Add 'fsync_on_close' option
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int nr_process = 0;
47int nr_thread = 0;
48int shm_id = 0;
49int temp_stall_ts;
50
51static struct fio_sem *startup_sem;
52static volatile int fio_abort;
53static int exit_value;
54
55struct io_log *agg_io_log[2];
56
57#define TERMINATE_ALL (-1)
58#define JOB_START_TIMEOUT (5 * 1000)
59
60static inline void td_set_runstate(struct thread_data *td, int runstate)
61{
62 td->runstate = runstate;
63}
64
65static void terminate_threads(int group_id)
66{
67 struct thread_data *td;
68 int i;
69
70 for_each_td(td, i) {
71 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
72 /*
73 * if the thread is running, just let it exit
74 */
75 if (td->runstate < TD_RUNNING)
76 kill(td->pid, SIGQUIT);
77 td->terminate = 1;
78 td->start_delay = 0;
79 }
80 }
81}
82
83static void sig_handler(int sig)
84{
85 switch (sig) {
86 case SIGALRM:
87 update_io_ticks();
88 disk_util_timer_arm();
89 print_thread_status();
90 break;
91 default:
92 printf("\nfio: terminating on signal %d\n", sig);
93 fflush(stdout);
94 terminate_threads(TERMINATE_ALL);
95 break;
96 }
97}
98
99/*
100 * Check if we are above the minimum rate given.
101 */
102static int check_min_rate(struct thread_data *td, struct timeval *now)
103{
104 unsigned long long bytes = 0;
105 unsigned long spent;
106 unsigned long rate;
107
108 /*
109 * No minimum rate set, always ok
110 */
111 if (!td->ratemin)
112 return 0;
113
114 /*
115 * allow a 2 second settle period in the beginning
116 */
117 if (mtime_since(&td->start, now) < 2000)
118 return 0;
119
120 if (td_read(td))
121 bytes += td->this_io_bytes[DDIR_READ];
122 if (td_write(td))
123 bytes += td->this_io_bytes[DDIR_WRITE];
124
125 /*
126 * if rate blocks is set, sample is running
127 */
128 if (td->rate_bytes) {
129 spent = mtime_since(&td->lastrate, now);
130 if (spent < td->ratecycle)
131 return 0;
132
133 if (bytes < td->rate_bytes) {
134 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
135 return 1;
136 } else {
137 rate = (bytes - td->rate_bytes) / spent;
138 if (rate < td->ratemin || bytes < td->rate_bytes) {
139 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
140 return 1;
141 }
142 }
143 }
144
145 td->rate_bytes = bytes;
146 memcpy(&td->lastrate, now, sizeof(*now));
147 return 0;
148}
149
150static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
151{
152 if (!td->timeout)
153 return 0;
154 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
155 return 1;
156
157 return 0;
158}
159
160/*
161 * When job exits, we can cancel the in-flight IO if we are using async
162 * io. Attempt to do so.
163 */
164static void cleanup_pending_aio(struct thread_data *td)
165{
166 struct list_head *entry, *n;
167 struct io_u *io_u;
168 int r;
169
170 /*
171 * get immediately available events, if any
172 */
173 r = io_u_queued_complete(td, 0);
174 if (r < 0)
175 return;
176
177 /*
178 * now cancel remaining active events
179 */
180 if (td->io_ops->cancel) {
181 list_for_each_safe(entry, n, &td->io_u_busylist) {
182 io_u = list_entry(entry, struct io_u, list);
183
184 /*
185 * if the io_u isn't in flight, then that generally
186 * means someone leaked an io_u. complain but fix
187 * it up, so we don't stall here.
188 */
189 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
190 log_err("fio: non-busy IO on busy list\n");
191 put_io_u(td, io_u);
192 } else {
193 r = td->io_ops->cancel(td, io_u);
194 if (!r)
195 put_io_u(td, io_u);
196 }
197 }
198 }
199
200 if (td->cur_depth)
201 r = io_u_queued_complete(td, td->cur_depth);
202}
203
204/*
205 * Helper to handle the final sync of a file. Works just like the normal
206 * io path, just does everything sync.
