Update options
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64static inline void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 printf("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 terminate_threads(TERMINATE_ALL);
125 }
126}
127
128static void sig_ill(int sig)
129{
130 if (!threads)
131 return;
132
133 log_err("fio: illegal instruction. your cpu does not support "
134 "the sse4.2 instruction for crc32c\n");
135 terminate_threads(TERMINATE_ALL);
136 exit(4);
137}
138
139static void set_sig_handlers(void)
140{
141 struct sigaction act;
142
143 memset(&act, 0, sizeof(act));
144 act.sa_handler = sig_alrm;
145 act.sa_flags = SA_RESTART;
146 sigaction(SIGALRM, &act, NULL);
147
148 memset(&act, 0, sizeof(act));
149 act.sa_handler = sig_int;
150 act.sa_flags = SA_RESTART;
151 sigaction(SIGINT, &act, NULL);
152
153 memset(&act, 0, sizeof(act));
154 act.sa_handler = sig_ill;
155 act.sa_flags = SA_RESTART;
156 sigaction(SIGILL, &act, NULL);
157}
158
159/*
160 * Check if we are above the minimum rate given.
161 */
162static int check_min_rate(struct thread_data *td, struct timeval *now)
163{
164 unsigned long long bytes = 0;
165 unsigned long iops = 0;
166 unsigned long spent;
167 unsigned long rate;
168
169 /*
170 * No minimum rate set, always ok
171 */
172 if (!td->o.ratemin && !td->o.rate_iops_min)
173 return 0;
174
175 /*
176 * allow a 2 second settle period in the beginning
177 */
178 if (mtime_since(&td->start, now) < 2000)
179 return 0;
180
181 if (td_read(td)) {
182 iops += td->io_blocks[DDIR_READ];
183 bytes += td->this_io_bytes[DDIR_READ];
184 }
185 if (td_write(td)) {
186 iops += td->io_blocks[DDIR_WRITE];
187 bytes += td->this_io_bytes[DDIR_WRITE];
188 }
189
190 /*
191 * if rate blocks is set, sample is running
192 */
193 if (td->rate_bytes || td->rate_blocks) {
194 spent = mtime_since(&td->lastrate, now);
195 if (spent < td->o.ratecycle)
196 return 0;
197
198 if (td->o.rate) {
199 /*
200 * check bandwidth specified rate
201 */
202 if (bytes < td->rate_bytes) {
203 log_err("%s: min rate %u not met\n", td->o.name,
204 td->o.ratemin);
205 return 1;
206 } else {
207 rate = (bytes - td->rate_bytes) / spent;
208 if (rate < td->o.ratemin ||
209 bytes < td->rate_bytes) {
210 log_err("%s: min rate %u not met, got"
211 " %luKiB/sec\n", td->o.name,
212 td->o.ratemin, rate);
213 return 1;
214 }
215 }
216 } else {
217 /*
218 * checks iops specified rate
219 */
220 if (iops < td->o.rate_iops) {
221 log_err("%s: min iops rate %u not met\n",
222 td->o.name, td->o.rate_iops);
223 return 1;
224 } else {
225 rate = (iops - td->rate_blocks) / spent;
226 if (rate < td->o.rate_iops_min ||
227 iops < td->rate_blocks) {
228 log_err("%s: min iops rate %u not met,"
229 " got %lu\n", td->o.name,
230 td->o.rate_iops_min,
231 rate);
232 }
233 }
234 }
235 }
236
237 td->rate_bytes = bytes;
238 td->rate_blocks = iops;
239 memcpy(&td->lastrate, now, sizeof(*now));
240 return 0;
241}
242
243static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
244{
245 if (!td->o.timeout)
246 return 0;
247 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
248 return 1;
249
250 return 0;
251}
252
253/*
254 * When job exits, we can cancel the in-flight IO if we are using async
255 * io. Attempt to do so.
256 */
257static void cleanup_pending_aio(struct thread_data *td)
258{
259 struct flist_head *entry, *n;
260 struct io_u *io_u;
261 int r;
262
263 /*
264 * get immediately available events, if any
265 */
266 r = io_u_queued_complete(td, 0);
267 if (r < 0)
268 return;
269
270 /*
271 * now cancel remaining active events
272 */
273 if (td->io_ops->cancel) {
274 flist_for_each_safe(entry, n, &td->io_u_busylist) {
275 io_u = flist_entry(entry, struct io_u, list);
276
277 /*
278 * if the io_u isn't in flight, then that generally
279 * means someone leaked an io_u. complain but fix
280 * it up, so we don't stall here.
