Improve rwmix states
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_sem *startup_sem;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 td->runstate = runstate;
64}
65
66static void terminate_threads(int group_id)
67{
68 struct thread_data *td;
69 int i;
70
71 for_each_td(td, i) {
72 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
73 /*
74 * if the thread is running, just let it exit
75 */
76 if (td->runstate < TD_RUNNING)
77 kill(td->pid, SIGQUIT);
78 td->terminate = 1;
79 td->o.start_delay = 0;
80 }
81 }
82}
83
84static void sig_handler(int sig)
85{
86 switch (sig) {
87 case SIGALRM:
88 update_io_ticks();
89 disk_util_timer_arm();
90 print_thread_status();
91 break;
92 default:
93 printf("\nfio: terminating on signal %d\n", sig);
94 fflush(stdout);
95 terminate_threads(TERMINATE_ALL);
96 break;
97 }
98}
99
100/*
101 * Check if we are above the minimum rate given.
102 */
103static int check_min_rate(struct thread_data *td, struct timeval *now)
104{
105 unsigned long long bytes = 0;
106 unsigned long iops = 0;
107 unsigned long spent;
108 unsigned long rate;
109
110 /*
111 * No minimum rate set, always ok
112 */
113 if (!td->o.ratemin && !td->o.rate_iops_min)
114 return 0;
115
116 /*
117 * allow a 2 second settle period in the beginning
118 */
119 if (mtime_since(&td->start, now) < 2000)
120 return 0;
121
122 if (td_read(td)) {
123 iops += td->io_blocks[DDIR_READ];
124 bytes += td->this_io_bytes[DDIR_READ];
125 }
126 if (td_write(td)) {
127 iops += td->io_blocks[DDIR_WRITE];
128 bytes += td->this_io_bytes[DDIR_WRITE];
129 }
130
131 /*
132 * if rate blocks is set, sample is running
133 */
134 if (td->rate_bytes || td->rate_blocks) {
135 spent = mtime_since(&td->lastrate, now);
136 if (spent < td->o.ratecycle)
137 return 0;
138
139 if (td->o.rate) {
140 /*
141 * check bandwidth specified rate
142 */
143 if (bytes < td->rate_bytes) {
144 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
145 return 1;
146 } else {
147 rate = (bytes - td->rate_bytes) / spent;
148 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
149 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
150 return 1;
151 }
152 }
153 } else {
154 /*
155 * checks iops specified rate
156 */
157 if (iops < td->o.rate_iops) {
158 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
159 return 1;
160 } else {
161 rate = (iops - td->rate_blocks) / spent;
162 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
163 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
164 }
165 }
166 }
167 }
168
169 td->rate_bytes = bytes;
170 td->rate_blocks = iops;
171 memcpy(&td->lastrate, now, sizeof(*now));
172 return 0;
173}
174
175static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
176{
177 if (!td->o.timeout)
178 return 0;
179 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
180 return 1;
181
182 return 0;
183}
184
185/*
186 * When job exits, we can cancel the in-flight IO if we are using async
187 * io. Attempt to do so.
188 */
189static void cleanup_pending_aio(struct thread_data *td)
190{
191 struct list_head *entry, *n;
192 struct io_u *io_u;
193 int r;
194
195 /*
196 * get immediately available events, if any
197 */
198 r = io_u_queued_complete(td, 0);
199 if (r < 0)
200 return;
201
202 /*
203 * now cancel remaining active events
204 */
205 if (td->io_ops->cancel) {
206 list_for_each_safe(entry, n, &td->io_u_busylist) {
207 io_u = list_entry(entry, struct io_u, list);
208
209 /*
210 * if the io_u isn't in flight, then that generally
211 * means someone leaked an io_u. complain but fix
212 * it up, so we don't stall here.
