Overwrite fix
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static struct fio_sem *startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 /*
71 * if the thread is running, just let it exit
72 */
73 if (td->runstate < TD_RUNNING)
74 kill(td->pid, SIGQUIT);
75 td->terminate = 1;
76 td->start_delay = 0;
77 }
78 }
79}
80
81static void sig_handler(int sig)
82{
83 switch (sig) {
84 case SIGALRM:
85 update_io_ticks();
86 disk_util_timer_arm();
87 print_thread_status();
88 break;
89 default:
90 printf("\nfio: terminating on signal %d\n", sig);
91 fflush(stdout);
92 terminate_threads(TERMINATE_ALL);
93 break;
94 }
95}
96
97/*
98 * Check if we are above the minimum rate given.
99 */
100static int check_min_rate(struct thread_data *td, struct timeval *now)
101{
102 unsigned long long bytes = 0;
103 unsigned long spent;
104 unsigned long rate;
105
106 /*
107 * No minimum rate set, always ok
108 */
109 if (!td->ratemin)
110 return 0;
111
112 /*
113 * allow a 2 second settle period in the beginning
114 */
115 if (mtime_since(&td->start, now) < 2000)
116 return 0;
117
118 if (td_read(td))
119 bytes += td->this_io_bytes[DDIR_READ];
120 if (td_write(td))
121 bytes += td->this_io_bytes[DDIR_WRITE];
122
123 /*
124 * if rate blocks is set, sample is running
125 */
126 if (td->rate_bytes) {
127 spent = mtime_since(&td->lastrate, now);
128 if (spent < td->ratecycle)
129 return 0;
130
131 if (bytes < td->rate_bytes) {
132 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
133 return 1;
134 } else {
135 rate = (bytes - td->rate_bytes) / spent;
136 if (rate < td->ratemin || bytes < td->rate_bytes) {
137 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
138 return 1;
139 }
140 }
141 }
142
143 td->rate_bytes = bytes;
144 memcpy(&td->lastrate, now, sizeof(*now));
145 return 0;
146}
147
148static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
149{
150 if (!td->timeout)
151 return 0;
152 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
153 return 1;
154
155 return 0;
156}
157
158/*
159 * When job exits, we can cancel the in-flight IO if we are using async
160 * io. Attempt to do so.
161 */
162static void cleanup_pending_aio(struct thread_data *td)
163{
164 struct list_head *entry, *n;
165 struct io_u *io_u;
166 int r;
167
168 /*
169 * get immediately available events, if any
170 */
171 r = io_u_queued_complete(td, 0);
172 if (r < 0)
173 return;
174
175 /*
176 * now cancel remaining active events
177 */
178 if (td->io_ops->cancel) {
179 list_for_each_safe(entry, n, &td->io_u_busylist) {
180 io_u = list_entry(entry, struct io_u, list);
181
182 /*
183 * if the io_u isn't in flight, then that generally
184 * means someone leaked an io_u. complain but fix
185 * it up, so we don't stall here.
186 */
187 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
188 log_err("fio: non-busy IO on busy list\n");
189 put_io_u(td, io_u);
190 } else {
191 r = td->io_ops->cancel(td, io_u);
192 if (!r)
193 put_io_u(td, io_u);
194 }
195 }
196 }
197
198 if (td->cur_depth)
199 r = io_u_queued_complete(td, td->cur_depth);
200}
201
202/*
203 * Helper to handle the final sync of a file. Works just like the normal
204 * io path, just does everything sync.
