[PATCH Various fixes
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22#include <unistd.h>
23#include <fcntl.h>
24#include <string.h>
25#include <signal.h>
26#include <time.h>
27#include <assert.h>
28#include <sys/stat.h>
29#include <sys/wait.h>
30#include <sys/ipc.h>
31#include <sys/shm.h>
32#include <sys/ioctl.h>
33#include <sys/mman.h>
34
35#include "fio.h"
36#include "os.h"
37
38#define MASK (4095)
39
40#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
41
42int groupid = 0;
43int thread_number = 0;
44static char run_str[MAX_JOBS + 1];
45int shm_id = 0;
46static struct timeval genesis;
47int temp_stall_ts;
48char *fio_inst_prefix = _INST_PREFIX;
49
50static void print_thread_status(void);
51
52extern unsigned long long mlock_size;
53
54/*
55 * Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
56 * will never back again. It may cycle between running/verififying/fsyncing.
57 * Once the thread reaches TD_EXITED, it is just waiting for the core to
58 * reap it.
59 */
60enum {
61 TD_NOT_CREATED = 0,
62 TD_CREATED,
63 TD_INITIALIZED,
64 TD_RUNNING,
65 TD_VERIFYING,
66 TD_FSYNCING,
67 TD_EXITED,
68 TD_REAPED,
69};
70
71#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
72
73static volatile int startup_sem;
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78static void terminate_threads(int group_id)
79{
80 int i;
81
82 for (i = 0; i < thread_number; i++) {
83 struct thread_data *td = &threads[i];
84
85 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
86 td->terminate = 1;
87 td->start_delay = 0;
88 }
89 }
90}
91
92static void sig_handler(int sig)
93{
94 switch (sig) {
95 case SIGALRM:
96 update_io_ticks();
97 disk_util_timer_arm();
98 print_thread_status();
99 break;
100 default:
101 printf("\nfio: terminating on signal\n");
102 fflush(stdout);
103 terminate_threads(TERMINATE_ALL);
104 break;
105 }
106}
107
108/*
109 * The ->file_map[] contains a map of blocks we have or have not done io
110 * to yet. Used to make sure we cover the entire range in a fair fashion.
111 */
112static int random_map_free(struct thread_data *td, struct fio_file *f,
113 unsigned long long block)
114{
115 unsigned int idx = RAND_MAP_IDX(td, f, block);
116 unsigned int bit = RAND_MAP_BIT(td, f, block);
117
118 return (f->file_map[idx] & (1UL << bit)) == 0;
119}
120
121/*
122 * Return the next free block in the map.
123 */
124static int get_next_free_block(struct thread_data *td, struct fio_file *f,
125 unsigned long long *b)
126{
127 int i;
128
129 *b = 0;
130 i = 0;
131 while ((*b) * td->min_bs < f->file_size) {
132 if (f->file_map[i] != -1UL) {
133 *b += ffz(f->file_map[i]);
134 return 0;
135 }
136
137 *b += BLOCKS_PER_MAP;
138 i++;
139 }
140
141 return 1;
142}
143
144/*
145 * Mark a given offset as used in the map.
146 */
147static void mark_random_map(struct thread_data *td, struct fio_file *f,
148 struct io_u *io_u)
149{
150 unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
151 unsigned int blocks = 0;
152
153 while (blocks < (io_u->buflen / td->min_bs)) {
154 unsigned int idx, bit;
155
156 if (!random_map_free(td, f, block))
157 break;
158
159 idx = RAND_MAP_IDX(td, f, block);
160 bit = RAND_MAP_BIT(td, f, block);
161
162 assert(idx < f->num_maps);
163
164 f->file_map[idx] |= (1UL << bit);
165 block++;
166 blocks++;
167 }
168
169 if ((blocks * td->min_bs) < io_u->buflen)
170 io_u->buflen = blocks * td->min_bs;
171}
172
173/*
174 * For random io, generate a random new block and see if it's used. Repeat
175 * until we find a free one. For sequential io, just return the end of
176 * the last io issued.
177 */
178static int get_next_offset(struct thread_data *td, struct fio_file *f,
179 unsigned long long *offset)
180{
181 unsigned long long b, rb;
182 long r;
183
184 if (!td->sequential) {
185 unsigned long long max_blocks = td->io_size / td->min_bs;
186 int loops = 50;
187
188 do {
189 r = os_random_long(&td->random_state);
190 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
191 rb = b + (f->file_offset / td->min_bs);
192 loops--;
193 } while (!random_map_free(td, f, rb) && loops);
194
195 if (!loops) {
196 if (get_next_free_block(td, f, &b))
197 return 1;
198 }
199 } else
200 b = f->last_pos / td->min_bs;
201
202 *offset = (b * td->min_bs) + f->file_offset;
203 if (*offset > f->file_size)
204 return 1;
205
206 return 0;
207}
208
209static unsigned int get_next_buflen(struct thread_data *td)
210{
211 unsigned int buflen;
212 long r;
213
214 if (td->min_bs == td->max_bs)
215 buflen = td->min_bs;
216 else {
217 r = os_random_long(&td->bsrange_state);
218 buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
219 buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
220 }
221
222 if (buflen > td->io_size - td->this_io_bytes[td->ddir]) {
223 /*
224 * if using direct/raw io, we may not be able to
225 * shrink the size. so just fail it.
226 */
227 if (td->io_ops->flags & FIO_RAWIO)
228 return 0;
229
230 buflen = td->io_size - td->this_io_bytes[td->ddir];
231 }
232
233 return buflen;
234}
235
236/*
237 * Check if we are above the minimum rate given.
