Remember to prime the random generator
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42#include "cgroup.h"
43#include "profile.h"
44#include "lib/rand.h"
45
46unsigned long page_mask;
47unsigned long page_size;
48
49#define PAGE_ALIGN(buf) \
50 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
51
52int groupid = 0;
53int thread_number = 0;
54int nr_process = 0;
55int nr_thread = 0;
56int shm_id = 0;
57int temp_stall_ts;
58unsigned long done_secs = 0;
59
60static struct fio_mutex *startup_mutex;
61static struct fio_mutex *writeout_mutex;
62static volatile int fio_abort;
63static int exit_value;
64static struct itimerval itimer;
65static pthread_t gtod_thread;
66static struct flist_head *cgroup_list;
67static char *cgroup_mnt;
68
69struct io_log *agg_io_log[2];
70
71#define TERMINATE_ALL (-1)
72#define JOB_START_TIMEOUT (5 * 1000)
73
74void td_set_runstate(struct thread_data *td, int runstate)
75{
76 if (td->runstate == runstate)
77 return;
78
79 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
80 td->runstate, runstate);
81 td->runstate = runstate;
82}
83
84static void terminate_threads(int group_id)
85{
86 struct thread_data *td;
87 int i;
88
89 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
90
91 for_each_td(td, i) {
92 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
93 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
94 td->o.name, (int) td->pid);
95 td->terminate = 1;
96 td->o.start_delay = 0;
97
98 /*
99 * if the thread is running, just let it exit
100 */
101 if (td->runstate < TD_RUNNING)
102 kill(td->pid, SIGQUIT);
103 else {
104 struct ioengine_ops *ops = td->io_ops;
105
106 if (ops && (ops->flags & FIO_SIGQUIT))
107 kill(td->pid, SIGQUIT);
108 }
109 }
110 }
111}
112
113static void status_timer_arm(void)
114{
115 itimer.it_value.tv_sec = 0;
116 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
117 setitimer(ITIMER_REAL, &itimer, NULL);
118}
119
120static void sig_alrm(int fio_unused sig)
121{
122 if (threads) {
123 update_io_ticks();
124 print_thread_status();
125 status_timer_arm();
126 }
127}
128
129/*
130 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
131 */
132static void sig_quit(int sig)
133{
134}
135
136static void sig_int(int sig)
137{
138 if (threads) {
139 log_info("\nfio: terminating on signal %d\n", sig);
140 fflush(stdout);
141 terminate_threads(TERMINATE_ALL);
142 }
143}
144
145static void sig_ill(int fio_unused sig)
146{
147 if (!threads)
148 return;
149
150 log_err("fio: illegal instruction. your cpu does not support "
151 "the sse4.2 instruction for crc32c\n");
152 terminate_threads(TERMINATE_ALL);
153 exit(4);
154}
155
156static void set_sig_handlers(void)
157{
158 struct sigaction act;
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_alrm;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGALRM, &act, NULL);
164
165 memset(&act, 0, sizeof(act));
166 act.sa_handler = sig_int;
167 act.sa_flags = SA_RESTART;
168 sigaction(SIGINT, &act, NULL);
169
170 memset(&act, 0, sizeof(act));
171 act.sa_handler = sig_ill;
172 act.sa_flags = SA_RESTART;
173 sigaction(SIGILL, &act, NULL);
174
175 memset(&act, 0, sizeof(act));
176 act.sa_handler = sig_quit;
177 act.sa_flags = SA_RESTART;
178 sigaction(SIGQUIT, &act, NULL);
179}
180
181/*
182 * Check if we are above the minimum rate given.
183 */
184static int __check_min_rate(struct thread_data *td, struct timeval *now,
185 enum td_ddir ddir)
186{
187 unsigned long long bytes = 0;
188 unsigned long iops = 0;
189 unsigned long spent;
190 unsigned long rate;
191 unsigned int ratemin = 0;
192 unsigned int rate_iops = 0;
193 unsigned int rate_iops_min = 0;
194
195 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
196 return 0;
197
198 /*
199 * allow a 2 second settle period in the beginning
200 */
201 if (mtime_since(&td->start, now) < 2000)
202 return 0;
203
204 iops += td->io_blocks[ddir];
205 bytes += td->this_io_bytes[ddir];
206 ratemin += td->o.ratemin[ddir];
207 rate_iops += td->o.rate_iops[ddir];
208 rate_iops_min += td->o.rate_iops_min[ddir];
209
210 /*
211 * if rate blocks is set, sample is running
212 */
213 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
214 spent = mtime_since(&td->lastrate[ddir], now);
215 if (spent < td->o.ratecycle)
216 return 0;
217
218 if (td->o.rate[ddir]) {
219 /*
220 * check bandwidth specified rate
221 */
222 if (bytes < td->rate_bytes[ddir]) {
223 log_err("%s: min rate %u not met\n", td->o.name,
224 ratemin);
225 return 1;
226 } else {
227 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
228 if (rate < ratemin ||
229 bytes < td->rate_bytes[ddir]) {
230 log_err("%s: min rate %u not met, got"
231 " %luKB/sec\n", td->o.name,
232 ratemin, rate);
233 return 1;
234 }
235 }
236 } else {
237 /*
238 * checks iops specified rate
239 */
240 if (iops < rate_iops) {
241 log_err("%s: min iops rate %u not met\n",
242 td->o.name, rate_iops);
243 return 1;
244 } else {
245 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
246 if (rate < rate_iops_min ||
247 iops < td->rate_blocks[ddir]) {
248 log_err("%s: min iops rate %u not met,"
249 " got %lu\n", td->o.name,
250 rate_iops_min, rate);
251 }
252 }
253 }
254 }
255
256 td->rate_bytes[ddir] = bytes;
257 td->rate_blocks[ddir] = iops;
258 memcpy(&td->lastrate[ddir], now, sizeof(*now));
259 return 0;
260}
261
262static int check_min_rate(struct thread_data *td, struct timeval *now,
263 unsigned long *bytes_done)
264{
265 int ret = 0;
266
267 if (bytes_done[0])
268 ret |= __check_min_rate(td, now, 0);
269 if (bytes_done[1])
270 ret |= __check_min_rate(td, now, 1);
271
272 return ret;
273}
274
275static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
276{
277 if (!td->o.timeout)
278 return 0;
279 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
280 return 1;
281
282 return 0;
283}
284
285/*
286 * When job exits, we can cancel the in-flight IO if we are using async
287 * io. Attempt to do so.