205 */
206static int fio_io_sync(struct thread_data *td, struct fio_file *f)
207{
208 struct io_u *io_u = __get_io_u(td);
209 int ret;
210
211 if (!io_u)
212 return 1;
213
214 io_u->ddir = DDIR_SYNC;
215 io_u->file = f;
216
217 if (td_io_prep(td, io_u)) {
218 put_io_u(td, io_u);
219 return 1;
220 }
221
222requeue:
223 ret = td_io_queue(td, io_u);
224 if (ret < 0) {
225 td_verror(td, io_u->error, "td_io_queue");
226 put_io_u(td, io_u);
227 return 1;
228 } else if (ret == FIO_Q_QUEUED) {
229 if (io_u_queued_complete(td, 1) < 0)
230 return 1;
231 } else if (ret == FIO_Q_COMPLETED) {
232 if (io_u->error) {
233 td_verror(td, io_u->error, "td_io_queue");
234 return 1;
235 }
236
237 if (io_u_sync_complete(td, io_u) < 0)
238 return 1;
239 } else if (ret == FIO_Q_BUSY) {
240 if (td_io_commit(td))
241 return 1;
242 goto requeue;
243 }
244
245 return 0;
246}
247
248/*
249 * The main verify engine. Runs over the writes we previously submitted,
250 * reads the blocks back in, and checks the crc/md5 of the data.
251 */
252static void do_verify(struct thread_data *td)
253{
254 struct fio_file *f;
255 struct io_u *io_u;
256 int ret, i, min_events;
257
258 /*
259 * sync io first and invalidate cache, to make sure we really
260 * read from disk.
261 */
262 for_each_file(td, f, i) {
263 if (fio_io_sync(td, f))
264 break;
265 if (file_invalidate_cache(td, f))
266 break;
267 }
268
269 if (td->error)
270 return;
271
272 td_set_runstate(td, TD_VERIFYING);
273
274 io_u = NULL;
275 while (!td->terminate) {
276 int ret2;
277
278 io_u = __get_io_u(td);
279 if (!io_u)
280 break;
281
282 if (runtime_exceeded(td, &io_u->start_time)) {
283 put_io_u(td, io_u);
284 break;
285 }
286
287 if (get_next_verify(td, io_u)) {
288 put_io_u(td, io_u);
289 break;
290 }
291
292 if (td_io_prep(td, io_u)) {
293 put_io_u(td, io_u);
294 break;
295 }
296
297 io_u->end_io = verify_io_u;
298
299 ret = td_io_queue(td, io_u);
300 switch (ret) {
301 case FIO_Q_COMPLETED:
302 if (io_u->error)
303 ret = -io_u->error;
304 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
305 int bytes = io_u->xfer_buflen - io_u->resid;
306
307 io_u->xfer_buflen = io_u->resid;
308 io_u->xfer_buf += bytes;
309 requeue_io_u(td, &io_u);
310 } else {
311 ret = io_u_sync_complete(td, io_u);
312 if (ret < 0)
313 break;
314 }
315 continue;
316 case FIO_Q_QUEUED:
317 break;
318 case FIO_Q_BUSY:
319 requeue_io_u(td, &io_u);
320 ret2 = td_io_commit(td);
321 if (ret2 < 0)
322 ret = ret2;
323 break;
324 default:
325 assert(ret < 0);
326 td_verror(td, -ret, "td_io_queue");
327 break;
328 }
329
330 if (ret < 0 || td->error)
331 break;
332
333 /*
334 * if we can queue more, do so. but check if there are
335 * completed io_u's first.
336 */
337 min_events = 0;
338 if (queue_full(td) || ret == FIO_Q_BUSY) {
339 min_events = 1;
340
341 if (td->cur_depth > td->iodepth_low)
342 min_events = td->cur_depth - td->iodepth_low;
343 }
344
345 /*
346 * Reap required number of io units, if any, and do the
347 * verification on them through the callback handler
348 */
349 if (io_u_queued_complete(td, min_events) < 0)
350 break;
351 }
352
353 if (!td->error) {
354 min_events = td->cur_depth;
355
356 if (min_events)
357 ret = io_u_queued_complete(td, min_events);
358 } else
359 cleanup_pending_aio(td);
360
361 td_set_runstate(td, TD_RUNNING);
362}
363
364/*
365 * Main IO worker function. It retrieves io_u's to process and queues
366 * and reaps them, checking for rate and errors along the way.
