 */
402 if (!io_u_fits(td, io_u, minbs))
403 return 0;
404
405 if (td->o.use_os_rand)
406 rand_max = OS_RAND_MAX;
407 else
408 rand_max = FRAND_MAX;
409
410 do {
411 if (td->o.use_os_rand)
412 r = os_random_long(&td->bsrange_state);
413 else
414 r = __rand(&td->__bsrange_state);
415
416 if (!td->o.bssplit_nr[ddir]) {
417 buflen = 1 + (unsigned int) ((double) maxbs *
418 (r / (rand_max + 1.0)));
419 if (buflen < minbs)
420 buflen = minbs;
421 } else {
422 long perc = 0;
423 unsigned int i;
424
425 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
426 struct bssplit *bsp = &td->o.bssplit[ddir][i];
427
428 buflen = bsp->bs;
429 perc += bsp->perc;
430 if ((r <= ((rand_max / 100L) * perc)) &&
431 io_u_fits(td, io_u, buflen))
432 break;
433 }
434 }
435
436 if (!td->o.bs_unaligned && is_power_of_2(minbs))
437 buflen = (buflen + minbs - 1) & ~(minbs - 1);
438
439 } while (!io_u_fits(td, io_u, buflen));
440
441 return buflen;
442}
443
444static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u)
445{
446 if (td->flags & TD_F_PROFILE_OPS) {
447 struct prof_io_ops *ops = &td->prof_io_ops;
448
449 if (ops->fill_io_u_size)
450 return ops->fill_io_u_size(td, io_u);
451 }
452
453 return __get_next_buflen(td, io_u);
454}
455
456static void set_rwmix_bytes(struct thread_data *td)
457{
458 unsigned int diff;
459
460 /*
461 * we do time or byte based switch. this is needed because
462 * buffered writes may issue a lot quicker than they complete,
463 * whereas reads do not.
464 */
465 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
466 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
467}
468
469static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
470{
471 unsigned int v;
472 unsigned long r;
473
474 if (td->o.use_os_rand) {
475 r = os_random_long(&td->rwmix_state);
476 v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
477 } else {
478 r = __rand(&td->__rwmix_state);
479 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
480 }
481
482 if (v <= td->o.rwmix[DDIR_READ])
483 return DDIR_READ;
484
485 return DDIR_WRITE;
486}
487
488static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
489{
490 enum fio_ddir odir = ddir ^ 1;
491 struct timeval t;
492 long usec;
493
494 assert(ddir_rw(ddir));
495
496 if (td->rate_pending_usleep[ddir] <= 0)
497 return ddir;
498
499 /*
500 * We have too much pending sleep in this direction. See if we
501 * should switch.
502 */
503 if (td_rw(td) && td->o.rwmix[odir]) {
504 /*
505 * Other direction does not have too much pending, switch
506 */
507 if (td->rate_pending_usleep[odir] < 100000)
508 return odir;
509
510 /*
511 * Both directions have pending sleep. Sleep the minimum time
512 * and deduct from both.
513 */
514 if (td->rate_pending_usleep[ddir] <=
515 td->rate_pending_usleep[odir]) {
516 usec = td->rate_pending_usleep[ddir];
517 } else {
518 usec = td->rate_pending_usleep[odir];
519 ddir = odir;
520 }
521 } else
522 usec = td->rate_pending_usleep[ddir];
523
524 /*
525 * We are going to sleep, ensure that we flush anything pending as
526 * not to skew our latency numbers.
527 *
528 * Changed to only monitor 'in flight' requests here instead of the
529 * td->cur_depth, b/c td->cur_depth does not accurately represent
530 * io's that have been actually submitted to an async engine,
531 * and cur_depth is meaningless for sync engines.
532 */
533 while (td->io_u_in_flight) {
534 int fio_unused ret;
535
536 ret = io_u_queued_complete(td, 1, NULL);
537 }
538
539 fio_gettime(&t, NULL);
540 usec_sleep(td, usec);
541 usec = utime_since_now(&t);
542
543 td->rate_pending_usleep[ddir] -= usec;
544
545 odir = ddir ^ 1;
546 if (td_rw(td) && __should_check_rate(td, odir))
547 td->rate_pending_usleep[odir] -= usec;
548
549 if (ddir_trim(ddir))
550 return ddir;
551
552 return ddir;
553}
554
555/*
556 * Return the data direction for the next io_u. If the job is a
557 * mixed read/write workload, check the rwmix cycle and switch if
558 * necessary.