281 */
282 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
283 log_err("fio: non-busy IO on busy list\n");
284 put_io_u(td, io_u);
285 } else {
286 r = td->io_ops->cancel(td, io_u);
287 if (!r)
288 put_io_u(td, io_u);
289 }
290 }
291 }
292
293 if (td->cur_depth)
294 r = io_u_queued_complete(td, td->cur_depth);
295}
296
297/*
298 * Helper to handle the final sync of a file. Works just like the normal
299 * io path, just does everything sync.
300 */
301static int fio_io_sync(struct thread_data *td, struct fio_file *f)
302{
303 struct io_u *io_u = __get_io_u(td);
304 int ret;
305
306 if (!io_u)
307 return 1;
308
309 io_u->ddir = DDIR_SYNC;
310 io_u->file = f;
311
312 if (td_io_prep(td, io_u)) {
313 put_io_u(td, io_u);
314 return 1;
315 }
316
317requeue:
318 ret = td_io_queue(td, io_u);
319 if (ret < 0) {
320 td_verror(td, io_u->error, "td_io_queue");
321 put_io_u(td, io_u);
322 return 1;
323 } else if (ret == FIO_Q_QUEUED) {
324 if (io_u_queued_complete(td, 1) < 0)
325 return 1;
326 } else if (ret == FIO_Q_COMPLETED) {
327 if (io_u->error) {
328 td_verror(td, io_u->error, "td_io_queue");
329 return 1;
330 }
331
332 if (io_u_sync_complete(td, io_u) < 0)
333 return 1;
334 } else if (ret == FIO_Q_BUSY) {
335 if (td_io_commit(td))
336 return 1;
337 goto requeue;
338 }
339
340 return 0;
341}
342
343/*
344 * The main verify engine. Runs over the writes we previously submitted,
345 * reads the blocks back in, and checks the crc/md5 of the data.
346 */
347static void do_verify(struct thread_data *td)
348{
349 struct fio_file *f;
350 struct io_u *io_u;
351 int ret, min_events;
352 unsigned int i;
353
354 /*
355 * sync io first and invalidate cache, to make sure we really
356 * read from disk.
357 */
358 for_each_file(td, f, i) {
359 if (!(f->flags & FIO_FILE_OPEN))
360 continue;
361 if (fio_io_sync(td, f))
362 break;
363 if (file_invalidate_cache(td, f))
364 break;
365 }
366
367 if (td->error)
368 return;
369
370 td_set_runstate(td, TD_VERIFYING);
371
372 io_u = NULL;
373 while (!td->terminate) {
374 int ret2, full;
375
376 io_u = __get_io_u(td);
377 if (!io_u)
378 break;
379
380 if (runtime_exceeded(td, &io_u->start_time)) {
381 put_io_u(td, io_u);
382 td->terminate = 1;
383 break;
384 }
385
386 if (get_next_verify(td, io_u)) {
387 put_io_u(td, io_u);
388 break;
389 }
390
391 if (td_io_prep(td, io_u)) {
392 put_io_u(td, io_u);
393 break;
394 }
395
396 io_u->end_io = verify_io_u;
397
398 ret = td_io_queue(td, io_u);
399 switch (ret) {
400 case FIO_Q_COMPLETED:
401 if (io_u->error)
402 ret = -io_u->error;
403 else if (io_u->resid) {
404 int bytes = io_u->xfer_buflen - io_u->resid;
405 struct fio_file *f = io_u->file;
406
407 /*
408 * zero read, fail
409 */
410 if (!bytes) {
411 td_verror(td, EIO, "full resid");
412 put_io_u(td, io_u);
413 break;
414 }
415
416 io_u->xfer_buflen = io_u->resid;
417 io_u->xfer_buf += bytes;
418 io_u->offset += bytes;
419
420 td->ts.short_io_u[io_u->ddir]++;
421
422 if (io_u->offset == f->real_file_size)
423 goto sync_done;
424
425 requeue_io_u(td, &io_u);
426 } else {
427sync_done:
428 ret = io_u_sync_complete(td, io_u);
429 if (ret < 0)
430 break;
431 }
432 continue;
433 case FIO_Q_QUEUED:
434 break;
435 case FIO_Q_BUSY:
436 requeue_io_u(td, &io_u);
437 ret2 = td_io_commit(td);
438 if (ret2 < 0)
439 ret = ret2;
440 break;
441 default:
442 assert(ret < 0);
443 td_verror(td, -ret, "td_io_queue");
444 break;
445 }
446
447 if (ret < 0 || td->error)
448 break;
449
450 /*
451 * if we can queue more, do so. but check if there are
452 * completed io_u's first.
