Seperate status timer setup from disk util timer
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64static inline void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110/*
111 * We need to rearm on BSD/solaris. Switch this to sigaction in the future...
112 */
113static void set_sig_handlers(void (*sighandler)(int))
114{
115 signal(SIGINT, sighandler);
116 signal(SIGALRM, sighandler);
117}
118
119static void sig_handler(int sig)
120{
121 set_sig_handlers(sig_handler);
122
123 if (!threads)
124 return;
125
126 switch (sig) {
127 case SIGALRM:
128 update_io_ticks();
129 print_thread_status();
130 status_timer_arm();
131 break;
132 default:
133 printf("\nfio: terminating on signal %d\n", sig);
134 fflush(stdout);
135 terminate_threads(TERMINATE_ALL);
136 break;
137 }
138}
139
140/*
141 * Check if we are above the minimum rate given.
142 */
143static int check_min_rate(struct thread_data *td, struct timeval *now)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149
150 /*
151 * No minimum rate set, always ok
152 */
153 if (!td->o.ratemin && !td->o.rate_iops_min)
154 return 0;
155
156 /*
157 * allow a 2 second settle period in the beginning
158 */
159 if (mtime_since(&td->start, now) < 2000)
160 return 0;
161
162 if (td_read(td)) {
163 iops += td->io_blocks[DDIR_READ];
164 bytes += td->this_io_bytes[DDIR_READ];
165 }
166 if (td_write(td)) {
167 iops += td->io_blocks[DDIR_WRITE];
168 bytes += td->this_io_bytes[DDIR_WRITE];
169 }
170
171 /*
172 * if rate blocks is set, sample is running
173 */
174 if (td->rate_bytes || td->rate_blocks) {
175 spent = mtime_since(&td->lastrate, now);
176 if (spent < td->o.ratecycle)
177 return 0;
178
179 if (td->o.rate) {
180 /*
181 * check bandwidth specified rate
182 */
183 if (bytes < td->rate_bytes) {
184 log_err("%s: min rate %u not met\n", td->o.name,
185 td->o.ratemin);
186 return 1;
187 } else {
188 rate = (bytes - td->rate_bytes) / spent;
189 if (rate < td->o.ratemin ||
190 bytes < td->rate_bytes) {
191 log_err("%s: min rate %u not met, got"
192 " %luKiB/sec\n", td->o.name,
193 td->o.ratemin, rate);
194 return 1;
195 }
196 }
197 } else {
198 /*
199 * checks iops specified rate
200 */
201 if (iops < td->o.rate_iops) {
202 log_err("%s: min iops rate %u not met\n",
203 td->o.name, td->o.rate_iops);
204 return 1;
205 } else {
206 rate = (iops - td->rate_blocks) / spent;
207 if (rate < td->o.rate_iops_min ||
208 iops < td->rate_blocks) {
209 log_err("%s: min iops rate %u not met,"
210 " got %lu\n", td->o.name,
211 td->o.rate_iops_min,
212 rate);
213 }
214 }
215 }
216 }
217
218 td->rate_bytes = bytes;
219 td->rate_blocks = iops;
220 memcpy(&td->lastrate, now, sizeof(*now));
221 return 0;
222}
223
224static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
225{
226 if (!td->o.timeout)
227 return 0;
228 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
229 return 1;
230
231 return 0;
232}
233
234/*
235 * When job exits, we can cancel the in-flight IO if we are using async
236 * io. Attempt to do so.
237 */
238static void cleanup_pending_aio(struct thread_data *td)
239{
240 struct list_head *entry, *n;
241 struct io_u *io_u;
242 int r;
243
244 /*
245 * get immediately available events, if any
246 */
247 r = io_u_queued_complete(td, 0);
248 if (r < 0)
249 return;
250
251 /*
252 * now cancel remaining active events
253 */
254 if (td->io_ops->cancel) {
255 list_for_each_safe(entry, n, &td->io_u_busylist) {
256 io_u = list_entry(entry, struct io_u, list);
257
258 /*
259 * if the io_u isn't in flight, then that generally
260 * means someone leaked an io_u. complain but fix
261 * it up, so we don't stall here.
262 */
263 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
264 log_err("fio: non-busy IO on busy list\n");
265 put_io_u(td, io_u);
266 } else {
267 r = td->io_ops->cancel(td, io_u);
268 if (!r)
269 put_io_u(td, io_u);
270 }
271 }
272 }
273
274 if (td->cur_depth)
275 r = io_u_queued_complete(td, td->cur_depth);
276}
277
278/*
279 * Helper to handle the final sync of a file. Works just like the normal
280 * io path, just does everything sync.
