[PATCH] Fix compile on hosts that have the splice stuff included
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22#include <unistd.h>
23#include <fcntl.h>
24#include <string.h>
25#include <signal.h>
26#include <time.h>
27#include <assert.h>
28#include <sys/stat.h>
29#include <sys/wait.h>
30#include <sys/ipc.h>
31#include <sys/shm.h>
32#include <sys/ioctl.h>
33#include <sys/mman.h>
34
35#include "fio.h"
36#include "os.h"
37
38#define MASK (4095)
39
40#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
41
42int groupid = 0;
43int thread_number = 0;
44static char run_str[MAX_JOBS + 1];
45int shm_id = 0;
46static struct timeval genesis;
47static int temp_stall_ts;
48
49static void print_thread_status(void);
50
51extern unsigned long long mlock_size;
52
53/*
54 * Thread life cycle. Once a thread has a runstate beyond TD_INITIALIZED, it
55 * will never back again. It may cycle between running/verififying/fsyncing.
56 * Once the thread reaches TD_EXITED, it is just waiting for the core to
57 * reap it.
58 */
59enum {
60 TD_NOT_CREATED = 0,
61 TD_CREATED,
62 TD_INITIALIZED,
63 TD_RUNNING,
64 TD_VERIFYING,
65 TD_FSYNCING,
66 TD_EXITED,
67 TD_REAPED,
68};
69
70#define should_fsync(td) ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
71
72static volatile int startup_sem;
73
74#define TERMINATE_ALL (-1)
75#define JOB_START_TIMEOUT (5 * 1000)
76
77static void terminate_threads(int group_id)
78{
79 int i;
80
81 for (i = 0; i < thread_number; i++) {
82 struct thread_data *td = &threads[i];
83
84 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
85 td->terminate = 1;
86 td->start_delay = 0;
87 }
88 }
89}
90
91static void sig_handler(int sig)
92{
93 switch (sig) {
94 case SIGALRM:
95 update_io_ticks();
96 disk_util_timer_arm();
97 print_thread_status();
98 break;
99 default:
100 printf("\nfio: terminating on signal\n");
101 fflush(stdout);
102 terminate_threads(TERMINATE_ALL);
103 break;
104 }
105}
106
107/*
108 * The ->file_map[] contains a map of blocks we have or have not done io
109 * to yet. Used to make sure we cover the entire range in a fair fashion.
110 */
111static int random_map_free(struct thread_data *td, unsigned long long block)
112{
113 unsigned int idx = RAND_MAP_IDX(td, block);
114 unsigned int bit = RAND_MAP_BIT(td, block);
115
116 return (td->file_map[idx] & (1UL << bit)) == 0;
117}
118
119/*
120 * Return the next free block in the map.
121 */
122static int get_next_free_block(struct thread_data *td, unsigned long long *b)
123{
124 int i;
125
126 *b = 0;
127 i = 0;
128 while ((*b) * td->min_bs < td->io_size) {
129 if (td->file_map[i] != -1UL) {
130 *b += ffz(td->file_map[i]);
131 return 0;
132 }
133
134 *b += BLOCKS_PER_MAP;
135 i++;
136 }
137
138 return 1;
139}
140
141/*
142 * Mark a given offset as used in the map.
143 */
144static void mark_random_map(struct thread_data *td, struct io_u *io_u)
145{
146 unsigned long long block = io_u->offset / (unsigned long long) td->min_bs;
147 unsigned int blocks = 0;
148
149 while (blocks < (io_u->buflen / td->min_bs)) {
150 unsigned int idx, bit;
151
152 if (!random_map_free(td, block))
153 break;
154
155 idx = RAND_MAP_IDX(td, block);
156 bit = RAND_MAP_BIT(td, block);
157
158 assert(idx < td->num_maps);
159
160 td->file_map[idx] |= (1UL << bit);
161 block++;
162 blocks++;
163 }
164
165 if ((blocks * td->min_bs) < io_u->buflen)
166 io_u->buflen = blocks * td->min_bs;
167}
168
169/*
170 * For random io, generate a random new block and see if it's used. Repeat
171 * until we find a free one. For sequential io, just return the end of
172 * the last io issued.
173 */
174static int get_next_offset(struct thread_data *td, unsigned long long *offset)
175{
176 unsigned long long b, rb;
177 long r;
178
179 if (!td->sequential) {
180 unsigned long long max_blocks = td->io_size / td->min_bs;
181 int loops = 50;
182
183 do {
184 r = os_random_long(&td->random_state);
185 b = ((max_blocks - 1) * r / (unsigned long long) (RAND_MAX+1.0));
186 rb = b + (td->file_offset / td->min_bs);
187 loops--;
188 } while (!random_map_free(td, rb) && loops);
189
190 if (!loops) {
191 if (get_next_free_block(td, &b))
192 return 1;
193 }
194 } else
195 b = td->last_pos / td->min_bs;
196
197 *offset = (b * td->min_bs) + td->file_offset;
198 if (*offset > td->real_file_size)
199 return 1;
200
201 return 0;
202}
203
204static unsigned int get_next_buflen(struct thread_data *td)
205{
206 unsigned int buflen;
207 long r;
208
209 if (td->min_bs == td->max_bs)
210 buflen = td->min_bs;
211 else {
212 r = os_random_long(&td->bsrange_state);
213 buflen = (1 + (double) (td->max_bs - 1) * r / (RAND_MAX + 1.0));
214 buflen = (buflen + td->min_bs - 1) & ~(td->min_bs - 1);
215 }
216
217 if (buflen > td->io_size - td->this_io_bytes[td->ddir])
218 buflen = td->io_size - td->this_io_bytes[td->ddir];
219
220 return buflen;
221}
222
223/*
224 * Check if we are above the minimum rate given.