207 */
208static int fio_io_sync(struct thread_data *td, struct fio_file *f)
209{
210 struct io_u *io_u = __get_io_u(td);
211 int ret;
212
213 if (!io_u)
214 return 1;
215
216 io_u->ddir = DDIR_SYNC;
217 io_u->file = f;
218
219 if (td_io_prep(td, io_u)) {
220 put_io_u(td, io_u);
221 return 1;
222 }
223
224requeue:
225 ret = td_io_queue(td, io_u);
226 if (ret < 0) {
227 td_verror(td, io_u->error, "td_io_queue");
228 put_io_u(td, io_u);
229 return 1;
230 } else if (ret == FIO_Q_QUEUED) {
231 if (io_u_queued_complete(td, 1) < 0)
232 return 1;
233 } else if (ret == FIO_Q_COMPLETED) {
234 if (io_u->error) {
235 td_verror(td, io_u->error, "td_io_queue");
236 return 1;
237 }
238
239 if (io_u_sync_complete(td, io_u) < 0)
240 return 1;
241 } else if (ret == FIO_Q_BUSY) {
242 if (td_io_commit(td))
243 return 1;
244 goto requeue;
245 }
246
247 return 0;
248}
249
250/*
251 * The main verify engine. Runs over the writes we previously submitted,
252 * reads the blocks back in, and checks the crc/md5 of the data.
253 */
254static void do_verify(struct thread_data *td)
255{
256 struct fio_file *f;
257 struct io_u *io_u;
258 int ret, min_events;
259 unsigned int i;
260
261 /*
262 * sync io first and invalidate cache, to make sure we really
263 * read from disk.
264 */
265 for_each_file(td, f, i) {
266 if (fio_io_sync(td, f))
267 break;
268 if (file_invalidate_cache(td, f))
269 break;
270 }
271
272 if (td->error)
273 return;
274
275 td_set_runstate(td, TD_VERIFYING);
276
277 io_u = NULL;
278 while (!td->terminate) {
279 int ret2;
280
281 io_u = __get_io_u(td);
282 if (!io_u)
283 break;
284
285 if (runtime_exceeded(td, &io_u->start_time)) {
286 put_io_u(td, io_u);
287 break;
288 }
289
290 if (get_next_verify(td, io_u)) {
291 put_io_u(td, io_u);
292 break;
293 }
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 break;
298 }
299
300 io_u->end_io = verify_io_u;
301
302 ret = td_io_queue(td, io_u);
303 switch (ret) {
304 case FIO_Q_COMPLETED:
305 if (io_u->error)
306 ret = -io_u->error;
307 else if (io_u->resid) {
308 int bytes = io_u->xfer_buflen - io_u->resid;
309
310 /*
311 * zero read, fail
312 */
313 if (!bytes) {
314 td_verror(td, ENODATA, "full resid");
315 put_io_u(td, io_u);
316 break;
317 }
318 io_u->xfer_buflen = io_u->resid;
319 io_u->xfer_buf += bytes;
320 requeue_io_u(td, &io_u);
321 } else {
322 ret = io_u_sync_complete(td, io_u);
323 if (ret < 0)
324 break;
325 }
326 continue;
327 case FIO_Q_QUEUED:
328 break;
329 case FIO_Q_BUSY:
330 requeue_io_u(td, &io_u);
331 ret2 = td_io_commit(td);
332 if (ret2 < 0)
333 ret = ret2;
334 break;
335 default:
336 assert(ret < 0);
337 td_verror(td, -ret, "td_io_queue");
338 break;
339 }
340
341 if (ret < 0 || td->error)
342 break;
343
344 /*
345 * if we can queue more, do so. but check if there are
346 * completed io_u's first.
347 */
348 min_events = 0;
349 if (queue_full(td) || ret == FIO_Q_BUSY) {
350 min_events = 1;
351
352 if (td->cur_depth > td->iodepth_low)
353 min_events = td->cur_depth - td->iodepth_low;
354 }
355
356 /*
357 * Reap required number of io units, if any, and do the
358 * verification on them through the callback handler
359 */
360 if (io_u_queued_complete(td, min_events) < 0)
361 break;
362 }
363
364 if (!td->error) {
365 min_events = td->cur_depth;
366
367 if (min_events)
368 ret = io_u_queued_complete(td, min_events);
369 } else
370 cleanup_pending_aio(td);
371
372 td_set_runstate(td, TD_RUNNING);
373}
374
375/*
376 * Main IO worker function. It retrieves io_u's to process and queues
377 * and reaps them, checking for rate and errors along the way.