281 */
282static int fio_io_sync(struct thread_data *td, struct fio_file *f)
283{
284 struct io_u *io_u = __get_io_u(td);
285 int ret;
286
287 if (!io_u)
288 return 1;
289
290 io_u->ddir = DDIR_SYNC;
291 io_u->file = f;
292
293 if (td_io_prep(td, io_u)) {
294 put_io_u(td, io_u);
295 return 1;
296 }
297
298requeue:
299 ret = td_io_queue(td, io_u);
300 if (ret < 0) {
301 td_verror(td, io_u->error, "td_io_queue");
302 put_io_u(td, io_u);
303 return 1;
304 } else if (ret == FIO_Q_QUEUED) {
305 if (io_u_queued_complete(td, 1) < 0)
306 return 1;
307 } else if (ret == FIO_Q_COMPLETED) {
308 if (io_u->error) {
309 td_verror(td, io_u->error, "td_io_queue");
310 return 1;
311 }
312
313 if (io_u_sync_complete(td, io_u) < 0)
314 return 1;
315 } else if (ret == FIO_Q_BUSY) {
316 if (td_io_commit(td))
317 return 1;
318 goto requeue;
319 }
320
321 return 0;
322}
323
324/*
325 * The main verify engine. Runs over the writes we previously submitted,
326 * reads the blocks back in, and checks the crc/md5 of the data.
327 */
328static void do_verify(struct thread_data *td)
329{
330 struct fio_file *f;
331 struct io_u *io_u;
332 int ret, min_events;
333 unsigned int i;
334
335 /*
336 * sync io first and invalidate cache, to make sure we really
337 * read from disk.
338 */
339 for_each_file(td, f, i) {
340 if (!(f->flags & FIO_FILE_OPEN))
341 continue;
342 if (fio_io_sync(td, f))
343 break;
344 if (file_invalidate_cache(td, f))
345 break;
346 }
347
348 if (td->error)
349 return;
350
351 td_set_runstate(td, TD_VERIFYING);
352
353 io_u = NULL;
354 while (!td->terminate) {
355 int ret2;
356
357 io_u = __get_io_u(td);
358 if (!io_u)
359 break;
360
361 if (runtime_exceeded(td, &io_u->start_time)) {
362 put_io_u(td, io_u);
363 td->terminate = 1;
364 break;
365 }
366
367 if (get_next_verify(td, io_u)) {
368 put_io_u(td, io_u);
369 break;
370 }
371
372 if (td_io_prep(td, io_u)) {
373 put_io_u(td, io_u);
374 break;
375 }
376
377 io_u->end_io = verify_io_u;
378
379 ret = td_io_queue(td, io_u);
380 switch (ret) {
381 case FIO_Q_COMPLETED:
382 if (io_u->error)
383 ret = -io_u->error;
384 else if (io_u->resid) {
385 int bytes = io_u->xfer_buflen - io_u->resid;
386 struct fio_file *f = io_u->file;
387
388 /*
389 * zero read, fail
390 */
391 if (!bytes) {
392 td_verror(td, ENODATA, "full resid");
393 put_io_u(td, io_u);
394 break;
395 }
396
397 io_u->xfer_buflen = io_u->resid;
398 io_u->xfer_buf += bytes;
399 io_u->offset += bytes;
400
401 td->ts.short_io_u[io_u->ddir]++;
402
403 if (io_u->offset == f->real_file_size)
404 goto sync_done;
405
406 requeue_io_u(td, &io_u);
407 } else {
408sync_done:
409 ret = io_u_sync_complete(td, io_u);
410 if (ret < 0)
411 break;
412 }
413 continue;
414 case FIO_Q_QUEUED:
415 break;
416 case FIO_Q_BUSY:
417 requeue_io_u(td, &io_u);
418 ret2 = td_io_commit(td);
419 if (ret2 < 0)
420 ret = ret2;
421 break;
422 default:
423 assert(ret < 0);
424 td_verror(td, -ret, "td_io_queue");
425 break;
426 }
427
428 if (ret < 0 || td->error)
429 break;
430
431 /*
432 * if we can queue more, do so. but check if there are
433 * completed io_u's first.