559 */
560static enum fio_ddir get_rw_ddir(struct thread_data *td)
561{
562 enum fio_ddir ddir;
563
564 /*
565 * see if it's time to fsync
566 */
567 if (td->o.fsync_blocks &&
568 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
569 td->io_issues[DDIR_WRITE] && should_fsync(td))
570 return DDIR_SYNC;
571
572 /*
573 * see if it's time to fdatasync
574 */
575 if (td->o.fdatasync_blocks &&
576 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
577 td->io_issues[DDIR_WRITE] && should_fsync(td))
578 return DDIR_DATASYNC;
579
580 /*
581 * see if it's time to sync_file_range
582 */
583 if (td->sync_file_range_nr &&
584 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
585 td->io_issues[DDIR_WRITE] && should_fsync(td))
586 return DDIR_SYNC_FILE_RANGE;
587
588 if (td_rw(td)) {
589 /*
590 * Check if it's time to seed a new data direction.
591 */
592 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
593 /*
594 * Put a top limit on how many bytes we do for
595 * one data direction, to avoid overflowing the
596 * ranges too much
597 */
598 ddir = get_rand_ddir(td);
599
600 if (ddir != td->rwmix_ddir)
601 set_rwmix_bytes(td);
602
603 td->rwmix_ddir = ddir;
604 }
605 ddir = td->rwmix_ddir;
606 } else if (td_read(td))
607 ddir = DDIR_READ;
608 else if (td_write(td))
609 ddir = DDIR_WRITE;
610 else
611 ddir = DDIR_TRIM;
612
613 td->rwmix_ddir = rate_ddir(td, ddir);
614 return td->rwmix_ddir;
615}
616
617static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
618{
619 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
620
621 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
622 td->o.barrier_blocks &&
623 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
624 td->io_issues[DDIR_WRITE])
625 io_u->flags |= IO_U_F_BARRIER;
626}
627
628void put_file_log(struct thread_data *td, struct fio_file *f)
629{
630 int ret = put_file(td, f);
631
632 if (ret)
633 td_verror(td, ret, "file close");
634}
635
636void put_io_u(struct thread_data *td, struct io_u *io_u)
637{
638 td_io_u_lock(td);
639
640 if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
641 put_file_log(td, io_u->file);
642 io_u->file = NULL;
643 io_u->flags &= ~IO_U_F_FREE_DEF;
644 io_u->flags |= IO_U_F_FREE;
645
646 if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
647 td->cur_depth--;
648 flist_del_init(&io_u->list);
649 flist_add(&io_u->list, &td->io_u_freelist);
650 td_io_u_unlock(td);
651 td_io_u_free_notify(td);
652}
653
654void clear_io_u(struct thread_data *td, struct io_u *io_u)
655{
656 io_u->flags &= ~IO_U_F_FLIGHT;
657 put_io_u(td, io_u);
658}
659
660void requeue_io_u(struct thread_data *td, struct io_u **io_u)
661{
662 struct io_u *__io_u = *io_u;
663 enum fio_ddir ddir = acct_ddir(__io_u);
664
665 dprint(FD_IO, "requeue %p\n", __io_u);
666
667 td_io_u_lock(td);
668
669 __io_u->flags |= IO_U_F_FREE;
670 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
671 td->io_issues[ddir]--;
672
673 __io_u->flags &= ~IO_U_F_FLIGHT;
674 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
675 td->cur_depth--;
676 flist_del(&__io_u->list);
677 flist_add_tail(&__io_u->list, &td->io_u_requeues);
678 td_io_u_unlock(td);
679 *io_u = NULL;
680}
681
682static int fill_io_u(struct thread_data *td, struct io_u *io_u)
683{
684 if (td->io_ops->flags & FIO_NOIO)
685 goto out;
686
687 set_rw_ddir(td, io_u);
688
689 /*
690 * fsync() or fdatasync() or trim etc, we are done
691 */
692 if (!ddir_rw(io_u->ddir))
693 goto out;
694
695 /*
696 * See if it's time to switch to a new zone
697 */
698 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
699 td->zone_bytes = 0;
700 io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
701 io_u->file->last_pos = io_u->file->file_offset;
702 td->io_skip_bytes += td->o.zone_skip;
703 }
704
705 /*
706 * No log, let the seq/rand engine retrieve the next buflen and
707 * position.