213 */
214 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
215 log_err("fio: non-busy IO on busy list\n");
216 put_io_u(td, io_u);
217 } else {
218 r = td->io_ops->cancel(td, io_u);
219 if (!r)
220 put_io_u(td, io_u);
221 }
222 }
223 }
224
225 if (td->cur_depth)
226 r = io_u_queued_complete(td, td->cur_depth);
227}
228
229/*
230 * Helper to handle the final sync of a file. Works just like the normal
231 * io path, just does everything sync.
232 */
233static int fio_io_sync(struct thread_data *td, struct fio_file *f)
234{
235 struct io_u *io_u = __get_io_u(td);
236 int ret;
237
238 if (!io_u)
239 return 1;
240
241 io_u->ddir = DDIR_SYNC;
242 io_u->file = f;
243
244 if (td_io_prep(td, io_u)) {
245 put_io_u(td, io_u);
246 return 1;
247 }
248
249requeue:
250 ret = td_io_queue(td, io_u);
251 if (ret < 0) {
252 td_verror(td, io_u->error, "td_io_queue");
253 put_io_u(td, io_u);
254 return 1;
255 } else if (ret == FIO_Q_QUEUED) {
256 if (io_u_queued_complete(td, 1) < 0)
257 return 1;
258 } else if (ret == FIO_Q_COMPLETED) {
259 if (io_u->error) {
260 td_verror(td, io_u->error, "td_io_queue");
261 return 1;
262 }
263
264 if (io_u_sync_complete(td, io_u) < 0)
265 return 1;
266 } else if (ret == FIO_Q_BUSY) {
267 if (td_io_commit(td))
268 return 1;
269 goto requeue;
270 }
271
272 return 0;
273}
274
275/*
276 * The main verify engine. Runs over the writes we previously submitted,
277 * reads the blocks back in, and checks the crc/md5 of the data.
278 */
279static void do_verify(struct thread_data *td)
280{
281 struct fio_file *f;
282 struct io_u *io_u;
283 int ret, min_events;
284 unsigned int i;
285
286 /*
287 * sync io first and invalidate cache, to make sure we really
288 * read from disk.
289 */
290 for_each_file(td, f, i) {
291 if (!(f->flags & FIO_FILE_OPEN))
292 continue;
293 if (fio_io_sync(td, f))
294 break;
295 if (file_invalidate_cache(td, f))
296 break;
297 }
298
299 if (td->error)
300 return;
301
302 td_set_runstate(td, TD_VERIFYING);
303
304 io_u = NULL;
305 while (!td->terminate) {
306 int ret2;
307
308 io_u = __get_io_u(td);
309 if (!io_u)
310 break;
311
312 if (runtime_exceeded(td, &io_u->start_time)) {
313 put_io_u(td, io_u);
314 break;
315 }
316
317 if (get_next_verify(td, io_u)) {
318 put_io_u(td, io_u);
319 break;
320 }
321
322 if (td_io_prep(td, io_u)) {
323 put_io_u(td, io_u);
324 break;
325 }
326
327 io_u->end_io = verify_io_u;
328
329 ret = td_io_queue(td, io_u);
330 switch (ret) {
331 case FIO_Q_COMPLETED:
332 if (io_u->error)
333 ret = -io_u->error;
334 else if (io_u->resid) {
335 int bytes = io_u->xfer_buflen - io_u->resid;
336
337 /*
338 * zero read, fail
339 */
340 if (!bytes) {
341 td_verror(td, ENODATA, "full resid");
342 put_io_u(td, io_u);
343 break;
344 }
345 io_u->xfer_buflen = io_u->resid;
346 io_u->xfer_buf += bytes;
347 requeue_io_u(td, &io_u);
348 } else {
349 ret = io_u_sync_complete(td, io_u);
350 if (ret < 0)
351 break;
352 }
353 continue;
354 case FIO_Q_QUEUED:
355 break;
356 case FIO_Q_BUSY:
357 requeue_io_u(td, &io_u);
358 ret2 = td_io_commit(td);
359 if (ret2 < 0)
360 ret = ret2;
361 break;
362 default:
363 assert(ret < 0);
364 td_verror(td, -ret, "td_io_queue");
365 break;
366 }
367
368 if (ret < 0 || td->error)
369 break;
370
371 /*
372 * if we can queue more, do so. but check if there are
373 * completed io_u's first.