288 */
289static void cleanup_pending_aio(struct thread_data *td)
290{
291 struct flist_head *entry, *n;
292 struct io_u *io_u;
293 int r;
294
295 /*
296 * get immediately available events, if any
297 */
298 r = io_u_queued_complete(td, 0, NULL);
299 if (r < 0)
300 return;
301
302 /*
303 * now cancel remaining active events
304 */
305 if (td->io_ops->cancel) {
306 flist_for_each_safe(entry, n, &td->io_u_busylist) {
307 io_u = flist_entry(entry, struct io_u, list);
308
309 /*
310 * if the io_u isn't in flight, then that generally
311 * means someone leaked an io_u. complain but fix
312 * it up, so we don't stall here.
313 */
314 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
315 log_err("fio: non-busy IO on busy list\n");
316 put_io_u(td, io_u);
317 } else {
318 r = td->io_ops->cancel(td, io_u);
319 if (!r)
320 put_io_u(td, io_u);
321 }
322 }
323 }
324
325 if (td->cur_depth)
326 r = io_u_queued_complete(td, td->cur_depth, NULL);
327}
328
329/*
330 * Helper to handle the final sync of a file. Works just like the normal
331 * io path, just does everything sync.
332 */
333static int fio_io_sync(struct thread_data *td, struct fio_file *f)
334{
335 struct io_u *io_u = __get_io_u(td);
336 int ret;
337
338 if (!io_u)
339 return 1;
340
341 io_u->ddir = DDIR_SYNC;
342 io_u->file = f;
343
344 if (td_io_prep(td, io_u)) {
345 put_io_u(td, io_u);
346 return 1;
347 }
348
349requeue:
350 ret = td_io_queue(td, io_u);
351 if (ret < 0) {
352 td_verror(td, io_u->error, "td_io_queue");
353 put_io_u(td, io_u);
354 return 1;
355 } else if (ret == FIO_Q_QUEUED) {
356 if (io_u_queued_complete(td, 1, NULL) < 0)
357 return 1;
358 } else if (ret == FIO_Q_COMPLETED) {
359 if (io_u->error) {
360 td_verror(td, io_u->error, "td_io_queue");
361 return 1;
362 }
363
364 if (io_u_sync_complete(td, io_u, NULL) < 0)
365 return 1;
366 } else if (ret == FIO_Q_BUSY) {
367 if (td_io_commit(td))
368 return 1;
369 goto requeue;
370 }
371
372 return 0;
373}
374
375static inline void update_tv_cache(struct thread_data *td)
376{
377 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
378 fio_gettime(&td->tv_cache, NULL);
379}
380
381static int break_on_this_error(struct thread_data *td, int *retptr)
382{
383 int ret = *retptr;
384
385 if (ret < 0 || td->error) {
386 int err;
387
388 if (!td->o.continue_on_error)
389 return 1;
390
391 if (ret < 0)
392 err = -ret;
393 else
394 err = td->error;
395
396 if (td_non_fatal_error(err)) {
397 /*
398 * Continue with the I/Os in case of
399 * a non fatal error.
400 */
401 update_error_count(td, err);
402 td_clear_error(td);
403 *retptr = 0;
404 return 0;
405 } else if (td->o.fill_device && err == ENOSPC) {
406 /*
407 * We expect to hit this error if
408 * fill_device option is set.
409 */
410 td_clear_error(td);
411 td->terminate = 1;
412 return 1;
413 } else {
414 /*
415 * Stop the I/O in case of a fatal
416 * error.
417 */
418 update_error_count(td, err);
419 return 1;
420 }
421 }
422
423 return 0;
424}
425
426/*
427 * The main verify engine. Runs over the writes we previously submitted,
428 * reads the blocks back in, and checks the crc/md5 of the data.
429 */
430static void do_verify(struct thread_data *td)
431{
432 struct fio_file *f;
433 struct io_u *io_u;
434 int ret, min_events;
435 unsigned int i;
436
437 dprint(FD_VERIFY, "starting loop\n");
438
439 /*
440 * sync io first and invalidate cache, to make sure we really
441 * read from disk.