453 */
454 full = queue_full(td) || ret == FIO_Q_BUSY;
455 if (full || !td->o.iodepth_batch_complete) {
456 min_events = td->o.iodepth_batch_complete;
457 if (full && !min_events)
458 min_events = 1;
459
460 do {
461 /*
462 * Reap required number of io units, if any,
463 * and do the verification on them through
464 * the callback handler
465 */
466 if (io_u_queued_complete(td, min_events) < 0) {
467 ret = -1;
468 break;
469 }
470 } while (full && (td->cur_depth > td->o.iodepth_low));
471 }
472 if (ret < 0)
473 break;
474 }
475
476 if (!td->error) {
477 min_events = td->cur_depth;
478
479 if (min_events)
480 ret = io_u_queued_complete(td, min_events);
481 } else
482 cleanup_pending_aio(td);
483
484 td_set_runstate(td, TD_RUNNING);
485}
486
487/*
488 * Main IO worker function. It retrieves io_u's to process and queues
489 * and reaps them, checking for rate and errors along the way.
490 */
491static void do_io(struct thread_data *td)
492{
493 struct timeval s;
494 unsigned long usec;
495 unsigned int i;
496 int ret = 0;
497
498 td_set_runstate(td, TD_RUNNING);
499
500 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
501 struct timeval comp_time;
502 long bytes_done = 0;
503 int min_evts = 0;
504 struct io_u *io_u;
505 int ret2, full;
506
507 if (td->terminate)
508 break;
509
510 io_u = get_io_u(td);
511 if (!io_u)
512 break;
513
514 memcpy(&s, &io_u->start_time, sizeof(s));
515
516 if (runtime_exceeded(td, &s)) {
517 put_io_u(td, io_u);
518 td->terminate = 1;
519 break;
520 }
521
522 /*
523 * Add verification end_io handler, if asked to verify
524 * a previously written file.
525 */
526 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
527 io_u->end_io = verify_io_u;
528 td_set_runstate(td, TD_VERIFYING);
529 } else
530 td_set_runstate(td, TD_RUNNING);
531
532 ret = td_io_queue(td, io_u);
533 switch (ret) {
534 case FIO_Q_COMPLETED:
535 if (io_u->error)
536 ret = -io_u->error;
537 else if (io_u->resid) {
538 int bytes = io_u->xfer_buflen - io_u->resid;
539 struct fio_file *f = io_u->file;
540
541 /*
542 * zero read, fail
543 */
544 if (!bytes) {
545 td_verror(td, EIO, "full resid");
546 put_io_u(td, io_u);
547 break;
548 }
549
550 io_u->xfer_buflen = io_u->resid;
551 io_u->xfer_buf += bytes;
552 io_u->offset += bytes;
553
554 td->ts.short_io_u[io_u->ddir]++;
555
556 if (io_u->offset == f->real_file_size)
557 goto sync_done;
558
559 requeue_io_u(td, &io_u);
560 } else {
561sync_done:
562 fio_gettime(&comp_time, NULL);
563 bytes_done = io_u_sync_complete(td, io_u);
564 if (bytes_done < 0)
565 ret = bytes_done;
566 }
567 break;
568 case FIO_Q_QUEUED:
569 /*
570 * if the engine doesn't have a commit hook,
571 * the io_u is really queued. if it does have such
572 * a hook, it has to call io_u_queued() itself.