374 */
375 min_events = 0;
376 if (queue_full(td) || ret == FIO_Q_BUSY) {
377 min_events = 1;
378
379 if (td->cur_depth > td->o.iodepth_low)
380 min_events = td->cur_depth - td->o.iodepth_low;
381 }
382
383 /*
384 * Reap required number of io units, if any, and do the
385 * verification on them through the callback handler
386 */
387 if (io_u_queued_complete(td, min_events) < 0)
388 break;
389 }
390
391 if (!td->error) {
392 min_events = td->cur_depth;
393
394 if (min_events)
395 ret = io_u_queued_complete(td, min_events);
396 } else
397 cleanup_pending_aio(td);
398
399 td_set_runstate(td, TD_RUNNING);
400}
401
402/*
403 * Main IO worker function. It retrieves io_u's to process and queues
404 * and reaps them, checking for rate and errors along the way.
405 */
406static void do_io(struct thread_data *td)
407{
408 struct timeval s;
409 unsigned long usec;
410 unsigned int i;
411 int ret = 0;
412
413 td_set_runstate(td, TD_RUNNING);
414
415 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
416 struct timeval comp_time;
417 long bytes_done = 0;
418 int min_evts = 0;
419 struct io_u *io_u;
420 int ret2;
421
422 if (td->terminate)
423 break;
424
425 io_u = get_io_u(td);
426 if (!io_u)
427 break;
428
429 memcpy(&s, &io_u->start_time, sizeof(s));
430
431 if (runtime_exceeded(td, &s)) {
432 put_io_u(td, io_u);
433 break;
434 }
435
436 ret = td_io_queue(td, io_u);
437 switch (ret) {
438 case FIO_Q_COMPLETED:
439 if (io_u->error)
440 ret = -io_u->error;
441 else if (io_u->resid) {
442 int bytes = io_u->xfer_buflen - io_u->resid;
443
444 /*
445 * zero read, fail
446 */
447 if (!bytes) {
448 td_verror(td, ENODATA, "full resid");
449 put_io_u(td, io_u);
450 break;
451 }
452
453 io_u->xfer_buflen = io_u->resid;
454 io_u->xfer_buf += bytes;
455 requeue_io_u(td, &io_u);
456 } else {
457 fio_gettime(&comp_time, NULL);
458 bytes_done = io_u_sync_complete(td, io_u);
459 if (bytes_done < 0)
460 ret = bytes_done;
461 }
462 break;
463 case FIO_Q_QUEUED:
464 /*
465 * if the engine doesn't have a commit hook,
466 * the io_u is really queued. if it does have such
467 * a hook, it has to call io_u_queued() itself.