238 */
239static int check_min_rate(struct thread_data *td, struct timeval *now)
240{
241 unsigned long spent;
242 unsigned long rate;
243 int ddir = td->ddir;
244
245 /*
246 * allow a 2 second settle period in the beginning
247 */
248 if (mtime_since(&td->start, now) < 2000)
249 return 0;
250
251 /*
252 * if rate blocks is set, sample is running
253 */
254 if (td->rate_bytes) {
255 spent = mtime_since(&td->lastrate, now);
256 if (spent < td->ratecycle)
257 return 0;
258
259 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
260 if (rate < td->ratemin) {
261 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
262 if (rate_quit)
263 terminate_threads(td->groupid);
264 return 1;
265 }
266 }
267
268 td->rate_bytes = td->this_io_bytes[ddir];
269 memcpy(&td->lastrate, now, sizeof(*now));
270 return 0;
271}
272
273static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
274{
275 if (!td->timeout)
276 return 0;
277 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
278 return 1;
279
280 return 0;
281}
282
283static void fill_random_bytes(struct thread_data *td,
284 unsigned char *p, unsigned int len)
285{
286 unsigned int todo;
287 double r;
288
289 while (len) {
290 r = os_random_double(&td->verify_state);
291
292 /*
293 * lrand48_r seems to be broken and only fill the bottom
294 * 32-bits, even on 64-bit archs with 64-bit longs
295 */
296 todo = sizeof(r);
297 if (todo > len)
298 todo = len;
299
300 memcpy(p, &r, todo);
301
302 len -= todo;
303 p += todo;
304 }
305}
306
307static void hexdump(void *buffer, int len)
308{
309 unsigned char *p = buffer;
310 int i;
311
312 for (i = 0; i < len; i++)
313 fprintf(f_out, "%02x", p[i]);
314 fprintf(f_out, "\n");
315}
316
317static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
318{
319 unsigned char *p = (unsigned char *) io_u->buf;
320 unsigned long c;
321
322 p += sizeof(*hdr);
323 c = crc32(p, hdr->len - sizeof(*hdr));
324
325 if (c != hdr->crc32) {
326 log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
327 log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
328 return 1;
329 }
330
331 return 0;
332}
333
334static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
335{
336 unsigned char *p = (unsigned char *) io_u->buf;
337 struct md5_ctx md5_ctx;
338
339 memset(&md5_ctx, 0, sizeof(md5_ctx));
340 p += sizeof(*hdr);
341 md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
342
343 if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
344 log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
345 hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
346 hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
347 return 1;
348 }
349
350 return 0;
351}
352
353static int verify_io_u(struct io_u *io_u)
354{
355 struct verify_header *hdr = (struct verify_header *) io_u->buf;
356 int ret;
357
358 if (hdr->fio_magic != FIO_HDR_MAGIC)
359 return 1;
360
361 if (hdr->verify_type == VERIFY_MD5)
362 ret = verify_io_u_md5(hdr, io_u);
363 else if (hdr->verify_type == VERIFY_CRC32)
364 ret = verify_io_u_crc32(hdr, io_u);
365 else {
366 log_err("Bad verify type %d\n", hdr->verify_type);
367 ret = 1;
368 }
369
370 return ret;
371}
372
373static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
374{
375 hdr->crc32 = crc32(p, len);
376}
377
378static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
379{
380 struct md5_ctx md5_ctx;
381
382 memset(&md5_ctx, 0, sizeof(md5_ctx));
383 md5_update(&md5_ctx, p, len);
384 memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
385}
386
387/*
388 * Return the data direction for the next io_u. If the job is a
389 * mixed read/write workload, check the rwmix cycle and switch if
390 * necessary.
391 */
392static int get_rw_ddir(struct thread_data *td)
393{
394 if (td_rw(td)) {
395 struct timeval now;
396 unsigned long elapsed;
397
398 gettimeofday(&now, NULL);
399 elapsed = mtime_since_now(&td->rwmix_switch);
400
401 /*
402 * Check if it's time to seed a new data direction.
403 */
404 if (elapsed >= td->rwmixcycle) {
405 int v;
406 long r;
407
408 r = os_random_long(&td->rwmix_state);
409 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
410 if (v < td->rwmixread)
411 td->rwmix_ddir = DDIR_READ;
412 else
413 td->rwmix_ddir = DDIR_WRITE;
414 memcpy(&td->rwmix_switch, &now, sizeof(now));
415 }
416 return td->rwmix_ddir;
417 } else if (td_read(td))
418 return DDIR_READ;
419 else
420 return DDIR_WRITE;
421}
422
423/*
424 * fill body of io_u->buf with random data and add a header with the
425 * crc32 or md5 sum of that data.
426 */
427static void populate_io_u(struct thread_data *td, struct io_u *io_u)
428{
429 unsigned char *p = (unsigned char *) io_u->buf;
430 struct verify_header hdr;
431
432 hdr.fio_magic = FIO_HDR_MAGIC;
433 hdr.len = io_u->buflen;
434 p += sizeof(hdr);
435 fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
436
437 if (td->verify == VERIFY_MD5) {
438 fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
439 hdr.verify_type = VERIFY_MD5;
440 } else {
441 fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
442 hdr.verify_type = VERIFY_CRC32;
443 }
444
445 memcpy(io_u->buf, &hdr, sizeof(hdr));
446}
447
448static int td_io_prep(struct thread_data *td, struct io_u *io_u)
449{
450 if (td->io_ops->prep && td->io_ops->prep(td, io_u))
451 return 1;
452
453 return 0;
454}
455
456void put_io_u(struct thread_data *td, struct io_u *io_u)
457{
458 io_u->file = NULL;
459 list_del(&io_u->list);
460 list_add(&io_u->list, &td->io_u_freelist);
461 td->cur_depth--;
462}
463
464static int fill_io_u(struct thread_data *td, struct fio_file *f,
465 struct io_u *io_u)
466{
467 /*
468 * If using an iolog, grab next piece if any available.