225 */
226static int check_min_rate(struct thread_data *td, struct timeval *now)
227{
228 unsigned long spent;
229 unsigned long rate;
230 int ddir = td->ddir;
231
232 /*
233 * allow a 2 second settle period in the beginning
234 */
235 if (mtime_since(&td->start, now) < 2000)
236 return 0;
237
238 /*
239 * if rate blocks is set, sample is running
240 */
241 if (td->rate_bytes) {
242 spent = mtime_since(&td->lastrate, now);
243 if (spent < td->ratecycle)
244 return 0;
245
246 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
247 if (rate < td->ratemin) {
248 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
249 if (rate_quit)
250 terminate_threads(td->groupid);
251 return 1;
252 }
253 }
254
255 td->rate_bytes = td->this_io_bytes[ddir];
256 memcpy(&td->lastrate, now, sizeof(*now));
257 return 0;
258}
259
260static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
261{
262 if (!td->timeout)
263 return 0;
264 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
265 return 1;
266
267 return 0;
268}
269
270static void fill_random_bytes(struct thread_data *td,
271 unsigned char *p, unsigned int len)
272{
273 unsigned int todo;
274 double r;
275
276 while (len) {
277 r = os_random_double(&td->verify_state);
278
279 /*
280 * lrand48_r seems to be broken and only fill the bottom
281 * 32-bits, even on 64-bit archs with 64-bit longs
282 */
283 todo = sizeof(r);
284 if (todo > len)
285 todo = len;
286
287 memcpy(p, &r, todo);
288
289 len -= todo;
290 p += todo;
291 }
292}
293
294static void hexdump(void *buffer, int len)
295{
296 unsigned char *p = buffer;
297 int i;
298
299 for (i = 0; i < len; i++)
300 fprintf(f_out, "%02x", p[i]);
301 fprintf(f_out, "\n");
302}
303
304static int verify_io_u_crc32(struct verify_header *hdr, struct io_u *io_u)
305{
306 unsigned char *p = (unsigned char *) io_u->buf;
307 unsigned long c;
308
309 p += sizeof(*hdr);
310 c = crc32(p, hdr->len - sizeof(*hdr));
311
312 if (c != hdr->crc32) {
313 log_err("crc32: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
314 log_err("crc32: wanted %lx, got %lx\n", hdr->crc32, c);
315 return 1;
316 }
317
318 return 0;
319}
320
321static int verify_io_u_md5(struct verify_header *hdr, struct io_u *io_u)
322{
323 unsigned char *p = (unsigned char *) io_u->buf;
324 struct md5_ctx md5_ctx;
325
326 memset(&md5_ctx, 0, sizeof(md5_ctx));
327 p += sizeof(*hdr);
328 md5_update(&md5_ctx, p, hdr->len - sizeof(*hdr));
329
330 if (memcmp(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash))) {
331 log_err("md5: verify failed at %llu/%u\n", io_u->offset, io_u->buflen);
332 hexdump(hdr->md5_digest, sizeof(hdr->md5_digest));
333 hexdump(md5_ctx.hash, sizeof(md5_ctx.hash));
334 return 1;
335 }
336
337 return 0;
338}
339
340static int verify_io_u(struct io_u *io_u)
341{
342 struct verify_header *hdr = (struct verify_header *) io_u->buf;
343 int ret;
344
345 if (hdr->fio_magic != FIO_HDR_MAGIC)
346 return 1;
347
348 if (hdr->verify_type == VERIFY_MD5)
349 ret = verify_io_u_md5(hdr, io_u);
350 else if (hdr->verify_type == VERIFY_CRC32)
351 ret = verify_io_u_crc32(hdr, io_u);
352 else {
353 log_err("Bad verify type %d\n", hdr->verify_type);
354 ret = 1;
355 }
356
357 return ret;
358}
359
360static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
361{
362 hdr->crc32 = crc32(p, len);
363}
364
365static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
366{
367 struct md5_ctx md5_ctx;
368
369 memset(&md5_ctx, 0, sizeof(md5_ctx));
370 md5_update(&md5_ctx, p, len);
371 memcpy(hdr->md5_digest, md5_ctx.hash, sizeof(md5_ctx.hash));
372}
373
374/*
375 * Return the data direction for the next io_u. If the job is a
376 * mixed read/write workload, check the rwmix cycle and switch if
377 * necessary.
378 */
379static int get_rw_ddir(struct thread_data *td)
380{
381 if (td_rw(td)) {
382 struct timeval now;
383 unsigned long elapsed;
384
385 gettimeofday(&now, NULL);
386 elapsed = mtime_since_now(&td->rwmix_switch);
387
388 /*
389 * Check if it's time to seed a new data direction.
390 */
391 if (elapsed >= td->rwmixcycle) {
392 int v;
393 long r;
394
395 r = os_random_long(&td->rwmix_state);
396 v = 1 + (int) (100.0 * (r / (RAND_MAX + 1.0)));
397 if (v < td->rwmixread)
398 td->rwmix_ddir = DDIR_READ;
399 else
400 td->rwmix_ddir = DDIR_WRITE;
401 memcpy(&td->rwmix_switch, &now, sizeof(now));
402 }
403 return td->rwmix_ddir;
404 } else if (td_read(td))
405 return DDIR_READ;
406 else
407 return DDIR_WRITE;
408}
409
410/*
411 * fill body of io_u->buf with random data and add a header with the
412 * crc32 or md5 sum of that data.