468 */
469 if (td->io_ops->commit == NULL)
470 io_u_queued(td, io_u);
471 break;
472 case FIO_Q_BUSY:
473 requeue_io_u(td, &io_u);
474 ret2 = td_io_commit(td);
475 if (ret2 < 0)
476 ret = ret2;
477 break;
478 default:
479 assert(ret < 0);
480 put_io_u(td, io_u);
481 break;
482 }
483
484 if (ret < 0 || td->error)
485 break;
486
487 /*
488 * See if we need to complete some commands
489 */
490 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
491 min_evts = 0;
492 if (queue_full(td) || ret == FIO_Q_BUSY) {
493 min_evts = 1;
494
495 if (td->cur_depth > td->o.iodepth_low)
496 min_evts = td->cur_depth - td->o.iodepth_low;
497 }
498
499 fio_gettime(&comp_time, NULL);
500 bytes_done = io_u_queued_complete(td, min_evts);
501 if (bytes_done < 0)
502 break;
503 }
504
505 if (!bytes_done)
506 continue;
507
508 /*
509 * the rate is batched for now, it should work for batches
510 * of completions except the very first one which may look
511 * a little bursty
512 */
513 usec = utime_since(&s, &comp_time);
514
515 rate_throttle(td, usec, bytes_done);
516
517 if (check_min_rate(td, &comp_time)) {
518 if (exitall_on_terminate)
519 terminate_threads(td->groupid);
520 td_verror(td, ENODATA, "check_min_rate");
521 break;
522 }
523
524 if (td->o.thinktime) {
525 unsigned long long b;
526
527 b = td->io_blocks[0] + td->io_blocks[1];
528 if (!(b % td->o.thinktime_blocks)) {
529 int left;
530
531 if (td->o.thinktime_spin)
532 __usec_sleep(td->o.thinktime_spin);
533
534 left = td->o.thinktime - td->o.thinktime_spin;
535 if (left)
536 usec_sleep(td, left);
537 }
538 }
539 }
540
541 if (!td->error) {
542 struct fio_file *f;
543
544 i = td->cur_depth;
545 if (i)
546 ret = io_u_queued_complete(td, i);
547
548 if (should_fsync(td) && td->o.end_fsync) {
549 td_set_runstate(td, TD_FSYNCING);
550
551 for_each_file(td, f, i) {
552 if (!(f->flags & FIO_FILE_OPEN))
553 continue;
554 fio_io_sync(td, f);
555 }
556 }
557 } else
558 cleanup_pending_aio(td);
559}
560
561static void cleanup_io_u(struct thread_data *td)
562{
563 struct list_head *entry, *n;
564 struct io_u *io_u;
565
566 list_for_each_safe(entry, n, &td->io_u_freelist) {
567 io_u = list_entry(entry, struct io_u, list);
568
569 list_del(&io_u->list);
570 free(io_u);
571 }
572
573 free_io_mem(td);
574}
575
576/*
577 * "randomly" fill the buffer contents
578 */
579static void fill_rand_buf(struct io_u *io_u, int max_bs)
580{
581 int *ptr = io_u->buf;
582
583 while ((void *) ptr - io_u->buf < max_bs) {
584 *ptr = rand() * 0x9e370001;
585 ptr++;
586 }
587}
588
589static int init_io_u(struct thread_data *td)
590{
591 unsigned long long buf_size;
592 struct io_u *io_u;
593 unsigned int max_bs;
594 int i, max_units;
595 char *p;
596
597 if (td->io_ops->flags & FIO_SYNCIO)
598 max_units = 1;
599 else
600 max_units = td->o.iodepth;
601
602 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
603 buf_size = (unsigned long long) max_bs * (unsigned long long) max_units;
604 buf_size += page_mask;
605 if (buf_size != (size_t) buf_size) {
606 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
607 return 1;
608 }
609
610 td->orig_buffer_size = buf_size;
611
612 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
613 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
614 else if (td->orig_buffer_size & page_mask)
615 td->orig_buffer_size = (td->orig_buffer_size + page_mask) & ~page_mask;
616
617 if (allocate_io_mem(td))
618 return 1;
619
620 p = ALIGN(td->orig_buffer);
621 for (i = 0; i < max_units; i++) {
622 io_u = malloc(sizeof(*io_u));
623 memset(io_u, 0, sizeof(*io_u));
624 INIT_LIST_HEAD(&io_u->list);
625
626 io_u->buf = p + max_bs * i;
627 if (td_write(td) || td_rw(td))
628 fill_rand_buf(io_u, max_bs);
629
630 io_u->index = i;
631 io_u->flags = IO_U_F_FREE;
632 list_add(&io_u->list, &td->io_u_freelist);
633 }
634
635 io_u_init_timeout();
636
637 return 0;
638}
639
640static int switch_ioscheduler(struct thread_data *td)
641{
642 char tmp[256], tmp2[128];
643 FILE *f;
644 int ret;
645
646 if (td->io_ops->flags & FIO_DISKLESSIO)
647 return 0;
648
649 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
650
651 f = fopen(tmp, "r+");
652 if (!f) {
653 td_verror(td, errno, "fopen");
654 return 1;
655 }
656
657 /*
658 * Set io scheduler.