469 */
470 if (td->read_iolog)
471 return read_iolog_get(td, io_u);
472
473 /*
474 * No log, let the seq/rand engine retrieve the next position.
475 */
476 if (!get_next_offset(td, f, &io_u->offset)) {
477 io_u->buflen = get_next_buflen(td);
478
479 if (io_u->buflen) {
480 io_u->ddir = get_rw_ddir(td);
481
482 /*
483 * If using a write iolog, store this entry.
484 */
485 if (td->write_iolog)
486 write_iolog_put(td, io_u);
487
488 io_u->file = f;
489 return 0;
490 }
491 }
492
493 return 1;
494}
495
496#define queue_full(td) list_empty(&(td)->io_u_freelist)
497
498struct io_u *__get_io_u(struct thread_data *td)
499{
500 struct io_u *io_u = NULL;
501
502 if (!queue_full(td)) {
503 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
504
505 io_u->error = 0;
506 io_u->resid = 0;
507 list_del(&io_u->list);
508 list_add(&io_u->list, &td->io_u_busylist);
509 td->cur_depth++;
510 }
511
512 return io_u;
513}
514
515/*
516 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
517 * etc. The returned io_u is fully ready to be prepped and submitted.
518 */
519static struct io_u *get_io_u(struct thread_data *td, struct fio_file *f)
520{
521 struct io_u *io_u;
522
523 io_u = __get_io_u(td);
524 if (!io_u)
525 return NULL;
526
527 if (td->zone_bytes >= td->zone_size) {
528 td->zone_bytes = 0;
529 f->last_pos += td->zone_skip;
530 }
531
532 if (fill_io_u(td, f, io_u)) {
533 put_io_u(td, io_u);
534 return NULL;
535 }
536
537 if (io_u->buflen + io_u->offset > f->file_size) {
538 if (td->io_ops->flags & FIO_RAWIO) {
539 put_io_u(td, io_u);
540 return NULL;
541 }
542
543 io_u->buflen = f->file_size - io_u->offset;
544 }
545
546 if (!io_u->buflen) {
547 put_io_u(td, io_u);
548 return NULL;
549 }
550
551 if (!td->read_iolog && !td->sequential)
552 mark_random_map(td, f, io_u);
553
554 f->last_pos += io_u->buflen;
555
556 if (td->verify != VERIFY_NONE)
557 populate_io_u(td, io_u);
558
559 if (td_io_prep(td, io_u)) {
560 put_io_u(td, io_u);
561 return NULL;
562 }
563
564 gettimeofday(&io_u->start_time, NULL);
565 return io_u;
566}
567
568static inline void td_set_runstate(struct thread_data *td, int runstate)
569{
570 td->runstate = runstate;
571}
572
573static int get_next_verify(struct thread_data *td, struct io_u *io_u)
574{
575 struct io_piece *ipo;
576
577 if (!list_empty(&td->io_hist_list)) {
578 ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
579
580 list_del(&ipo->list);
581
582 io_u->offset = ipo->offset;
583 io_u->buflen = ipo->len;
584 io_u->ddir = DDIR_READ;
585 free(ipo);
586 return 0;
587 }
588
589 return 1;
590}
591
592static struct fio_file *get_next_file(struct thread_data *td)
593{
594 int old_next_file = td->next_file;
595 struct fio_file *f;
596
597 do {
598 f = &td->files[td->next_file];
599
600 td->next_file++;
601 if (td->next_file >= td->nr_files)
602 td->next_file = 0;
603
604 if (f->fd != -1)
605 break;
606
607 f = NULL;
608 } while (td->next_file != old_next_file);
609
610 return f;
611}
612
613static int td_io_sync(struct thread_data *td, struct fio_file *f)
614{
615 if (td->io_ops->sync)
616 return td->io_ops->sync(td, f);
617
618 return 0;
619}
620
621static int io_u_getevents(struct thread_data *td, int min, int max,
622 struct timespec *t)
623{
624 return td->io_ops->getevents(td, min, max, t);
625}
626
627static int io_u_queue(struct thread_data *td, struct io_u *io_u)
628{
629 gettimeofday(&io_u->issue_time, NULL);
630
631 return td->io_ops->queue(td, io_u);
632}
633
634#define iocb_time(iocb) ((unsigned long) (iocb)->data)
635
636static void io_completed(struct thread_data *td, struct io_u *io_u,
637 struct io_completion_data *icd)
638{
639 struct timeval e;
640 unsigned long msec;
641
642 gettimeofday(&e, NULL);
643
644 if (!io_u->error) {
645 unsigned int bytes = io_u->buflen - io_u->resid;
646 const int idx = io_u->ddir;
647
648 td->io_blocks[idx]++;
649 td->io_bytes[idx] += bytes;
650 td->zone_bytes += bytes;
651 td->this_io_bytes[idx] += bytes;
652
653 msec = mtime_since(&io_u->issue_time, &e);
654
655 add_clat_sample(td, idx, msec);
656 add_bw_sample(td, idx);
657
658 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
659 log_io_piece(td, io_u);
660
661 icd->bytes_done[idx] += bytes;
662 } else
663 icd->error = io_u->error;
664}
665
666static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
667{
668 struct io_u *io_u;
669 int i;
670
671 icd->error = 0;
672 icd->bytes_done[0] = icd->bytes_done[1] = 0;
673
674 for (i = 0; i < icd->nr; i++) {
675 io_u = td->io_ops->event(td, i);
676
677 io_completed(td, io_u, icd);
678 put_io_u(td, io_u);
679 }
680}
681
682/*
683 * When job exits, we can cancel the in-flight IO if we are using async
684 * io. Attempt to do so.