367 */
368static void do_io(struct thread_data *td)
369{
370 struct timeval s;
371 unsigned long usec;
372 int i, ret = 0;
373
374 td_set_runstate(td, TD_RUNNING);
375
376 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
377 struct timeval comp_time;
378 long bytes_done = 0;
379 int min_evts = 0;
380 struct io_u *io_u;
381 int ret2;
382
383 if (td->terminate)
384 break;
385
386 io_u = get_io_u(td);
387 if (!io_u)
388 break;
389
390 memcpy(&s, &io_u->start_time, sizeof(s));
391
392 if (runtime_exceeded(td, &s)) {
393 put_io_u(td, io_u);
394 break;
395 }
396
397 ret = td_io_queue(td, io_u);
398 switch (ret) {
399 case FIO_Q_COMPLETED:
400 if (io_u->error)
401 ret = -io_u->error;
402 else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
403 int bytes = io_u->xfer_buflen - io_u->resid;
404
405 io_u->xfer_buflen = io_u->resid;
406 io_u->xfer_buf += bytes;
407 requeue_io_u(td, &io_u);
408 } else {
409 fio_gettime(&comp_time, NULL);
410 bytes_done = io_u_sync_complete(td, io_u);
411 if (bytes_done < 0)
412 ret = bytes_done;
413 }
414 break;
415 case FIO_Q_QUEUED:
416 /*
417 * if the engine doesn't have a commit hook,
418 * the io_u is really queued. if it does have such
419 * a hook, it has to call io_u_queued() itself.
420 */
421 if (td->io_ops->commit == NULL)
422 io_u_queued(td, io_u);
423 break;
424 case FIO_Q_BUSY:
425 requeue_io_u(td, &io_u);
426 ret2 = td_io_commit(td);
427 if (ret2 < 0)
428 ret = ret2;
429 break;
430 default:
431 assert(ret < 0);
432 put_io_u(td, io_u);
433 break;
434 }
435
436 if (ret < 0 || td->error)
437 break;
438
439 /*
440 * See if we need to complete some commands
441 */
442 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
443 min_evts = 0;
444 if (queue_full(td) || ret == FIO_Q_BUSY) {
445 min_evts = 1;
446
447 if (td->cur_depth > td->iodepth_low)
448 min_evts = td->cur_depth - td->iodepth_low;
449 }
450
451 fio_gettime(&comp_time, NULL);
452 bytes_done = io_u_queued_complete(td, min_evts);
453 if (bytes_done < 0)
454 break;
455 }
456
457 if (!bytes_done)
458 continue;
459
460 /*
461 * the rate is batched for now, it should work for batches
462 * of completions except the very first one which may look
463 * a little bursty
464 */
465 usec = utime_since(&s, &comp_time);
466
467 rate_throttle(td, usec, bytes_done);
468
469 if (check_min_rate(td, &comp_time)) {
470 if (exitall_on_terminate)
471 terminate_threads(td->groupid);
472 td_verror(td, ENODATA, "check_min_rate");
473 break;
474 }
475
476 if (td->thinktime) {
477 unsigned long long b;
478
479 b = td->io_blocks[0] + td->io_blocks[1];
480 if (!(b % td->thinktime_blocks)) {
481 int left;
482
483 if (td->thinktime_spin)
484 __usec_sleep(td->thinktime_spin);
485
486 left = td->thinktime - td->thinktime_spin;
487 if (left)
488 usec_sleep(td, left);
489 }
490 }
491 }
492
493 if (!td->error) {
494 struct fio_file *f;
495
496 i = td->cur_depth;
497 if (i)
498 ret = io_u_queued_complete(td, i);
499
500 if (should_fsync(td) && td->end_fsync) {
501 td_set_runstate(td, TD_FSYNCING);
502 for_each_file(td, f, i)
503 fio_io_sync(td, f);
504 }
505 } else
506 cleanup_pending_aio(td);
507}
508
509static void cleanup_io_u(struct thread_data *td)
510{