708 */
709 if (get_next_offset(td, io_u)) {
710 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
711 return 1;
712 }
713
714 io_u->buflen = get_next_buflen(td, io_u);
715 if (!io_u->buflen) {
716 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
717 return 1;
718 }
719
720 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
721 dprint(FD_IO, "io_u %p, offset too large\n", io_u);
722 dprint(FD_IO, " off=%llu/%lu > %llu\n",
723 (unsigned long long) io_u->offset, io_u->buflen,
724 (unsigned long long) io_u->file->real_file_size);
725 return 1;
726 }
727
728 /*
729 * mark entry before potentially trimming io_u
730 */
731 if (td_random(td) && file_randommap(td, io_u->file))
732 mark_random_map(td, io_u);
733
734out:
735 dprint_io_u(io_u, "fill_io_u");
736 td->zone_bytes += io_u->buflen;
737 return 0;
738}
739
740static void __io_u_mark_map(unsigned int *map, unsigned int nr)
741{
742 int idx = 0;
743
744 switch (nr) {
745 default:
746 idx = 6;
747 break;
748 case 33 ... 64:
749 idx = 5;
750 break;
751 case 17 ... 32:
752 idx = 4;
753 break;
754 case 9 ... 16:
755 idx = 3;
756 break;
757 case 5 ... 8:
758 idx = 2;
759 break;
760 case 1 ... 4:
761 idx = 1;
762 case 0:
763 break;
764 }
765
766 map[idx]++;
767}
768
769void io_u_mark_submit(struct thread_data *td, unsigned int nr)
770{
771 __io_u_mark_map(td->ts.io_u_submit, nr);
772 td->ts.total_submit++;
773}
774
775void io_u_mark_complete(struct thread_data *td, unsigned int nr)
776{
777 __io_u_mark_map(td->ts.io_u_complete, nr);
778 td->ts.total_complete++;
779}
780
781void io_u_mark_depth(struct thread_data *td, unsigned int nr)
782{
783 int idx = 0;
784
785 switch (td->cur_depth) {
786 default:
787 idx = 6;
788 break;
789 case 32 ... 63:
790 idx = 5;
791 break;
792 case 16 ... 31:
793 idx = 4;
794 break;
795 case 8 ... 15:
796 idx = 3;
797 break;
798 case 4 ... 7:
799 idx = 2;
800 break;
801 case 2 ... 3:
802 idx = 1;
803 case 1:
804 break;
805 }
806
807 td->ts.io_u_map[idx] += nr;
808}
809
810static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
811{
812 int idx = 0;
813
814 assert(usec < 1000);
815
816 switch (usec) {
817 case 750 ... 999:
818 idx = 9;
819 break;
820 case 500 ... 749:
821 idx = 8;
822 break;
823 case 250 ... 499:
824 idx = 7;
825 break;
826 case 100 ... 249:
827 idx = 6;
828 break;
829 case 50 ... 99:
830 idx = 5;
831 break;
832 case 20 ... 49:
833 idx = 4;
834 break;
835 case 10 ... 19:
836 idx = 3;
837 break;
838 case 4 ... 9:
839 idx = 2;
840 break;
841 case 2 ... 3:
842 idx = 1;
843 case 0 ... 1:
844 break;
845 }
846
847 assert(idx < FIO_IO_U_LAT_U_NR);
848 td->ts.io_u_lat_u[idx]++;
849}
850
851static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
852{
853 int idx = 0;
854
855 switch (msec) {
856 default:
857 idx = 11;
858 break;
859 case 1000 ... 1999:
860 idx = 10;
861 break;
862 case 750 ... 999:
863 idx = 9;
864 break;
865 case 500 ... 749:
866 idx = 8;
867 break;
868 case 250 ... 499:
869 idx = 7;
870 break;
871 case 100 ... 249:
872 idx = 6;
873 break;
874 case 50 ... 99:
875 idx = 5;
876 break;
877 case 20 ... 49:
878 idx = 4;
879 break;
880 case 10 ... 19:
881 idx = 3;
882 break;
883 case 4 ... 9:
884 idx = 2;
885 break;
886 case 2 ... 3:
887 idx = 1;
888 case 0 ... 1:
889 break;
890 }
891
892 assert(idx < FIO_IO_U_LAT_M_NR);
893 td->ts.io_u_lat_m[idx]++;
894}
895
896static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
897{
898 if (usec < 1000)
899 io_u_mark_lat_usec(td, usec);
900 else
901 io_u_mark_lat_msec(td, usec / 1000);
902}
903
904/*
905 * Get next file to service by choosing one at random
