Add support for async IO verification offload
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42
43unsigned long page_mask;
44unsigned long page_size;
45
46#define PAGE_ALIGN(buf) \
47 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
48
49int groupid = 0;
50int thread_number = 0;
51int nr_process = 0;
52int nr_thread = 0;
53int shm_id = 0;
54int temp_stall_ts;
55unsigned long done_secs = 0;
56
57static struct fio_mutex *startup_mutex;
58static struct fio_mutex *writeout_mutex;
59static volatile int fio_abort;
60static int exit_value;
61static struct itimerval itimer;
62static pthread_t gtod_thread;
63
64struct io_log *agg_io_log[2];
65
66#define TERMINATE_ALL (-1)
67#define JOB_START_TIMEOUT (5 * 1000)
68
69void td_set_runstate(struct thread_data *td, int runstate)
70{
71 if (td->runstate == runstate)
72 return;
73
74 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
75 td->runstate, runstate);
76 td->runstate = runstate;
77}
78
79static void terminate_threads(int group_id)
80{
81 struct thread_data *td;
82 int i;
83
84 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
85
86 for_each_td(td, i) {
87 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
88 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
89 td->o.name, (int) td->pid);
90 td->terminate = 1;
91 td->o.start_delay = 0;
92
93 /*
94 * if the thread is running, just let it exit
95 */
96 if (td->runstate < TD_RUNNING)
97 kill(td->pid, SIGQUIT);
98 else {
99 struct ioengine_ops *ops = td->io_ops;
100
101 if (ops && (ops->flags & FIO_SIGQUIT))
102 kill(td->pid, SIGQUIT);
103 }
104 }
105 }
106}
107
108static void status_timer_arm(void)
109{
110 itimer.it_value.tv_sec = 0;
111 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
112 setitimer(ITIMER_REAL, &itimer, NULL);
113}
114
115static void sig_alrm(int fio_unused sig)
116{
117 if (threads) {
118 update_io_ticks();
119 print_thread_status();
120 status_timer_arm();
121 }
122}
123
124/*
125 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
126 */
127static void sig_quit(int sig)
128{
129}
130
131static void sig_int(int sig)
132{
133 if (threads) {
134 printf("\nfio: terminating on signal %d\n", sig);
135 fflush(stdout);
136 terminate_threads(TERMINATE_ALL);
137 }
138}
139
140static void sig_ill(int fio_unused sig)
141{
142 if (!threads)
143 return;
144
145 log_err("fio: illegal instruction. your cpu does not support "
146 "the sse4.2 instruction for crc32c\n");
147 terminate_threads(TERMINATE_ALL);
148 exit(4);
149}
150
151static void set_sig_handlers(void)
152{
153 struct sigaction act;
154
155 memset(&act, 0, sizeof(act));
156 act.sa_handler = sig_alrm;
157 act.sa_flags = SA_RESTART;
158 sigaction(SIGALRM, &act, NULL);
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_int;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGINT, &act, NULL);
164
165 memset(&act, 0, sizeof(act));
166 act.sa_handler = sig_ill;
167 act.sa_flags = SA_RESTART;
168 sigaction(SIGILL, &act, NULL);
169
170 memset(&act, 0, sizeof(act));
171 act.sa_handler = sig_quit;
172 act.sa_flags = SA_RESTART;
173 sigaction(SIGQUIT, &act, NULL);
174}
175
176/*
177 * Check if we are above the minimum rate given.
178 */
179static int __check_min_rate(struct thread_data *td, struct timeval *now,
180 enum td_ddir ddir)
181{
182 unsigned long long bytes = 0;
183 unsigned long iops = 0;
184 unsigned long spent;
185 unsigned long rate;
186 unsigned int ratemin = 0;
187 unsigned int rate_iops = 0;
188 unsigned int rate_iops_min = 0;
189
190 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
191 return 0;
192
193 /*
194 * allow a 2 second settle period in the beginning
195 */
196 if (mtime_since(&td->start, now) < 2000)
197 return 0;
198
199 iops += td->io_blocks[ddir];
200 bytes += td->this_io_bytes[ddir];
201 ratemin += td->o.ratemin[ddir];
202 rate_iops += td->o.rate_iops[ddir];
203 rate_iops_min += td->o.rate_iops_min[ddir];
204
205 /*
206 * if rate blocks is set, sample is running
207 */
208 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
209 spent = mtime_since(&td->lastrate[ddir], now);
210 if (spent < td->o.ratecycle)
211 return 0;
212
213 if (td->o.rate[ddir]) {
214 /*
215 * check bandwidth specified rate
216 */
217 if (bytes < td->rate_bytes[ddir]) {
218 log_err("%s: min rate %u not met\n", td->o.name,
219 ratemin);
220 return 1;
221 } else {
222 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
223 if (rate < ratemin ||
224 bytes < td->rate_bytes[ddir]) {
225 log_err("%s: min rate %u not met, got"
226 " %luKiB/sec\n", td->o.name,
227 ratemin, rate);
228 return 1;
229 }
230 }
231 } else {
232 /*
233 * checks iops specified rate
234 */
235 if (iops < rate_iops) {
236 log_err("%s: min iops rate %u not met\n",
237 td->o.name, rate_iops);
238 return 1;
239 } else {
240 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
241 if (rate < rate_iops_min ||
242 iops < td->rate_blocks[ddir]) {
243 log_err("%s: min iops rate %u not met,"
244 " got %lu\n", td->o.name,
245 rate_iops_min, rate);
246 }
247 }
248 }
249 }
250
251 td->rate_bytes[ddir] = bytes;
252 td->rate_blocks[ddir] = iops;
253 memcpy(&td->lastrate[ddir], now, sizeof(*now));
254 return 0;
255}
256
257static int check_min_rate(struct thread_data *td, struct timeval *now,
258 unsigned long *bytes_done)
259{
260 int ret = 0;
261
262 if (bytes_done[0])
263 ret |= __check_min_rate(td, now, 0);
264 if (bytes_done[1])
265 ret |= __check_min_rate(td, now, 1);
266
267 return ret;
268}
269
270static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
271{
272 if (!td->o.timeout)
273 return 0;
274 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
275 return 1;
276
277 return 0;
278}
279
280/*
281 * When job exits, we can cancel the in-flight IO if we are using async
282 * io. Attempt to do so.