511 struct list_head *entry, *n;
512 struct io_u *io_u;
513
514 list_for_each_safe(entry, n, &td->io_u_freelist) {
515 io_u = list_entry(entry, struct io_u, list);
516
517 list_del(&io_u->list);
518 free(io_u);
519 }
520
521 free_io_mem(td);
522}
523
524/*
525 * "randomly" fill the buffer contents
526 */
527static void fill_rand_buf(struct io_u *io_u, int max_bs)
528{
529 int *ptr = io_u->buf;
530
531 while ((void *) ptr - io_u->buf < max_bs) {
532 *ptr = rand() * 0x9e370001;
533 ptr++;
534 }
535}
536
537static int init_io_u(struct thread_data *td)
538{
539 struct io_u *io_u;
540 unsigned int max_bs;
541 int i, max_units;
542 char *p;
543
544 if (td->io_ops->flags & FIO_SYNCIO)
545 max_units = 1;
546 else
547 max_units = td->iodepth;
548
549 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
550 td->orig_buffer_size = max_bs * max_units;
551
552 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
553 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
554 else
555 td->orig_buffer_size += page_mask;
556
557 if (allocate_io_mem(td))
558 return 1;
559
560 p = ALIGN(td->orig_buffer);
561 for (i = 0; i < max_units; i++) {
562 io_u = malloc(sizeof(*io_u));
563 memset(io_u, 0, sizeof(*io_u));
564 INIT_LIST_HEAD(&io_u->list);
565
566 io_u->buf = p + max_bs * i;
567 if (td_write(td) || td_rw(td))
568 fill_rand_buf(io_u, max_bs);
569
570 io_u->index = i;
571 io_u->flags = IO_U_F_FREE;
572 list_add(&io_u->list, &td->io_u_freelist);
573 }
574
575 io_u_init_timeout();
576
577 return 0;
578}
579
580static int switch_ioscheduler(struct thread_data *td)
581{
582 char tmp[256], tmp2[128];
583 FILE *f;
584 int ret;
585
586 if (td->io_ops->flags & FIO_DISKLESSIO)
587 return 0;
588
589 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
590
591 f = fopen(tmp, "r+");
592 if (!f) {
593 td_verror(td, errno, "fopen");
594 return 1;
595 }
596
597 /*
598 * Set io scheduler.
599 */
600 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
601 if (ferror(f) || ret != 1) {
602 td_verror(td, errno, "fwrite");
603 fclose(f);
604 return 1;
605 }
606
607 rewind(f);
608
609 /*
610 * Read back and check that the selected scheduler is now the default.
611 */
612 ret = fread(tmp, 1, sizeof(tmp), f);
613 if (ferror(f) || ret < 0) {
614 td_verror(td, errno, "fread");
615 fclose(f);
616 return 1;
617 }
618
619 sprintf(tmp2, "[%s]", td->ioscheduler);
620 if (!strstr(tmp, tmp2)) {
621 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
622 td_verror(td, EINVAL, "iosched_switch");
623 fclose(f);
624 return 1;
625 }
626
627 fclose(f);
628 return 0;
629}
630
631static int clear_io_state(struct thread_data *td)
632{
633 struct fio_file *f;
634 int i, ret;
635
636 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
637 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
638 td->zone_bytes = 0;
639 td->rate_bytes = 0;
640
641 td->last_was_sync = 0;
642
643 for_each_file(td, f, i)
644 td_io_close_file(td, f);
645
646 ret = 0;
647 for_each_file(td, f, i) {
648 ret = td_io_open_file(td, f);
649 if (ret)
650 break;
651 }
652
653 return ret;
654}
655
656/*
657 * Entry point for the thread based jobs. The process based jobs end up
658 * here as well, after a little setup.