434 */
435 min_events = 0;
436 if (queue_full(td) || ret == FIO_Q_BUSY) {
437 if (td->cur_depth >= td->o.iodepth_low)
438 min_events = td->cur_depth - td->o.iodepth_low;
439 if (!min_events)
440 min_events = 1;
441 }
442
443 /*
444 * Reap required number of io units, if any, and do the
445 * verification on them through the callback handler
446 */
447 if (io_u_queued_complete(td, min_events) < 0)
448 break;
449 }
450
451 if (!td->error) {
452 min_events = td->cur_depth;
453
454 if (min_events)
455 ret = io_u_queued_complete(td, min_events);
456 } else
457 cleanup_pending_aio(td);
458
459 td_set_runstate(td, TD_RUNNING);
460}
461
462/*
463 * Main IO worker function. It retrieves io_u's to process and queues
464 * and reaps them, checking for rate and errors along the way.
465 */
466static void do_io(struct thread_data *td)
467{
468 struct timeval s;
469 unsigned long usec;
470 unsigned int i;
471 int ret = 0;
472
473 td_set_runstate(td, TD_RUNNING);
474
475 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
476 struct timeval comp_time;
477 long bytes_done = 0;
478 int min_evts = 0;
479 struct io_u *io_u;
480 int ret2;
481
482 if (td->terminate)
483 break;
484
485 io_u = get_io_u(td);
486 if (!io_u)
487 break;
488
489 memcpy(&s, &io_u->start_time, sizeof(s));
490
491 if (runtime_exceeded(td, &s)) {
492 put_io_u(td, io_u);
493 td->terminate = 1;
494 break;
495 }
496
497 /*
498 * Add verification end_io handler, if asked to verify
499 * a previously written file.
500 */
501 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
502 io_u->end_io = verify_io_u;
503 td_set_runstate(td, TD_VERIFYING);
504 } else
505 td_set_runstate(td, TD_RUNNING);
506
507 ret = td_io_queue(td, io_u);
508 switch (ret) {
509 case FIO_Q_COMPLETED:
510 if (io_u->error)
511 ret = -io_u->error;
512 else if (io_u->resid) {
513 int bytes = io_u->xfer_buflen - io_u->resid;
514 struct fio_file *f = io_u->file;
515
516 /*
517 * zero read, fail
518 */
519 if (!bytes) {
520 td_verror(td, ENODATA, "full resid");
521 put_io_u(td, io_u);
522 break;
523 }
524
525 io_u->xfer_buflen = io_u->resid;
526 io_u->xfer_buf += bytes;
527 io_u->offset += bytes;
528
529 td->ts.short_io_u[io_u->ddir]++;
530
531 if (io_u->offset == f->real_file_size)
532 goto sync_done;
533
534 requeue_io_u(td, &io_u);
535 } else {
536sync_done:
537 fio_gettime(&comp_time, NULL);
538 bytes_done = io_u_sync_complete(td, io_u);
539 if (bytes_done < 0)
540 ret = bytes_done;
541 }
542 break;
543 case FIO_Q_QUEUED:
544 /*
545 * if the engine doesn't have a commit hook,
546 * the io_u is really queued. if it does have such
547 * a hook, it has to call io_u_queued() itself.