283 */
284static void cleanup_pending_aio(struct thread_data *td)
285{
286 struct flist_head *entry, *n;
287 struct io_u *io_u;
288 int r;
289
290 /*
291 * get immediately available events, if any
292 */
293 r = io_u_queued_complete(td, 0, NULL);
294 if (r < 0)
295 return;
296
297 /*
298 * now cancel remaining active events
299 */
300 if (td->io_ops->cancel) {
301 flist_for_each_safe(entry, n, &td->io_u_busylist) {
302 io_u = flist_entry(entry, struct io_u, list);
303
304 /*
305 * if the io_u isn't in flight, then that generally
306 * means someone leaked an io_u. complain but fix
307 * it up, so we don't stall here.
308 */
309 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
310 log_err("fio: non-busy IO on busy list\n");
311 put_io_u(td, io_u);
312 } else {
313 r = td->io_ops->cancel(td, io_u);
314 if (!r)
315 put_io_u(td, io_u);
316 }
317 }
318 }
319
320 if (td->cur_depth)
321 r = io_u_queued_complete(td, td->cur_depth, NULL);
322}
323
324/*
325 * Helper to handle the final sync of a file. Works just like the normal
326 * io path, just does everything sync.
327 */
328static int fio_io_sync(struct thread_data *td, struct fio_file *f)
329{
330 struct io_u *io_u = __get_io_u(td);
331 int ret;
332
333 if (!io_u)
334 return 1;
335
336 io_u->ddir = DDIR_SYNC;
337 io_u->file = f;
338
339 if (td_io_prep(td, io_u)) {
340 put_io_u(td, io_u);
341 return 1;
342 }
343
344requeue:
345 ret = td_io_queue(td, io_u);
346 if (ret < 0) {
347 td_verror(td, io_u->error, "td_io_queue");
348 put_io_u(td, io_u);
349 return 1;
350 } else if (ret == FIO_Q_QUEUED) {
351 if (io_u_queued_complete(td, 1, NULL) < 0)
352 return 1;
353 } else if (ret == FIO_Q_COMPLETED) {
354 if (io_u->error) {
355 td_verror(td, io_u->error, "td_io_queue");
356 return 1;
357 }
358
359 if (io_u_sync_complete(td, io_u, NULL) < 0)
360 return 1;
361 } else if (ret == FIO_Q_BUSY) {
362 if (td_io_commit(td))
363 return 1;
364 goto requeue;
365 }
366
367 return 0;
368}
369
370static inline void update_tv_cache(struct thread_data *td)
371{
372 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
373 fio_gettime(&td->tv_cache, NULL);
374}
375
376static int break_on_this_error(struct thread_data *td, int *retptr)
377{
378 int ret = *retptr;
379
380 if (ret < 0 || td->error) {
381 int err;
382
383 if (!td->o.continue_on_error)
384 return 1;
385
386 if (ret < 0)
387 err = -ret;
388 else
389 err = td->error;
390
391 if (td_non_fatal_error(err)) {
392 /*
393 * Continue with the I/Os in case of
394 * a non fatal error.
395 */
396 update_error_count(td, err);
397 td_clear_error(td);
398 *retptr = 0;
399 return 0;
400 } else if (td->o.fill_device && err == ENOSPC) {
401 /*
402 * We expect to hit this error if
403 * fill_device option is set.
404 */
405 td_clear_error(td);
406 td->terminate = 1;
407 return 1;
408 } else {
409 /*
410 * Stop the I/O in case of a fatal
411 * error.
412 */
413 update_error_count(td, err);
414 return 1;
415 }
416 }
417
418 return 0;
419}
420
421/*
422 * The main verify engine. Runs over the writes we previously submitted,
423 * reads the blocks back in, and checks the crc/md5 of the data.
424 */
425static void do_verify(struct thread_data *td)
426{
427 struct fio_file *f;
428 struct io_u *io_u;
429 int ret, min_events;
430 unsigned int i;
431
432 /*
433 * sync io first and invalidate cache, to make sure we really
434 * read from disk.