659 */
660 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
661 if (ferror(f) || ret != 1) {
662 td_verror(td, errno, "fwrite");
663 fclose(f);
664 return 1;
665 }
666
667 rewind(f);
668
669 /*
670 * Read back and check that the selected scheduler is now the default.
671 */
672 ret = fread(tmp, 1, sizeof(tmp), f);
673 if (ferror(f) || ret < 0) {
674 td_verror(td, errno, "fread");
675 fclose(f);
676 return 1;
677 }
678
679 sprintf(tmp2, "[%s]", td->o.ioscheduler);
680 if (!strstr(tmp, tmp2)) {
681 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
682 td_verror(td, EINVAL, "iosched_switch");
683 fclose(f);
684 return 1;
685 }
686
687 fclose(f);
688 return 0;
689}
690
691static int clear_io_state(struct thread_data *td)
692{
693 struct fio_file *f;
694 unsigned int i;
695 int ret;
696
697 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
698 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
699 td->zone_bytes = 0;
700 td->rate_bytes = 0;
701 td->rate_blocks = 0;
702
703 td->last_was_sync = 0;
704
705 for_each_file(td, f, i)
706 td_io_close_file(td, f);
707
708 ret = 0;
709 for_each_file(td, f, i) {
710 ret = td_io_open_file(td, f);
711 if (ret)
712 break;
713 }
714
715 return ret;
716}
717
718/*
719 * Entry point for the thread based jobs. The process based jobs end up
720 * here as well, after a little setup.
721 */
722static void *thread_main(void *data)
723{
724 unsigned long long runtime[2];
725 struct thread_data *td = data;
726 int clear_state;
727
728 if (!td->o.use_thread)
729 setsid();
730
731 td->pid = getpid();
732
733 INIT_LIST_HEAD(&td->io_u_freelist);
734 INIT_LIST_HEAD(&td->io_u_busylist);
735 INIT_LIST_HEAD(&td->io_u_requeues);
736 INIT_LIST_HEAD(&td->io_hist_list);
737 INIT_LIST_HEAD(&td->io_log_list);
738
739 if (init_io_u(td))
740 goto err_sem;
741
742 if (fio_setaffinity(td) == -1) {
743 td_verror(td, errno, "cpu_set_affinity");
744 goto err_sem;
745 }
746
747 if (init_iolog(td))
748 goto err_sem;
749
750 if (td->ioprio) {
751 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
752 td_verror(td, errno, "ioprio_set");
753 goto err_sem;
754 }
755 }
756
757 if (nice(td->o.nice) == -1) {
758 td_verror(td, errno, "nice");
759 goto err_sem;
760 }
761
762 if (td->o.ioscheduler && switch_ioscheduler(td))
763 goto err_sem;
764
765 td_set_runstate(td, TD_INITIALIZED);
766 fio_sem_up(startup_sem);
767 fio_sem_down(td->mutex);
768
769 /*
770 * the ->mutex semaphore is now no longer used, close it to avoid
771 * eating a file descriptor
772 */
773 fio_sem_remove(td->mutex);
774
775 if (!td->o.create_serialize && setup_files(td))
776 goto err;
777
778 if (td_io_init(td))
779 goto err;
780
781 if (open_files(td))
782 goto err;
783
784 if (init_random_map(td))
785 goto err;
786
787 if (td->o.exec_prerun) {