548 */
549 if (td->io_ops->commit == NULL)
550 io_u_queued(td, io_u);
551 break;
552 case FIO_Q_BUSY:
553 requeue_io_u(td, &io_u);
554 ret2 = td_io_commit(td);
555 if (ret2 < 0)
556 ret = ret2;
557 break;
558 default:
559 assert(ret < 0);
560 put_io_u(td, io_u);
561 break;
562 }
563
564 if (ret < 0 || td->error)
565 break;
566
567 /*
568 * See if we need to complete some commands
569 */
570 if (queue_full(td) || ret == FIO_Q_BUSY) {
571 min_evts = 0;
572 if (td->cur_depth >= td->o.iodepth_low)
573 min_evts = td->cur_depth - td->o.iodepth_low;
574 if (!min_evts)
575 min_evts = 1;
576 fio_gettime(&comp_time, NULL);
577 bytes_done = io_u_queued_complete(td, min_evts);
578 if (bytes_done < 0)
579 break;
580 }
581
582 if (!bytes_done)
583 continue;
584
585 /*
586 * the rate is batched for now, it should work for batches
587 * of completions except the very first one which may look
588 * a little bursty
589 */
590 usec = utime_since(&s, &comp_time);
591
592 rate_throttle(td, usec, bytes_done);
593
594 if (check_min_rate(td, &comp_time)) {
595 if (exitall_on_terminate)
596 terminate_threads(td->groupid);
597 td_verror(td, ENODATA, "check_min_rate");
598 break;
599 }
600
601 if (td->o.thinktime) {
602 unsigned long long b;
603
604 b = td->io_blocks[0] + td->io_blocks[1];
605 if (!(b % td->o.thinktime_blocks)) {
606 int left;
607
608 if (td->o.thinktime_spin)
609 __usec_sleep(td->o.thinktime_spin);
610
611 left = td->o.thinktime - td->o.thinktime_spin;
612 if (left)
613 usec_sleep(td, left);
614 }
615 }
616 }
617
618 if (td->o.fill_device && td->error == ENOSPC) {
619 td->error = 0;
620 td->terminate = 1;
621 }
622 if (!td->error) {
623 struct fio_file *f;
624
625 i = td->cur_depth;
626 if (i)
627 ret = io_u_queued_complete(td, i);
628
629 if (should_fsync(td) && td->o.end_fsync) {
630 td_set_runstate(td, TD_FSYNCING);
631
632 for_each_file(td, f, i) {
633 if (!(f->flags & FIO_FILE_OPEN))
634 continue;
635 fio_io_sync(td, f);
636 }
637 }
638 } else
639 cleanup_pending_aio(td);
640
641 /*
642 * stop job if we failed doing any IO
643 */
644 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
645 td->done = 1;
646}
647
648static void cleanup_io_u(struct thread_data *td)
649{
650 struct list_head *entry, *n;
651 struct io_u *io_u;
652
653 list_for_each_safe(entry, n, &td->io_u_freelist) {
654 io_u = list_entry(entry, struct io_u, list);
655
656 list_del(&io_u->list);
657 free(io_u);
658 }
659
660 free_io_mem(td);
661}
662
663static int init_io_u(struct thread_data *td)
664{
665 struct io_u *io_u;
666 unsigned int max_bs;
667 int i, max_units;
668 char *p;
669
670 max_units = td->o.iodepth;
671 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
672 td->orig_buffer_size = (unsigned long long) max_bs
673 * (unsigned long long) max_units;
674
675 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
676 unsigned long bs;
677
678 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
679 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
680 }
681
682 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
683 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
684 return 1;
685 }
686
687 if (allocate_io_mem(td))
688 return 1;
689
690 if (td->o.odirect)
691 p = ALIGN(td->orig_buffer);
692 else
693 p = td->orig_buffer;
694
695 for (i = 0; i < max_units; i++) {
696 if (td->terminate)
697 return 1;
698 io_u = malloc(sizeof(*io_u));
699 memset(io_u, 0, sizeof(*io_u));
700 INIT_LIST_HEAD(&io_u->list);
701
702 if (!(td->io_ops->flags & FIO_NOIO)) {
703 io_u->buf = p + max_bs * i;
704
705 if (td_write(td) && !td->o.refill_buffers)
706 io_u_fill_buffer(td, io_u, max_bs);
707 }
708
709 io_u->index = i;
710 io_u->flags = IO_U_F_FREE;
711 list_add(&io_u->list, &td->io_u_freelist);
712 }
713
714 io_u_init_timeout();
715
716 return 0;
717}
718
719static int switch_ioscheduler(struct thread_data *td)
720{
721 char tmp[256], tmp2[128];
722 FILE *f;
723 int ret;
724
725 if (td->io_ops->flags & FIO_DISKLESSIO)
726 return 0;
727
728 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
729
730 f = fopen(tmp, "r+");
731 if (!f) {
732 if (errno == ENOENT) {
733 log_err("fio: os or kernel doesn't support IO scheduler"
734 " switching\n");
735 return 0;
736 }
737 td_verror(td, errno, "fopen iosched");
738 return 1;
739 }
740
741 /*
742 * Set io scheduler.
743 */
744 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
745 if (ferror(f) || ret != 1) {
746 td_verror(td, errno, "fwrite");
747 fclose(f);
748 return 1;
749 }
750
751 rewind(f);
752
753 /*
754 * Read back and check that the selected scheduler is now the default.