413 */
414static void populate_io_u(struct thread_data *td, struct io_u *io_u)
415{
416 unsigned char *p = (unsigned char *) io_u->buf;
417 struct verify_header hdr;
418
419 hdr.fio_magic = FIO_HDR_MAGIC;
420 hdr.len = io_u->buflen;
421 p += sizeof(hdr);
422 fill_random_bytes(td, p, io_u->buflen - sizeof(hdr));
423
424 if (td->verify == VERIFY_MD5) {
425 fill_md5(&hdr, p, io_u->buflen - sizeof(hdr));
426 hdr.verify_type = VERIFY_MD5;
427 } else {
428 fill_crc32(&hdr, p, io_u->buflen - sizeof(hdr));
429 hdr.verify_type = VERIFY_CRC32;
430 }
431
432 memcpy(io_u->buf, &hdr, sizeof(hdr));
433}
434
435static int td_io_prep(struct thread_data *td, struct io_u *io_u)
436{
437 if (td->io_prep && td->io_prep(td, io_u))
438 return 1;
439
440 return 0;
441}
442
443void put_io_u(struct thread_data *td, struct io_u *io_u)
444{
445 list_del(&io_u->list);
446 list_add(&io_u->list, &td->io_u_freelist);
447 td->cur_depth--;
448}
449
450static int fill_io_u(struct thread_data *td, struct io_u *io_u)
451{
452 /*
453 * If using an iolog, grab next piece if any available.
454 */
455 if (td->read_iolog)
456 return read_iolog_get(td, io_u);
457
458 /*
459 * No log, let the seq/rand engine retrieve the next position.
460 */
461 if (!get_next_offset(td, &io_u->offset)) {
462 io_u->buflen = get_next_buflen(td);
463
464 if (io_u->buflen) {
465 io_u->ddir = get_rw_ddir(td);
466
467 /*
468 * If using a write iolog, store this entry.
469 */
470 if (td->write_iolog)
471 write_iolog_put(td, io_u);
472
473 return 0;
474 }
475 }
476
477 return 1;
478}
479
480#define queue_full(td) list_empty(&(td)->io_u_freelist)
481
482struct io_u *__get_io_u(struct thread_data *td)
483{
484 struct io_u *io_u = NULL;
485
486 if (!queue_full(td)) {
487 io_u = list_entry(td->io_u_freelist.next, struct io_u, list);
488
489 io_u->error = 0;
490 io_u->resid = 0;
491 list_del(&io_u->list);
492 list_add(&io_u->list, &td->io_u_busylist);
493 td->cur_depth++;
494 }
495
496 return io_u;
497}
498
499/*
500 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
501 * etc. The returned io_u is fully ready to be prepped and submitted.
502 */
503static struct io_u *get_io_u(struct thread_data *td)
504{
505 struct io_u *io_u;
506
507 io_u = __get_io_u(td);
508 if (!io_u)
509 return NULL;
510
511 if (td->zone_bytes >= td->zone_size) {
512 td->zone_bytes = 0;
513 td->last_pos += td->zone_skip;
514 }
515
516 if (fill_io_u(td, io_u)) {
517 put_io_u(td, io_u);
518 return NULL;
519 }
520
521 if (io_u->buflen + io_u->offset > td->real_file_size)
522 io_u->buflen = td->real_file_size - io_u->offset;
523
524 if (!io_u->buflen) {
525 put_io_u(td, io_u);
526 return NULL;
527 }
528
529 if (!td->read_iolog && !td->sequential)
530 mark_random_map(td, io_u);
531
532 td->last_pos += io_u->buflen;
533
534 if (td->verify != VERIFY_NONE)
535 populate_io_u(td, io_u);
536
537 if (td_io_prep(td, io_u)) {
538 put_io_u(td, io_u);
539 return NULL;
540 }
541
542 gettimeofday(&io_u->start_time, NULL);
543 return io_u;
544}
545
546static inline void td_set_runstate(struct thread_data *td, int runstate)
547{
548 td->runstate = runstate;
549}
550
551static int get_next_verify(struct thread_data *td, struct io_u *io_u)
552{
553 struct io_piece *ipo;
554
555 if (!list_empty(&td->io_hist_list)) {
556 ipo = list_entry(td->io_hist_list.next, struct io_piece, list);
557
558 list_del(&ipo->list);
559
560 io_u->offset = ipo->offset;
561 io_u->buflen = ipo->len;
562 io_u->ddir = DDIR_READ;
563 free(ipo);
564 return 0;
565 }
566
567 return 1;
568}
569
570static int sync_td(struct thread_data *td)
571{
572 if (td->io_sync)
573 return td->io_sync(td);
574
575 return 0;
576}
577
578static int io_u_getevents(struct thread_data *td, int min, int max,
579 struct timespec *t)
580{
581 return td->io_getevents(td, min, max, t);
582}
583
584static int io_u_queue(struct thread_data *td, struct io_u *io_u)
585{
586 gettimeofday(&io_u->issue_time, NULL);
587
588 return td->io_queue(td, io_u);
589}
590
591#define iocb_time(iocb) ((unsigned long) (iocb)->data)
592
593static void io_completed(struct thread_data *td, struct io_u *io_u,
594 struct io_completion_data *icd)
595{
596 struct timeval e;
597 unsigned long msec;
598
599 gettimeofday(&e, NULL);
600
601 if (!io_u->error) {
602 unsigned int bytes = io_u->buflen - io_u->resid;
603 const int idx = io_u->ddir;
604
605 td->io_blocks[idx]++;
606 td->io_bytes[idx] += bytes;
607 td->zone_bytes += bytes;
608 td->this_io_bytes[idx] += bytes;
609
610 msec = mtime_since(&io_u->issue_time, &e);
611
612 add_clat_sample(td, idx, msec);
613 add_bw_sample(td, idx);
614
615 if ((td_rw(td) || td_write(td)) && idx == DDIR_WRITE)
616 log_io_piece(td, io_u);
617
618 icd->bytes_done[idx] += bytes;
619 } else
620 icd->error = io_u->error;
621}
622
623static void ios_completed(struct thread_data *td,struct io_completion_data *icd)
624{
625 struct io_u *io_u;
626 int i;
627
628 icd->error = 0;
629 icd->bytes_done[0] = icd->bytes_done[1] = 0;
630
631 for (i = 0; i < icd->nr; i++) {
632 io_u = td->io_event(td, i);
633
634 io_completed(td, io_u, icd);
635 put_io_u(td, io_u);
636 }
637}
638
639/*
640 * When job exits, we can cancel the in-flight IO if we are using async
641 * io. Attempt to do so.