573 */
574 if (td->io_ops->commit == NULL)
575 io_u_queued(td, io_u);
576 break;
577 case FIO_Q_BUSY:
578 requeue_io_u(td, &io_u);
579 ret2 = td_io_commit(td);
580 if (ret2 < 0)
581 ret = ret2;
582 break;
583 default:
584 assert(ret < 0);
585 put_io_u(td, io_u);
586 break;
587 }
588
589 if (ret < 0 || td->error)
590 break;
591
592 /*
593 * See if we need to complete some commands
594 */
595 full = queue_full(td) || ret == FIO_Q_BUSY;
596 if (full || !td->o.iodepth_batch_complete) {
597 min_evts = td->o.iodepth_batch_complete;
598 if (full && !min_evts)
599 min_evts = 1;
600
601 fio_gettime(&comp_time, NULL);
602
603 do {
604 ret = io_u_queued_complete(td, min_evts);
605 if (ret <= 0)
606 break;
607
608 bytes_done += ret;
609 } while (full && (td->cur_depth > td->o.iodepth_low));
610 }
611
612 if (ret < 0)
613 break;
614 if (!bytes_done)
615 continue;
616
617 /*
618 * the rate is batched for now, it should work for batches
619 * of completions except the very first one which may look
620 * a little bursty
621 */
622 if (ramp_time_over(td)) {
623 usec = utime_since(&s, &comp_time);
624
625 rate_throttle(td, usec, bytes_done);
626
627 if (check_min_rate(td, &comp_time)) {
628 if (exitall_on_terminate)
629 terminate_threads(td->groupid);
630 td_verror(td, EIO, "check_min_rate");
631 break;
632 }
633 }
634
635 if (td->o.thinktime) {
636 unsigned long long b;
637
638 b = td->io_blocks[0] + td->io_blocks[1];
639 if (!(b % td->o.thinktime_blocks)) {
640 int left;
641
642 if (td->o.thinktime_spin)
643 __usec_sleep(td->o.thinktime_spin);
644
645 left = td->o.thinktime - td->o.thinktime_spin;
646 if (left)
647 usec_sleep(td, left);
648 }
649 }
650 }
651
652 if (td->o.fill_device && td->error == ENOSPC) {
653 td->error = 0;
654 td->terminate = 1;
655 }
656 if (!td->error) {
657 struct fio_file *f;
658
659 i = td->cur_depth;
660 if (i)
661 ret = io_u_queued_complete(td, i);
662
663 if (should_fsync(td) && td->o.end_fsync) {
664 td_set_runstate(td, TD_FSYNCING);
665
666 for_each_file(td, f, i) {
667 if (!(f->flags & FIO_FILE_OPEN))
668 continue;
669 fio_io_sync(td, f);
670 }
671 }
672 } else
673 cleanup_pending_aio(td);
674
675 /*
676 * stop job if we failed doing any IO
677 */
678 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
679 td->done = 1;
680}
681
682static void cleanup_io_u(struct thread_data *td)
683{
684 struct flist_head *entry, *n;
685 struct io_u *io_u;
686
687 flist_for_each_safe(entry, n, &td->io_u_freelist) {
688 io_u = flist_entry(entry, struct io_u, list);
689
690 flist_del(&io_u->list);
691 free(io_u);
692 }
693
694 free_io_mem(td);
695}
696
697static int init_io_u(struct thread_data *td)
698{
699 struct io_u *io_u;
700 unsigned int max_bs;
701 int i, max_units;
702 char *p;
703
704 max_units = td->o.iodepth;
705 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
706 td->orig_buffer_size = (unsigned long long) max_bs
707 * (unsigned long long) max_units;
708
709 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
710 unsigned long bs;
711
712 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
713 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
714 }
715
716 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
717 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
718 return 1;
719 }
720
721 if (allocate_io_mem(td))
722 return 1;
723
724 if (td->o.odirect)
725 p = ALIGN(td->orig_buffer);
726 else
727 p = td->orig_buffer;
728
729 for (i = 0; i < max_units; i++) {
730 if (td->terminate)
731 return 1;
732 io_u = malloc(sizeof(*io_u));
733 memset(io_u, 0, sizeof(*io_u));
734 INIT_FLIST_HEAD(&io_u->list);
735
736 if (!(td->io_ops->flags & FIO_NOIO)) {
737 io_u->buf = p + max_bs * i;
738
739 if (td_write(td) && !td->o.refill_buffers)
740 io_u_fill_buffer(td, io_u, max_bs);
741 }
742
743 io_u->index = i;
744 io_u->flags = IO_U_F_FREE;
745 flist_add(&io_u->list, &td->io_u_freelist);
746 }
747
748 io_u_init_timeout();
749
750 return 0;
751}
752
753static int switch_ioscheduler(struct thread_data *td)
754{
755 char tmp[256], tmp2[128];
756 FILE *f;
757 int ret;
758
759 if (td->io_ops->flags & FIO_DISKLESSIO)
760 return 0;
761
762 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
763
764 f = fopen(tmp, "r+");
765 if (!f) {
766 if (errno == ENOENT) {
767 log_err("fio: os or kernel doesn't support IO scheduler"
768 " switching\n");
769 return 0;
770 }
771 td_verror(td, errno, "fopen iosched");
772 return 1;
773 }
774
775 /*
776 * Set io scheduler.