906 */
907static struct fio_file *get_next_file_rand(struct thread_data *td,
908 enum fio_file_flags goodf,
909 enum fio_file_flags badf)
910{
911 struct fio_file *f;
912 int fno;
913
914 do {
915 int opened = 0;
916 unsigned long r;
917
918 if (td->o.use_os_rand) {
919 r = os_random_long(&td->next_file_state);
920 fno = (unsigned int) ((double) td->o.nr_files
921 * (r / (OS_RAND_MAX + 1.0)));
922 } else {
923 r = __rand(&td->__next_file_state);
924 fno = (unsigned int) ((double) td->o.nr_files
925 * (r / (FRAND_MAX + 1.0)));
926 }
927
928 f = td->files[fno];
929 if (fio_file_done(f))
930 continue;
931
932 if (!fio_file_open(f)) {
933 int err;
934
935 err = td_io_open_file(td, f);
936 if (err)
937 continue;
938 opened = 1;
939 }
940
941 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
942 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
943 return f;
944 }
945 if (opened)
946 td_io_close_file(td, f);
947 } while (1);
948}
949
950/*
951 * Get next file to service by doing round robin between all available ones
952 */
953static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
954 int badf)
955{
956 unsigned int old_next_file = td->next_file;
957 struct fio_file *f;
958
959 do {
960 int opened = 0;
961
962 f = td->files[td->next_file];
963
964 td->next_file++;
965 if (td->next_file >= td->o.nr_files)
966 td->next_file = 0;
967
968 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
969 if (fio_file_done(f)) {
970 f = NULL;
971 continue;
972 }
973
974 if (!fio_file_open(f)) {
975 int err;
976
977 err = td_io_open_file(td, f);
978 if (err) {
979 dprint(FD_FILE, "error %d on open of %s\n",
980 err, f->file_name);
981 f = NULL;
982 continue;
983 }
984 opened = 1;
985 }
986
987 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
988 f->flags);
989 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
990 break;
991
992 if (opened)
993 td_io_close_file(td, f);
994
995 f = NULL;
996 } while (td->next_file != old_next_file);
997
998 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
999 return f;
1000}
1001
1002static struct fio_file *__get_next_file(struct thread_data *td)
1003{
1004 struct fio_file *f;
1005
1006 assert(td->o.nr_files <= td->files_index);
1007
1008 if (td->nr_done_files >= td->o.nr_files) {
1009 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1010 " nr_files=%d\n", td->nr_open_files,
1011 td->nr_done_files,
1012 td->o.nr_files);
1013 return NULL;
1014 }
1015
1016 f = td->file_service_file;
1017 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1018 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1019 goto out;
1020 if (td->file_service_left--)
1021 goto out;
1022 }
1023
1024 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1025 td->o.file_service_type == FIO_FSERVICE_SEQ)
1026 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1027 else
1028 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1029
1030 td->file_service_file = f;
1031 td->file_service_left = td->file_service_nr - 1;
1032out:
1033 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1034 return f;
1035}
1036
1037static struct fio_file *get_next_file(struct thread_data *td)
1038{
1039 if (!(td->flags & TD_F_PROFILE_OPS)) {
1040 struct prof_io_ops *ops = &td->prof_io_ops;
1041
1042 if (ops->get_next_file)
1043 return ops->get_next_file(td);
1044 }
1045
1046 return __get_next_file(td);
1047}
1048
1049static int set_io_u_file(struct thread_data *td, struct io_u *io_u)
1050{
1051 struct fio_file *f;
1052
1053 do {
1054 f = get_next_file(td);
1055 if (!f)
1056 return 1;