755 */
756 ret = fread(tmp, 1, sizeof(tmp), f);
757 if (ferror(f) || ret < 0) {
758 td_verror(td, errno, "fread");
759 fclose(f);
760 return 1;
761 }
762
763 sprintf(tmp2, "[%s]", td->o.ioscheduler);
764 if (!strstr(tmp, tmp2)) {
765 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
766 td_verror(td, EINVAL, "iosched_switch");
767 fclose(f);
768 return 1;
769 }
770
771 fclose(f);
772 return 0;
773}
774
775static int keep_running(struct thread_data *td)
776{
777 unsigned long long io_done;
778
779 if (td->done)
780 return 0;
781 if (td->o.time_based)
782 return 1;
783 if (td->o.loops) {
784 td->o.loops--;
785 return 1;
786 }
787
788 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
789 + td->io_skip_bytes;
790 if (io_done < td->o.size)
791 return 1;
792
793 return 0;
794}
795
796static int clear_io_state(struct thread_data *td)
797{
798 struct fio_file *f;
799 unsigned int i;
800 int ret;
801
802 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
803 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
804 td->zone_bytes = 0;
805 td->rate_bytes = 0;
806 td->rate_blocks = 0;
807 td->rw_end_set[0] = td->rw_end_set[1] = 0;
808
809 td->last_was_sync = 0;
810
811 /*
812 * reset file done count if we are to start over
813 */
814 if (td->o.time_based || td->o.loops)
815 td->nr_done_files = 0;
816
817 close_files(td);
818
819 ret = 0;
820 for_each_file(td, f, i) {
821 f->flags &= ~FIO_FILE_DONE;
822 ret = td_io_open_file(td, f);
823 if (ret)
824 break;
825 }
826
827 return ret;
828}
829
830/*
831 * Entry point for the thread based jobs. The process based jobs end up
832 * here as well, after a little setup.
833 */
834static void *thread_main(void *data)
835{
836 unsigned long long runtime[2], elapsed;
837 struct thread_data *td = data;
838 int clear_state;
839
840 if (!td->o.use_thread)
841 setsid();
842
843 td->pid = getpid();
844
845 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
846
847 INIT_LIST_HEAD(&td->io_u_freelist);
848 INIT_LIST_HEAD(&td->io_u_busylist);
849 INIT_LIST_HEAD(&td->io_u_requeues);
850 INIT_LIST_HEAD(&td->io_log_list);
851 INIT_LIST_HEAD(&td->io_hist_list);
852 td->io_hist_tree = RB_ROOT;
853
854 td_set_runstate(td, TD_INITIALIZED);
855 fio_mutex_up(startup_mutex);
856 fio_mutex_down(td->mutex);
857
858 /*
859 * the ->mutex mutex is now no longer used, close it to avoid
860 * eating a file descriptor
861 */
862 fio_mutex_remove(td->mutex);
863
864 /*
865 * May alter parameters that init_io_u() will use, so we need to
866 * do this first.
867 */
868 if (init_iolog(td))
869 goto err;
870
871 if (init_io_u(td))
872 goto err;
873
874 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
875 td_verror(td, errno, "cpu_set_affinity");
876 goto err;
877 }
878
879 if (td->ioprio_set) {
880 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
881 td_verror(td, errno, "ioprio_set");
882 goto err;
883 }
884 }
885
886 if (nice(td->o.nice) == -1) {
887 td_verror(td, errno, "nice");
888 goto err;
889 }
890
891 if (td->o.ioscheduler && switch_ioscheduler(td))
892 goto err;
893
894 if (!td->o.create_serialize && setup_files(td))
895 goto err;
896
897 if (td_io_init(td))
898 goto err;
899
900 if (open_files(td))
901 goto err;
902
903 if (init_random_map(td))
904 goto err;
905
906 if (td->o.exec_prerun) {