777 */
778 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
779 if (ferror(f) || ret != 1) {
780 td_verror(td, errno, "fwrite");
781 fclose(f);
782 return 1;
783 }
784
785 rewind(f);
786
787 /*
788 * Read back and check that the selected scheduler is now the default.
789 */
790 ret = fread(tmp, 1, sizeof(tmp), f);
791 if (ferror(f) || ret < 0) {
792 td_verror(td, errno, "fread");
793 fclose(f);
794 return 1;
795 }
796
797 sprintf(tmp2, "[%s]", td->o.ioscheduler);
798 if (!strstr(tmp, tmp2)) {
799 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
800 td_verror(td, EINVAL, "iosched_switch");
801 fclose(f);
802 return 1;
803 }
804
805 fclose(f);
806 return 0;
807}
808
809static int keep_running(struct thread_data *td)
810{
811 unsigned long long io_done;
812
813 if (td->done)
814 return 0;
815 if (td->o.time_based)
816 return 1;
817 if (td->o.loops) {
818 td->o.loops--;
819 return 1;
820 }
821
822 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
823 + td->io_skip_bytes;
824 if (io_done < td->o.size)
825 return 1;
826
827 return 0;
828}
829
830static int clear_io_state(struct thread_data *td)
831{
832 struct fio_file *f;
833 unsigned int i;
834 int ret;
835
836 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
837 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
838 td->zone_bytes = 0;
839 td->rate_bytes = 0;
840 td->rate_blocks = 0;
841 td->rw_end_set[0] = td->rw_end_set[1] = 0;
842
843 td->last_was_sync = 0;
844
845 /*
846 * reset file done count if we are to start over
847 */
848 if (td->o.time_based || td->o.loops)
849 td->nr_done_files = 0;
850
851 close_files(td);
852
853 ret = 0;
854 for_each_file(td, f, i) {
855 f->flags &= ~FIO_FILE_DONE;
856 ret = td_io_open_file(td, f);
857 if (ret)
858 break;
859 }
860
861 return ret;
862}
863
864/*
865 * Entry point for the thread based jobs. The process based jobs end up
866 * here as well, after a little setup.
867 */
868static void *thread_main(void *data)
869{
870 unsigned long long runtime[2], elapsed;
871 struct thread_data *td = data;
872 int clear_state;
873
874 if (!td->o.use_thread)
875 setsid();
876
877 td->pid = getpid();
878
879 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
880
881 INIT_FLIST_HEAD(&td->io_u_freelist);
882 INIT_FLIST_HEAD(&td->io_u_busylist);
883 INIT_FLIST_HEAD(&td->io_u_requeues);
884 INIT_FLIST_HEAD(&td->io_log_list);
885 INIT_FLIST_HEAD(&td->io_hist_list);
886 td->io_hist_tree = RB_ROOT;
887
888 td_set_runstate(td, TD_INITIALIZED);
889 fio_mutex_up(startup_mutex);
890 fio_mutex_down(td->mutex);
891
892 /*
893 * the ->mutex mutex is now no longer used, close it to avoid
894 * eating a file descriptor
895 */
896 fio_mutex_remove(td->mutex);
897
898 /*
899 * May alter parameters that init_io_u() will use, so we need to
900 * do this first.
901 */
902 if (init_iolog(td))
903 goto err;
904
905 if (init_io_u(td))
906 goto err;
907
908 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
909 td_verror(td, errno, "cpu_set_affinity");
910 goto err;
911 }
912
913 if (td->ioprio_set) {
914 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
915 td_verror(td, errno, "ioprio_set");
916 goto err;
917 }
918 }
919
920 if (nice(td->o.nice) == -1) {
921 td_verror(td, errno, "nice");
922 goto err;
923 }
924
925 if (td->o.ioscheduler && switch_ioscheduler(td))
926 goto err;
927
928 if (!td->o.create_serialize && setup_files(td))
929 goto err;
930
931 if (td_io_init(td))
932 goto err;
933