659 */
660static void *thread_main(void *data)
661{
662 unsigned long long runtime[2];
663 struct thread_data *td = data;
664 int clear_state;
665
666 if (!td->use_thread)
667 setsid();
668
669 td->pid = getpid();
670
671 INIT_LIST_HEAD(&td->io_u_freelist);
672 INIT_LIST_HEAD(&td->io_u_busylist);
673 INIT_LIST_HEAD(&td->io_u_requeues);
674 INIT_LIST_HEAD(&td->io_hist_list);
675 INIT_LIST_HEAD(&td->io_log_list);
676
677 if (init_io_u(td))
678 goto err;
679
680 if (fio_setaffinity(td) == -1) {
681 td_verror(td, errno, "cpu_set_affinity");
682 goto err;
683 }
684
685 if (init_iolog(td))
686 goto err;
687
688 if (td->ioprio) {
689 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
690 td_verror(td, errno, "ioprio_set");
691 goto err;
692 }
693 }
694
695 if (nice(td->nice) == -1) {
696 td_verror(td, errno, "nice");
697 goto err;
698 }
699
700 if (init_random_state(td))
701 goto err;
702
703 if (td->ioscheduler && switch_ioscheduler(td))
704 goto err;
705
706 td_set_runstate(td, TD_INITIALIZED);
707 fio_sem_up(startup_sem);
708 fio_sem_down(td->mutex);
709
710 /*
711 * the ->mutex semaphore is now no longer used, close it to avoid
712 * eating a file descriptor
713 */
714 fio_sem_remove(td->mutex);
715
716 if (!td->create_serialize && setup_files(td))
717 goto err;
718
719 if (td_io_init(td))
720 goto err;
721
722 if (open_files(td))
723 goto err;
724
725 if (td->exec_prerun) {
726 if (system(td->exec_prerun) < 0)
727 goto err;
728 }
729
730 fio_gettime(&td->epoch, NULL);
731 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
732 getrusage(RUSAGE_SELF, &td->ts.ru_start);
733
734 runtime[0] = runtime[1] = 0;
735 clear_state = 0;
736 while (td->loops--) {
737 fio_gettime(&td->start, NULL);
738 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
739
740 if (td->ratemin)
741 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
742
743 if (clear_state && clear_io_state(td))
744 break;
745
746 prune_io_piece_log(td);
747
748 do_io(td);
749
750 clear_state = 1;
751
752 if (td_read(td) && td->io_bytes[DDIR_READ])
753 runtime[DDIR_READ] += utime_since_now(&td->start);
754 if (td_write(td) && td->io_bytes[DDIR_WRITE])
755 runtime[DDIR_WRITE] += utime_since_now(&td->start);
756
757 if (td->error || td->terminate)
758 break;
759
760 if (td->verify == VERIFY_NONE)
761 continue;
762
763 if (clear_io_state(td))
764 break;
765
766 fio_gettime(&td->start, NULL);
767
768 do_verify(td);
769
770 runtime[DDIR_READ] += utime_since_now(&td->start);
771
772 if (td->error || td->terminate)
773 break;
774 }
775
776 update_rusage_stat(td);
777 td->ts.runtime[0] = runtime[0] / 1000;
778 td->ts.runtime[1] = runtime[1] / 1000;
779 td->ts.total_run_time = mtime_since_now(&td->epoch);
780 td->ts.io_bytes[0] = td->io_bytes[0];
781 td->ts.io_bytes[1] = td->io_bytes[1];
782
783 if (td->ts.bw_log)
784 finish_log(td, td->ts.bw_log, "bw");
785 if (td->ts.slat_log)
786 finish_log(td, td->ts.slat_log, "slat");
787 if (td->ts.clat_log)
788 finish_log(td, td->ts.clat_log, "clat");
789 if (td->write_iolog_file)
790 write_iolog_close(td);
791 if (td->exec_postrun) {
792 if (system(td->exec_postrun) < 0)
793 log_err("fio: postrun %s failed\n", td->exec_postrun);
794 }
795
796 if (exitall_on_terminate)
797 terminate_threads(td->groupid);
798
799err:
800 if (td->error)
801 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
802 close_files(td);
803 close_ioengine(td);
804 cleanup_io_u(td);
805 td_set_runstate(td, TD_EXITED);
806 return (void *) (unsigned long) td->error;
807}
808
809/*
810 * We cannot pass the td data into a forked process, so attach the td and
811 * pass it to the thread worker.
812 */
813static int fork_main(int shmid, int offset)
814{
815 struct thread_data *td;
816 void *data, *ret;
817
818 data = shmat(shmid, NULL, 0);
819 if (data == (void *) -1) {
820 int __err = errno;
821
822 perror("shmat");
823 return __err;
824 }
825
826 td = data + offset * sizeof(struct thread_data);
827 ret = thread_main(td);
828 shmdt(data);
829 return (int) (unsigned long) ret;
830}
831
832/*
833 * Run over the job map and reap the threads that have exited, if any.