685 */
686static void cleanup_pending_aio(struct thread_data *td)
687{
688 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
689 struct list_head *entry, *n;
690 struct io_completion_data icd;
691 struct io_u *io_u;
692 int r;
693
694 /*
695 * get immediately available events, if any
696 */
697 r = io_u_getevents(td, 0, td->cur_depth, &ts);
698 if (r > 0) {
699 icd.nr = r;
700 ios_completed(td, &icd);
701 }
702
703 /*
704 * now cancel remaining active events
705 */
706 if (td->io_ops->cancel) {
707 list_for_each_safe(entry, n, &td->io_u_busylist) {
708 io_u = list_entry(entry, struct io_u, list);
709
710 r = td->io_ops->cancel(td, io_u);
711 if (!r)
712 put_io_u(td, io_u);
713 }
714 }
715
716 if (td->cur_depth) {
717 r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
718 if (r > 0) {
719 icd.nr = r;
720 ios_completed(td, &icd);
721 }
722 }
723}
724
725static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
726{
727 struct io_u *v_io_u = *io_u;
728 int ret = 0;
729
730 if (v_io_u) {
731 ret = verify_io_u(v_io_u);
732 put_io_u(td, v_io_u);
733 *io_u = NULL;
734 }
735
736 return ret;
737}
738
739/*
740 * The main verify engine. Runs over the writes we previusly submitted,
741 * reads the blocks back in, and checks the crc/md5 of the data.
742 */
743static void do_verify(struct thread_data *td)
744{
745 struct timeval t;
746 struct io_u *io_u, *v_io_u = NULL;
747 struct io_completion_data icd;
748 struct fio_file *f;
749 int ret;
750
751 td_set_runstate(td, TD_VERIFYING);
752
753 do {
754 if (td->terminate)
755 break;
756
757 gettimeofday(&t, NULL);
758 if (runtime_exceeded(td, &t))
759 break;
760
761 io_u = __get_io_u(td);
762 if (!io_u)
763 break;
764
765 if (get_next_verify(td, io_u)) {
766 put_io_u(td, io_u);
767 break;
768 }
769
770 f = get_next_file(td);
771 if (!f)
772 break;
773
774 io_u->file = f;
775
776 if (td_io_prep(td, io_u)) {
777 put_io_u(td, io_u);
778 break;
779 }
780
781 ret = io_u_queue(td, io_u);
782 if (ret) {
783 put_io_u(td, io_u);
784 td_verror(td, ret);
785 break;
786 }
787
788 /*
789 * we have one pending to verify, do that while
790 * we are doing io on the next one
791 */
792 if (do_io_u_verify(td, &v_io_u))
793 break;
794
795 ret = io_u_getevents(td, 1, 1, NULL);
796 if (ret != 1) {
797 if (ret < 0)
798 td_verror(td, ret);
799 break;
800 }
801
802 v_io_u = td->io_ops->event(td, 0);
803 icd.nr = 1;
804 icd.error = 0;
805 io_completed(td, v_io_u, &icd);
806
807 if (icd.error) {
808 td_verror(td, icd.error);
809 put_io_u(td, v_io_u);
810 v_io_u = NULL;
811 break;
812 }
813
814 /*
815 * if we can't submit more io, we need to verify now
816 */
817 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
818 break;
819
820 } while (1);
821
822 do_io_u_verify(td, &v_io_u);
823
824 if (td->cur_depth)
825 cleanup_pending_aio(td);
826
827 td_set_runstate(td, TD_RUNNING);
828}
829
830/*
831 * Not really an io thread, all it does is burn CPU cycles in the specified
832 * manner.
833 */
834static void do_cpuio(struct thread_data *td)
835{
836 struct timeval e;
837 int split = 100 / td->cpuload;
838 int i = 0;
839
840 while (!td->terminate) {
841 gettimeofday(&e, NULL);
842
843 if (runtime_exceeded(td, &e))
844 break;
845
846 if (!(i % split))
847 __usec_sleep(10000);
848 else
849 usec_sleep(td, 10000);
850
851 i++;
852 }
853}
854
855/*
856 * Main IO worker function. It retrieves io_u's to process and queues
857 * and reaps them, checking for rate and errors along the way.
858 */
859static void do_io(struct thread_data *td)
860{
861 struct io_completion_data icd;
862 struct timeval s, e;
863 unsigned long usec;
864 struct fio_file *f;
865 int i;
866
867 td_set_runstate(td, TD_RUNNING);
868
869 while (td->this_io_bytes[td->ddir] < td->io_size) {
870 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
871 struct timespec *timeout;
872 int ret, min_evts = 0;
873 struct io_u *io_u;
874
875 if (td->terminate)
876 break;
877
878 f = get_next_file(td);
879 if (!f)
880 break;
881
882 io_u = get_io_u(td, f);
883 if (!io_u)
884 break;
885
886 memcpy(&s, &io_u->start_time, sizeof(s));
887
888 ret = io_u_queue(td, io_u);
889 if (ret) {
890 put_io_u(td, io_u);
891 td_verror(td, ret);
892 break;
893 }
894
895 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
896
897 if (td->cur_depth < td->iodepth) {
898 timeout = &ts;
899 min_evts = 0;
900 } else {
901 timeout = NULL;
902 min_evts = 1;
903 }
904
905 ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
906 if (ret < 0) {
907 td_verror(td, ret);
908 break;
909 } else if (!ret)
910 continue;
911
912 icd.nr = ret;
913 ios_completed(td, &icd);
914 if (icd.error) {
915 td_verror(td, icd.error);
916 break;
917 }