934 if (open_files(td))
935 goto err;
936
937 if (init_random_map(td))
938 goto err;
939
940 if (td->o.exec_prerun) {
941 if (system(td->o.exec_prerun) < 0)
942 goto err;
943 }
944
945 fio_gettime(&td->epoch, NULL);
946 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
947 getrusage(RUSAGE_SELF, &td->ts.ru_start);
948
949 runtime[0] = runtime[1] = 0;
950 clear_state = 0;
951 while (keep_running(td)) {
952 fio_gettime(&td->start, NULL);
953 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
954
955 if (td->o.ratemin)
956 memcpy(&td->lastrate, &td->ts.stat_sample_time,
957 sizeof(td->lastrate));
958
959 if (clear_state && clear_io_state(td))
960 break;
961
962 prune_io_piece_log(td);
963
964 do_io(td);
965
966 clear_state = 1;
967
968 if (td_read(td) && td->io_bytes[DDIR_READ]) {
969 if (td->rw_end_set[DDIR_READ])
970 elapsed = utime_since(&td->start,
971 &td->rw_end[DDIR_READ]);
972 else
973 elapsed = utime_since_now(&td->start);
974
975 runtime[DDIR_READ] += elapsed;
976 }
977 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
978 if (td->rw_end_set[DDIR_WRITE])
979 elapsed = utime_since(&td->start,
980 &td->rw_end[DDIR_WRITE]);
981 else
982 elapsed = utime_since_now(&td->start);
983
984 runtime[DDIR_WRITE] += elapsed;
985 }
986
987 if (td->error || td->terminate)
988 break;
989
990 if (!td->o.do_verify ||
991 td->o.verify == VERIFY_NONE ||
992 (td->io_ops->flags & FIO_UNIDIR))
993 continue;
994
995 if (clear_io_state(td))
996 break;
997
998 fio_gettime(&td->start, NULL);
999
1000 do_verify(td);
1001
1002 runtime[DDIR_READ] += utime_since_now(&td->start);
1003
1004 if (td->error || td->terminate)
1005 break;
1006 }
1007
1008 update_rusage_stat(td);
1009 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1010 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1011 td->ts.total_run_time = mtime_since_now(&td->epoch);
1012 td->ts.io_bytes[0] = td->io_bytes[0];
1013 td->ts.io_bytes[1] = td->io_bytes[1];
1014
1015 if (td->ts.bw_log)
1016 finish_log(td, td->ts.bw_log, "bw");
1017 if (td->ts.slat_log)
1018 finish_log(td, td->ts.slat_log, "slat");
1019 if (td->ts.clat_log)
1020 finish_log(td, td->ts.clat_log, "clat");
1021 if (td->o.exec_postrun) {
1022 if (system(td->o.exec_postrun) < 0)
1023 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1024 }
1025
1026 if (exitall_on_terminate)
1027 terminate_threads(td->groupid);
1028
1029err:
1030 if (td->error)
1031 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1032 td->verror);
1033 close_and_free_files(td);
1034 close_ioengine(td);
1035 cleanup_io_u(td);
1036
1037 /*
1038 * do this very late, it will log file closing as well
1039 */
1040 if (td->o.write_iolog_file)
1041 write_iolog_close(td);
1042
1043 options_mem_free(td);
1044 td_set_runstate(td, TD_EXITED);
1045 return (void *) (unsigned long) td->error;
1046}
1047
1048/*
1049 * We cannot pass the td data into a forked process, so attach the td and
1050 * pass it to the thread worker.
1051 */
1052static int fork_main(int shmid, int offset)
1053{
1054 struct thread_data *td;
1055 void *data, *ret;
1056
1057 data = shmat(shmid, NULL, 0);
1058 if (data == (void *) -1) {
1059 int __err = errno;
1060
1061 perror("shmat");
1062 return __err;
1063 }
1064
1065 td = data + offset * sizeof(struct thread_data);
1066 ret = thread_main(td);
1067 shmdt(data);
1068 return (int) (unsigned long) ret;
1069}
1070
1071/*
1072 * Run over the job map and reap the threads that have exited, if any.