378 */
379static void do_io(struct thread_data *td)
380{
381 struct timeval s;
382 unsigned long usec;
383 unsigned int i;
384 int ret = 0;
385
386 td_set_runstate(td, TD_RUNNING);
387
388 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
389 struct timeval comp_time;
390 long bytes_done = 0;
391 int min_evts = 0;
392 struct io_u *io_u;
393 int ret2;
394
395 if (td->terminate)
396 break;
397
398 io_u = get_io_u(td);
399 if (!io_u)
400 break;
401
402 memcpy(&s, &io_u->start_time, sizeof(s));
403
404 if (runtime_exceeded(td, &s)) {
405 put_io_u(td, io_u);
406 break;
407 }
408
409 ret = td_io_queue(td, io_u);
410 switch (ret) {
411 case FIO_Q_COMPLETED:
412 if (io_u->error)
413 ret = -io_u->error;
414 else if (io_u->resid) {
415 int bytes = io_u->xfer_buflen - io_u->resid;
416
417 /*
418 * zero read, fail
419 */
420 if (!bytes) {
421 td_verror(td, ENODATA, "full resid");
422 put_io_u(td, io_u);
423 break;
424 }
425
426 io_u->xfer_buflen = io_u->resid;
427 io_u->xfer_buf += bytes;
428 requeue_io_u(td, &io_u);
429 } else {
430 fio_gettime(&comp_time, NULL);
431 bytes_done = io_u_sync_complete(td, io_u);
432 if (bytes_done < 0)
433 ret = bytes_done;
434 }
435 break;
436 case FIO_Q_QUEUED:
437 /*
438 * if the engine doesn't have a commit hook,
439 * the io_u is really queued. if it does have such
440 * a hook, it has to call io_u_queued() itself.
441 */
442 if (td->io_ops->commit == NULL)
443 io_u_queued(td, io_u);
444 break;
445 case FIO_Q_BUSY:
446 requeue_io_u(td, &io_u);
447 ret2 = td_io_commit(td);
448 if (ret2 < 0)
449 ret = ret2;
450 break;
451 default:
452 assert(ret < 0);
453 put_io_u(td, io_u);
454 break;
455 }
456
457 if (ret < 0 || td->error)
458 break;
459
460 /*
461 * See if we need to complete some commands
462 */
463 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
464 min_evts = 0;
465 if (queue_full(td) || ret == FIO_Q_BUSY) {
466 min_evts = 1;
467
468 if (td->cur_depth > td->iodepth_low)
469 min_evts = td->cur_depth - td->iodepth_low;
470 }
471
472 fio_gettime(&comp_time, NULL);
473 bytes_done = io_u_queued_complete(td, min_evts);
474 if (bytes_done < 0)
475 break;
476 }
477
478 if (!bytes_done)
479 continue;
480
481 /*
482 * the rate is batched for now, it should work for batches
483 * of completions except the very first one which may look
484 * a little bursty
485 */
486 usec = utime_since(&s, &comp_time);
487
488 rate_throttle(td, usec, bytes_done);
489
490 if (check_min_rate(td, &comp_time)) {
491 if (exitall_on_terminate)
492 terminate_threads(td->groupid);
493 td_verror(td, ENODATA, "check_min_rate");
494 break;
495 }
496
497 if (td->thinktime) {
498 unsigned long long b;
499
500 b = td->io_blocks[0] + td->io_blocks[1];
501 if (!(b % td->thinktime_blocks)) {
502 int left;
503
504 if (td->thinktime_spin)
505 __usec_sleep(td->thinktime_spin);
506
507 left = td->thinktime - td->thinktime_spin;
508 if (left)
509 usec_sleep(td, left);
510 }
511 }
512 }
513
514 if (!td->error) {
515 struct fio_file *f;
516
517 i = td->cur_depth;
518 if (i)
519 ret = io_u_queued_complete(td, i);
520
521 if (should_fsync(td) && td->end_fsync) {
522 td_set_runstate(td, TD_FSYNCING);
523 for_each_file(td, f, i)
524 fio_io_sync(td, f);
525 }
526 } else
527 cleanup_pending_aio(td);
528}
529