1057
1058 io_u->file = f;
1059 get_file(f);
1060
1061 if (!fill_io_u(td, io_u))
1062 break;
1063
1064 put_file_log(td, f);
1065 td_io_close_file(td, f);
1066 io_u->file = NULL;
1067 fio_file_set_done(f);
1068 td->nr_done_files++;
1069 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1070 td->nr_done_files, td->o.nr_files);
1071 } while (1);
1072
1073 return 0;
1074}
1075
1076
1077struct io_u *__get_io_u(struct thread_data *td)
1078{
1079 struct io_u *io_u = NULL;
1080
1081 td_io_u_lock(td);
1082
1083again:
1084 if (!flist_empty(&td->io_u_requeues))
1085 io_u = flist_entry(td->io_u_requeues.next, struct io_u, list);
1086 else if (!queue_full(td)) {
1087 io_u = flist_entry(td->io_u_freelist.next, struct io_u, list);
1088
1089 io_u->buflen = 0;
1090 io_u->resid = 0;
1091 io_u->file = NULL;
1092 io_u->end_io = NULL;
1093 }
1094
1095 if (io_u) {
1096 assert(io_u->flags & IO_U_F_FREE);
1097 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
1098 io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
1099 io_u->flags &= ~IO_U_F_VER_LIST;
1100
1101 io_u->error = 0;
1102 io_u->acct_ddir = -1;
1103 flist_del(&io_u->list);
1104 flist_add_tail(&io_u->list, &td->io_u_busylist);
1105 td->cur_depth++;
1106 io_u->flags |= IO_U_F_IN_CUR_DEPTH;
1107 } else if (td->o.verify_async) {
1108 /*
1109 * We ran out, wait for async verify threads to finish and
1110 * return one
1111 */
1112 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1113 goto again;
1114 }
1115
1116 td_io_u_unlock(td);
1117 return io_u;
1118}
1119
1120static int check_get_trim(struct thread_data *td, struct io_u *io_u)
1121{
1122 if (!(td->flags & TD_F_TRIM_BACKLOG))
1123 return 0;
1124
1125 if (td->trim_entries) {
1126 int get_trim = 0;
1127
1128 if (td->trim_batch) {
1129 td->trim_batch--;
1130 get_trim = 1;
1131 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1132 td->last_ddir != DDIR_READ) {
1133 td->trim_batch = td->o.trim_batch;
1134 if (!td->trim_batch)
1135 td->trim_batch = td->o.trim_backlog;
1136 get_trim = 1;
1137 }
1138
1139 if (get_trim && !get_next_trim(td, io_u))
1140 return 1;
1141 }
1142
1143 return 0;
1144}
1145
1146static int check_get_verify(struct thread_data *td, struct io_u *io_u)
1147{
1148 if (!(td->flags & TD_F_VER_BACKLOG))
1149 return 0;
1150
1151 if (td->io_hist_len) {
1152 int get_verify = 0;
1153
1154 if (td->verify_batch)
1155 get_verify = 1;
1156 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1157 td->last_ddir != DDIR_READ) {
1158 td->verify_batch = td->o.verify_batch;
1159 if (!td->verify_batch)
1160 td->verify_batch = td->o.verify_backlog;
1161 get_verify = 1;
1162 }
1163
1164 if (get_verify && !get_next_verify(td, io_u)) {
1165 td->verify_batch--;
1166 return 1;
1167 }
1168 }
1169
1170 return 0;
1171}
1172
1173/*
1174 * Fill offset and start time into the buffer content, to prevent too
1175 * easy compressible data for simple de-dupe attempts. Do this for every
1176 * 512b block in the range, since that should be the smallest block size
1177 * we can expect from a device.
1178 */
1179static void small_content_scramble(struct io_u *io_u)
1180{
1181 unsigned int i, nr_blocks = io_u->buflen / 512;
1182 uint64_t boffset;
1183 unsigned int offset;
1184 void *p, *end;
1185
1186 if (!nr_blocks)
1187 return;
1188
1189 p = io_u->xfer_buf;
1190 boffset = io_u->offset;
1191 io_u->buf_filled_len = 0;
1192
1193 for (i = 0; i < nr_blocks; i++) {
1194 /*
1195 * Fill the byte offset into a "random" start offset of
1196 * the buffer, given by the product of the usec time
1197 * and the actual offset.