788 if (system(td->o.exec_prerun) < 0)
789 goto err;
790 }
791
792 fio_gettime(&td->epoch, NULL);
793 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
794 getrusage(RUSAGE_SELF, &td->ts.ru_start);
795
796 runtime[0] = runtime[1] = 0;
797 clear_state = 0;
798 while (td->o.loops--) {
799 fio_gettime(&td->start, NULL);
800 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
801
802 if (td->o.ratemin)
803 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
804
805 if (clear_state && clear_io_state(td))
806 break;
807
808 prune_io_piece_log(td);
809
810 do_io(td);
811
812 clear_state = 1;
813
814 if (td_read(td) && td->io_bytes[DDIR_READ])
815 runtime[DDIR_READ] += utime_since_now(&td->start);
816 if (td_write(td) && td->io_bytes[DDIR_WRITE])
817 runtime[DDIR_WRITE] += utime_since_now(&td->start);
818
819 if (td->error || td->terminate)
820 break;
821
822 if (td->o.verify == VERIFY_NONE)
823 continue;
824
825 if (clear_io_state(td))
826 break;
827
828 fio_gettime(&td->start, NULL);
829
830 do_verify(td);
831
832 runtime[DDIR_READ] += utime_since_now(&td->start);
833
834 if (td->error || td->terminate)
835 break;
836 }
837
838 update_rusage_stat(td);
839 td->ts.runtime[0] = runtime[0] / 1000;
840 td->ts.runtime[1] = runtime[1] / 1000;
841 td->ts.total_run_time = mtime_since_now(&td->epoch);
842 td->ts.io_bytes[0] = td->io_bytes[0];
843 td->ts.io_bytes[1] = td->io_bytes[1];
844
845 if (td->ts.bw_log)
846 finish_log(td, td->ts.bw_log, "bw");
847 if (td->ts.slat_log)
848 finish_log(td, td->ts.slat_log, "slat");
849 if (td->ts.clat_log)
850 finish_log(td, td->ts.clat_log, "clat");
851 if (td->o.write_iolog_file)
852 write_iolog_close(td);
853 if (td->o.exec_postrun) {
854 if (system(td->o.exec_postrun) < 0)
855 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
856 }
857
858 if (exitall_on_terminate)
859 terminate_threads(td->groupid);
860
861err:
862 if (td->error)
863 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
864 close_files(td);
865 close_ioengine(td);
866 cleanup_io_u(td);
867 td_set_runstate(td, TD_EXITED);
868 return (void *) (unsigned long) td->error;
869err_sem:
870 fio_sem_up(startup_sem);
871 goto err;
872}
873
874/*
875 * We cannot pass the td data into a forked process, so attach the td and
876 * pass it to the thread worker.
877 */
878static int fork_main(int shmid, int offset)
879{
880 struct thread_data *td;
881 void *data, *ret;
882
883 data = shmat(shmid, NULL, 0);
884 if (data == (void *) -1) {
885 int __err = errno;
886
887 perror("shmat");
888 return __err;
889 }
890
891 td = data + offset * sizeof(struct thread_data);
892 ret = thread_main(td);
893 shmdt(data);
894 return (int) (unsigned long) ret;
895}
896
897/*
898 * Run over the job map and reap the threads that have exited, if any.