442 */
443 for_each_file(td, f, i) {
444 if (!fio_file_open(f))
445 continue;
446 if (fio_io_sync(td, f))
447 break;
448 if (file_invalidate_cache(td, f))
449 break;
450 }
451
452 if (td->error)
453 return;
454
455 td_set_runstate(td, TD_VERIFYING);
456
457 io_u = NULL;
458 while (!td->terminate) {
459 int ret2, full;
460
461 update_tv_cache(td);
462
463 if (runtime_exceeded(td, &td->tv_cache)) {
464 td->terminate = 1;
465 break;
466 }
467
468 io_u = __get_io_u(td);
469 if (!io_u)
470 break;
471
472 if (get_next_verify(td, io_u)) {
473 put_io_u(td, io_u);
474 break;
475 }
476
477 if (td_io_prep(td, io_u)) {
478 put_io_u(td, io_u);
479 break;
480 }
481
482 if (td->o.verify_async)
483 io_u->end_io = verify_io_u_async;
484 else
485 io_u->end_io = verify_io_u;
486
487 ret = td_io_queue(td, io_u);
488 switch (ret) {
489 case FIO_Q_COMPLETED:
490 if (io_u->error) {
491 ret = -io_u->error;
492 clear_io_u(td, io_u);
493 } else if (io_u->resid) {
494 int bytes = io_u->xfer_buflen - io_u->resid;
495 struct fio_file *f = io_u->file;
496
497 /*
498 * zero read, fail
499 */
500 if (!bytes) {
501 td_verror(td, EIO, "full resid");
502 put_io_u(td, io_u);
503 break;
504 }
505
506 io_u->xfer_buflen = io_u->resid;
507 io_u->xfer_buf += bytes;
508 io_u->offset += bytes;
509
510 td->ts.short_io_u[io_u->ddir]++;
511
512 if (io_u->offset == f->real_file_size)
513 goto sync_done;
514
515 requeue_io_u(td, &io_u);
516 } else {
517sync_done:
518 ret = io_u_sync_complete(td, io_u, NULL);
519 if (ret < 0)
520 break;
521 }
522 continue;
523 case FIO_Q_QUEUED:
524 break;
525 case FIO_Q_BUSY:
526 requeue_io_u(td, &io_u);
527 ret2 = td_io_commit(td);
528 if (ret2 < 0)
529 ret = ret2;
530 break;
531 default:
532 assert(ret < 0);
533 td_verror(td, -ret, "td_io_queue");
534 break;
535 }
536
537 if (break_on_this_error(td, &ret))
538 break;
539
540 /*
541 * if we can queue more, do so. but check if there are
542 * completed io_u's first.
543 */
544 full = queue_full(td) || ret == FIO_Q_BUSY;
545 if (full || !td->o.iodepth_batch_complete) {
546 min_events = min(td->o.iodepth_batch_complete,
547 td->cur_depth);
548 if (full && !min_events)
549 min_events = 1;
550
551 do {
552 /*
553 * Reap required number of io units, if any,
554 * and do the verification on them through
555 * the callback handler
556 */
557 if (io_u_queued_complete(td, min_events, NULL) < 0) {
558 ret = -1;
559 break;
560 }
561 } while (full && (td->cur_depth > td->o.iodepth_low));
562 }
563 if (ret < 0)
564 break;
565 }
566
567 if (!td->error) {
568 min_events = td->cur_depth;
569
570 if (min_events)
571 ret = io_u_queued_complete(td, min_events, NULL);
572 } else
573 cleanup_pending_aio(td);
574
575 td_set_runstate(td, TD_RUNNING);
576
577 dprint(FD_VERIFY, "exiting loop\n");
578}
579
580/*
581 * Main IO worker function. It retrieves io_u's to process and queues
582 * and reaps them, checking for rate and errors along the way.
583 */
584static void do_io(struct thread_data *td)
585{
586 unsigned int i;
587 int ret = 0;
588
589 if (in_ramp_time(td))
590 td_set_runstate(td, TD_RAMP);
591 else
592 td_set_runstate(td, TD_RUNNING);
593
594 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
595 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
596 struct timeval comp_time;
597 unsigned long bytes_done[2] = { 0, 0 };
598 int min_evts = 0;
599 struct io_u *io_u;
600 int ret2, full;
601
602 if (td->terminate)
603 break;
604
605 update_tv_cache(td);
606
607 if (runtime_exceeded(td, &td->tv_cache)) {
608 td->terminate = 1;
609 break;
610 }
611
612 io_u = get_io_u(td);
613 if (!io_u)
614 break;
615
616 /*
617 * Add verification end_io handler, if asked to verify
618 * a previously written file.
619 */
620 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
621 !td_rw(td)) {
622 if (td->o.verify_async)
623 io_u->end_io = verify_io_u_async;
624 else
625 io_u->end_io = verify_io_u;
626 td_set_runstate(td, TD_VERIFYING);
627 } else if (in_ramp_time(td))
628 td_set_runstate(td, TD_RAMP);
629 else
630 td_set_runstate(td, TD_RUNNING);
631
632 ret = td_io_queue(td, io_u);
633 switch (ret) {
634 case FIO_Q_COMPLETED:
635 if (io_u->error) {
636 ret = -io_u->error;
637 clear_io_u(td, io_u);
638 } else if (io_u->resid) {
639 int bytes = io_u->xfer_buflen - io_u->resid;
640 struct fio_file *f = io_u->file;
641
642 /*
643 * zero read, fail
644 */
645 if (!bytes) {
646 td_verror(td, EIO, "full resid");
647 put_io_u(td, io_u);
648 break;
649 }
650
651 io_u->xfer_buflen = io_u->resid;
652 io_u->xfer_buf += bytes;
653 io_u->offset += bytes;
654
655 td->ts.short_io_u[io_u->ddir]++;
656
657 if (io_u->offset == f->real_file_size)
658 goto sync_done;
659
660 requeue_io_u(td, &io_u);
661 } else {
662sync_done:
663 if (__should_check_rate(td, 0) ||
664 __should_check_rate(td, 1))
665 fio_gettime(&comp_time, NULL);
666
667 ret = io_u_sync_complete(td, io_u, bytes_done);
668 if (ret < 0)
669 break;
670 }
671 break;
672 case FIO_Q_QUEUED:
673 /*
674 * if the engine doesn't have a commit hook,
675 * the io_u is really queued. if it does have such
676 * a hook, it has to call io_u_queued() itself.