530static void cleanup_io_u(struct thread_data *td)
531{
532 struct list_head *entry, *n;
533 struct io_u *io_u;
534
535 list_for_each_safe(entry, n, &td->io_u_freelist) {
536 io_u = list_entry(entry, struct io_u, list);
537
538 list_del(&io_u->list);
539 free(io_u);
540 }
541
542 free_io_mem(td);
543}
544
545/*
546 * "randomly" fill the buffer contents
547 */
548static void fill_rand_buf(struct io_u *io_u, int max_bs)
549{
550 int *ptr = io_u->buf;
551
552 while ((void *) ptr - io_u->buf < max_bs) {
553 *ptr = rand() * 0x9e370001;
554 ptr++;
555 }
556}
557
558static int init_io_u(struct thread_data *td)
559{
560 struct io_u *io_u;
561 unsigned int max_bs;
562 int i, max_units;
563 char *p;
564
565 if (td->io_ops->flags & FIO_SYNCIO)
566 max_units = 1;
567 else
568 max_units = td->iodepth;
569
570 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
571 td->orig_buffer_size = max_bs * max_units;
572
573 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
574 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
575 else
576 td->orig_buffer_size += page_mask;
577
578 if (allocate_io_mem(td))
579 return 1;
580
581 p = ALIGN(td->orig_buffer);
582 for (i = 0; i < max_units; i++) {
583 io_u = malloc(sizeof(*io_u));
584 memset(io_u, 0, sizeof(*io_u));
585 INIT_LIST_HEAD(&io_u->list);
586
587 io_u->buf = p + max_bs * i;
588 if (td_write(td) || td_rw(td))
589 fill_rand_buf(io_u, max_bs);
590
591 io_u->index = i;
592 io_u->flags = IO_U_F_FREE;
593 list_add(&io_u->list, &td->io_u_freelist);
594 }
595
596 io_u_init_timeout();
597
598 return 0;
599}
600
601static int switch_ioscheduler(struct thread_data *td)
602{
603 char tmp[256], tmp2[128];
604 FILE *f;
605 int ret;
606
607 if (td->io_ops->flags & FIO_DISKLESSIO)
608 return 0;
609
610 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
611
612 f = fopen(tmp, "r+");
613 if (!f) {
614 td_verror(td, errno, "fopen");
615 return 1;
616 }
617
618 /*
619 * Set io scheduler.
620 */
621 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
622 if (ferror(f) || ret != 1) {
623 td_verror(td, errno, "fwrite");
624 fclose(f);
625 return 1;
626 }
627
628 rewind(f);
629
630 /*
631 * Read back and check that the selected scheduler is now the default.
632 */
633 ret = fread(tmp, 1, sizeof(tmp), f);
634 if (ferror(f) || ret < 0) {
635 td_verror(td, errno, "fread");
636 fclose(f);
637 return 1;
638 }
639
640 sprintf(tmp2, "[%s]", td->ioscheduler);
641 if (!strstr(tmp, tmp2)) {
642 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
643 td_verror(td, EINVAL, "iosched_switch");
644 fclose(f);
645 return 1;
646 }
647
648 fclose(f);
649 return 0;
650}
651
652static int clear_io_state(struct thread_data *td)
653{
654 struct fio_file *f;
655 unsigned int i;
656 int ret;
657
658 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
659 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
660 td->zone_bytes = 0;
661 td->rate_bytes = 0;
662
663 td->last_was_sync = 0;
664
665 for_each_file(td, f, i)
666 td_io_close_file(td, f);
667
668 ret = 0;
669 for_each_file(td, f, i) {
670 ret = td_io_open_file(td, f);
671 if (ret)
672 break;
673 }
674
675 return ret;
676}
677
678/*
679 * Entry point for the thread based jobs. The process based jobs end up
680 * here as well, after a little setup.