907 if (system(td->o.exec_prerun) < 0)
908 goto err;
909 }
910
911 fio_gettime(&td->epoch, NULL);
912 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
913 getrusage(RUSAGE_SELF, &td->ts.ru_start);
914
915 runtime[0] = runtime[1] = 0;
916 clear_state = 0;
917 while (keep_running(td)) {
918 fio_gettime(&td->start, NULL);
919 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
920
921 if (td->o.ratemin)
922 memcpy(&td->lastrate, &td->ts.stat_sample_time,
923 sizeof(td->lastrate));
924
925 if (clear_state && clear_io_state(td))
926 break;
927
928 prune_io_piece_log(td);
929
930 do_io(td);
931
932 clear_state = 1;
933
934 if (td_read(td) && td->io_bytes[DDIR_READ]) {
935 if (td->rw_end_set[DDIR_READ])
936 elapsed = utime_since(&td->start,
937 &td->rw_end[DDIR_READ]);
938 else
939 elapsed = utime_since_now(&td->start);
940
941 runtime[DDIR_READ] += elapsed;
942 }
943 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
944 if (td->rw_end_set[DDIR_WRITE])
945 elapsed = utime_since(&td->start,
946 &td->rw_end[DDIR_WRITE]);
947 else
948 elapsed = utime_since_now(&td->start);
949
950 runtime[DDIR_WRITE] += elapsed;
951 }
952
953 if (td->error || td->terminate)
954 break;
955
956 if (!td->o.do_verify ||
957 td->o.verify == VERIFY_NONE ||
958 (td->io_ops->flags & FIO_UNIDIR))
959 continue;
960
961 if (clear_io_state(td))
962 break;
963
964 fio_gettime(&td->start, NULL);
965
966 do_verify(td);
967
968 runtime[DDIR_READ] += utime_since_now(&td->start);
969
970 if (td->error || td->terminate)
971 break;
972 }
973
974 update_rusage_stat(td);
975 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
976 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
977 td->ts.total_run_time = mtime_since_now(&td->epoch);
978 td->ts.io_bytes[0] = td->io_bytes[0];
979 td->ts.io_bytes[1] = td->io_bytes[1];
980
981 if (td->ts.bw_log)
982 finish_log(td, td->ts.bw_log, "bw");
983 if (td->ts.slat_log)
984 finish_log(td, td->ts.slat_log, "slat");
985 if (td->ts.clat_log)
986 finish_log(td, td->ts.clat_log, "clat");
987 if (td->o.exec_postrun) {
988 if (system(td->o.exec_postrun) < 0)
989 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
990 }
991
992 if (exitall_on_terminate)
993 terminate_threads(td->groupid);
994
995err:
996 if (td->error)
997 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
998 td->verror);
999 close_and_free_files(td);
1000 close_ioengine(td);
1001 cleanup_io_u(td);
1002
1003 /*
1004 * do this very late, it will log file closing as well
1005 */
1006 if (td->o.write_iolog_file)
1007 write_iolog_close(td);
1008
1009 options_mem_free(td);
1010 td_set_runstate(td, TD_EXITED);
1011 return (void *) (unsigned long) td->error;
1012}
1013
1014/*
1015 * We cannot pass the td data into a forked process, so attach the td and
1016 * pass it to the thread worker.
1017 */
1018static int fork_main(int shmid, int offset)
1019{
1020 struct thread_data *td;
1021 void *data, *ret;
1022
1023 data = shmat(shmid, NULL, 0);
1024 if (data == (void *) -1) {
1025 int __err = errno;
1026
1027 perror("shmat");
1028 return __err;
1029 }
1030
1031 td = data + offset * sizeof(struct thread_data);
1032 ret = thread_main(td);
1033 shmdt(data);
1034 return (int) (unsigned long) ret;
1035}
1036
1037/*
1038 * Run over the job map and reap the threads that have exited, if any.