677 */
678 if (td->io_ops->commit == NULL)
679 io_u_queued(td, io_u);
680 break;
681 case FIO_Q_BUSY:
682 requeue_io_u(td, &io_u);
683 ret2 = td_io_commit(td);
684 if (ret2 < 0)
685 ret = ret2;
686 break;
687 default:
688 assert(ret < 0);
689 put_io_u(td, io_u);
690 break;
691 }
692
693 if (break_on_this_error(td, &ret))
694 break;
695
696 /*
697 * See if we need to complete some commands
698 */
699 full = queue_full(td) || ret == FIO_Q_BUSY;
700 if (full || !td->o.iodepth_batch_complete) {
701 min_evts = min(td->o.iodepth_batch_complete,
702 td->cur_depth);
703 if (full && !min_evts)
704 min_evts = 1;
705
706 if (__should_check_rate(td, 0) ||
707 __should_check_rate(td, 1))
708 fio_gettime(&comp_time, NULL);
709
710 do {
711 ret = io_u_queued_complete(td, min_evts, bytes_done);
712 if (ret < 0)
713 break;
714
715 } while (full && (td->cur_depth > td->o.iodepth_low));
716 }
717
718 if (ret < 0)
719 break;
720 if (!(bytes_done[0] + bytes_done[1]))
721 continue;
722
723 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
724 if (check_min_rate(td, &comp_time, bytes_done)) {
725 if (exitall_on_terminate)
726 terminate_threads(td->groupid);
727 td_verror(td, EIO, "check_min_rate");
728 break;
729 }
730 }
731
732 if (td->o.thinktime) {
733 unsigned long long b;
734
735 b = td->io_blocks[0] + td->io_blocks[1];
736 if (!(b % td->o.thinktime_blocks)) {
737 int left;
738
739 if (td->o.thinktime_spin)
740 usec_spin(td->o.thinktime_spin);
741
742 left = td->o.thinktime - td->o.thinktime_spin;
743 if (left)
744 usec_sleep(td, left);
745 }
746 }
747 }
748
749 if (td->o.fill_device && td->error == ENOSPC) {
750 td->error = 0;
751 td->terminate = 1;
752 }
753 if (!td->error) {
754 struct fio_file *f;
755
756 i = td->cur_depth;
757 if (i)
758 ret = io_u_queued_complete(td, i, NULL);
759
760 if (should_fsync(td) && td->o.end_fsync) {
761 td_set_runstate(td, TD_FSYNCING);
762
763 for_each_file(td, f, i) {
764 if (!fio_file_open(f))
765 continue;
766 fio_io_sync(td, f);
767 }
768 }
769 } else
770 cleanup_pending_aio(td);
771
772 /*
773 * stop job if we failed doing any IO
774 */
775 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
776 td->done = 1;
777}
778
779static void cleanup_io_u(struct thread_data *td)
780{
781 struct flist_head *entry, *n;
782 struct io_u *io_u;
783
784 flist_for_each_safe(entry, n, &td->io_u_freelist) {
785 io_u = flist_entry(entry, struct io_u, list);
786
787 flist_del(&io_u->list);
788 free(io_u);
789 }
790
791 free_io_mem(td);
792}
793
794static int init_io_u(struct thread_data *td)
795{
796 struct io_u *io_u;
797 unsigned int max_bs;
798 int cl_align, i, max_units;
799 char *p;
800
801 max_units = td->o.iodepth;
802 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
803 td->orig_buffer_size = (unsigned long long) max_bs
804 * (unsigned long long) max_units;
805
806 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
807 unsigned long bs;
808
809 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
810 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
811 }
812
813 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
814 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
815 return 1;
816 }
817
818 if (allocate_io_mem(td))
819 return 1;
820
821 if (td->o.odirect || td->o.mem_align)
822 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
823 else
824 p = td->orig_buffer;
825
826 cl_align = os_cache_line_size();
827
828 for (i = 0; i < max_units; i++) {
829 void *ptr;
830
831 if (td->terminate)
832 return 1;
833
834 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
835 log_err("fio: posix_memalign=%s\n", strerror(errno));
836 break;
837 }
838
839 io_u = ptr;
840 memset(io_u, 0, sizeof(*io_u));
841 INIT_FLIST_HEAD(&io_u->list);
842 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
843
844 if (!(td->io_ops->flags & FIO_NOIO)) {
845 io_u->buf = p + max_bs * i;
846 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
847
848 if (td_write(td) && !td->o.refill_buffers)
849 io_u_fill_buffer(td, io_u, max_bs);
850 }
851
852 io_u->index = i;
853 io_u->flags = IO_U_F_FREE;
854 flist_add(&io_u->list, &td->io_u_freelist);
855 }
856
857 return 0;
858}
859
860static int switch_ioscheduler(struct thread_data *td)
861{
862 char tmp[256], tmp2[128];
863 FILE *f;
864 int ret;
865
866 if (td->io_ops->flags & FIO_DISKLESSIO)
867 return 0;
868
869 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
870
871 f = fopen(tmp, "r+");
872 if (!f) {
873 if (errno == ENOENT) {
874 log_err("fio: os or kernel doesn't support IO scheduler"
875 " switching\n");
876 return 0;
877 }
878 td_verror(td, errno, "fopen iosched");
879 return 1;
880 }
881
882 /*
883 * Set io scheduler.
884 */
885 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
886 if (ferror(f) || ret != 1) {
887 td_verror(td, errno, "fwrite");
888 fclose(f);
889 return 1;
890 }
891
892 rewind(f);
893
894 /*
895 * Read back and check that the selected scheduler is now the default.