681 */
682static void *thread_main(void *data)
683{
684 unsigned long long runtime[2];
685 struct thread_data *td = data;
686 int clear_state;
687
688 if (!td->use_thread)
689 setsid();
690
691 td->pid = getpid();
692
693 INIT_LIST_HEAD(&td->io_u_freelist);
694 INIT_LIST_HEAD(&td->io_u_busylist);
695 INIT_LIST_HEAD(&td->io_u_requeues);
696 INIT_LIST_HEAD(&td->io_hist_list);
697 INIT_LIST_HEAD(&td->io_log_list);
698
699 if (init_io_u(td))
700 goto err_sem;
701
702 if (fio_setaffinity(td) == -1) {
703 td_verror(td, errno, "cpu_set_affinity");
704 goto err_sem;
705 }
706
707 if (init_iolog(td))
708 goto err_sem;
709
710 if (td->ioprio) {
711 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
712 td_verror(td, errno, "ioprio_set");
713 goto err_sem;
714 }
715 }
716
717 if (nice(td->nice) == -1) {
718 td_verror(td, errno, "nice");
719 goto err_sem;
720 }
721
722 if (init_random_state(td))
723 goto err_sem;
724
725 if (td->ioscheduler && switch_ioscheduler(td))
726 goto err_sem;
727
728 td_set_runstate(td, TD_INITIALIZED);
729 fio_sem_up(startup_sem);
730 fio_sem_down(td->mutex);
731
732 /*
733 * the ->mutex semaphore is now no longer used, close it to avoid
734 * eating a file descriptor
735 */
736 fio_sem_remove(td->mutex);
737
738 if (!td->create_serialize && setup_files(td))
739 goto err;
740
741 if (td_io_init(td))
742 goto err;
743
744 if (open_files(td))
745 goto err;
746
747 if (td->exec_prerun) {
748 if (system(td->exec_prerun) < 0)
749 goto err;
750 }
751
752 fio_gettime(&td->epoch, NULL);
753 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
754 getrusage(RUSAGE_SELF, &td->ts.ru_start);
755
756 runtime[0] = runtime[1] = 0;
757 clear_state = 0;
758 while (td->loops--) {
759 fio_gettime(&td->start, NULL);
760 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
761
762 if (td->ratemin)
763 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
764
765 if (clear_state && clear_io_state(td))
766 break;
767
768 prune_io_piece_log(td);
769
770 do_io(td);
771
772 clear_state = 1;
773
774 if (td_read(td) && td->io_bytes[DDIR_READ])
775 runtime[DDIR_READ] += utime_since_now(&td->start);
776 if (td_write(td) && td->io_bytes[DDIR_WRITE])
777 runtime[DDIR_WRITE] += utime_since_now(&td->start);
778
779 if (td->error || td->terminate)
780 break;
781
782 if (td->verify == VERIFY_NONE)
783 continue;
784
785 if (clear_io_state(td))
786 break;
787
788 fio_gettime(&td->start, NULL);
789
790 do_verify(td);
791
792 runtime[DDIR_READ] += utime_since_now(&td->start);
793
794 if (td->error || td->terminate)
795 break;
796 }
797
798 update_rusage_stat(td);
799 td->ts.runtime[0] = runtime[0] / 1000;
800 td->ts.runtime[1] = runtime[1] / 1000;
801 td->ts.total_run_time = mtime_since_now(&td->epoch);
802 td->ts.io_bytes[0] = td->io_bytes[0];
803 td->ts.io_bytes[1] = td->io_bytes[1];
804
805 if (td->ts.bw_log)
806 finish_log(td, td->ts.bw_log, "bw");
807 if (td->ts.slat_log)
808 finish_log(td, td->ts.slat_log, "slat");
809 if (td->ts.clat_log)
810 finish_log(td, td->ts.clat_log, "clat");
811 if (td->write_iolog_file)
812 write_iolog_close(td);
813 if (td->exec_postrun) {
814 if (system(td->exec_postrun) < 0)
815 log_err("fio: postrun %s failed\n", td->exec_postrun);
816 }
817
818 if (exitall_on_terminate)
819 terminate_threads(td->groupid);
820
821err:
822 if (td->error)
823 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
824 close_files(td);
825 close_ioengine(td);
826 cleanup_io_u(td);
827 td_set_runstate(td, TD_EXITED);
828 return (void *) (unsigned long) td->error;
829err_sem:
830 fio_sem_up(startup_sem);
831 goto err;
832}
833
834/*
835 * We cannot pass the td data into a forked process, so attach the td and
836 * pass it to the thread worker.