834 */
835static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
836{
837 struct thread_data *td;
838 int i, cputhreads, pending, status, ret;
839
840 /*
841 * reap exited threads (TD_EXITED -> TD_REAPED)
842 */
843 pending = cputhreads = 0;
844 for_each_td(td, i) {
845 int flags = 0;
846
847 /*
848 * ->io_ops is NULL for a thread that has closed its
849 * io engine
850 */
851 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
852 cputhreads++;
853
854 if (!td->pid || td->runstate == TD_REAPED)
855 continue;
856 if (td->use_thread) {
857 if (td->runstate == TD_EXITED) {
858 td_set_runstate(td, TD_REAPED);
859 goto reaped;
860 }
861 continue;
862 }
863
864 flags = WNOHANG;
865 if (td->runstate == TD_EXITED)
866 flags = 0;
867
868 /*
869 * check if someone quit or got killed in an unusual way
870 */
871 ret = waitpid(td->pid, &status, flags);
872 if (ret < 0) {
873 if (errno == ECHILD) {
874 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
875 td_set_runstate(td, TD_REAPED);
876 goto reaped;
877 }
878 perror("waitpid");
879 } else if (ret == td->pid) {
880 if (WIFSIGNALED(status)) {
881 int sig = WTERMSIG(status);
882
883 if (sig != SIGQUIT)
884 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
885 td_set_runstate(td, TD_REAPED);
886 goto reaped;
887 }
888 if (WIFEXITED(status)) {
889 if (WEXITSTATUS(status) && !td->error)
890 td->error = WEXITSTATUS(status);
891
892 td_set_runstate(td, TD_REAPED);
893 goto reaped;
894 }
895 }
896
897 /*
898 * thread is not dead, continue
899 */
900 continue;
901reaped:
902 if (td->use_thread) {
903 long ret;
904
905 if (pthread_join(td->thread, (void *) &ret))
906 perror("pthread_join");
907 }
908
909 (*nr_running)--;
910 (*m_rate) -= td->ratemin;
911 (*t_rate) -= td->rate;
912
913 if (td->error)
914 exit_value++;
915 }
916
917 if (*nr_running == cputhreads && !pending)
918 terminate_threads(TERMINATE_ALL);
919}
920
921/*
922 * Main function for kicking off and reaping jobs, as needed.
923 */
924static void run_threads(void)
925{
926 struct thread_data *td;
927 unsigned long spent;
928 int i, todo, nr_running, m_rate, t_rate, nr_started;
929
930 if (fio_pin_memory())
931 return;
932
933 if (!terse_output) {
934 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
935 fflush(stdout);
936 }
937
938 signal(SIGINT, sig_handler);
939 signal(SIGALRM, sig_handler);
940
941 todo = thread_number;
942 nr_running = 0;
943 nr_started = 0;
944 m_rate = t_rate = 0;
945
946 for_each_td(td, i) {
947 print_status_init(td->thread_number - 1);
948
949 if (!td->create_serialize) {
950 init_disk_util(td);
951 continue;
952 }
953
954 /*
955 * do file setup here so it happens sequentially,
956 * we don't want X number of threads getting their
957 * client data interspersed on disk
958 */
959 if (setup_files(td)) {
960 exit_value++;
961 if (td->error)
962 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
963 td_set_runstate(td, TD_REAPED);
964 todo--;
965 }
966
967 init_disk_util(td);
968 }
969
970 set_genesis_time();
971
972 while (todo) {
973 struct thread_data *map[MAX_JOBS];
974 struct timeval this_start;
975 int this_jobs = 0, left;
976
977 /*
978 * create threads (TD_NOT_CREATED -> TD_CREATED)
979 */
980 for_each_td(td, i) {
981 if (td->runstate != TD_NOT_CREATED)
982 continue;
983
984 /*
985 * never got a chance to start, killed by other
986 * thread for some reason
987 */
988 if (td->terminate) {
989 todo--;
990 continue;
991 }
992
993 if (td->start_delay) {
994 spent = mtime_since_genesis();
995
996 if (td->start_delay * 1000 > spent)
997 continue;
998 }
999
1000 if (td->stonewall && (nr_started || nr_running))
1001 break;
1002
1003 /*
1004 * Set state to created. Thread will transition
1005 * to TD_INITIALIZED when it's done setting up.