642 */
643static void cleanup_pending_aio(struct thread_data *td)
644{
645 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
646 struct list_head *entry, *n;
647 struct io_completion_data icd;
648 struct io_u *io_u;
649 int r;
650
651 /*
652 * get immediately available events, if any
653 */
654 r = io_u_getevents(td, 0, td->cur_depth, &ts);
655 if (r > 0) {
656 icd.nr = r;
657 ios_completed(td, &icd);
658 }
659
660 /*
661 * now cancel remaining active events
662 */
663 if (td->io_cancel) {
664 list_for_each_safe(entry, n, &td->io_u_busylist) {
665 io_u = list_entry(entry, struct io_u, list);
666
667 r = td->io_cancel(td, io_u);
668 if (!r)
669 put_io_u(td, io_u);
670 }
671 }
672
673 if (td->cur_depth) {
674 r = io_u_getevents(td, td->cur_depth, td->cur_depth, NULL);
675 if (r > 0) {
676 icd.nr = r;
677 ios_completed(td, &icd);
678 }
679 }
680}
681
682static int do_io_u_verify(struct thread_data *td, struct io_u **io_u)
683{
684 struct io_u *v_io_u = *io_u;
685 int ret = 0;
686
687 if (v_io_u) {
688 ret = verify_io_u(v_io_u);
689 put_io_u(td, v_io_u);
690 *io_u = NULL;
691 }
692
693 return ret;
694}
695
696/*
697 * The main verify engine. Runs over the writes we previusly submitted,
698 * reads the blocks back in, and checks the crc/md5 of the data.
699 */
700static void do_verify(struct thread_data *td)
701{
702 struct timeval t;
703 struct io_u *io_u, *v_io_u = NULL;
704 struct io_completion_data icd;
705 int ret;
706
707 td_set_runstate(td, TD_VERIFYING);
708
709 do {
710 if (td->terminate)
711 break;
712
713 gettimeofday(&t, NULL);
714 if (runtime_exceeded(td, &t))
715 break;
716
717 io_u = __get_io_u(td);
718 if (!io_u)
719 break;
720
721 if (get_next_verify(td, io_u)) {
722 put_io_u(td, io_u);
723 break;
724 }
725
726 if (td_io_prep(td, io_u)) {
727 put_io_u(td, io_u);
728 break;
729 }
730
731 ret = io_u_queue(td, io_u);
732 if (ret) {
733 put_io_u(td, io_u);
734 td_verror(td, ret);
735 break;
736 }
737
738 /*
739 * we have one pending to verify, do that while
740 * we are doing io on the next one
741 */
742 if (do_io_u_verify(td, &v_io_u))
743 break;
744
745 ret = io_u_getevents(td, 1, 1, NULL);
746 if (ret != 1) {
747 if (ret < 0)
748 td_verror(td, ret);
749 break;
750 }
751
752 v_io_u = td->io_event(td, 0);
753 icd.nr = 1;
754 icd.error = 0;
755 io_completed(td, v_io_u, &icd);
756
757 if (icd.error) {
758 td_verror(td, icd.error);
759 put_io_u(td, v_io_u);
760 v_io_u = NULL;
761 break;
762 }
763
764 /*
765 * if we can't submit more io, we need to verify now
766 */
767 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
768 break;
769
770 } while (1);
771
772 do_io_u_verify(td, &v_io_u);
773
774 if (td->cur_depth)
775 cleanup_pending_aio(td);
776
777 td_set_runstate(td, TD_RUNNING);
778}
779
780/*
781 * Not really an io thread, all it does is burn CPU cycles in the specified
782 * manner.
783 */
784static void do_cpuio(struct thread_data *td)
785{
786 struct timeval e;
787 int split = 100 / td->cpuload;
788 int i = 0;
789
790 while (!td->terminate) {
791 gettimeofday(&e, NULL);
792
793 if (runtime_exceeded(td, &e))
794 break;
795
796 if (!(i % split))
797 __usec_sleep(10000);
798 else
799 usec_sleep(td, 10000);
800
801 i++;
802 }
803}
804
805/*
806 * Main IO worker function. It retrieves io_u's to process and queues
807 * and reaps them, checking for rate and errors along the way.