837 */
838static int fork_main(int shmid, int offset)
839{
840 struct thread_data *td;
841 void *data, *ret;
842
843 data = shmat(shmid, NULL, 0);
844 if (data == (void *) -1) {
845 int __err = errno;
846
847 perror("shmat");
848 return __err;
849 }
850
851 td = data + offset * sizeof(struct thread_data);
852 ret = thread_main(td);
853 shmdt(data);
854 return (int) (unsigned long) ret;
855}
856
857/*
858 * Run over the job map and reap the threads that have exited, if any.
859 */
860static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
861{
862 struct thread_data *td;
863 int i, cputhreads, pending, status, ret;
864
865 /*
866 * reap exited threads (TD_EXITED -> TD_REAPED)
867 */
868 pending = cputhreads = 0;
869 for_each_td(td, i) {
870 int flags = 0;
871
872 /*
873 * ->io_ops is NULL for a thread that has closed its
874 * io engine
875 */
876 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
877 cputhreads++;
878
879 if (!td->pid || td->runstate == TD_REAPED)
880 continue;
881 if (td->use_thread) {
882 if (td->runstate == TD_EXITED) {
883 td_set_runstate(td, TD_REAPED);
884 goto reaped;
885 }
886 continue;
887 }
888
889 flags = WNOHANG;
890 if (td->runstate == TD_EXITED)
891 flags = 0;
892
893 /*
894 * check if someone quit or got killed in an unusual way
895 */
896 ret = waitpid(td->pid, &status, flags);
897 if (ret < 0) {
898 if (errno == ECHILD) {
899 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
900 td_set_runstate(td, TD_REAPED);
901 goto reaped;
902 }
903 perror("waitpid");
904 } else if (ret == td->pid) {
905 if (WIFSIGNALED(status)) {
906 int sig = WTERMSIG(status);
907
908 if (sig != SIGQUIT)
909 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
910 td_set_runstate(td, TD_REAPED);
911 goto reaped;
912 }
913 if (WIFEXITED(status)) {
914 if (WEXITSTATUS(status) && !td->error)
915 td->error = WEXITSTATUS(status);
916
917 td_set_runstate(td, TD_REAPED);
918 goto reaped;
919 }
920 }
921
922 /*
923 * thread is not dead, continue
924 */
925 continue;
926reaped:
927 if (td->use_thread) {
928 long ret;
929
930 if (pthread_join(td->thread, (void *) &ret))
931 perror("pthread_join");
932 }
933
934 (*nr_running)--;
935 (*m_rate) -= td->ratemin;
936 (*t_rate) -= td->rate;
937
938 if (td->error)
939 exit_value++;
940 }
941
942 if (*nr_running == cputhreads && !pending)
943 terminate_threads(TERMINATE_ALL);
944}
945
946/*
947 * Main function for kicking off and reaping jobs, as needed.
948 */
949static void run_threads(void)
950{
951 struct thread_data *td;
952 unsigned long spent;
953 int i, todo, nr_running, m_rate, t_rate, nr_started;
954
955 if (fio_pin_memory())
956 return;
957
958 if (!terse_output) {
959 printf("Starting ");
960 if (nr_thread)
961 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
962 if (nr_process) {
963 if (nr_thread)
964 printf(" and ");
965 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
966 }
967 printf("\n");
968 fflush(stdout);
969 }
970
971 signal(SIGINT, sig_handler);
972 signal(SIGALRM, sig_handler);
973
974 todo = thread_number;
975 nr_running = 0;
976 nr_started = 0;
977 m_rate = t_rate = 0;
978
979 for_each_td(td, i) {
980 print_status_init(td->thread_number - 1);
981
982 if (!td->create_serialize) {
983 init_disk_util(td);
984 continue;
985 }
986
987 /*
988 * do file setup here so it happens sequentially,
989 * we don't want X number of threads getting their
990 * client data interspersed on disk
991 */
992 if (setup_files(td)) {
993 exit_value++;
994 if (td->error)
995 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
996 td_set_runstate(td, TD_REAPED);
997 todo--;
998 }
999
1000 init_disk_util(td);
1001 }
1002
1003 set_genesis_time();
1004
1005 while (todo) {
1006 struct thread_data *map[MAX_JOBS];
1007 struct timeval this_start;
1008 int this_jobs = 0, left;
1009
1010 /*
1011 * create threads (TD_NOT_CREATED -> TD_CREATED)
1012 */
1013 for_each_td(td, i) {
1014 if (td->runstate != TD_NOT_CREATED)
1015 continue;
1016
1017 /*
1018 * never got a chance to start, killed by other
1019 * thread for some reason
1020 */
1021 if (td->terminate) {
1022 todo--;
1023 continue;
1024 }
1025
1026 if (td->start_delay) {
1027 spent = mtime_since_genesis();
1028
1029 if (td->start_delay * 1000 > spent)
1030 continue;
1031 }
1032
1033 if (td->stonewall && (nr_started || nr_running))
1034 break;
1035
1036 /*
1037 * Set state to created. Thread will transition
1038 * to TD_INITIALIZED when it's done setting up.