896 */
897 ret = fread(tmp, 1, sizeof(tmp), f);
898 if (ferror(f) || ret < 0) {
899 td_verror(td, errno, "fread");
900 fclose(f);
901 return 1;
902 }
903
904 sprintf(tmp2, "[%s]", td->o.ioscheduler);
905 if (!strstr(tmp, tmp2)) {
906 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
907 td_verror(td, EINVAL, "iosched_switch");
908 fclose(f);
909 return 1;
910 }
911
912 fclose(f);
913 return 0;
914}
915
916static int keep_running(struct thread_data *td)
917{
918 unsigned long long io_done;
919
920 if (td->done)
921 return 0;
922 if (td->o.time_based)
923 return 1;
924 if (td->o.loops) {
925 td->o.loops--;
926 return 1;
927 }
928
929 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
930 + td->io_skip_bytes;
931 if (io_done < td->o.size)
932 return 1;
933
934 return 0;
935}
936
937static void reset_io_counters(struct thread_data *td)
938{
939 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
940 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
941 td->zone_bytes = 0;
942 td->rate_bytes[0] = td->rate_bytes[1] = 0;
943 td->rate_blocks[0] = td->rate_blocks[1] = 0;
944
945 td->last_was_sync = 0;
946
947 /*
948 * reset file done count if we are to start over
949 */
950 if (td->o.time_based || td->o.loops)
951 td->nr_done_files = 0;
952
953 /*
954 * Set the same seed to get repeatable runs
955 */
956 td_fill_rand_seeds(td);
957}
958
959void reset_all_stats(struct thread_data *td)
960{
961 struct timeval tv;
962 int i;
963
964 reset_io_counters(td);
965
966 for (i = 0; i < 2; i++) {
967 td->io_bytes[i] = 0;
968 td->io_blocks[i] = 0;
969 td->io_issues[i] = 0;
970 td->ts.total_io_u[i] = 0;
971 }
972
973 fio_gettime(&tv, NULL);
974 memcpy(&td->epoch, &tv, sizeof(tv));
975 memcpy(&td->start, &tv, sizeof(tv));
976}
977
978static void clear_io_state(struct thread_data *td)
979{
980 struct fio_file *f;
981 unsigned int i;
982
983 reset_io_counters(td);
984
985 close_files(td);
986 for_each_file(td, f, i)
987 fio_file_clear_done(f);
988}
989
990static int exec_string(const char *string)
991{
992 int ret, newlen = strlen(string) + 1 + 8;
993 char *str;
994
995 str = malloc(newlen);
996 sprintf(str, "sh -c %s", string);
997
998 ret = system(str);
999 if (ret == -1)
1000 log_err("fio: exec of cmd <%s> failed\n", str);
1001
1002 free(str);
1003 return ret;
1004}
1005
1006/*
1007 * Entry point for the thread based jobs. The process based jobs end up
1008 * here as well, after a little setup.
1009 */
1010static void *thread_main(void *data)
1011{
1012 unsigned long long runtime[2], elapsed;
1013 struct thread_data *td = data;
1014 pthread_condattr_t attr;
1015 int clear_state;
1016
1017 if (!td->o.use_thread)
1018 setsid();
1019
1020 td->pid = getpid();
1021
1022 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1023
1024 INIT_FLIST_HEAD(&td->io_u_freelist);
1025 INIT_FLIST_HEAD(&td->io_u_busylist);
1026 INIT_FLIST_HEAD(&td->io_u_requeues);
1027 INIT_FLIST_HEAD(&td->io_log_list);
1028 INIT_FLIST_HEAD(&td->io_hist_list);
1029 INIT_FLIST_HEAD(&td->verify_list);
1030 pthread_mutex_init(&td->io_u_lock, NULL);
1031 td->io_hist_tree = RB_ROOT;
1032
1033 pthread_condattr_init(&attr);
1034 pthread_cond_init(&td->verify_cond, &attr);
1035 pthread_cond_init(&td->free_cond, &attr);
1036
1037 td_set_runstate(td, TD_INITIALIZED);
1038 dprint(FD_MUTEX, "up startup_mutex\n");
1039 fio_mutex_up(startup_mutex);
1040 dprint(FD_MUTEX, "wait on td->mutex\n");
1041 fio_mutex_down(td->mutex);
1042 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1043
1044 /*
1045 * the ->mutex mutex is now no longer used, close it to avoid
1046 * eating a file descriptor
1047 */
1048 fio_mutex_remove(td->mutex);
1049
1050 if (td->o.uid != -1U && setuid(td->o.uid)) {
1051 td_verror(td, errno, "setuid");
1052 goto err;
1053 }
1054 if (td->o.gid != -1U && setgid(td->o.gid)) {
1055 td_verror(td, errno, "setgid");
1056 goto err;
1057 }
1058
1059 /*
1060 * May alter parameters that init_io_u() will use, so we need to
1061 * do this first.