435 */
436 for_each_file(td, f, i) {
437 if (!fio_file_open(f))
438 continue;
439 if (fio_io_sync(td, f))
440 break;
441 if (file_invalidate_cache(td, f))
442 break;
443 }
444
445 if (td->error)
446 return;
447
448 td_set_runstate(td, TD_VERIFYING);
449
450 io_u = NULL;
451 while (!td->terminate) {
452 int ret2, full;
453
454 update_tv_cache(td);
455
456 if (runtime_exceeded(td, &td->tv_cache)) {
457 td->terminate = 1;
458 break;
459 }
460
461 io_u = __get_io_u(td);
462 if (!io_u)
463 break;
464
465 if (get_next_verify(td, io_u)) {
466 put_io_u(td, io_u);
467 break;
468 }
469
470 if (td_io_prep(td, io_u)) {
471 put_io_u(td, io_u);
472 break;
473 }
474
475 if (td->o.verify_async)
476 io_u->end_io = verify_io_u_async;
477 else
478 io_u->end_io = verify_io_u;
479
480 ret = td_io_queue(td, io_u);
481 switch (ret) {
482 case FIO_Q_COMPLETED:
483 if (io_u->error) {
484 ret = -io_u->error;
485 clear_io_u(td, io_u);
486 } else if (io_u->resid) {
487 int bytes = io_u->xfer_buflen - io_u->resid;
488 struct fio_file *f = io_u->file;
489
490 /*
491 * zero read, fail
492 */
493 if (!bytes) {
494 td_verror(td, EIO, "full resid");
495 put_io_u(td, io_u);
496 break;
497 }
498
499 io_u->xfer_buflen = io_u->resid;
500 io_u->xfer_buf += bytes;
501 io_u->offset += bytes;
502
503 td->ts.short_io_u[io_u->ddir]++;
504
505 if (io_u->offset == f->real_file_size)
506 goto sync_done;
507
508 requeue_io_u(td, &io_u);
509 } else {
510sync_done:
511 ret = io_u_sync_complete(td, io_u, NULL);
512 if (ret < 0)
513 break;
514 }
515 continue;
516 case FIO_Q_QUEUED:
517 break;
518 case FIO_Q_BUSY:
519 requeue_io_u(td, &io_u);
520 ret2 = td_io_commit(td);
521 if (ret2 < 0)
522 ret = ret2;
523 break;
524 default:
525 assert(ret < 0);
526 td_verror(td, -ret, "td_io_queue");
527 break;
528 }
529
530 if (break_on_this_error(td, &ret))
531 break;
532
533 /*
534 * if we can queue more, do so. but check if there are
535 * completed io_u's first.
536 */
537 full = queue_full(td) || ret == FIO_Q_BUSY;
538 if (full || !td->o.iodepth_batch_complete) {
539 min_events = td->o.iodepth_batch_complete;
540 if (full && !min_events)
541 min_events = 1;
542
543 do {
544 /*
545 * Reap required number of io units, if any,
546 * and do the verification on them through
547 * the callback handler
548 */
549 if (io_u_queued_complete(td, min_events, NULL) < 0) {
550 ret = -1;
551 break;
552 }
553 } while (full && (td->cur_depth > td->o.iodepth_low));
554 }
555 if (ret < 0)
556 break;
557 }
558
559 if (!td->error) {
560 min_events = td->cur_depth;
561
562 if (min_events)
563 ret = io_u_queued_complete(td, min_events, NULL);
564 } else
565 cleanup_pending_aio(td);
566
567 td_set_runstate(td, TD_RUNNING);
568}
569
570/*
571 * Main IO worker function. It retrieves io_u's to process and queues
572 * and reaps them, checking for rate and errors along the way.
573 */
574static void do_io(struct thread_data *td)
575{
576 unsigned int i;
577 int ret = 0;
578
579 if (in_ramp_time(td))
580 td_set_runstate(td, TD_RAMP);
581 else
582 td_set_runstate(td, TD_RUNNING);
583
584 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
585 struct timeval comp_time;
586 unsigned long bytes_done[2] = { 0, 0 };
587 int min_evts = 0;
588 struct io_u *io_u;
589 int ret2, full;
590
591 if (td->terminate)
592 break;
593
594 update_tv_cache(td);
595
596 if (runtime_exceeded(td, &td->tv_cache)) {
597 td->terminate = 1;
598 break;
599 }
600
601 io_u = get_io_u(td);
602 if (!io_u)
603 break;
604
605 /*
606 * Add verification end_io handler, if asked to verify
607 * a previously written file.
608 */
609 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
610 if (td->o.verify_async)
611 io_u->end_io = verify_io_u_async;
612 else
613 io_u->end_io = verify_io_u;
614 td_set_runstate(td, TD_VERIFYING);
615 } else if (in_ramp_time(td))
616 td_set_runstate(td, TD_RAMP);
617 else
618 td_set_runstate(td, TD_RUNNING);
619
620 ret = td_io_queue(td, io_u);
621 switch (ret) {
622 case FIO_Q_COMPLETED:
623 if (io_u->error) {
624 ret = -io_u->error;
625 clear_io_u(td, io_u);
626 } else if (io_u->resid) {
627 int bytes = io_u->xfer_buflen - io_u->resid;
628 struct fio_file *f = io_u->file;
629
630 /*
631 * zero read, fail
632 */
633 if (!bytes) {
634 td_verror(td, EIO, "full resid");
635 put_io_u(td, io_u);
636 break;
637 }
638
639 io_u->xfer_buflen = io_u->resid;
640 io_u->xfer_buf += bytes;
641 io_u->offset += bytes;
642
643 td->ts.short_io_u[io_u->ddir]++;
644
645 if (io_u->offset == f->real_file_size)
646 goto sync_done;
647
648 requeue_io_u(td, &io_u);
649 } else {
650sync_done:
651 if (__should_check_rate(td, 0) ||
652 __should_check_rate(td, 1))
653 fio_gettime(&comp_time, NULL);
654
655 ret = io_u_sync_complete(td, io_u, bytes_done);
656 if (ret < 0)
657 break;
658 }
659 break;
660 case FIO_Q_QUEUED:
661 /*
662 * if the engine doesn't have a commit hook,
663 * the io_u is really queued. if it does have such
664 * a hook, it has to call io_u_queued() itself.