1039 */
1040static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1041{
1042 struct thread_data *td;
1043 int i, cputhreads, realthreads, pending, status, ret;
1044
1045 /*
1046 * reap exited threads (TD_EXITED -> TD_REAPED)
1047 */
1048 realthreads = pending = cputhreads = 0;
1049 for_each_td(td, i) {
1050 int flags = 0;
1051
1052 /*
1053 * ->io_ops is NULL for a thread that has closed its
1054 * io engine
1055 */
1056 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1057 cputhreads++;
1058 else
1059 realthreads++;
1060
1061 if (!td->pid) {
1062 pending++;
1063 continue;
1064 }
1065 if (td->runstate == TD_REAPED)
1066 continue;
1067 if (td->o.use_thread) {
1068 if (td->runstate == TD_EXITED) {
1069 td_set_runstate(td, TD_REAPED);
1070 goto reaped;
1071 }
1072 continue;
1073 }
1074
1075 flags = WNOHANG;
1076 if (td->runstate == TD_EXITED)
1077 flags = 0;
1078
1079 /*
1080 * check if someone quit or got killed in an unusual way
1081 */
1082 ret = waitpid(td->pid, &status, flags);
1083 if (ret < 0) {
1084 if (errno == ECHILD) {
1085 log_err("fio: pid=%d disappeared %d\n",
1086 (int) td->pid, td->runstate);
1087 td_set_runstate(td, TD_REAPED);
1088 goto reaped;
1089 }
1090 perror("waitpid");
1091 } else if (ret == td->pid) {
1092 if (WIFSIGNALED(status)) {
1093 int sig = WTERMSIG(status);
1094
1095 if (sig != SIGQUIT)
1096 log_err("fio: pid=%d, got signal=%d\n",
1097 (int) td->pid, sig);
1098 td_set_runstate(td, TD_REAPED);
1099 goto reaped;
1100 }
1101 if (WIFEXITED(status)) {
1102 if (WEXITSTATUS(status) && !td->error)
1103 td->error = WEXITSTATUS(status);
1104
1105 td_set_runstate(td, TD_REAPED);
1106 goto reaped;
1107 }
1108 }
1109
1110 /*
1111 * thread is not dead, continue
1112 */
1113 pending++;
1114 continue;
1115reaped:
1116 (*nr_running)--;
1117 (*m_rate) -= td->o.ratemin;
1118 (*t_rate) -= td->o.rate;
1119 if (!td->pid)
1120 pending--;
1121
1122 if (td->error)
1123 exit_value++;
1124
1125 done_secs += mtime_since_now(&td->epoch) / 1000;
1126 }
1127
1128 if (*nr_running == cputhreads && !pending && realthreads)
1129 terminate_threads(TERMINATE_ALL);
1130}
1131
1132/*
1133 * Main function for kicking off and reaping jobs, as needed.
1134 */
1135static void run_threads(void)
1136{
1137 struct thread_data *td;
1138 unsigned long spent;
1139 int i, todo, nr_running, m_rate, t_rate, nr_started;
1140
1141 if (fio_pin_memory())
1142 return;
1143
1144 if (!terse_output) {
1145 printf("Starting ");
1146 if (nr_thread)
1147 printf("%d thread%s", nr_thread,
1148 nr_thread > 1 ? "s" : "");
1149 if (nr_process) {
1150 if (nr_thread)
1151 printf(" and ");
1152 printf("%d process%s", nr_process,
1153 nr_process > 1 ? "es" : "");
1154 }
1155 printf("\n");
1156 fflush(stdout);
1157 }
1158
1159 set_sig_handlers(sig_handler);
1160
1161 todo = thread_number;
1162 nr_running = 0;
1163 nr_started = 0;
1164 m_rate = t_rate = 0;
1165
1166 for_each_td(td, i) {
1167 print_status_init(td->thread_number - 1);
1168
1169 if (!td->o.create_serialize) {
1170 init_disk_util(td);
1171 continue;
1172 }
1173
1174 /*
1175 * do file setup here so it happens sequentially,
1176 * we don't want X number of threads getting their
1177 * client data interspersed on disk
1178 */
1179 if (setup_files(td)) {
1180 exit_value++;
1181 if (td->error)
1182 log_err("fio: pid=%d, err=%d/%s\n",
1183 (int) td->pid, td->error, td->verror);
1184 td_set_runstate(td, TD_REAPED);
1185 todo--;
1186 } else {
1187 struct fio_file *f;
1188 unsigned int i;
1189
1190 /*
1191 * for sharing to work, each job must always open
1192 * its own files. so close them, if we opened them
1193 * for creation
1194 */
1195 for_each_file(td, f, i)
1196 td_io_close_file(td, f);
1197 }
1198
1199 init_disk_util(td);
1200 }
1201
1202 set_genesis_time();
1203
1204 while (todo) {
1205 struct thread_data *map[MAX_JOBS];
1206 struct timeval this_start;
1207 int this_jobs = 0, left;
1208
1209 /*
1210 * create threads (TD_NOT_CREATED -> TD_CREATED)
1211 */
1212 for_each_td(td, i) {
1213 if (td->runstate != TD_NOT_CREATED)
1214 continue;
1215
1216 /*
1217 * never got a chance to start, killed by other
1218 * thread for some reason
1219 */
1220 if (td->terminate) {
1221 todo--;
1222 continue;
1223 }
1224
1225 if (td->o.start_delay) {
1226 spent = mtime_since_genesis();
1227
1228 if (td->o.start_delay * 1000 > spent)
1229 continue;
1230 }
1231
1232 if (td->o.stonewall && (nr_started || nr_running)) {
1233 dprint(FD_PROCESS, "%s: stonewall wait\n",
1234 td->o.name);
1235 break;
1236 }
1237
1238 /*
1239 * Set state to created. Thread will transition
1240 * to TD_INITIALIZED when it's done setting up.