808 */
809static void do_io(struct thread_data *td)
810{
811 struct io_completion_data icd;
812 struct timeval s, e;
813 unsigned long usec;
814
815 td_set_runstate(td, TD_RUNNING);
816
817 while (td->this_io_bytes[td->ddir] < td->io_size) {
818 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
819 struct timespec *timeout;
820 int ret, min_evts = 0;
821 struct io_u *io_u;
822
823 if (td->terminate)
824 break;
825
826 io_u = get_io_u(td);
827 if (!io_u)
828 break;
829
830 memcpy(&s, &io_u->start_time, sizeof(s));
831
832 ret = io_u_queue(td, io_u);
833 if (ret) {
834 put_io_u(td, io_u);
835 td_verror(td, ret);
836 break;
837 }
838
839 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
840
841 if (td->cur_depth < td->iodepth) {
842 timeout = &ts;
843 min_evts = 0;
844 } else {
845 timeout = NULL;
846 min_evts = 1;
847 }
848
849 ret = io_u_getevents(td, min_evts, td->cur_depth, timeout);
850 if (ret < 0) {
851 td_verror(td, ret);
852 break;
853 } else if (!ret)
854 continue;
855
856 icd.nr = ret;
857 ios_completed(td, &icd);
858 if (icd.error) {
859 td_verror(td, icd.error);
860 break;
861 }
862
863 /*
864 * the rate is batched for now, it should work for batches
865 * of completions except the very first one which may look
866 * a little bursty
867 */
868 gettimeofday(&e, NULL);
869 usec = utime_since(&s, &e);
870
871 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
872
873 if (check_min_rate(td, &e)) {
874 td_verror(td, ENOMEM);
875 break;
876 }
877
878 if (runtime_exceeded(td, &e))
879 break;
880
881 if (td->thinktime)
882 usec_sleep(td, td->thinktime);
883
884 if (should_fsync(td) && td->fsync_blocks &&
885 (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
886 sync_td(td);
887 }
888
889 if (td->cur_depth)
890 cleanup_pending_aio(td);
891
892 if (should_fsync(td) && td->end_fsync) {
893 td_set_runstate(td, TD_FSYNCING);
894 sync_td(td);
895 }
896}
897
898static void cleanup_io(struct thread_data *td)
899{
900 if (td->io_cleanup)
901 td->io_cleanup(td);
902}
903
904static int init_io(struct thread_data *td)
905{
906 if (td->io_engine == FIO_SYNCIO)
907 return fio_syncio_init(td);
908 else if (td->io_engine == FIO_MMAPIO)
909 return fio_mmapio_init(td);
910 else if (td->io_engine == FIO_LIBAIO)
911 return fio_libaio_init(td);
912 else if (td->io_engine == FIO_POSIXAIO)
913 return fio_posixaio_init(td);
914 else if (td->io_engine == FIO_SGIO)
915 return fio_sgio_init(td);
916 else if (td->io_engine == FIO_SPLICEIO)
917 return fio_spliceio_init(td);
918 else if (td->io_engine == FIO_CPUIO)
919 return fio_cpuio_init(td);
920 else {
921 log_err("bad io_engine %d\n", td->io_engine);
922 return 1;
923 }
924}
925
926static void cleanup_io_u(struct thread_data *td)
927{
928 struct list_head *entry, *n;
929 struct io_u *io_u;
930
931 list_for_each_safe(entry, n, &td->io_u_freelist) {
932 io_u = list_entry(entry, struct io_u, list);
933
934 list_del(&io_u->list);
935 free(io_u);
936 }
937
938 if (td->mem_type == MEM_MALLOC)
939 free(td->orig_buffer);
940 else if (td->mem_type == MEM_SHM) {
941 struct shmid_ds sbuf;
942
943 shmdt(td->orig_buffer);
944 shmctl(td->shm_id, IPC_RMID, &sbuf);
945 } else if (td->mem_type == MEM_MMAP)
946 munmap(td->orig_buffer, td->orig_buffer_size);
947 else
948 log_err("Bad memory type %d\n", td->mem_type);
949
950 td->orig_buffer = NULL;
951}
952
953static int init_io_u(struct thread_data *td)
954{
955 struct io_u *io_u;
956 int i, max_units;
957 char *p;
958
959 if (td->io_engine == FIO_CPUIO)
960 return 0;
961
962 if (td->io_engine & FIO_SYNCIO)
963 max_units = 1;
964 else
965 max_units = td->iodepth;
966
967 td->orig_buffer_size = td->max_bs * max_units + MASK;
968
969 if (td->mem_type == MEM_MALLOC)
970 td->orig_buffer = malloc(td->orig_buffer_size);
971 else if (td->mem_type == MEM_SHM) {
972 td->shm_id = shmget(IPC_PRIVATE, td->orig_buffer_size, IPC_CREAT | 0600);
973 if (td->shm_id < 0) {
974 td_verror(td, errno);
975 perror("shmget");
976 return 1;
977 }
978
979 td->orig_buffer = shmat(td->shm_id, NULL, 0);
980 if (td->orig_buffer == (void *) -1) {
981 td_verror(td, errno);
982 perror("shmat");
983 td->orig_buffer = NULL;
984 return 1;
985 }
986 } else if (td->mem_type == MEM_MMAP) {
987 td->orig_buffer = mmap(NULL, td->orig_buffer_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
988 if (td->orig_buffer == MAP_FAILED) {
989 td_verror(td, errno);
990 perror("mmap");
991 td->orig_buffer = NULL;
992 return 1;
993 }
994 }
995
996 p = ALIGN(td->orig_buffer);
997 for (i = 0; i < max_units; i++) {
998 io_u = malloc(sizeof(*io_u));
999 memset(io_u, 0, sizeof(*io_u));
1000 INIT_LIST_HEAD(&io_u->list);
1001
1002 io_u->buf = p + td->max_bs * i;
1003 io_u->index = i;
1004 list_add(&io_u->list, &td->io_u_freelist);
1005 }
1006
1007 return 0;
1008}
1009
1010static int create_file(struct thread_data *td, unsigned long long size)
1011{
1012 unsigned long long left;
1013 unsigned int bs;
1014 char *b;
1015 int r;
1016
1017 /*
1018 * unless specifically asked for overwrite, let normal io extend it
1019 */
1020 if (!td->overwrite) {
1021 td->real_file_size = size;
1022 return 0;
1023 }
1024
1025 if (!size) {
1026 log_err("Need size for create\n");
1027 td_verror(td, EINVAL);
1028 return 1;
1029 }
1030
1031 temp_stall_ts = 1;
1032 fprintf(f_out, "%s: Laying out IO file (%LuMiB)\n",td->name,size >> 20);
1033
1034 td->fd = open(td->file_name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
1035 if (td->fd < 0) {
1036 td_verror(td, errno);
1037 goto done_noclose;
1038 }
1039
1040 if (ftruncate(td->fd, td->file_size) == -1) {
1041 td_verror(td, errno);
1042 goto done;