665 */
666 if (td->io_ops->commit == NULL)
667 io_u_queued(td, io_u);
668 break;
669 case FIO_Q_BUSY:
670 requeue_io_u(td, &io_u);
671 ret2 = td_io_commit(td);
672 if (ret2 < 0)
673 ret = ret2;
674 break;
675 default:
676 assert(ret < 0);
677 put_io_u(td, io_u);
678 break;
679 }
680
681 if (break_on_this_error(td, &ret))
682 break;
683
684 /*
685 * See if we need to complete some commands
686 */
687 full = queue_full(td) || ret == FIO_Q_BUSY;
688 if (full || !td->o.iodepth_batch_complete) {
689 min_evts = td->o.iodepth_batch_complete;
690 if (full && !min_evts)
691 min_evts = 1;
692
693 if (__should_check_rate(td, 0) ||
694 __should_check_rate(td, 1))
695 fio_gettime(&comp_time, NULL);
696
697 do {
698 ret = io_u_queued_complete(td, min_evts, bytes_done);
699 if (ret < 0)
700 break;
701
702 } while (full && (td->cur_depth > td->o.iodepth_low));
703 }
704
705 if (ret < 0)
706 break;
707 if (!(bytes_done[0] + bytes_done[1]))
708 continue;
709
710 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
711 if (check_min_rate(td, &comp_time, bytes_done)) {
712 if (exitall_on_terminate)
713 terminate_threads(td->groupid);
714 td_verror(td, EIO, "check_min_rate");
715 break;
716 }
717 }
718
719 if (td->o.thinktime) {
720 unsigned long long b;
721
722 b = td->io_blocks[0] + td->io_blocks[1];
723 if (!(b % td->o.thinktime_blocks)) {
724 int left;
725
726 if (td->o.thinktime_spin)
727 usec_spin(td->o.thinktime_spin);
728
729 left = td->o.thinktime - td->o.thinktime_spin;
730 if (left)
731 usec_sleep(td, left);
732 }
733 }
734 }
735
736 if (td->o.fill_device && td->error == ENOSPC) {
737 td->error = 0;
738 td->terminate = 1;
739 }
740 if (!td->error) {
741 struct fio_file *f;
742
743 i = td->cur_depth;
744 if (i)
745 ret = io_u_queued_complete(td, i, NULL);
746
747 if (should_fsync(td) && td->o.end_fsync) {
748 td_set_runstate(td, TD_FSYNCING);
749
750 for_each_file(td, f, i) {
751 if (!fio_file_open(f))
752 continue;
753 fio_io_sync(td, f);
754 }
755 }
756 } else
757 cleanup_pending_aio(td);
758
759 /*
760 * stop job if we failed doing any IO
761 */
762 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
763 td->done = 1;
764}
765
766static void cleanup_io_u(struct thread_data *td)
767{
768 struct flist_head *entry, *n;
769 struct io_u *io_u;
770
771 flist_for_each_safe(entry, n, &td->io_u_freelist) {
772 io_u = flist_entry(entry, struct io_u, list);
773
774 flist_del(&io_u->list);
775 free(io_u);
776 }
777
778 free_io_mem(td);
779}
780
781static int init_io_u(struct thread_data *td)
782{
783 struct io_u *io_u;
784 unsigned int max_bs;
785 int cl_align, i, max_units;
786 char *p;
787
788 max_units = td->o.iodepth;
789 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
790 td->orig_buffer_size = (unsigned long long) max_bs
791 * (unsigned long long) max_units;
792
793 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
794 unsigned long bs;
795
796 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
797 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
798 }
799
800 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
801 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
802 return 1;
803 }
804
805 if (allocate_io_mem(td))
806 return 1;
807
808 if (td->o.odirect || td->o.mem_align)
809 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
810 else
811 p = td->orig_buffer;
812
813 cl_align = os_cache_line_size();
814
815 for (i = 0; i < max_units; i++) {
816 void *ptr;
817
818 if (td->terminate)
819 return 1;
820
821 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
822 log_err("fio: posix_memalign=%s\n", strerror(errno));
823 break;
824 }
825
826 io_u = ptr;
827 memset(io_u, 0, sizeof(*io_u));
828 INIT_FLIST_HEAD(&io_u->list);
829 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
830
831 if (!(td->io_ops->flags & FIO_NOIO)) {
832 io_u->buf = p + max_bs * i;
833 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
834
835 if (td_write(td) && !td->o.refill_buffers)
836 io_u_fill_buffer(td, io_u, max_bs);
837 }
838
839 io_u->index = i;
840 io_u->flags = IO_U_F_FREE;
841 flist_add(&io_u->list, &td->io_u_freelist);
842 }
843
844 return 0;
845}
846
847static int switch_ioscheduler(struct thread_data *td)
848{
849 char tmp[256], tmp2[128];
850 FILE *f;
851 int ret;
852
853 if (td->io_ops->flags & FIO_DISKLESSIO)
854 return 0;
855
856 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
857
858 f = fopen(tmp, "r+");
859 if (!f) {
860 if (errno == ENOENT) {
861 log_err("fio: os or kernel doesn't support IO scheduler"
862 " switching\n");
863 return 0;
864 }
865 td_verror(td, errno, "fopen iosched");
866 return 1;
867 }
868
869 /*
870 * Set io scheduler.
871 */
872 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
873 if (ferror(f) || ret != 1) {
874 td_verror(td, errno, "fwrite");
875 fclose(f);
876 return 1;
877 }
878
879 rewind(f);
880
881 /*
882 * Read back and check that the selected scheduler is now the default.