1241 */
1242 td_set_runstate(td, TD_CREATED);
1243 map[this_jobs++] = td;
1244 nr_started++;
1245
1246 if (td->o.use_thread) {
1247 dprint(FD_PROCESS, "will pthread_create\n");
1248 if (pthread_create(&td->thread, NULL,
1249 thread_main, td)) {
1250 perror("pthread_create");
1251 nr_started--;
1252 break;
1253 }
1254 if (pthread_detach(td->thread) < 0)
1255 perror("pthread_detach");
1256 } else {
1257 pid_t pid;
1258 dprint(FD_PROCESS, "will fork\n");
1259 pid = fork();
1260 if (!pid) {
1261 int ret = fork_main(shm_id, i);
1262
1263 _exit(ret);
1264 } else if (i == fio_debug_jobno)
1265 *fio_debug_jobp = pid;
1266 }
1267 fio_mutex_down(startup_mutex);
1268 }
1269
1270 /*
1271 * Wait for the started threads to transition to
1272 * TD_INITIALIZED.
1273 */
1274 fio_gettime(&this_start, NULL);
1275 left = this_jobs;
1276 while (left && !fio_abort) {
1277 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1278 break;
1279
1280 usleep(100000);
1281
1282 for (i = 0; i < this_jobs; i++) {
1283 td = map[i];
1284 if (!td)
1285 continue;
1286 if (td->runstate == TD_INITIALIZED) {
1287 map[i] = NULL;
1288 left--;
1289 } else if (td->runstate >= TD_EXITED) {
1290 map[i] = NULL;
1291 left--;
1292 todo--;
1293 nr_running++; /* work-around... */
1294 }
1295 }
1296 }
1297
1298 if (left) {
1299 log_err("fio: %d jobs failed to start\n", left);
1300 for (i = 0; i < this_jobs; i++) {
1301 td = map[i];
1302 if (!td)
1303 continue;
1304 kill(td->pid, SIGTERM);
1305 }
1306 break;
1307 }
1308
1309 /*
1310 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1311 */
1312 for_each_td(td, i) {
1313 if (td->runstate != TD_INITIALIZED)
1314 continue;
1315
1316 td_set_runstate(td, TD_RUNNING);
1317 nr_running++;
1318 nr_started--;
1319 m_rate += td->o.ratemin;
1320 t_rate += td->o.rate;
1321 todo--;
1322 fio_mutex_up(td->mutex);
1323 }
1324
1325 reap_threads(&nr_running, &t_rate, &m_rate);
1326
1327 if (todo)
1328 usleep(100000);
1329 }
1330
1331 while (nr_running) {
1332 reap_threads(&nr_running, &t_rate, &m_rate);
1333 usleep(10000);
1334 }
1335
1336 update_io_ticks();
1337 fio_unpin_memory();
1338}
1339
1340int main(int argc, char *argv[])
1341{
1342 long ps;
1343
1344 sinit();
1345
1346 /*
1347 * We need locale for number printing, if it isn't set then just
1348 * go with the US format.
1349 */
1350 if (!getenv("LC_NUMERIC"))
1351 setlocale(LC_NUMERIC, "en_US");
1352
1353 if (parse_options(argc, argv))
1354 return 1;
1355
1356 if (!thread_number)
1357 return 0;
1358
1359 ps = sysconf(_SC_PAGESIZE);
1360 if (ps < 0) {
1361 log_err("Failed to get page size\n");
1362 return 1;
1363 }
1364
1365 page_size = ps;
1366 page_mask = ps - 1;
1367
1368 if (write_bw_log) {
1369 setup_log(&agg_io_log[DDIR_READ]);
1370 setup_log(&agg_io_log[DDIR_WRITE]);
1371 }
1372
1373 startup_mutex = fio_mutex_init(0);
1374
1375 set_genesis_time();
1376
1377 status_timer_arm();
1378
1379 run_threads();
1380
1381 if (!fio_abort) {
1382 show_run_stats();
1383 if (write_bw_log) {
1384 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1385 __finish_log(agg_io_log[DDIR_WRITE],
1386 "agg-write_bw.log");
1387 }
1388 }
1389
1390 fio_mutex_remove(startup_mutex);
1391 return exit_value;
1392}