1073 */
1074static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1075{
1076 struct thread_data *td;
1077 int i, cputhreads, realthreads, pending, status, ret;
1078
1079 /*
1080 * reap exited threads (TD_EXITED -> TD_REAPED)
1081 */
1082 realthreads = pending = cputhreads = 0;
1083 for_each_td(td, i) {
1084 int flags = 0;
1085
1086 /*
1087 * ->io_ops is NULL for a thread that has closed its
1088 * io engine
1089 */
1090 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1091 cputhreads++;
1092 else
1093 realthreads++;
1094
1095 if (!td->pid) {
1096 pending++;
1097 continue;
1098 }
1099 if (td->runstate == TD_REAPED)
1100 continue;
1101 if (td->o.use_thread) {
1102 if (td->runstate == TD_EXITED) {
1103 td_set_runstate(td, TD_REAPED);
1104 goto reaped;
1105 }
1106 continue;
1107 }
1108
1109 flags = WNOHANG;
1110 if (td->runstate == TD_EXITED)
1111 flags = 0;
1112
1113 /*
1114 * check if someone quit or got killed in an unusual way
1115 */
1116 ret = waitpid(td->pid, &status, flags);
1117 if (ret < 0) {
1118 if (errno == ECHILD) {
1119 log_err("fio: pid=%d disappeared %d\n",
1120 (int) td->pid, td->runstate);
1121 td_set_runstate(td, TD_REAPED);
1122 goto reaped;
1123 }
1124 perror("waitpid");
1125 } else if (ret == td->pid) {
1126 if (WIFSIGNALED(status)) {
1127 int sig = WTERMSIG(status);
1128
1129 if (sig != SIGQUIT)
1130 log_err("fio: pid=%d, got signal=%d\n",
1131 (int) td->pid, sig);
1132 td_set_runstate(td, TD_REAPED);
1133 goto reaped;
1134 }
1135 if (WIFEXITED(status)) {
1136 if (WEXITSTATUS(status) && !td->error)
1137 td->error = WEXITSTATUS(status);
1138
1139 td_set_runstate(td, TD_REAPED);
1140 goto reaped;
1141 }
1142 }
1143
1144 /*
1145 * thread is not dead, continue
1146 */
1147 pending++;
1148 continue;
1149reaped:
1150 (*nr_running)--;
1151 (*m_rate) -= td->o.ratemin;
1152 (*t_rate) -= td->o.rate;
1153 if (!td->pid)
1154 pending--;
1155
1156 if (td->error)
1157 exit_value++;
1158
1159 done_secs += mtime_since_now(&td->epoch) / 1000;
1160 }
1161
1162 if (*nr_running == cputhreads && !pending && realthreads)
1163 terminate_threads(TERMINATE_ALL);
1164}
1165
1166/*
1167 * Main function for kicking off and reaping jobs, as needed.
1168 */
1169static void run_threads(void)
1170{
1171 struct thread_data *td;
1172 unsigned long spent;
1173 int i, todo, nr_running, m_rate, t_rate, nr_started;
1174
1175 if (fio_pin_memory())
1176 return;
1177
1178 if (!terse_output) {
1179 printf("Starting ");
1180 if (nr_thread)
1181 printf("%d thread%s", nr_thread,
1182 nr_thread > 1 ? "s" : "");
1183 if (nr_process) {
1184 if (nr_thread)
1185 printf(" and ");
1186 printf("%d process%s", nr_process,
1187 nr_process > 1 ? "es" : "");
1188 }
1189 printf("\n");
1190 fflush(stdout);
1191 }
1192
1193 set_sig_handlers();
1194
1195 todo = thread_number;
1196 nr_running = 0;
1197 nr_started = 0;
1198 m_rate = t_rate = 0;
1199
1200 for_each_td(td, i) {
1201 print_status_init(td->thread_number - 1);
1202
1203 if (!td->o.create_serialize) {
1204 init_disk_util(td);
1205 continue;
1206 }
1207
1208 /*
1209 * do file setup here so it happens sequentially,
1210 * we don't want X number of threads getting their
1211 * client data interspersed on disk
1212 */
1213 if (setup_files(td)) {
1214 exit_value++;
1215 if (td->error)
1216 log_err("fio: pid=%d, err=%d/%s\n",
1217 (int) td->pid, td->error, td->verror);
1218 td_set_runstate(td, TD_REAPED);
1219 todo--;
1220 } else {
1221 struct fio_file *f;
1222 unsigned int i;
1223
1224 /*
1225 * for sharing to work, each job must always open
1226 * its own files. so close them, if we opened them
1227 * for creation
1228 */
1229 for_each_file(td, f, i)
1230 td_io_close_file(td, f);
1231 }
1232
1233 init_disk_util(td);
1234 }
1235
1236 set_genesis_time();
1237
1238 while (todo) {
1239 struct thread_data *map[MAX_JOBS];
1240 struct timeval this_start;
1241 int this_jobs = 0, left;
1242
1243 /*
1244 * create threads (TD_NOT_CREATED -> TD_CREATED)
1245 */
1246 for_each_td(td, i) {
1247 if (td->runstate != TD_NOT_CREATED)
1248 continue;
1249
1250 /*
1251 * never got a chance to start, killed by other
1252 * thread for some reason
1253 */
1254 if (td->terminate) {
1255 todo--;
1256 continue;
1257 }
1258
1259 if (td->o.start_delay) {
1260 spent = mtime_since_genesis();
1261
1262 if (td->o.start_delay * 1000 > spent)
1263 continue;
1264 }
1265
1266 if (td->o.stonewall && (nr_started || nr_running)) {
1267 dprint(FD_PROCESS, "%s: stonewall wait\n",
1268 td->o.name);
1269 break;
1270 }
1271
1272 /*
1273 * Set state to created. Thread will transition
1274 * to TD_INITIALIZED when it's done setting up.