1062 */
1063 if (init_iolog(td))
1064 goto err;
1065
1066 if (init_io_u(td))
1067 goto err;
1068
1069 if (td->o.verify_async && verify_async_init(td))
1070 goto err;
1071
1072 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1073 td_verror(td, errno, "cpu_set_affinity");
1074 goto err;
1075 }
1076
1077 /*
1078 * If we have a gettimeofday() thread, make sure we exclude that
1079 * thread from this job
1080 */
1081 if (td->o.gtod_cpu) {
1082 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1083 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1084 td_verror(td, errno, "cpu_set_affinity");
1085 goto err;
1086 }
1087 }
1088
1089 if (td->ioprio_set) {
1090 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1091 td_verror(td, errno, "ioprio_set");
1092 goto err;
1093 }
1094 }
1095
1096 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1097 goto err;
1098
1099 if (nice(td->o.nice) == -1) {
1100 td_verror(td, errno, "nice");
1101 goto err;
1102 }
1103
1104 if (td->o.ioscheduler && switch_ioscheduler(td))
1105 goto err;
1106
1107 if (!td->o.create_serialize && setup_files(td))
1108 goto err;
1109
1110 if (td_io_init(td))
1111 goto err;
1112
1113 if (init_random_map(td))
1114 goto err;
1115
1116 if (td->o.exec_prerun) {
1117 if (exec_string(td->o.exec_prerun))
1118 goto err;
1119 }
1120
1121 if (td->o.pre_read) {
1122 if (pre_read_files(td) < 0)
1123 goto err;
1124 }
1125
1126 fio_gettime(&td->epoch, NULL);
1127 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1128
1129 runtime[0] = runtime[1] = 0;
1130 clear_state = 0;
1131 while (keep_running(td)) {
1132 fio_gettime(&td->start, NULL);
1133 memcpy(&td->ts.stat_sample_time[0], &td->start,
1134 sizeof(td->start));
1135 memcpy(&td->ts.stat_sample_time[1], &td->start,
1136 sizeof(td->start));
1137 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1138
1139 if (td->o.ratemin[0] || td->o.ratemin[1])
1140 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1141 sizeof(td->lastrate));
1142
1143 if (clear_state)
1144 clear_io_state(td);
1145
1146 prune_io_piece_log(td);
1147
1148 do_io(td);
1149
1150 clear_state = 1;
1151
1152 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1153 elapsed = utime_since_now(&td->start);
1154 runtime[DDIR_READ] += elapsed;
1155 }
1156 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1157 elapsed = utime_since_now(&td->start);
1158 runtime[DDIR_WRITE] += elapsed;
1159 }
1160
1161 if (td->error || td->terminate)
1162 break;
1163
1164 if (!td->o.do_verify ||
1165 td->o.verify == VERIFY_NONE ||
1166 (td->io_ops->flags & FIO_UNIDIR))
1167 continue;
1168
1169 clear_io_state(td);
1170
1171 fio_gettime(&td->start, NULL);
1172
1173 do_verify(td);
1174
1175 runtime[DDIR_READ] += utime_since_now(&td->start);
1176
1177 if (td->error || td->terminate)
1178 break;
1179 }
1180
1181 update_rusage_stat(td);
1182 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1183 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1184 td->ts.total_run_time = mtime_since_now(&td->epoch);
1185 td->ts.io_bytes[0] = td->io_bytes[0];
1186 td->ts.io_bytes[1] = td->io_bytes[1];
1187
1188 fio_mutex_down(writeout_mutex);
1189 if (td->ts.bw_log) {
1190 if (td->o.bw_log_file) {
1191 finish_log_named(td, td->ts.bw_log,
1192 td->o.bw_log_file, "bw");
1193 } else
1194 finish_log(td, td->ts.bw_log, "bw");
1195 }
1196 if (td->ts.slat_log) {
1197 if (td->o.lat_log_file) {
1198 finish_log_named(td, td->ts.slat_log,
1199 td->o.lat_log_file, "slat");
1200 } else
1201 finish_log(td, td->ts.slat_log, "slat");
1202 }
1203 if (td->ts.clat_log) {
1204 if (td->o.lat_log_file) {
1205 finish_log_named(td, td->ts.clat_log,
1206 td->o.lat_log_file, "clat");
1207 } else
1208 finish_log(td, td->ts.clat_log, "clat");
1209 }
1210 fio_mutex_up(writeout_mutex);
1211 if (td->o.exec_postrun)
1212 exec_string(td->o.exec_postrun);
1213
1214 if (exitall_on_terminate)
1215 terminate_threads(td->groupid);
1216
1217err:
1218 if (td->error)
1219 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1220 td->verror);
1221
1222 if (td->o.verify_async)
1223 verify_async_exit(td);
1224
1225 close_and_free_files(td);
1226 close_ioengine(td);
1227 cleanup_io_u(td);
1228 cgroup_shutdown(td, &cgroup_mnt);
1229
1230 if (td->o.cpumask_set) {
1231 int ret = fio_cpuset_exit(&td->o.cpumask);
1232
1233 td_verror(td, ret, "fio_cpuset_exit");
1234 }
1235
1236 /*
1237 * do this very late, it will log file closing as well
1238 */
1239 if (td->o.write_iolog_file)
1240 write_iolog_close(td);
1241
1242 options_mem_free(td);
1243 td_set_runstate(td, TD_EXITED);
1244 return (void *) (unsigned long) td->error;
1245}
1246
1247/*
1248 * We cannot pass the td data into a forked process, so attach the td and
1249 * pass it to the thread worker.
1250 */
1251static int fork_main(int shmid, int offset)
1252{
1253 struct thread_data *td;
1254 void *data, *ret;
1255
1256 data = shmat(shmid, NULL, 0);
1257 if (data == (void *) -1) {
1258 int __err = errno;
1259
1260 perror("shmat");
1261 return __err;
1262 }
1263
1264 td = data + offset * sizeof(struct thread_data);
1265 ret = thread_main(td);
1266 shmdt(data);
1267 return (int) (unsigned long) ret;
1268}
1269
1270/*
1271 * Run over the job map and reap the threads that have exited, if any.