918
919 /*
920 * the rate is batched for now, it should work for batches
921 * of completions except the very first one which may look
922 * a little bursty
923 */
924 gettimeofday(&e, NULL);
925 usec = utime_since(&s, &e);
926
927 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
928
929 if (check_min_rate(td, &e)) {
930 td_verror(td, ENOMEM);
931 break;
932 }
933
934 if (runtime_exceeded(td, &e))
935 break;
936
937 if (td->thinktime)
938 usec_sleep(td, td->thinktime);
939
940 if (should_fsync(td) && td->fsync_blocks &&
941 (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
942 td_io_sync(td, f);
943 }
944
945 if (td->cur_depth)
946 cleanup_pending_aio(td);
947
948 if (should_fsync(td) && td->end_fsync) {
949 td_set_runstate(td, TD_FSYNCING);
950 for_each_file(td, f, i)
951 td_io_sync(td, f);
952 }
953}
954
955static int init_io(struct thread_data *td)
956{
957 if (td->io_ops->init)
958 return td->io_ops->init(td);
959
960 return 0;
961}
962
963static void cleanup_io_u(struct thread_data *td)
964{
965 struct list_head *entry, *n;
966 struct io_u *io_u;
967
968 list_for_each_safe(entry, n, &td->io_u_freelist) {
969 io_u = list_entry(entry, struct io_u, list);
970
971 list_del(&io_u->list);
972 free(io_u);
973 }
974
975 if (td->mem_type == MEM_MALLOC)
976 free(td->orig_buffer);
977 else if (td->mem_type == MEM_SHM) {
978 struct shmid_ds sbuf;
979
980 shmdt(td->orig_buffer);
981 shmctl(td->shm_id, IPC_RMID, &sbuf);
982 } else if (td->mem_type == MEM_MMAP)
983 munmap(td->orig_buffer, td->orig_buffer_size);
984 else
985 log_err("Bad memory type %d\n", td->mem_type);
986
987 td->orig_buffer = NULL;
988}
989
990static int init_io_u(struct thread_data *td)
991{
992 struct io_u *io_u;
993 int i, max_units;
994 char *p;
995
996 if (td->io_ops->flags & FIO_CPUIO)
997 return 0;
998
999 if (td->io_ops->flags & FIO_SYNCIO)
1000 max_units = 1;
1001 else
1002 max_units = td->iodepth;
1003
1004 td->orig_buffer_size = td->max_bs * max_units + MASK;
1005
1006 if (td->mem_type == MEM_MALLOC)
1007 td->orig_buffer = malloc(td->orig_buffer_size);
1008 else if (td->mem_type == MEM_SHM) {
1009 td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
1010 if (td->shm_id < 0) {
1011 td_verror(td, errno);
1012 perror("shmget");
1013 return 1;
1014 }
1015
1016 td->orig_buffer = shmat(td->shm_id, NULL, 0);
1017 if (td->orig_buffer == (void *) -1) {
1018 td_verror(td, errno);
1019 perror("shmat");
1020 td->orig_buffer = NULL;
1021 return 1;
1022 }
1023 } else if (td->mem_type == MEM_MMAP) {
1024 td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1025 if (td->orig_buffer == MAP_FAILED) {
1026 td_verror(td, errno);
1027 perror("mmap");
1028 td->orig_buffer = NULL;
1029 return 1;
1030 }
1031 }
1032
1033 p = ALIGN(td->orig_buffer);
1034 for (i = 0; i < max_units; i++) {
1035 io_u = malloc(sizeof(*io_u));
1036 memset(io_u, 0, sizeof(*io_u));
1037 INIT_LIST_HEAD(&io_u->list);
1038
1039 io_u->buf = p + td->max_bs * i;
1040 io_u->index = i;
1041 list_add(&io_u->list, &td->io_u_freelist);
1042 }
1043
1044 return 0;
1045}
1046
1047static int switch_ioscheduler(struct thread_data *td)
1048{
1049 char tmp[256], tmp2[128];
1050 FILE *f;
1051 int ret;
1052
1053 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1054
1055 f = fopen(tmp, "r+");
1056 if (!f) {
1057 td_verror(td, errno);
1058 return 1;
1059 }
1060
1061 /*
1062 * Set io scheduler.
1063 */
1064 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
1065 if (ferror(f) || ret != 1) {
1066 td_verror(td, errno);
1067 fclose(f);
1068 return 1;
1069 }
1070
1071 rewind(f);
1072
1073 /*
1074 * Read back and check that the selected scheduler is now the default.
1075 */
1076 ret = fread(tmp, 1, sizeof(tmp), f);
1077 if (ferror(f) || ret < 0) {
1078 td_verror(td, errno);
1079 fclose(f);
1080 return 1;
1081 }
1082
1083 sprintf(tmp2, "[%s]", td->ioscheduler);
1084 if (!strstr(tmp, tmp2)) {
1085 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
1086 td_verror(td, EINVAL);
1087 fclose(f);
1088 return 1;
1089 }
1090
1091 fclose(f);
1092 return 0;
1093}
1094
1095static void clear_io_state(struct thread_data *td)
1096{
1097 struct fio_file *f;
1098 int i;
1099
1100 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1101 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1102 td->zone_bytes = 0;
1103
1104 for_each_file(td, f, i) {
1105 f->last_pos = 0;
1106 if (td->io_ops->flags & FIO_SYNCIO)
1107 lseek(f->fd, SEEK_SET, 0);
1108
1109 if (f->file_map)
1110 memset(f->file_map, 0, f->num_maps * sizeof(long));
1111 }
1112}
1113
1114/*
1115 * Entry point for the thread based jobs. The process based jobs end up
1116 * here as well, after a little setup.