883 */
884 ret = fread(tmp, 1, sizeof(tmp), f);
885 if (ferror(f) || ret < 0) {
886 td_verror(td, errno, "fread");
887 fclose(f);
888 return 1;
889 }
890
891 sprintf(tmp2, "[%s]", td->o.ioscheduler);
892 if (!strstr(tmp, tmp2)) {
893 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
894 td_verror(td, EINVAL, "iosched_switch");
895 fclose(f);
896 return 1;
897 }
898
899 fclose(f);
900 return 0;
901}
902
903static int keep_running(struct thread_data *td)
904{
905 unsigned long long io_done;
906
907 if (td->done)
908 return 0;
909 if (td->o.time_based)
910 return 1;
911 if (td->o.loops) {
912 td->o.loops--;
913 return 1;
914 }
915
916 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
917 + td->io_skip_bytes;
918 if (io_done < td->o.size)
919 return 1;
920
921 return 0;
922}
923
924static void reset_io_counters(struct thread_data *td)
925{
926 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
927 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
928 td->zone_bytes = 0;
929 td->rate_bytes[0] = td->rate_bytes[1] = 0;
930 td->rate_blocks[0] = td->rate_blocks[1] = 0;
931
932 td->last_was_sync = 0;
933
934 /*
935 * reset file done count if we are to start over
936 */
937 if (td->o.time_based || td->o.loops)
938 td->nr_done_files = 0;
939
940 /*
941 * Set the same seed to get repeatable runs
942 */
943 td_fill_rand_seeds(td);
944}
945
946void reset_all_stats(struct thread_data *td)
947{
948 struct timeval tv;
949 int i;
950
951 reset_io_counters(td);
952
953 for (i = 0; i < 2; i++) {
954 td->io_bytes[i] = 0;
955 td->io_blocks[i] = 0;
956 td->io_issues[i] = 0;
957 td->ts.total_io_u[i] = 0;
958 }
959
960 fio_gettime(&tv, NULL);
961 memcpy(&td->epoch, &tv, sizeof(tv));
962 memcpy(&td->start, &tv, sizeof(tv));
963}
964
965static void clear_io_state(struct thread_data *td)
966{
967 struct fio_file *f;
968 unsigned int i;
969
970 reset_io_counters(td);
971
972 close_files(td);
973 for_each_file(td, f, i)
974 fio_file_clear_done(f);
975}
976
977static int exec_string(const char *string)
978{
979 int ret, newlen = strlen(string) + 1 + 8;
980 char *str;
981
982 str = malloc(newlen);
983 sprintf(str, "sh -c %s", string);
984
985 ret = system(str);
986 if (ret == -1)
987 log_err("fio: exec of cmd <%s> failed\n", str);
988
989 free(str);
990 return ret;
991}
992
993/*
994 * Entry point for the thread based jobs. The process based jobs end up
995 * here as well, after a little setup.
996 */
997static void *thread_main(void *data)
998{
999 unsigned long long runtime[2], elapsed;
1000 struct thread_data *td = data;
1001 pthread_condattr_t attr;
1002 int clear_state;
1003
1004 if (!td->o.use_thread)
1005 setsid();
1006
1007 td->pid = getpid();
1008
1009 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1010
1011 INIT_FLIST_HEAD(&td->io_u_freelist);
1012 INIT_FLIST_HEAD(&td->io_u_busylist);
1013 INIT_FLIST_HEAD(&td->io_u_requeues);
1014 INIT_FLIST_HEAD(&td->io_log_list);
1015 INIT_FLIST_HEAD(&td->io_hist_list);
1016 INIT_FLIST_HEAD(&td->verify_list);
1017 pthread_mutex_init(&td->io_u_lock, NULL);
1018 td->io_hist_tree = RB_ROOT;
1019
1020 pthread_condattr_init(&attr);
1021 pthread_cond_init(&td->verify_cond, &attr);
1022 pthread_cond_init(&td->free_cond, &attr);
1023
1024 td_set_runstate(td, TD_INITIALIZED);
1025 dprint(FD_MUTEX, "up startup_mutex\n");
1026 fio_mutex_up(startup_mutex);
1027 dprint(FD_MUTEX, "wait on td->mutex\n");
1028 fio_mutex_down(td->mutex);
1029 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1030
1031 /*
1032 * the ->mutex mutex is now no longer used, close it to avoid
1033 * eating a file descriptor
1034 */
1035 fio_mutex_remove(td->mutex);
1036
1037 /*
1038 * May alter parameters that init_io_u() will use, so we need to
1039 * do this first.