1272 */
1273static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1274{
1275 struct thread_data *td;
1276 int i, cputhreads, realthreads, pending, status, ret;
1277
1278 /*
1279 * reap exited threads (TD_EXITED -> TD_REAPED)
1280 */
1281 realthreads = pending = cputhreads = 0;
1282 for_each_td(td, i) {
1283 int flags = 0;
1284
1285 /*
1286 * ->io_ops is NULL for a thread that has closed its
1287 * io engine
1288 */
1289 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1290 cputhreads++;
1291 else
1292 realthreads++;
1293
1294 if (!td->pid) {
1295 pending++;
1296 continue;
1297 }
1298 if (td->runstate == TD_REAPED)
1299 continue;
1300 if (td->o.use_thread) {
1301 if (td->runstate == TD_EXITED) {
1302 td_set_runstate(td, TD_REAPED);
1303 goto reaped;
1304 }
1305 continue;
1306 }
1307
1308 flags = WNOHANG;
1309 if (td->runstate == TD_EXITED)
1310 flags = 0;
1311
1312 /*
1313 * check if someone quit or got killed in an unusual way
1314 */
1315 ret = waitpid(td->pid, &status, flags);
1316 if (ret < 0) {
1317 if (errno == ECHILD) {
1318 log_err("fio: pid=%d disappeared %d\n",
1319 (int) td->pid, td->runstate);
1320 td_set_runstate(td, TD_REAPED);
1321 goto reaped;
1322 }
1323 perror("waitpid");
1324 } else if (ret == td->pid) {
1325 if (WIFSIGNALED(status)) {
1326 int sig = WTERMSIG(status);
1327
1328 if (sig != SIGQUIT)
1329 log_err("fio: pid=%d, got signal=%d\n",
1330 (int) td->pid, sig);
1331 td_set_runstate(td, TD_REAPED);
1332 goto reaped;
1333 }
1334 if (WIFEXITED(status)) {
1335 if (WEXITSTATUS(status) && !td->error)
1336 td->error = WEXITSTATUS(status);
1337
1338 td_set_runstate(td, TD_REAPED);
1339 goto reaped;
1340 }
1341 }
1342
1343 /*
1344 * thread is not dead, continue
1345 */
1346 pending++;
1347 continue;
1348reaped:
1349 (*nr_running)--;
1350 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1351 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1352 if (!td->pid)
1353 pending--;
1354
1355 if (td->error)
1356 exit_value++;
1357
1358 done_secs += mtime_since_now(&td->epoch) / 1000;
1359 }
1360
1361 if (*nr_running == cputhreads && !pending && realthreads)
1362 terminate_threads(TERMINATE_ALL);
1363}
1364
1365static void *gtod_thread_main(void *data)
1366{
1367 fio_mutex_up(startup_mutex);
1368
1369 /*
1370 * As long as we have jobs around, update the clock. It would be nice
1371 * to have some way of NOT hammering that CPU with gettimeofday(),
1372 * but I'm not sure what to use outside of a simple CPU nop to relax
1373 * it - we don't want to lose precision.
1374 */
1375 while (threads) {
1376 fio_gtod_update();
1377 nop;
1378 }
1379
1380 return NULL;
1381}
1382
1383static int fio_start_gtod_thread(void)
1384{
1385 int ret;
1386
1387 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1388 if (ret) {
1389 log_err("Can't create gtod thread: %s\n", strerror(ret));
1390 return 1;
1391 }
1392
1393 ret = pthread_detach(gtod_thread);
1394 if (ret) {
1395 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1396 return 1;
1397 }
1398
1399 dprint(FD_MUTEX, "wait on startup_mutex\n");
1400 fio_mutex_down(startup_mutex);
1401 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1402 return 0;
1403}
1404
1405/*
1406 * Main function for kicking off and reaping jobs, as needed.
1407 */
1408static void run_threads(void)
1409{
1410 struct thread_data *td;
1411 unsigned long spent;
1412 int i, todo, nr_running, m_rate, t_rate, nr_started;
1413
1414 if (fio_pin_memory())
1415 return;
1416
1417 if (fio_gtod_offload && fio_start_gtod_thread())
1418 return;
1419
1420 if (!terse_output) {
1421 log_info("Starting ");
1422 if (nr_thread)
1423 log_info("%d thread%s", nr_thread,
1424 nr_thread > 1 ? "s" : "");
1425 if (nr_process) {
1426 if (nr_thread)
1427 printf(" and ");
1428 log_info("%d process%s", nr_process,
1429 nr_process > 1 ? "es" : "");
1430 }
1431 log_info("\n");
1432 fflush(stdout);
1433 }
1434
1435 set_sig_handlers();
1436
1437 todo = thread_number;
1438 nr_running = 0;
1439 nr_started = 0;
1440 m_rate = t_rate = 0;
1441
1442 for_each_td(td, i) {
1443 print_status_init(td->thread_number - 1);
1444
1445 if (!td->o.create_serialize) {
1446 init_disk_util(td);
1447 continue;
1448 }
1449
1450 /*
1451 * do file setup here so it happens sequentially,
1452 * we don't want X number of threads getting their
1453 * client data interspersed on disk
1454 */
1455 if (setup_files(td)) {
1456 exit_value++;
1457 if (td->error)
1458 log_err("fio: pid=%d, err=%d/%s\n",
1459 (int) td->pid, td->error, td->verror);
1460 td_set_runstate(td, TD_REAPED);
1461 todo--;
1462 } else {
1463 struct fio_file *f;
1464 unsigned int i;
1465
1466 /*
1467 * for sharing to work, each job must always open
1468 * its own files. so close them, if we opened them
1469 * for creation
1470 */
1471 for_each_file(td, f, i) {
1472 if (fio_file_open(f))
1473 td_io_close_file(td, f);
1474 }
1475 }
1476
1477 init_disk_util(td);
1478 }
1479
1480 set_genesis_time();
1481
1482 while (todo) {
1483 struct thread_data *map[MAX_JOBS];
1484 struct timeval this_start;
1485 int this_jobs = 0, left;
1486
1487 /*
1488 * create threads (TD_NOT_CREATED -> TD_CREATED)
1489 */
1490 for_each_td(td, i) {
1491 if (td->runstate != TD_NOT_CREATED)
1492 continue;
1493
1494 /*
1495 * never got a chance to start, killed by other
1496 * thread for some reason
1497 */
1498 if (td->terminate) {
1499 todo--;
1500 continue;
1501 }
1502
1503 if (td->o.start_delay) {
1504 spent = mtime_since_genesis();
1505
1506 if (td->o.start_delay * 1000 > spent)
1507 continue;
1508 }
1509
1510 if (td->o.stonewall && (nr_started || nr_running)) {
1511 dprint(FD_PROCESS, "%s: stonewall wait\n",
1512 td->o.name);
1513 break;
1514 }
1515
1516 /*
1517 * Set state to created. Thread will transition
1518 * to TD_INITIALIZED when it's done setting up.