899 */
900static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
901{
902 struct thread_data *td;
903 int i, cputhreads, pending, status, ret;
904
905 /*
906 * reap exited threads (TD_EXITED -> TD_REAPED)
907 */
908 pending = cputhreads = 0;
909 for_each_td(td, i) {
910 int flags = 0;
911
912 /*
913 * ->io_ops is NULL for a thread that has closed its
914 * io engine
915 */
916 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
917 cputhreads++;
918
919 if (!td->pid || td->runstate == TD_REAPED)
920 continue;
921 if (td->o.use_thread) {
922 if (td->runstate == TD_EXITED) {
923 td_set_runstate(td, TD_REAPED);
924 goto reaped;
925 }
926 continue;
927 }
928
929 flags = WNOHANG;
930 if (td->runstate == TD_EXITED)
931 flags = 0;
932
933 /*
934 * check if someone quit or got killed in an unusual way
935 */
936 ret = waitpid(td->pid, &status, flags);
937 if (ret < 0) {
938 if (errno == ECHILD) {
939 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
940 td_set_runstate(td, TD_REAPED);
941 goto reaped;
942 }
943 perror("waitpid");
944 } else if (ret == td->pid) {
945 if (WIFSIGNALED(status)) {
946 int sig = WTERMSIG(status);
947
948 if (sig != SIGQUIT)
949 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
950 td_set_runstate(td, TD_REAPED);
951 goto reaped;
952 }
953 if (WIFEXITED(status)) {
954 if (WEXITSTATUS(status) && !td->error)
955 td->error = WEXITSTATUS(status);
956
957 td_set_runstate(td, TD_REAPED);
958 goto reaped;
959 }
960 }
961
962 /*
963 * thread is not dead, continue
964 */
965 continue;
966reaped:
967 if (td->o.use_thread) {
968 long ret;
969
970 if (pthread_join(td->thread, (void *) &ret))
971 perror("pthread_join");
972 }
973
974 (*nr_running)--;
975 (*m_rate) -= td->o.ratemin;
976 (*t_rate) -= td->o.rate;
977
978 if (td->error)
979 exit_value++;
980 }
981
982 if (*nr_running == cputhreads && !pending)
983 terminate_threads(TERMINATE_ALL);
984}
985
986/*
987 * Main function for kicking off and reaping jobs, as needed.
988 */
989static void run_threads(void)
990{
991 struct thread_data *td;
992 unsigned long spent;
993 int i, todo, nr_running, m_rate, t_rate, nr_started;
994
995 if (fio_pin_memory())
996 return;
997
998 if (!terse_output) {
999 printf("Starting ");
1000 if (nr_thread)
1001 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1002 if (nr_process) {
1003 if (nr_thread)
1004 printf(" and ");
1005 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1006 }
1007 printf("\n");
1008 fflush(stdout);
1009 }
1010
1011 signal(SIGINT, sig_handler);
1012 signal(SIGALRM, sig_handler);
1013
1014 todo = thread_number;
1015 nr_running = 0;
1016 nr_started = 0;
1017 m_rate = t_rate = 0;
1018
1019 for_each_td(td, i) {
1020 print_status_init(td->thread_number - 1);
1021
1022 if (!td->o.create_serialize) {
1023 init_disk_util(td);
1024 continue;
1025 }
1026
1027 /*
1028 * do file setup here so it happens sequentially,
1029 * we don't want X number of threads getting their
1030 * client data interspersed on disk
1031 */
1032 if (setup_files(td)) {
1033 exit_value++;
1034 if (td->error)
1035 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1036 td_set_runstate(td, TD_REAPED);
1037 todo--;
1038 }
1039
1040 init_disk_util(td);
1041 }
1042
1043 set_genesis_time();
1044
1045 while (todo) {
1046 struct thread_data *map[MAX_JOBS];
1047 struct timeval this_start;
1048 int this_jobs = 0, left;
1049
1050 /*
1051 * create threads (TD_NOT_CREATED -> TD_CREATED)
1052 */
1053 for_each_td(td, i) {
1054 if (td->runstate != TD_NOT_CREATED)
1055 continue;
1056
1057 /*
1058 * never got a chance to start, killed by other
1059 * thread for some reason
1060 */
1061 if (td->terminate) {
1062 todo--;
1063 continue;
1064 }
1065
1066 if (td->o.start_delay) {
1067 spent = mtime_since_genesis();
1068
1069 if (td->o.start_delay * 1000 > spent)
1070 continue;
1071 }
1072
1073 if (td->o.stonewall && (nr_started || nr_running))
1074 break;
1075
1076 /*
1077 * Set state to created. Thread will transition
1078 * to TD_INITIALIZED when it's done setting up.