1198 */
1199 offset = (io_u->start_time.tv_usec ^ boffset) & 511;
1200 offset &= ~(sizeof(uint64_t) - 1);
1201 if (offset >= 512 - sizeof(uint64_t))
1202 offset -= sizeof(uint64_t);
1203 memcpy(p + offset, &boffset, sizeof(boffset));
1204
1205 end = p + 512 - sizeof(io_u->start_time);
1206 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1207 p += 512;
1208 boffset += 512;
1209 }
1210}
1211
1212/*
1213 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1214 * etc. The returned io_u is fully ready to be prepped and submitted.
1215 */
1216struct io_u *get_io_u(struct thread_data *td)
1217{
1218 struct fio_file *f;
1219 struct io_u *io_u;
1220 int do_scramble = 0;
1221
1222 io_u = __get_io_u(td);
1223 if (!io_u) {
1224 dprint(FD_IO, "__get_io_u failed\n");
1225 return NULL;
1226 }
1227
1228 if (check_get_verify(td, io_u))
1229 goto out;
1230 if (check_get_trim(td, io_u))
1231 goto out;
1232
1233 /*
1234 * from a requeue, io_u already setup
1235 */
1236 if (io_u->file)
1237 goto out;
1238
1239 /*
1240 * If using an iolog, grab next piece if any available.
1241 */
1242 if (td->flags & TD_F_READ_IOLOG) {
1243 if (read_iolog_get(td, io_u))
1244 goto err_put;
1245 } else if (set_io_u_file(td, io_u)) {
1246 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1247 goto err_put;
1248 }
1249
1250 f = io_u->file;
1251 assert(fio_file_open(f));
1252
1253 if (ddir_rw(io_u->ddir)) {
1254 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
1255 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1256 goto err_put;
1257 }
1258
1259 f->last_start = io_u->offset;
1260 f->last_pos = io_u->offset + io_u->buflen;
1261
1262 if (io_u->ddir == DDIR_WRITE) {
1263 if (td->flags & TD_F_REFILL_BUFFERS) {
1264 io_u_fill_buffer(td, io_u,
1265 io_u->xfer_buflen, io_u->xfer_buflen);
1266 } else if (td->flags & TD_F_SCRAMBLE_BUFFERS)
1267 do_scramble = 1;
1268 if (td->flags & TD_F_VER_NONE) {
1269 populate_verify_io_u(td, io_u);
1270 do_scramble = 0;
1271 }
1272 } else if (io_u->ddir == DDIR_READ) {
1273 /*
1274 * Reset the buf_filled parameters so next time if the
1275 * buffer is used for writes it is refilled.
1276 */
1277 io_u->buf_filled_len = 0;
1278 }
1279 }
1280
1281 /*
1282 * Set io data pointers.
1283 */
1284 io_u->xfer_buf = io_u->buf;
1285 io_u->xfer_buflen = io_u->buflen;
1286
1287out:
1288 assert(io_u->file);
1289 if (!td_io_prep(td, io_u)) {
1290 if (!td->o.disable_slat)
1291 fio_gettime(&io_u->start_time, NULL);
1292 if (do_scramble)
1293 small_content_scramble(io_u);
1294 return io_u;
1295 }
1296err_put:
1297 dprint(FD_IO, "get_io_u failed\n");
1298 put_io_u(td, io_u);
1299 return NULL;
1300}
1301
1302void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1303{
1304 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1305 const char *msg[] = { "read", "write", "sync", "datasync",
1306 "sync_file_range", "wait", "trim" };
1307
1308 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1309 return;
1310
1311 log_err("fio: io_u error");
1312
1313 if (io_u->file)
1314 log_err(" on file %s", io_u->file->file_name);
1315
1316 log_err(": %s\n", strerror(io_u->error));
1317
1318 log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
1319 io_u->offset, io_u->xfer_buflen);
1320
1321 if (!td->error)
1322 td_verror(td, io_u->error, "io_u error");
1323}
1324
1325static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1326 struct io_completion_data *icd,
1327 const enum fio_ddir idx, unsigned int bytes)
1328{
1329 unsigned long lusec = 0;
1330
1331 if (!td->o.disable_clat || !td->o.disable_bw)