1519 */
1520 td_set_runstate(td, TD_CREATED);
1521 map[this_jobs++] = td;
1522 nr_started++;
1523
1524 if (td->o.use_thread) {
1525 int ret;
1526
1527 dprint(FD_PROCESS, "will pthread_create\n");
1528 ret = pthread_create(&td->thread, NULL,
1529 thread_main, td);
1530 if (ret) {
1531 log_err("pthread_create: %s\n",
1532 strerror(ret));
1533 nr_started--;
1534 break;
1535 }
1536 ret = pthread_detach(td->thread);
1537 if (ret)
1538 log_err("pthread_detach: %s",
1539 strerror(ret));
1540 } else {
1541 pid_t pid;
1542 dprint(FD_PROCESS, "will fork\n");
1543 pid = fork();
1544 if (!pid) {
1545 int ret = fork_main(shm_id, i);
1546
1547 _exit(ret);
1548 } else if (i == fio_debug_jobno)
1549 *fio_debug_jobp = pid;
1550 }
1551 dprint(FD_MUTEX, "wait on startup_mutex\n");
1552 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1553 log_err("fio: job startup hung? exiting.\n");
1554 terminate_threads(TERMINATE_ALL);
1555 fio_abort = 1;
1556 nr_started--;
1557 break;
1558 }
1559 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1560 }
1561
1562 /*
1563 * Wait for the started threads to transition to
1564 * TD_INITIALIZED.
1565 */
1566 fio_gettime(&this_start, NULL);
1567 left = this_jobs;
1568 while (left && !fio_abort) {
1569 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1570 break;
1571
1572 usleep(100000);
1573
1574 for (i = 0; i < this_jobs; i++) {
1575 td = map[i];
1576 if (!td)
1577 continue;
1578 if (td->runstate == TD_INITIALIZED) {
1579 map[i] = NULL;
1580 left--;
1581 } else if (td->runstate >= TD_EXITED) {
1582 map[i] = NULL;
1583 left--;
1584 todo--;
1585 nr_running++; /* work-around... */
1586 }
1587 }
1588 }
1589
1590 if (left) {
1591 log_err("fio: %d jobs failed to start\n", left);
1592 for (i = 0; i < this_jobs; i++) {
1593 td = map[i];
1594 if (!td)
1595 continue;
1596 kill(td->pid, SIGTERM);
1597 }
1598 break;
1599 }
1600
1601 /*
1602 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1603 */
1604 for_each_td(td, i) {
1605 if (td->runstate != TD_INITIALIZED)
1606 continue;
1607
1608 if (in_ramp_time(td))
1609 td_set_runstate(td, TD_RAMP);
1610 else
1611 td_set_runstate(td, TD_RUNNING);
1612 nr_running++;
1613 nr_started--;
1614 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1615 t_rate += td->o.rate[0] + td->o.rate[1];
1616 todo--;
1617 fio_mutex_up(td->mutex);
1618 }
1619
1620 reap_threads(&nr_running, &t_rate, &m_rate);
1621
1622 if (todo)
1623 usleep(100000);
1624 }
1625
1626 while (nr_running) {
1627 reap_threads(&nr_running, &t_rate, &m_rate);
1628 usleep(10000);
1629 }
1630
1631 update_io_ticks();
1632 fio_unpin_memory();
1633}
1634
1635int main(int argc, char *argv[])
1636{
1637 long ps;
1638
1639 sinit();
1640 init_rand(&__fio_rand_state);
1641
1642 /*
1643 * We need locale for number printing, if it isn't set then just
1644 * go with the US format.
1645 */
1646 if (!getenv("LC_NUMERIC"))
1647 setlocale(LC_NUMERIC, "en_US");
1648
1649 ps = sysconf(_SC_PAGESIZE);
1650 if (ps < 0) {
1651 log_err("Failed to get page size\n");
1652 return 1;
1653 }
1654
1655 page_size = ps;
1656 page_mask = ps - 1;
1657
1658 fio_keywords_init();
1659
1660 if (parse_options(argc, argv))
1661 return 1;
1662
1663 if (exec_profile && load_profile(exec_profile))
1664 return 1;
1665
1666 if (!thread_number)
1667 return 0;
1668
1669 if (write_bw_log) {
1670 setup_log(&agg_io_log[DDIR_READ]);
1671 setup_log(&agg_io_log[DDIR_WRITE]);
1672 }
1673
1674 startup_mutex = fio_mutex_init(0);
1675 writeout_mutex = fio_mutex_init(1);
1676
1677 set_genesis_time();
1678
1679 status_timer_arm();
1680
1681 cgroup_list = smalloc(sizeof(*cgroup_list));
1682 INIT_FLIST_HEAD(cgroup_list);
1683
1684 run_threads();
1685
1686 if (!fio_abort) {
1687 show_run_stats();
1688 if (write_bw_log) {
1689 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1690 __finish_log(agg_io_log[DDIR_WRITE],
1691 "agg-write_bw.log");
1692 }
1693 }
1694
1695 cgroup_kill(cgroup_list);
1696 sfree(cgroup_list);
1697 if (cgroup_mnt)
1698 sfree(cgroup_mnt);
1699
1700 fio_mutex_remove(startup_mutex);
1701 fio_mutex_remove(writeout_mutex);
1702 return exit_value;
1703}