1043 }
1044
1045 td->io_size = td->file_size;
1046 b = malloc(td->max_bs);
1047 memset(b, 0, td->max_bs);
1048
1049 left = size;
1050 while (left && !td->terminate) {
1051 bs = td->max_bs;
1052 if (bs > left)
1053 bs = left;
1054
1055 r = write(td->fd, b, bs);
1056
1057 if (r == (int) bs) {
1058 left -= bs;
1059 continue;
1060 } else {
1061 if (r < 0)
1062 td_verror(td, errno);
1063 else
1064 td_verror(td, EIO);
1065
1066 break;
1067 }
1068 }
1069
1070 if (td->terminate)
1071 unlink(td->file_name);
1072 else if (td->create_fsync)
1073 fsync(td->fd);
1074
1075 free(b);
1076done:
1077 close(td->fd);
1078 td->fd = -1;
1079done_noclose:
1080 temp_stall_ts = 0;
1081 return 0;
1082}
1083
1084static int file_size(struct thread_data *td)
1085{
1086 struct stat st;
1087
1088 if (td->overwrite) {
1089 if (fstat(td->fd, &st) == -1) {
1090 td_verror(td, errno);
1091 return 1;
1092 }
1093
1094 td->real_file_size = st.st_size;
1095
1096 if (!td->file_size || td->file_size > td->real_file_size)
1097 td->file_size = td->real_file_size;
1098 }
1099
1100 td->file_size -= td->file_offset;
1101 return 0;
1102}
1103
1104static int bdev_size(struct thread_data *td)
1105{
1106 unsigned long long bytes;
1107 int r;
1108
1109 r = blockdev_size(td->fd, &bytes);
1110 if (r) {
1111 td_verror(td, r);
1112 return 1;
1113 }
1114
1115 td->real_file_size = bytes;
1116
1117 /*
1118 * no extend possibilities, so limit size to device size if too large
1119 */
1120 if (!td->file_size || td->file_size > td->real_file_size)
1121 td->file_size = td->real_file_size;
1122
1123 td->file_size -= td->file_offset;
1124 return 0;
1125}
1126
1127static int get_file_size(struct thread_data *td)
1128{
1129 int ret = 0;
1130
1131 if (td->filetype == FIO_TYPE_FILE)
1132 ret = file_size(td);
1133 else if (td->filetype == FIO_TYPE_BD)
1134 ret = bdev_size(td);
1135 else
1136 td->real_file_size = -1;
1137
1138 if (ret)
1139 return ret;
1140
1141 if (td->file_offset > td->real_file_size) {
1142 log_err("%s: offset extends end (%Lu > %Lu)\n", td->name, td->file_offset, td->real_file_size);
1143 return 1;
1144 }
1145
1146 td->io_size = td->file_size;
1147 if (td->io_size == 0) {
1148 log_err("%s: no io blocks\n", td->name);
1149 td_verror(td, EINVAL);
1150 return 1;
1151 }
1152
1153 if (!td->zone_size)
1154 td->zone_size = td->io_size;
1155
1156 td->total_io_size = td->io_size * td->loops;
1157 return 0;
1158}
1159
1160static int setup_file_mmap(struct thread_data *td)
1161{
1162 int flags;
1163
1164 if (td_rw(td))
1165 flags = PROT_READ | PROT_WRITE;
1166 else if (td_write(td)) {
1167 flags = PROT_WRITE;
1168
1169 if (td->verify != VERIFY_NONE)
1170 flags |= PROT_READ;
1171 } else
1172 flags = PROT_READ;
1173
1174 td->mmap = mmap(NULL, td->file_size, flags, MAP_SHARED, td->fd, td->file_offset);
1175 if (td->mmap == MAP_FAILED) {
1176 td->mmap = NULL;
1177 td_verror(td, errno);
1178 return 1;
1179 }
1180
1181 if (td->invalidate_cache) {
1182 if (madvise(td->mmap, td->file_size, MADV_DONTNEED) < 0) {
1183 td_verror(td, errno);
1184 return 1;
1185 }
1186 }
1187
1188 if (td->sequential) {
1189 if (madvise(td->mmap, td->file_size, MADV_SEQUENTIAL) < 0) {
1190 td_verror(td, errno);
1191 return 1;
1192 }
1193 } else {
1194 if (madvise(td->mmap, td->file_size, MADV_RANDOM) < 0) {
1195 td_verror(td, errno);
1196 return 1;
1197 }
1198 }
1199
1200 return 0;
1201}
1202
1203static int setup_file_plain(struct thread_data *td)
1204{
1205 if (td->invalidate_cache) {
1206 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_DONTNEED) < 0) {
1207 td_verror(td, errno);
1208 return 1;
1209 }
1210 }
1211
1212 if (td->sequential) {
1213 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_SEQUENTIAL) < 0) {
1214 td_verror(td, errno);
1215 return 1;
1216 }
1217 } else {
1218 if (fadvise(td->fd, td->file_offset, td->file_size, POSIX_FADV_RANDOM) < 0) {
1219 td_verror(td, errno);
1220 return 1;
1221 }
1222 }
1223
1224 return 0;
1225}
1226
1227static int setup_file(struct thread_data *td)
1228{
1229 struct stat st;
1230 int flags = 0;
1231
1232 if (td->io_engine == FIO_CPUIO)
1233 return 0;
1234
1235 if (stat(td->file_name, &st) == -1) {
1236 if (errno != ENOENT) {
1237 td_verror(td, errno);
1238 return 1;
1239 }
1240 if (!td->create_file) {
1241 td_verror(td, ENOENT);
1242 return 1;
1243 }
1244 if (create_file(td, td->file_size))
1245 return 1;
1246 } else if (td->filetype == FIO_TYPE_FILE &&
1247 st.st_size < (off_t) td->file_size) {
1248 if (create_file(td, td->file_size))
1249 return 1;
1250 }
1251
1252 if (td->odirect)
1253 flags |= OS_O_DIRECT;
1254
1255 if (td_write(td) || td_rw(td)) {
1256 if (td->filetype == FIO_TYPE_FILE) {
1257 if (!td->overwrite)
1258 flags |= O_TRUNC;
1259
1260 flags |= O_CREAT;
1261 }
1262 if (td->sync_io)
1263 flags |= O_SYNC;
1264
1265 flags |= O_RDWR;
1266
1267 td->fd = open(td->file_name, flags, 0600);
1268 } else {
1269 if (td->filetype == FIO_TYPE_CHAR)
1270 flags |= O_RDWR;
1271 else
1272 flags |= O_RDONLY;
1273
1274 td->fd = open(td->file_name, flags);
1275 }
1276
1277 if (td->fd == -1) {
1278 td_verror(td, errno);
1279 return 1;
1280 }
1281
1282 if (get_file_size(td))
1283 return 1;
1284
1285 if (td->io_engine != FIO_MMAPIO)
1286 return setup_file_plain(td);
1287 else
1288 return setup_file_mmap(td);
1289}
1290
1291static int switch_ioscheduler(struct thread_data *td)
1292{
1293 char tmp[256], tmp2[128];
1294 FILE *f;
1295 int ret;
1296
1297 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1298
1299 f = fopen(tmp, "r+");
1300 if (!f) {
1301 td_verror(td, errno);
1302 return 1;
1303 }
1304
1305 /*
1306 * Set io scheduler.