1040 */
1041 if (init_iolog(td))
1042 goto err;
1043
1044 if (init_io_u(td))
1045 goto err;
1046
1047 if (td->o.verify_async && verify_async_init(td))
1048 goto err;
1049
1050 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1051 td_verror(td, errno, "cpu_set_affinity");
1052 goto err;
1053 }
1054
1055 /*
1056 * If we have a gettimeofday() thread, make sure we exclude that
1057 * thread from this job
1058 */
1059 if (td->o.gtod_cpu) {
1060 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1061 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1062 td_verror(td, errno, "cpu_set_affinity");
1063 goto err;
1064 }
1065 }
1066
1067 if (td->ioprio_set) {
1068 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1069 td_verror(td, errno, "ioprio_set");
1070 goto err;
1071 }
1072 }
1073
1074 if (nice(td->o.nice) == -1) {
1075 td_verror(td, errno, "nice");
1076 goto err;
1077 }
1078
1079 if (td->o.ioscheduler && switch_ioscheduler(td))
1080 goto err;
1081
1082 if (!td->o.create_serialize && setup_files(td))
1083 goto err;
1084
1085 if (td_io_init(td))
1086 goto err;
1087
1088 if (init_random_map(td))
1089 goto err;
1090
1091 if (td->o.exec_prerun) {
1092 if (exec_string(td->o.exec_prerun))
1093 goto err;
1094 }
1095
1096 if (td->o.pre_read) {
1097 if (pre_read_files(td) < 0)
1098 goto err;
1099 }
1100
1101 fio_gettime(&td->epoch, NULL);
1102 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1103
1104 runtime[0] = runtime[1] = 0;
1105 clear_state = 0;
1106 while (keep_running(td)) {
1107 fio_gettime(&td->start, NULL);
1108 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1109 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1110
1111 if (td->o.ratemin[0] || td->o.ratemin[1])
1112 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1113 sizeof(td->lastrate));
1114
1115 if (clear_state)
1116 clear_io_state(td);
1117
1118 prune_io_piece_log(td);
1119
1120 do_io(td);
1121
1122 clear_state = 1;
1123
1124 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1125 elapsed = utime_since_now(&td->start);
1126 runtime[DDIR_READ] += elapsed;
1127 }
1128 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1129 elapsed = utime_since_now(&td->start);
1130 runtime[DDIR_WRITE] += elapsed;
1131 }
1132
1133 if (td->error || td->terminate)
1134 break;
1135
1136 if (!td->o.do_verify ||
1137 td->o.verify == VERIFY_NONE ||
1138 (td->io_ops->flags & FIO_UNIDIR))
1139 continue;
1140
1141 clear_io_state(td);
1142
1143 fio_gettime(&td->start, NULL);
1144
1145 do_verify(td);
1146
1147 runtime[DDIR_READ] += utime_since_now(&td->start);
1148
1149 if (td->error || td->terminate)
1150 break;
1151 }
1152
1153 update_rusage_stat(td);
1154 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1155 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1156 td->ts.total_run_time = mtime_since_now(&td->epoch);
1157 td->ts.io_bytes[0] = td->io_bytes[0];
1158 td->ts.io_bytes[1] = td->io_bytes[1];
1159
1160 fio_mutex_down(writeout_mutex);
1161 if (td->ts.bw_log) {
1162 if (td->o.bw_log_file) {
1163 finish_log_named(td, td->ts.bw_log,
1164 td->o.bw_log_file, "bw");
1165 } else
1166 finish_log(td, td->ts.bw_log, "bw");
1167 }
1168 if (td->ts.slat_log) {
1169 if (td->o.lat_log_file) {
1170 finish_log_named(td, td->ts.slat_log,
1171 td->o.lat_log_file, "slat");
1172 } else
1173 finish_log(td, td->ts.slat_log, "slat");
1174 }
1175 if (td->ts.clat_log) {
1176 if (td->o.lat_log_file) {
1177 finish_log_named(td, td->ts.clat_log,
1178 td->o.lat_log_file, "clat");
1179 } else
1180 finish_log(td, td->ts.clat_log, "clat");
1181 }
1182 fio_mutex_up(writeout_mutex);
1183 if (td->o.exec_postrun)
1184 exec_string(td->o.exec_postrun);
1185
1186 if (exitall_on_terminate)
1187 terminate_threads(td->groupid);
1188
1189err:
1190 if (td->error)
1191 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1192 td->verror);
1193 close_and_free_files(td);
1194 close_ioengine(td);
1195 cleanup_io_u(td);
1196
1197 if (td->o.cpumask_set) {
1198 int ret = fio_cpuset_exit(&td->o.cpumask);
1199
1200 td_verror(td, ret, "fio_cpuset_exit");
1201 }
1202
1203 if (td->o.verify_async)
1204 verify_async_exit(td);
1205
1206 /*
1207 * do this very late, it will log file closing as well
1208 */
1209 if (td->o.write_iolog_file)
1210 write_iolog_close(td);
1211
1212 options_mem_free(td);
1213 td_set_runstate(td, TD_EXITED);
1214 return (void *) (unsigned long) td->error;
1215}
1216
1217/*
1218 * We cannot pass the td data into a forked process, so attach the td and
1219 * pass it to the thread worker.
1220 */
1221static int fork_main(int shmid, int offset)
1222{
1223 struct thread_data *td;
1224 void *data, *ret;
1225
1226 data = shmat(shmid, NULL, 0);
1227 if (data == (void *) -1) {
1228 int __err = errno;
1229
1230 perror("shmat");
1231 return __err;
1232 }
1233
1234 td = data + offset * sizeof(struct thread_data);
1235 ret = thread_main(td);
1236 shmdt(data);
1237 return (int) (unsigned long) ret;
1238}
1239
1240/*
1241 * Run over the job map and reap the threads that have exited, if any.