1332 lusec = utime_since(&io_u->issue_time, &icd->time);
1333
1334 if (!td->o.disable_lat) {
1335 unsigned long tusec;
1336
1337 tusec = utime_since(&io_u->start_time, &icd->time);
1338 add_lat_sample(td, idx, tusec, bytes);
1339
1340 if (td->o.max_latency && tusec > td->o.max_latency) {
1341 if (!td->error)
1342 log_err("fio: latency of %lu usec exceeds specified max (%u usec)\n", tusec, td->o.max_latency);
1343 td_verror(td, ETIMEDOUT, "max latency exceeded");
1344 icd->error = ETIMEDOUT;
1345 }
1346 }
1347
1348 if (!td->o.disable_clat) {
1349 add_clat_sample(td, idx, lusec, bytes);
1350 io_u_mark_latency(td, lusec);
1351 }
1352
1353 if (!td->o.disable_bw)
1354 add_bw_sample(td, idx, bytes, &icd->time);
1355
1356 add_iops_sample(td, idx, &icd->time);
1357}
1358
1359static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
1360{
1361 uint64_t secs, remainder, bps, bytes;
1362
1363 bytes = td->this_io_bytes[ddir];
1364 bps = td->rate_bps[ddir];
1365 secs = bytes / bps;
1366 remainder = bytes % bps;
1367 return remainder * 1000000 / bps + secs * 1000000;
1368}
1369
1370static void io_completed(struct thread_data *td, struct io_u *io_u,
1371 struct io_completion_data *icd)
1372{
1373 struct fio_file *f;
1374
1375 dprint_io_u(io_u, "io complete");
1376
1377 td_io_u_lock(td);
1378 assert(io_u->flags & IO_U_F_FLIGHT);
1379 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1380 td_io_u_unlock(td);
1381
1382 if (ddir_sync(io_u->ddir)) {
1383 td->last_was_sync = 1;
1384 f = io_u->file;
1385 if (f) {
1386 f->first_write = -1ULL;
1387 f->last_write = -1ULL;
1388 }
1389 return;
1390 }
1391
1392 td->last_was_sync = 0;
1393 td->last_ddir = io_u->ddir;
1394
1395 if (!io_u->error && ddir_rw(io_u->ddir)) {
1396 unsigned int bytes = io_u->buflen - io_u->resid;
1397 const enum fio_ddir idx = io_u->ddir;
1398 const enum fio_ddir odx = io_u->ddir ^ 1;
1399 int ret;
1400
1401 td->io_blocks[idx]++;
1402 td->this_io_blocks[idx]++;
1403 td->io_bytes[idx] += bytes;
1404
1405 if (!(io_u->flags & IO_U_F_VER_LIST))
1406 td->this_io_bytes[idx] += bytes;
1407
1408 if (idx == DDIR_WRITE) {
1409 f = io_u->file;
1410 if (f) {
1411 if (f->first_write == -1ULL ||
1412 io_u->offset < f->first_write)
1413 f->first_write = io_u->offset;
1414 if (f->last_write == -1ULL ||
1415 ((io_u->offset + bytes) > f->last_write))
1416 f->last_write = io_u->offset + bytes;
1417 }
1418 }
1419
1420 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1421 td->runstate == TD_VERIFYING)) {
1422 account_io_completion(td, io_u, icd, idx, bytes);
1423
1424 if (__should_check_rate(td, idx)) {
1425 td->rate_pending_usleep[idx] =
1426 (usec_for_io(td, idx) -
1427 utime_since_now(&td->start));
1428 }
1429 if (idx != DDIR_TRIM && __should_check_rate(td, odx))
1430 td->rate_pending_usleep[odx] =
1431 (usec_for_io(td, odx) -
1432 utime_since_now(&td->start));
1433 }
1434
1435 if (td_write(td) && idx == DDIR_WRITE &&
1436 td->o.do_verify &&
1437 td->o.verify != VERIFY_NONE &&
1438 !td->o.experimental_verify)
1439 log_io_piece(td, io_u);
1440
1441 icd->bytes_done[idx] += bytes;
1442
1443 if (io_u->end_io) {
1444 ret = io_u->end_io(td, io_u);
1445 if (ret && !icd->error)
1446 icd->error = ret;
1447 }
1448 } else if (io_u->error) {
1449 icd->error = io_u->error;
1450 io_u_log_error(td, io_u);
1451 }
1452 if (icd->error) {
1453 enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
1454 if (!td_non_fatal_error(td, eb, icd->error))
1455 return;
1456 /*
1457 * If there is a non_fatal error, then add to the error count
1458 * and clear all the errors.