1117 */
1118static void *thread_main(void *data)
1119{
1120 struct thread_data *td = data;
1121
1122 if (!td->use_thread)
1123 setsid();
1124
1125 td->pid = getpid();
1126
1127 INIT_LIST_HEAD(&td->io_u_freelist);
1128 INIT_LIST_HEAD(&td->io_u_busylist);
1129 INIT_LIST_HEAD(&td->io_hist_list);
1130 INIT_LIST_HEAD(&td->io_log_list);
1131
1132 if (init_io_u(td))
1133 goto err;
1134
1135 if (fio_setaffinity(td) == -1) {
1136 td_verror(td, errno);
1137 goto err;
1138 }
1139
1140 if (init_io(td))
1141 goto err;
1142
1143 if (init_iolog(td))
1144 goto err;
1145
1146 if (td->ioprio) {
1147 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1148 td_verror(td, errno);
1149 goto err;
1150 }
1151 }
1152
1153 if (nice(td->nice) == -1) {
1154 td_verror(td, errno);
1155 goto err;
1156 }
1157
1158 if (init_random_state(td))
1159 goto err;
1160
1161 if (td->ioscheduler && switch_ioscheduler(td))
1162 goto err;
1163
1164 td_set_runstate(td, TD_INITIALIZED);
1165 fio_sem_up(&startup_sem);
1166 fio_sem_down(&td->mutex);
1167
1168 if (!td->create_serialize && setup_files(td))
1169 goto err;
1170
1171 gettimeofday(&td->epoch, NULL);
1172
1173 if (td->exec_prerun)
1174 system(td->exec_prerun);
1175
1176 while (td->loops--) {
1177 getrusage(RUSAGE_SELF, &td->ru_start);
1178 gettimeofday(&td->start, NULL);
1179 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
1180
1181 if (td->ratemin)
1182 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
1183
1184 clear_io_state(td);
1185 prune_io_piece_log(td);
1186
1187 if (td->io_ops->flags & FIO_CPUIO)
1188 do_cpuio(td);
1189 else
1190 do_io(td);
1191
1192 td->runtime[td->ddir] += mtime_since_now(&td->start);
1193 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
1194 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
1195
1196 update_rusage_stat(td);
1197
1198 if (td->error || td->terminate)
1199 break;
1200
1201 if (td->verify == VERIFY_NONE)
1202 continue;
1203
1204 clear_io_state(td);
1205 gettimeofday(&td->start, NULL);
1206
1207 do_verify(td);
1208
1209 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
1210
1211 if (td->error || td->terminate)
1212 break;
1213 }
1214
1215 if (td->bw_log)
1216 finish_log(td, td->bw_log, "bw");
1217 if (td->slat_log)
1218 finish_log(td, td->slat_log, "slat");
1219 if (td->clat_log)
1220 finish_log(td, td->clat_log, "clat");
1221 if (td->write_iolog)
1222 write_iolog_close(td);
1223 if (td->exec_postrun)
1224 system(td->exec_postrun);
1225
1226 if (exitall_on_terminate)
1227 terminate_threads(td->groupid);
1228
1229err:
1230 close_files(td);
1231 close_ioengine(td);
1232 cleanup_io_u(td);
1233 td_set_runstate(td, TD_EXITED);
1234 return NULL;
1235
1236}
1237
1238/*
1239 * We cannot pass the td data into a forked process, so attach the td and
1240 * pass it to the thread worker.
1241 */
1242static void *fork_main(int shmid, int offset)
1243{
1244 struct thread_data *td;
1245 void *data;
1246
1247 data = shmat(shmid, NULL, 0);
1248 if (data == (void *) -1) {
1249 perror("shmat");
1250 return NULL;
1251 }
1252
1253 td = data + offset * sizeof(struct thread_data);
1254 thread_main(td);
1255 shmdt(data);
1256 return NULL;
1257}
1258
1259/*
1260 * Sets the status of the 'td' in the printed status map.
1261 */
1262static void check_str_update(struct thread_data *td)
1263{
1264 char c = run_str[td->thread_number - 1];
1265
1266 switch (td->runstate) {
1267 case TD_REAPED:
1268 c = '_';
1269 break;
1270 case TD_EXITED:
1271 c = 'E';
1272 break;
1273 case TD_RUNNING:
1274 if (td_rw(td)) {
1275 if (td->sequential)
1276 c = 'M';
1277 else
1278 c = 'm';
1279 } else if (td_read(td)) {
1280 if (td->sequential)
1281 c = 'R';
1282 else
1283 c = 'r';
1284 } else {
1285 if (td->sequential)
1286 c = 'W';
1287 else
1288 c = 'w';
1289 }
1290 break;
1291 case TD_VERIFYING:
1292 c = 'V';
1293 break;
1294 case TD_FSYNCING:
1295 c = 'F';
1296 break;
1297 case TD_CREATED:
1298 c = 'C';
1299 break;
1300 case TD_INITIALIZED:
1301 c = 'I';
1302 break;
1303 case TD_NOT_CREATED:
1304 c = 'P';
1305 break;
1306 default:
1307 log_err("state %d\n", td->runstate);
1308 }
1309
1310 run_str[td->thread_number - 1] = c;
1311}
1312
1313/*
1314 * Convert seconds to a printable string.
1315 */
1316static void eta_to_str(char *str, int eta_sec)
1317{
1318 unsigned int d, h, m, s;
1319 static int always_d, always_h;
1320
1321 d = h = m = s = 0;
1322
1323 s = eta_sec % 60;
1324 eta_sec /= 60;
1325 m = eta_sec % 60;
1326 eta_sec /= 60;
1327 h = eta_sec % 24;
1328 eta_sec /= 24;
1329 d = eta_sec;
1330
1331 if (d || always_d) {
1332 always_d = 1;
1333 str += sprintf(str, "%02dd:", d);
1334 }
1335 if (h || always_h) {
1336 always_h = 1;
1337 str += sprintf(str, "%02dh:", h);
1338 }
1339
1340 str += sprintf(str, "%02dm:", m);
1341 str += sprintf(str, "%02ds", s);
1342}
1343
1344/*
1345 * Best effort calculation of the estimated pending runtime of a job.