1242 */
1243static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1244{
1245 struct thread_data *td;
1246 int i, cputhreads, realthreads, pending, status, ret;
1247
1248 /*
1249 * reap exited threads (TD_EXITED -> TD_REAPED)
1250 */
1251 realthreads = pending = cputhreads = 0;
1252 for_each_td(td, i) {
1253 int flags = 0;
1254
1255 /*
1256 * ->io_ops is NULL for a thread that has closed its
1257 * io engine
1258 */
1259 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1260 cputhreads++;
1261 else
1262 realthreads++;
1263
1264 if (!td->pid) {
1265 pending++;
1266 continue;
1267 }
1268 if (td->runstate == TD_REAPED)
1269 continue;
1270 if (td->o.use_thread) {
1271 if (td->runstate == TD_EXITED) {
1272 td_set_runstate(td, TD_REAPED);
1273 goto reaped;
1274 }
1275 continue;
1276 }
1277
1278 flags = WNOHANG;
1279 if (td->runstate == TD_EXITED)
1280 flags = 0;
1281
1282 /*
1283 * check if someone quit or got killed in an unusual way
1284 */
1285 ret = waitpid(td->pid, &status, flags);
1286 if (ret < 0) {
1287 if (errno == ECHILD) {
1288 log_err("fio: pid=%d disappeared %d\n",
1289 (int) td->pid, td->runstate);
1290 td_set_runstate(td, TD_REAPED);
1291 goto reaped;
1292 }
1293 perror("waitpid");
1294 } else if (ret == td->pid) {
1295 if (WIFSIGNALED(status)) {
1296 int sig = WTERMSIG(status);
1297
1298 if (sig != SIGQUIT)
1299 log_err("fio: pid=%d, got signal=%d\n",
1300 (int) td->pid, sig);
1301 td_set_runstate(td, TD_REAPED);
1302 goto reaped;
1303 }
1304 if (WIFEXITED(status)) {
1305 if (WEXITSTATUS(status) && !td->error)
1306 td->error = WEXITSTATUS(status);
1307
1308 td_set_runstate(td, TD_REAPED);
1309 goto reaped;
1310 }
1311 }
1312
1313 /*
1314 * thread is not dead, continue
1315 */
1316 pending++;
1317 continue;
1318reaped:
1319 (*nr_running)--;
1320 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1321 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1322 if (!td->pid)
1323 pending--;
1324
1325 if (td->error)
1326 exit_value++;
1327
1328 done_secs += mtime_since_now(&td->epoch) / 1000;
1329 }
1330
1331 if (*nr_running == cputhreads && !pending && realthreads)
1332 terminate_threads(TERMINATE_ALL);
1333}
1334
1335static void *gtod_thread_main(void *data)
1336{
1337 fio_mutex_up(startup_mutex);
1338
1339 /*
1340 * As long as we have jobs around, update the clock. It would be nice
1341 * to have some way of NOT hammering that CPU with gettimeofday(),
1342 * but I'm not sure what to use outside of a simple CPU nop to relax
1343 * it - we don't want to lose precision.
1344 */
1345 while (threads) {
1346 fio_gtod_update();
1347 nop;
1348 }
1349
1350 return NULL;
1351}
1352
1353static int fio_start_gtod_thread(void)
1354{
1355 int ret;
1356
1357 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1358 if (ret) {
1359 log_err("Can't create gtod thread: %s\n", strerror(ret));
1360 return 1;
1361 }
1362
1363 ret = pthread_detach(gtod_thread);
1364 if (ret) {
1365 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1366 return 1;
1367 }
1368
1369 dprint(FD_MUTEX, "wait on startup_mutex\n");
1370 fio_mutex_down(startup_mutex);
1371 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1372 return 0;
1373}
1374
1375/*
1376 * Main function for kicking off and reaping jobs, as needed.
1377 */
1378static void run_threads(void)
1379{
1380 struct thread_data *td;
1381 unsigned long spent;
1382 int i, todo, nr_running, m_rate, t_rate, nr_started;
1383
1384 if (fio_pin_memory())
1385 return;
1386
1387 if (fio_gtod_offload && fio_start_gtod_thread())
1388 return;
1389
1390 if (!terse_output) {
1391 printf("Starting ");
1392 if (nr_thread)
1393 printf("%d thread%s", nr_thread,
1394 nr_thread > 1 ? "s" : "");
1395 if (nr_process) {
1396 if (nr_thread)
1397 printf(" and ");
1398 printf("%d process%s", nr_process,
1399 nr_process > 1 ? "es" : "");
1400 }
1401 printf("\n");
1402 fflush(stdout);
1403 }
1404
1405 set_sig_handlers();
1406
1407 todo = thread_number;
1408 nr_running = 0;
1409 nr_started = 0;
1410 m_rate = t_rate = 0;
1411
1412 for_each_td(td, i) {
1413 print_status_init(td->thread_number - 1);
1414
1415 if (!td->o.create_serialize) {
1416 init_disk_util(td);
1417 continue;
1418 }
1419
1420 /*
1421 * do file setup here so it happens sequentially,
1422 * we don't want X number of threads getting their
1423 * client data interspersed on disk
1424 */
1425 if (setup_files(td)) {
1426 exit_value++;
1427 if (td->error)
1428 log_err("fio: pid=%d, err=%d/%s\n",
1429 (int) td->pid, td->error, td->verror);
1430 td_set_runstate(td, TD_REAPED);
1431 todo--;
1432 } else {
1433 struct fio_file *f;
1434 unsigned int i;
1435
1436 /*
1437 * for sharing to work, each job must always open
1438 * its own files. so close them, if we opened them
1439 * for creation
1440 */
1441 for_each_file(td, f, i) {
1442 if (fio_file_open(f))
1443 td_io_close_file(td, f);
1444 }
1445 }
1446
1447 init_disk_util(td);
1448 }
1449
1450 set_genesis_time();
1451
1452 while (todo) {
1453 struct thread_data *map[MAX_JOBS];
1454 struct timeval this_start;
1455 int this_jobs = 0, left;
1456
1457 /*
1458 * create threads (TD_NOT_CREATED -> TD_CREATED)
1459 */
1460 for_each_td(td, i) {
1461 if (td->runstate != TD_NOT_CREATED)
1462 continue;
1463
1464 /*
1465 * never got a chance to start, killed by other
1466 * thread for some reason
1467 */
1468 if (td->terminate) {
1469 todo--;
1470 continue;
1471 }
1472
1473 if (td->o.start_delay) {
1474 spent = mtime_since_genesis();
1475
1476 if (td->o.start_delay * 1000 > spent)
1477 continue;
1478 }
1479
1480 if (td->o.stonewall && (nr_started || nr_running)) {
1481 dprint(FD_PROCESS, "%s: stonewall wait\n",
1482 td->o.name);
1483 break;
1484 }
1485
1486 /*
1487 * Set state to created. Thread will transition
1488 * to TD_INITIALIZED when it's done setting up.