1079 */
1080 td_set_runstate(td, TD_CREATED);
1081 map[this_jobs++] = td;
1082 nr_started++;
1083
1084 if (td->o.use_thread) {
1085 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1086 perror("thread_create");
1087 nr_started--;
1088 break;
1089 }
1090 } else {
1091 if (!fork()) {
1092 int ret = fork_main(shm_id, i);
1093
1094 exit(ret);
1095 }
1096 }
1097 fio_sem_down(startup_sem);
1098 }
1099
1100 /*
1101 * Wait for the started threads to transition to
1102 * TD_INITIALIZED.
1103 */
1104 fio_gettime(&this_start, NULL);
1105 left = this_jobs;
1106 while (left && !fio_abort) {
1107 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1108 break;
1109
1110 usleep(100000);
1111
1112 for (i = 0; i < this_jobs; i++) {
1113 td = map[i];
1114 if (!td)
1115 continue;
1116 if (td->runstate == TD_INITIALIZED) {
1117 map[i] = NULL;
1118 left--;
1119 } else if (td->runstate >= TD_EXITED) {
1120 map[i] = NULL;
1121 left--;
1122 todo--;
1123 nr_running++; /* work-around... */
1124 }
1125 }
1126 }
1127
1128 if (left) {
1129 log_err("fio: %d jobs failed to start\n", left);
1130 for (i = 0; i < this_jobs; i++) {
1131 td = map[i];
1132 if (!td)
1133 continue;
1134 kill(td->pid, SIGTERM);
1135 }
1136 break;
1137 }
1138
1139 /*
1140 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1141 */
1142 for_each_td(td, i) {
1143 if (td->runstate != TD_INITIALIZED)
1144 continue;
1145
1146 td_set_runstate(td, TD_RUNNING);
1147 nr_running++;
1148 nr_started--;
1149 m_rate += td->o.ratemin;
1150 t_rate += td->o.rate;
1151 todo--;
1152 fio_sem_up(td->mutex);
1153 }
1154
1155 reap_threads(&nr_running, &t_rate, &m_rate);
1156
1157 if (todo)
1158 usleep(100000);
1159 }
1160
1161 while (nr_running) {
1162 reap_threads(&nr_running, &t_rate, &m_rate);
1163 usleep(10000);
1164 }
1165
1166 update_io_ticks();
1167 fio_unpin_memory();
1168}
1169
1170int main(int argc, char *argv[])
1171{
1172 long ps;
1173
1174 /*
1175 * We need locale for number printing, if it isn't set then just
1176 * go with the US format.
1177 */
1178 if (!getenv("LC_NUMERIC"))
1179 setlocale(LC_NUMERIC, "en_US");
1180
1181 if (parse_options(argc, argv))
1182 return 1;
1183
1184 if (!thread_number) {
1185 log_err("Nothing to do\n");
1186 return 1;
1187 }
1188
1189 ps = sysconf(_SC_PAGESIZE);
1190 if (ps < 0) {
1191 log_err("Failed to get page size\n");
1192 return 1;
1193 }
1194
1195 page_size = ps;
1196 page_mask = ps - 1;
1197
1198 if (write_bw_log) {
1199 setup_log(&agg_io_log[DDIR_READ]);
1200 setup_log(&agg_io_log[DDIR_WRITE]);
1201 }
1202
1203 startup_sem = fio_sem_init(0);
1204
1205 set_genesis_time();
1206
1207 disk_util_timer_arm();
1208
1209 run_threads();
1210
1211 if (!fio_abort) {
1212 show_run_stats();
1213 if (write_bw_log) {
1214 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1215 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1216 }
1217 }
1218
1219 fio_sem_remove(startup_sem);
1220 return exit_value;
1221}