1039 */
1040 td_set_runstate(td, TD_CREATED);
1041 map[this_jobs++] = td;
1042 nr_started++;
1043
1044 if (td->use_thread) {
1045 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1046 perror("thread_create");
1047 nr_started--;
1048 break;
1049 }
1050 } else {
1051 if (!fork()) {
1052 int ret = fork_main(shm_id, i);
1053
1054 exit(ret);
1055 }
1056 }
1057 fio_sem_down(startup_sem);
1058 }
1059
1060 /*
1061 * Wait for the started threads to transition to
1062 * TD_INITIALIZED.
1063 */
1064 fio_gettime(&this_start, NULL);
1065 left = this_jobs;
1066 while (left && !fio_abort) {
1067 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1068 break;
1069
1070 usleep(100000);
1071
1072 for (i = 0; i < this_jobs; i++) {
1073 td = map[i];
1074 if (!td)
1075 continue;
1076 if (td->runstate == TD_INITIALIZED) {
1077 map[i] = NULL;
1078 left--;
1079 } else if (td->runstate >= TD_EXITED) {
1080 map[i] = NULL;
1081 left--;
1082 todo--;
1083 nr_running++; /* work-around... */
1084 }
1085 }
1086 }
1087
1088 if (left) {
1089 log_err("fio: %d jobs failed to start\n", left);
1090 for (i = 0; i < this_jobs; i++) {
1091 td = map[i];
1092 if (!td)
1093 continue;
1094 kill(td->pid, SIGTERM);
1095 }
1096 break;
1097 }
1098
1099 /*
1100 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1101 */
1102 for_each_td(td, i) {
1103 if (td->runstate != TD_INITIALIZED)
1104 continue;
1105
1106 td_set_runstate(td, TD_RUNNING);
1107 nr_running++;
1108 nr_started--;
1109 m_rate += td->ratemin;
1110 t_rate += td->rate;
1111 todo--;
1112 fio_sem_up(td->mutex);
1113 }
1114
1115 reap_threads(&nr_running, &t_rate, &m_rate);
1116
1117 if (todo)
1118 usleep(100000);
1119 }
1120
1121 while (nr_running) {
1122 reap_threads(&nr_running, &t_rate, &m_rate);
1123 usleep(10000);
1124 }
1125
1126 update_io_ticks();
1127 fio_unpin_memory();
1128}
1129
1130int main(int argc, char *argv[])
1131{
1132 long ps;
1133
1134 /*
1135 * We need locale for number printing, if it isn't set then just
1136 * go with the US format.
1137 */
1138 if (!getenv("LC_NUMERIC"))
1139 setlocale(LC_NUMERIC, "en_US");
1140
1141 if (parse_options(argc, argv))
1142 return 1;
1143
1144 if (!thread_number) {
1145 log_err("Nothing to do\n");
1146 return 1;
1147 }
1148
1149 ps = sysconf(_SC_PAGESIZE);
1150 if (ps < 0) {
1151 log_err("Failed to get page size\n");
1152 return 1;
1153 }
1154
1155 page_mask = ps - 1;
1156
1157 if (write_bw_log) {
1158 setup_log(&agg_io_log[DDIR_READ]);
1159 setup_log(&agg_io_log[DDIR_WRITE]);
1160 }
1161
1162 startup_sem = fio_sem_init(0);
1163
1164 set_genesis_time();
1165
1166 disk_util_timer_arm();
1167
1168 run_threads();
1169
1170 if (!fio_abort) {
1171 show_run_stats();
1172 if (write_bw_log) {
1173 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1174 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1175 }
1176 }
1177
1178 fio_sem_remove(startup_sem);
1179 return exit_value;
1180}