1006 */
1007 td_set_runstate(td, TD_CREATED);
1008 map[this_jobs++] = td;
1009 nr_started++;
1010
1011 if (td->use_thread) {
1012 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1013 perror("thread_create");
1014 nr_started--;
1015 }
1016 } else {
1017 if (!fork()) {
1018 int ret = fork_main(shm_id, i);
1019
1020 exit(ret);
1021 }
1022 }
1023 fio_sem_down(startup_sem);
1024 }
1025
1026 /*
1027 * Wait for the started threads to transition to
1028 * TD_INITIALIZED.
1029 */
1030 fio_gettime(&this_start, NULL);
1031 left = this_jobs;
1032 while (left && !fio_abort) {
1033 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1034 break;
1035
1036 usleep(100000);
1037
1038 for (i = 0; i < this_jobs; i++) {
1039 td = map[i];
1040 if (!td)
1041 continue;
1042 if (td->runstate == TD_INITIALIZED) {
1043 map[i] = NULL;
1044 left--;
1045 } else if (td->runstate >= TD_EXITED) {
1046 map[i] = NULL;
1047 left--;
1048 todo--;
1049 nr_running++; /* work-around... */
1050 }
1051 }
1052 }
1053
1054 if (left) {
1055 log_err("fio: %d jobs failed to start\n", left);
1056 for (i = 0; i < this_jobs; i++) {
1057 td = map[i];
1058 if (!td)
1059 continue;
1060 kill(td->pid, SIGTERM);
1061 }
1062 break;
1063 }
1064
1065 /*
1066 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1067 */
1068 for_each_td(td, i) {
1069 if (td->runstate != TD_INITIALIZED)
1070 continue;
1071
1072 td_set_runstate(td, TD_RUNNING);
1073 nr_running++;
1074 nr_started--;
1075 m_rate += td->ratemin;
1076 t_rate += td->rate;
1077 todo--;
1078 fio_sem_up(td->mutex);
1079 }
1080
1081 reap_threads(&nr_running, &t_rate, &m_rate);
1082
1083 if (todo)
1084 usleep(100000);
1085 }
1086
1087 while (nr_running) {
1088 reap_threads(&nr_running, &t_rate, &m_rate);
1089 usleep(10000);
1090 }
1091
1092 update_io_ticks();
1093 fio_unpin_memory();
1094}
1095
1096int main(int argc, char *argv[])
1097{
1098 long ps;
1099
1100 /*
1101 * We need locale for number printing, if it isn't set then just
1102 * go with the US format.
1103 */
1104 if (!getenv("LC_NUMERIC"))
1105 setlocale(LC_NUMERIC, "en_US");
1106
1107 if (parse_options(argc, argv))
1108 return 1;
1109
1110 if (!thread_number) {
1111 log_err("Nothing to do\n");
1112 return 1;
1113 }
1114
1115 ps = sysconf(_SC_PAGESIZE);
1116 if (ps < 0) {
1117 log_err("Failed to get page size\n");
1118 return 1;
1119 }
1120
1121 page_mask = ps - 1;
1122
1123 if (write_bw_log) {
1124 setup_log(&agg_io_log[DDIR_READ]);
1125 setup_log(&agg_io_log[DDIR_WRITE]);
1126 }
1127
1128 startup_sem = fio_sem_init(0);
1129
1130 set_genesis_time();
1131
1132 disk_util_timer_arm();
1133
1134 run_threads();
1135
1136 if (!fio_abort) {
1137 show_run_stats();
1138 if (write_bw_log) {
1139 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1140 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1141 }
1142 }
1143
1144 fio_sem_remove(startup_sem);
1145 return exit_value;
1146}