1346 */
1347static int thread_eta(struct thread_data *td, unsigned long elapsed)
1348{
1349 unsigned long long bytes_total, bytes_done;
1350 unsigned int eta_sec = 0;
1351
1352 bytes_total = td->total_io_size;
1353
1354 /*
1355 * if writing, bytes_total will be twice the size. If mixing,
1356 * assume a 50/50 split and thus bytes_total will be 50% larger.
1357 */
1358 if (td->verify) {
1359 if (td_rw(td))
1360 bytes_total = bytes_total * 3 / 2;
1361 else
1362 bytes_total <<= 1;
1363 }
1364 if (td->zone_size && td->zone_skip)
1365 bytes_total /= (td->zone_skip / td->zone_size);
1366
1367 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
1368 double perc;
1369
1370 bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
1371 perc = (double) bytes_done / (double) bytes_total;
1372 if (perc > 1.0)
1373 perc = 1.0;
1374
1375 eta_sec = (elapsed * (1.0 / perc)) - elapsed;
1376
1377 if (td->timeout && eta_sec > (td->timeout - elapsed))
1378 eta_sec = td->timeout - elapsed;
1379 } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
1380 || td->runstate == TD_INITIALIZED) {
1381 int t_eta = 0, r_eta = 0;
1382
1383 /*
1384 * We can only guess - assume it'll run the full timeout
1385 * if given, otherwise assume it'll run at the specified rate.
1386 */
1387 if (td->timeout)
1388 t_eta = td->timeout + td->start_delay - elapsed;
1389 if (td->rate) {
1390 r_eta = (bytes_total / 1024) / td->rate;
1391 r_eta += td->start_delay - elapsed;
1392 }
1393
1394 if (r_eta && t_eta)
1395 eta_sec = min(r_eta, t_eta);
1396 else if (r_eta)
1397 eta_sec = r_eta;
1398 else if (t_eta)
1399 eta_sec = t_eta;
1400 else
1401 eta_sec = 0;
1402 } else {
1403 /*
1404 * thread is already done or waiting for fsync
1405 */
1406 eta_sec = 0;
1407 }
1408
1409 return eta_sec;
1410}
1411
1412/*
1413 * Print status of the jobs we know about. This includes rate estimates,
1414 * ETA, thread state, etc.
1415 */
1416static void print_thread_status(void)
1417{
1418 unsigned long elapsed = time_since_now(&genesis);
1419 int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
1420 char eta_str[32];
1421 double perc = 0.0;
1422
1423 if (temp_stall_ts || terse_output)
1424 return;
1425
1426 eta_secs = malloc(thread_number * sizeof(int));
1427 memset(eta_secs, 0, thread_number * sizeof(int));
1428
1429 nr_pending = nr_running = t_rate = m_rate = 0;
1430 for (i = 0; i < thread_number; i++) {
1431 struct thread_data *td = &threads[i];
1432
1433 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
1434 td->runstate == TD_FSYNCING) {
1435 nr_running++;
1436 t_rate += td->rate;
1437 m_rate += td->ratemin;
1438 } else if (td->runstate < TD_RUNNING)
1439 nr_pending++;
1440
1441 if (elapsed >= 3)
1442 eta_secs[i] = thread_eta(td, elapsed);
1443 else
1444 eta_secs[i] = INT_MAX;
1445
1446 check_str_update(td);
1447 }
1448
1449 if (exitall_on_terminate)
1450 eta_sec = INT_MAX;
1451 else
1452 eta_sec = 0;
1453
1454 for (i = 0; i < thread_number; i++) {
1455 if (exitall_on_terminate) {
1456 if (eta_secs[i] < eta_sec)
1457 eta_sec = eta_secs[i];
1458 } else {
1459 if (eta_secs[i] > eta_sec)
1460 eta_sec = eta_secs[i];
1461 }
1462 }
1463
1464 if (eta_sec != INT_MAX && elapsed) {
1465 perc = (double) elapsed / (double) (elapsed + eta_sec);
1466 eta_to_str(eta_str, eta_sec);
1467 }
1468
1469 if (!nr_running && !nr_pending)
1470 return;
1471
1472 printf("Threads running: %d", nr_running);
1473 if (m_rate || t_rate)
1474 printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
1475 if (eta_sec != INT_MAX && nr_running) {
1476 perc *= 100.0;
1477 printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
1478 }
1479 printf("\r");
1480 fflush(stdout);
1481 free(eta_secs);
1482}
1483
1484/*
1485 * Run over the job map and reap the threads that have exited, if any.
1486 */
1487static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1488{
1489 int i, cputhreads;
1490
1491 /*
1492 * reap exited threads (TD_EXITED -> TD_REAPED)
1493 */
1494 for (i = 0, cputhreads = 0; i < thread_number; i++) {
1495 struct thread_data *td = &threads[i];
1496
1497 if (td->io_ops->flags & FIO_CPUIO)
1498 cputhreads++;
1499
1500 if (td->runstate != TD_EXITED)
1501 continue;
1502
1503 td_set_runstate(td, TD_REAPED);
1504
1505 if (td->use_thread) {
1506 long ret;
1507
1508 if (pthread_join(td->thread, (void *) &ret))
1509 perror("thread_join");
1510 } else
1511 waitpid(td->pid, NULL, 0);
1512
1513 (*nr_running)--;
1514 (*m_rate) -= td->ratemin;
1515 (*t_rate) -= td->rate;
1516 }
1517
1518 if (*nr_running == cputhreads)
1519 terminate_threads(TERMINATE_ALL);
1520}
1521
1522static void fio_unpin_memory(void *pinned)
1523{
1524 if (pinned) {
1525 if (munlock(pinned, mlock_size) < 0)
1526 perror("munlock");
1527 munmap(pinned, mlock_size);
1528 }
1529}
1530
1531static void *fio_pin_memory(void)
1532{
1533 unsigned long long phys_mem;
1534 void *ptr;
1535
1536 if (!mlock_size)
1537 return NULL;
1538
1539 /*
1540 * Don't allow mlock of more than real_mem-128MB
1541 */
1542 phys_mem = os_phys_mem();
1543 if (phys_mem) {
1544 if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
1545 mlock_size = phys_mem - 128 * 1024 * 1024;
1546 fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
1547 }
1548 }
1549
1550 ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1551 if (!ptr) {
1552 perror("malloc locked mem");
1553 return NULL;
1554 }
1555 if (mlock(ptr, mlock_size) < 0) {
1556 munmap(ptr, mlock_size);
1557 perror("mlock");
1558 return NULL;
1559 }
1560
1561 return ptr;
1562}
1563
1564/*
1565 * Main function for kicking off and reaping jobs, as needed.