1459 */
1460 update_error_count(td, icd->error);
1461 td_clear_error(td);
1462 icd->error = 0;
1463 io_u->error = 0;
1464 }
1465}
1466
1467static void init_icd(struct thread_data *td, struct io_completion_data *icd,
1468 int nr)
1469{
1470 int ddir;
1471 if (!td->o.disable_clat || !td->o.disable_bw)
1472 fio_gettime(&icd->time, NULL);
1473
1474 icd->nr = nr;
1475
1476 icd->error = 0;
1477 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1478 icd->bytes_done[ddir] = 0;
1479}
1480
1481static void ios_completed(struct thread_data *td,
1482 struct io_completion_data *icd)
1483{
1484 struct io_u *io_u;
1485 int i;
1486
1487 for (i = 0; i < icd->nr; i++) {
1488 io_u = td->io_ops->event(td, i);
1489
1490 io_completed(td, io_u, icd);
1491
1492 if (!(io_u->flags & IO_U_F_FREE_DEF))
1493 put_io_u(td, io_u);
1494 }
1495}
1496
1497/*
1498 * Complete a single io_u for the sync engines.
1499 */
1500int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
1501 uint64_t *bytes)
1502{
1503 struct io_completion_data icd;
1504
1505 init_icd(td, &icd, 1);
1506 io_completed(td, io_u, &icd);
1507
1508 if (!(io_u->flags & IO_U_F_FREE_DEF))
1509 put_io_u(td, io_u);
1510
1511 if (icd.error) {
1512 td_verror(td, icd.error, "io_u_sync_complete");
1513 return -1;
1514 }
1515
1516 if (bytes) {
1517 int ddir;
1518
1519 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1520 bytes[ddir] += icd.bytes_done[ddir];
1521 }
1522
1523 return 0;
1524}
1525
1526/*
1527 * Called to complete min_events number of io for the async engines.
1528 */
1529int io_u_queued_complete(struct thread_data *td, int min_evts,
1530 uint64_t *bytes)
1531{
1532 struct io_completion_data icd;
1533 struct timespec *tvp = NULL;
1534 int ret;
1535 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
1536
1537 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
1538
1539 if (!min_evts)
1540 tvp = &ts;
1541
1542 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
1543 if (ret < 0) {
1544 td_verror(td, -ret, "td_io_getevents");
1545 return ret;
1546 } else if (!ret)
1547 return ret;
1548
1549 init_icd(td, &icd, ret);
1550 ios_completed(td, &icd);
1551 if (icd.error) {
1552 td_verror(td, icd.error, "io_u_queued_complete");
1553 return -1;
1554 }
1555
1556 if (bytes) {
1557 int ddir;
1558
1559 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
1560 bytes[ddir] += icd.bytes_done[ddir];
1561 }
1562
1563 return 0;
1564}
1565
1566/*
1567 * Call when io_u is really queued, to update the submission latency.
1568 */
1569void io_u_queued(struct thread_data *td, struct io_u *io_u)
1570{
1571 if (!td->o.disable_slat) {
1572 unsigned long slat_time;
1573
1574 slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
1575 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
1576 }
1577}
1578
1579/*
1580 * "randomly" fill the buffer contents
1581 */
1582void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
1583 unsigned int min_write, unsigned int max_bs)
1584{
1585 io_u->buf_filled_len = 0;
1586
1587 if (!td->o.zero_buffers) {
1588 unsigned int perc = td->o.compress_percentage;
1589
1590 if (perc) {
1591 unsigned int seg = min_write;
1592
1593 seg = min(min_write, td->o.compress_chunk);
1594 fill_random_buf_percentage(&td->buf_state, io_u->buf,
1595 perc, seg, max_bs);
1596 } else
1597 fill_random_buf(&td->buf_state, io_u->buf, max_bs);
1598 } else
1599 memset(io_u->buf, 0, max_bs);
1600}