1275 */
1276 td_set_runstate(td, TD_CREATED);
1277 map[this_jobs++] = td;
1278 nr_started++;
1279
1280 if (td->o.use_thread) {
1281 dprint(FD_PROCESS, "will pthread_create\n");
1282 if (pthread_create(&td->thread, NULL,
1283 thread_main, td)) {
1284 perror("pthread_create");
1285 nr_started--;
1286 break;
1287 }
1288 if (pthread_detach(td->thread) < 0)
1289 perror("pthread_detach");
1290 } else {
1291 pid_t pid;
1292 dprint(FD_PROCESS, "will fork\n");
1293 pid = fork();
1294 if (!pid) {
1295 int ret = fork_main(shm_id, i);
1296
1297 _exit(ret);
1298 } else if (i == fio_debug_jobno)
1299 *fio_debug_jobp = pid;
1300 }
1301 fio_mutex_down(startup_mutex);
1302 }
1303
1304 /*
1305 * Wait for the started threads to transition to
1306 * TD_INITIALIZED.
1307 */
1308 fio_gettime(&this_start, NULL);
1309 left = this_jobs;
1310 while (left && !fio_abort) {
1311 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1312 break;
1313
1314 usleep(100000);
1315
1316 for (i = 0; i < this_jobs; i++) {
1317 td = map[i];
1318 if (!td)
1319 continue;
1320 if (td->runstate == TD_INITIALIZED) {
1321 map[i] = NULL;
1322 left--;
1323 } else if (td->runstate >= TD_EXITED) {
1324 map[i] = NULL;
1325 left--;
1326 todo--;
1327 nr_running++; /* work-around... */
1328 }
1329 }
1330 }
1331
1332 if (left) {
1333 log_err("fio: %d jobs failed to start\n", left);
1334 for (i = 0; i < this_jobs; i++) {
1335 td = map[i];
1336 if (!td)
1337 continue;
1338 kill(td->pid, SIGTERM);
1339 }
1340 break;
1341 }
1342
1343 /*
1344 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1345 */
1346 for_each_td(td, i) {
1347 if (td->runstate != TD_INITIALIZED)
1348 continue;
1349
1350 td_set_runstate(td, TD_RUNNING);
1351 nr_running++;
1352 nr_started--;
1353 m_rate += td->o.ratemin;
1354 t_rate += td->o.rate;
1355 todo--;
1356 fio_mutex_up(td->mutex);
1357 }
1358
1359 reap_threads(&nr_running, &t_rate, &m_rate);
1360
1361 if (todo)
1362 usleep(100000);
1363 }
1364
1365 while (nr_running) {
1366 reap_threads(&nr_running, &t_rate, &m_rate);
1367 usleep(10000);
1368 }
1369
1370 update_io_ticks();
1371 fio_unpin_memory();
1372}
1373
1374int main(int argc, char *argv[])
1375{
1376 long ps;
1377
1378 sinit();
1379
1380 /*
1381 * We need locale for number printing, if it isn't set then just
1382 * go with the US format.
1383 */
1384 if (!getenv("LC_NUMERIC"))
1385 setlocale(LC_NUMERIC, "en_US");
1386
1387 if (parse_options(argc, argv))
1388 return 1;
1389
1390 if (!thread_number)
1391 return 0;
1392
1393 ps = sysconf(_SC_PAGESIZE);
1394 if (ps < 0) {
1395 log_err("Failed to get page size\n");
1396 return 1;
1397 }
1398
1399 page_size = ps;
1400 page_mask = ps - 1;
1401
1402 if (write_bw_log) {
1403 setup_log(&agg_io_log[DDIR_READ]);
1404 setup_log(&agg_io_log[DDIR_WRITE]);
1405 }
1406
1407 startup_mutex = fio_mutex_init(0);
1408
1409 set_genesis_time();
1410
1411 status_timer_arm();
1412
1413 run_threads();
1414
1415 if (!fio_abort) {
1416 show_run_stats();
1417 if (write_bw_log) {
1418 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1419 __finish_log(agg_io_log[DDIR_WRITE],
1420 "agg-write_bw.log");
1421 }
1422 }
1423
1424 fio_mutex_remove(startup_mutex);
1425 return exit_value;
1426}