1566 */
1567static void run_threads(void)
1568{
1569 struct thread_data *td;
1570 unsigned long spent;
1571 int i, todo, nr_running, m_rate, t_rate, nr_started;
1572 void *mlocked_mem;
1573
1574 mlocked_mem = fio_pin_memory();
1575
1576 if (!terse_output) {
1577 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
1578 fflush(stdout);
1579 }
1580
1581 signal(SIGINT, sig_handler);
1582 signal(SIGALRM, sig_handler);
1583
1584 todo = thread_number;
1585 nr_running = 0;
1586 nr_started = 0;
1587 m_rate = t_rate = 0;
1588
1589 for (i = 0; i < thread_number; i++) {
1590 td = &threads[i];
1591
1592 run_str[td->thread_number - 1] = 'P';
1593
1594 init_disk_util(td);
1595
1596 if (!td->create_serialize)
1597 continue;
1598
1599 /*
1600 * do file setup here so it happens sequentially,
1601 * we don't want X number of threads getting their
1602 * client data interspersed on disk
1603 */
1604 if (setup_files(td)) {
1605 td_set_runstate(td, TD_REAPED);
1606 todo--;
1607 }
1608 }
1609
1610 gettimeofday(&genesis, NULL);
1611
1612 while (todo) {
1613 struct thread_data *map[MAX_JOBS];
1614 struct timeval this_start;
1615 int this_jobs = 0, left;
1616
1617 /*
1618 * create threads (TD_NOT_CREATED -> TD_CREATED)
1619 */
1620 for (i = 0; i < thread_number; i++) {
1621 td = &threads[i];
1622
1623 if (td->runstate != TD_NOT_CREATED)
1624 continue;
1625
1626 /*
1627 * never got a chance to start, killed by other
1628 * thread for some reason
1629 */
1630 if (td->terminate) {
1631 todo--;
1632 continue;
1633 }
1634
1635 if (td->start_delay) {
1636 spent = mtime_since_now(&genesis);
1637
1638 if (td->start_delay * 1000 > spent)
1639 continue;
1640 }
1641
1642 if (td->stonewall && (nr_started || nr_running))
1643 break;
1644
1645 /*
1646 * Set state to created. Thread will transition
1647 * to TD_INITIALIZED when it's done setting up.
1648 */
1649 td_set_runstate(td, TD_CREATED);
1650 map[this_jobs++] = td;
1651 fio_sem_init(&startup_sem, 1);
1652 nr_started++;
1653
1654 if (td->use_thread) {
1655 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1656 perror("thread_create");
1657 nr_started--;
1658 }
1659 } else {
1660 if (fork())
1661 fio_sem_down(&startup_sem);
1662 else {
1663 fork_main(shm_id, i);
1664 exit(0);
1665 }
1666 }
1667 }
1668
1669 /*
1670 * Wait for the started threads to transition to
1671 * TD_INITIALIZED.
1672 */
1673 gettimeofday(&this_start, NULL);
1674 left = this_jobs;
1675 while (left) {
1676 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1677 break;
1678
1679 usleep(100000);
1680
1681 for (i = 0; i < this_jobs; i++) {
1682 td = map[i];
1683 if (!td)
1684 continue;
1685 if (td->runstate == TD_INITIALIZED) {
1686 map[i] = NULL;
1687 left--;
1688 } else if (td->runstate >= TD_EXITED) {
1689 map[i] = NULL;
1690 left--;
1691 todo--;
1692 nr_running++; /* work-around... */
1693 }
1694 }
1695 }
1696
1697 if (left) {
1698 log_err("fio: %d jobs failed to start\n", left);
1699 for (i = 0; i < this_jobs; i++) {
1700 td = map[i];
1701 if (!td)
1702 continue;
1703 kill(td->pid, SIGTERM);
1704 }
1705 break;
1706 }
1707
1708 /*
1709 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1710 */
1711 for (i = 0; i < thread_number; i++) {
1712 td = &threads[i];
1713
1714 if (td->runstate != TD_INITIALIZED)
1715 continue;
1716
1717 td_set_runstate(td, TD_RUNNING);
1718 nr_running++;
1719 nr_started--;
1720 m_rate += td->ratemin;
1721 t_rate += td->rate;
1722 todo--;
1723 fio_sem_up(&td->mutex);
1724 }
1725
1726 reap_threads(&nr_running, &t_rate, &m_rate);
1727
1728 if (todo)
1729 usleep(100000);
1730 }
1731
1732 while (nr_running) {
1733 reap_threads(&nr_running, &t_rate, &m_rate);
1734 usleep(10000);
1735 }
1736
1737 update_io_ticks();
1738 fio_unpin_memory(mlocked_mem);
1739}
1740
1741int main(int argc, char *argv[])
1742{
1743 if (parse_options(argc, argv))
1744 return 1;
1745
1746 if (!thread_number) {
1747 log_err("Nothing to do\n");
1748 return 1;
1749 }
1750
1751 disk_util_timer_arm();
1752
1753 run_threads();
1754 show_run_stats();
1755
1756 return 0;
1757}