1489 */
1490 td_set_runstate(td, TD_CREATED);
1491 map[this_jobs++] = td;
1492 nr_started++;
1493
1494 if (td->o.use_thread) {
1495 int ret;
1496
1497 dprint(FD_PROCESS, "will pthread_create\n");
1498 ret = pthread_create(&td->thread, NULL,
1499 thread_main, td);
1500 if (ret) {
1501 log_err("pthread_create: %s\n",
1502 strerror(ret));
1503 nr_started--;
1504 break;
1505 }
1506 ret = pthread_detach(td->thread);
1507 if (ret)
1508 log_err("pthread_detach: %s",
1509 strerror(ret));
1510 } else {
1511 pid_t pid;
1512 dprint(FD_PROCESS, "will fork\n");
1513 pid = fork();
1514 if (!pid) {
1515 int ret = fork_main(shm_id, i);
1516
1517 _exit(ret);
1518 } else if (i == fio_debug_jobno)
1519 *fio_debug_jobp = pid;
1520 }
1521 dprint(FD_MUTEX, "wait on startup_mutex\n");
1522 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1523 log_err("fio: job startup hung? exiting.\n");
1524 terminate_threads(TERMINATE_ALL);
1525 fio_abort = 1;
1526 nr_started--;
1527 break;
1528 }
1529 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1530 }
1531
1532 /*
1533 * Wait for the started threads to transition to
1534 * TD_INITIALIZED.
1535 */
1536 fio_gettime(&this_start, NULL);
1537 left = this_jobs;
1538 while (left && !fio_abort) {
1539 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1540 break;
1541
1542 usleep(100000);
1543
1544 for (i = 0; i < this_jobs; i++) {
1545 td = map[i];
1546 if (!td)
1547 continue;
1548 if (td->runstate == TD_INITIALIZED) {
1549 map[i] = NULL;
1550 left--;
1551 } else if (td->runstate >= TD_EXITED) {
1552 map[i] = NULL;
1553 left--;
1554 todo--;
1555 nr_running++; /* work-around... */
1556 }
1557 }
1558 }
1559
1560 if (left) {
1561 log_err("fio: %d jobs failed to start\n", left);
1562 for (i = 0; i < this_jobs; i++) {
1563 td = map[i];
1564 if (!td)
1565 continue;
1566 kill(td->pid, SIGTERM);
1567 }
1568 break;
1569 }
1570
1571 /*
1572 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1573 */
1574 for_each_td(td, i) {
1575 if (td->runstate != TD_INITIALIZED)
1576 continue;
1577
1578 if (in_ramp_time(td))
1579 td_set_runstate(td, TD_RAMP);
1580 else
1581 td_set_runstate(td, TD_RUNNING);
1582 nr_running++;
1583 nr_started--;
1584 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1585 t_rate += td->o.rate[0] + td->o.rate[1];
1586 todo--;
1587 fio_mutex_up(td->mutex);
1588 }
1589
1590 reap_threads(&nr_running, &t_rate, &m_rate);
1591
1592 if (todo)
1593 usleep(100000);
1594 }
1595
1596 while (nr_running) {
1597 reap_threads(&nr_running, &t_rate, &m_rate);
1598 usleep(10000);
1599 }
1600
1601 update_io_ticks();
1602 fio_unpin_memory();
1603}
1604
1605int main(int argc, char *argv[])
1606{
1607 long ps;
1608
1609 sinit();
1610
1611 /*
1612 * We need locale for number printing, if it isn't set then just
1613 * go with the US format.
1614 */
1615 if (!getenv("LC_NUMERIC"))
1616 setlocale(LC_NUMERIC, "en_US");
1617
1618 if (parse_options(argc, argv))
1619 return 1;
1620
1621 if (!thread_number)
1622 return 0;
1623
1624 ps = sysconf(_SC_PAGESIZE);
1625 if (ps < 0) {
1626 log_err("Failed to get page size\n");
1627 return 1;
1628 }
1629
1630 page_size = ps;
1631 page_mask = ps - 1;
1632
1633 if (write_bw_log) {
1634 setup_log(&agg_io_log[DDIR_READ]);
1635 setup_log(&agg_io_log[DDIR_WRITE]);
1636 }
1637
1638 startup_mutex = fio_mutex_init(0);
1639 writeout_mutex = fio_mutex_init(1);
1640
1641 set_genesis_time();
1642
1643 status_timer_arm();
1644
1645 run_threads();
1646
1647 if (!fio_abort) {
1648 show_run_stats();
1649 if (write_bw_log) {
1650 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1651 __finish_log(agg_io_log[DDIR_WRITE],
1652 "agg-write_bw.log");
1653 }
1654 }
1655
1656 fio_mutex_remove(startup_mutex);
1657 fio_mutex_remove(writeout_mutex);
1658 return exit_value;
1659}