1307 */
1308 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
1309 if (ferror(f) || ret != 1) {
1310 td_verror(td, errno);
1311 fclose(f);
1312 return 1;
1313 }
1314
1315 rewind(f);
1316
1317 /*
1318 * Read back and check that the selected scheduler is now the default.
1319 */
1320 ret = fread(tmp, 1, sizeof(tmp), f);
1321 if (ferror(f) || ret < 0) {
1322 td_verror(td, errno);
1323 fclose(f);
1324 return 1;
1325 }
1326
1327 sprintf(tmp2, "[%s]", td->ioscheduler);
1328 if (!strstr(tmp, tmp2)) {
1329 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
1330 td_verror(td, EINVAL);
1331 fclose(f);
1332 return 1;
1333 }
1334
1335 fclose(f);
1336 return 0;
1337}
1338
1339static void clear_io_state(struct thread_data *td)
1340{
1341 if (td->io_engine == FIO_SYNCIO)
1342 lseek(td->fd, SEEK_SET, 0);
1343
1344 td->last_pos = 0;
1345 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1346 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1347 td->zone_bytes = 0;
1348
1349 if (td->file_map)
1350 memset(td->file_map, 0, td->num_maps * sizeof(long));
1351}
1352
1353/*
1354 * Entry point for the thread based jobs. The process based jobs end up
1355 * here as well, after a little setup.
1356 */
1357static void *thread_main(void *data)
1358{
1359 struct thread_data *td = data;
1360
1361 if (!td->use_thread)
1362 setsid();
1363
1364 td->pid = getpid();
1365
1366 INIT_LIST_HEAD(&td->io_u_freelist);
1367 INIT_LIST_HEAD(&td->io_u_busylist);
1368 INIT_LIST_HEAD(&td->io_hist_list);
1369 INIT_LIST_HEAD(&td->io_log_list);
1370
1371 if (init_io_u(td))
1372 goto err;
1373
1374 if (fio_setaffinity(td) == -1) {
1375 td_verror(td, errno);
1376 goto err;
1377 }
1378
1379 if (init_io(td))
1380 goto err;
1381
1382 if (init_iolog(td))
1383 goto err;
1384
1385 if (td->ioprio) {
1386 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1387 td_verror(td, errno);
1388 goto err;
1389 }
1390 }
1391
1392 if (nice(td->nice) == -1) {
1393 td_verror(td, errno);
1394 goto err;
1395 }
1396
1397 if (init_random_state(td))
1398 goto err;
1399
1400 if (td->ioscheduler && switch_ioscheduler(td))
1401 goto err;
1402
1403 td_set_runstate(td, TD_INITIALIZED);
1404 fio_sem_up(&startup_sem);
1405 fio_sem_down(&td->mutex);
1406
1407 if (!td->create_serialize && setup_file(td))
1408 goto err;
1409
1410 gettimeofday(&td->epoch, NULL);
1411
1412 if (td->exec_prerun)
1413 system(td->exec_prerun);
1414
1415 while (td->loops--) {
1416 getrusage(RUSAGE_SELF, &td->ru_start);
1417 gettimeofday(&td->start, NULL);
1418 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
1419
1420 if (td->ratemin)
1421 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
1422
1423 clear_io_state(td);
1424 prune_io_piece_log(td);
1425
1426 if (td->io_engine == FIO_CPUIO)
1427 do_cpuio(td);
1428 else
1429 do_io(td);
1430
1431 td->runtime[td->ddir] += mtime_since_now(&td->start);
1432 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
1433 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
1434
1435 update_rusage_stat(td);
1436
1437 if (td->error || td->terminate)
1438 break;
1439
1440 if (td->verify == VERIFY_NONE)
1441 continue;
1442
1443 clear_io_state(td);
1444 gettimeofday(&td->start, NULL);
1445
1446 do_verify(td);
1447
1448 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
1449
1450 if (td->error || td->terminate)
1451 break;
1452 }
1453
1454 if (td->bw_log)
1455 finish_log(td, td->bw_log, "bw");
1456 if (td->slat_log)
1457 finish_log(td, td->slat_log, "slat");
1458 if (td->clat_log)
1459 finish_log(td, td->clat_log, "clat");
1460 if (td->write_iolog)
1461 write_iolog_close(td);
1462 if (td->exec_postrun)
1463 system(td->exec_postrun);
1464
1465 if (exitall_on_terminate)
1466 terminate_threads(td->groupid);
1467
1468err:
1469 if (td->fd != -1) {
1470 close(td->fd);
1471 td->fd = -1;
1472 }
1473 if (td->mmap)
1474 munmap(td->mmap, td->file_size);
1475 cleanup_io(td);
1476 cleanup_io_u(td);
1477 td_set_runstate(td, TD_EXITED);
1478 return NULL;
1479
1480}
1481
1482/*
1483 * We cannot pass the td data into a forked process, so attach the td and
1484 * pass it to the thread worker.
1485 */
1486static void *fork_main(int shmid, int offset)
1487{
1488 struct thread_data *td;
1489 void *data;
1490
1491 data = shmat(shmid, NULL, 0);
1492 if (data == (void *) -1) {
1493 perror("shmat");
1494 return NULL;
1495 }
1496
1497 td = data + offset * sizeof(struct thread_data);
1498 thread_main(td);
1499 shmdt(data);
1500 return NULL;
1501}
1502
1503/*
1504 * Sets the status of the 'td' in the printed status map.
1505 */
1506static void check_str_update(struct thread_data *td)
1507{
1508 char c = run_str[td->thread_number - 1];
1509
1510 switch (td->runstate) {
1511 case TD_REAPED:
1512 c = '_';
1513 break;
1514 case TD_EXITED:
1515 c = 'E';
1516 break;
1517 case TD_RUNNING:
1518 if (td_rw(td)) {
1519 if (td->sequential)
1520 c = 'M';
1521 else
1522 c = 'm';
1523 } else if (td_read(td)) {
1524 if (td->sequential)
1525 c = 'R';
1526 else
1527 c = 'r';
1528 } else {
1529 if (td->sequential)
1530 c = 'W';
1531 else
1532 c = 'w';
1533 }
1534 break;
1535 case TD_VERIFYING:
1536 c = 'V';
1537 break;
1538 case TD_FSYNCING:
1539 c = 'F';
1540 break;
1541 case TD_CREATED:
1542 c = 'C';
1543 break;
1544 case TD_INITIALIZED:
1545 c = 'I';
1546 break;
1547 case TD_NOT_CREATED:
1548 c = 'P';
1549 break;
1550 default:
1551 log_err("state %d\n", td->runstate);
1552 }
1553
1554 run_str[td->thread_number - 1] = c;
1555}
1556
1557/*
1558 * Convert seconds to a printable string.
1559 */
1560static void eta_to_str(char *str, int eta_sec)
1561{
1562 unsigned int d, h, m, s;
1563 static int always_d, always_h;
1564
1565 d = h = m = s = 0;
1566
1567 s = eta_sec % 60;
1568 eta_sec /= 60;
1569 m = eta_sec % 60;
1570 eta_sec /= 60;
1571 h = eta_sec % 24;
1572 eta_sec /= 24;
1573 d = eta_sec;
1574
1575 if (d || always_d) {
1576 always_d = 1;
1577 str += sprintf(str, "%02dd:", d);
1578 }
1579 if (h || always_h) {
1580 always_h = 1;
1581 str += sprintf(str, "%02dh:", h);
1582 }
1583
1584 str += sprintf(str, "%02dm:", m);
1585 str += sprintf(str, "%02ds", s);
1586}
1587
1588/*
1589 * Best effort calculation of the estimated pending runtime of a job.
1590 */
1591static int thread_eta(struct thread_data *td, unsigned long elapsed)
1592{
1593 unsigned long long bytes_total, bytes_done;
1594 unsigned int eta_sec = 0;
1595
1596 bytes_total = td->total_io_size;
1597
1598 /*
1599 * if writing, bytes_total will be twice the size. If mixing,
1600 * assume a 50/50 split and thus bytes_total will be 50% larger.
1601 */
1602 if (td->verify) {
1603 if (td_rw(td))
1604 bytes_total = bytes_total * 3 / 2;
1605 else
1606 bytes_total <<= 1;
1607 }
1608 if (td->zone_size && td->zone_skip)
1609 bytes_total /= (td->zone_skip / td->zone_size);
1610
1611 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING) {
1612 double perc;
1613
1614 bytes_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE];
1615 perc = (double) bytes_done / (double) bytes_total;
1616 if (perc > 1.0)
1617 perc = 1.0;
1618
1619 eta_sec = (elapsed * (1.0 / perc)) - elapsed;
1620
1621 if (td->timeout && eta_sec > (td->timeout - elapsed))
1622 eta_sec = td->timeout - elapsed;
1623 } else if (td->runstate == TD_NOT_CREATED || td->runstate == TD_CREATED
1624 || td->runstate == TD_INITIALIZED) {
1625 int t_eta = 0, r_eta = 0;
1626
1627 /*
1628 * We can only guess - assume it'll run the full timeout
1629 * if given, otherwise assume it'll run at the specified rate.
1630 */
1631 if (td->timeout)
1632 t_eta = td->timeout + td->start_delay - elapsed;
1633 if (td->rate) {
1634 r_eta = (bytes_total / 1024) / td->rate;
1635 r_eta += td->start_delay - elapsed;
1636 }
1637
1638 if (r_eta && t_eta)
1639 eta_sec = min(r_eta, t_eta);
1640 else if (r_eta)
1641 eta_sec = r_eta;
1642 else if (t_eta)
1643 eta_sec = t_eta;
1644 else
1645 eta_sec = 0;
1646 } else {
1647 /*
1648 * thread is already done or waiting for fsync
1649 */
1650 eta_sec = 0;
1651 }
1652
1653 return eta_sec;
1654}
1655
1656/*
1657 * Print status of the jobs we know about. This includes rate estimates,
1658 * ETA, thread state, etc.
1659 */
1660static void print_thread_status(void)
1661{
1662 unsigned long elapsed = time_since_now(&genesis);
1663 int i, nr_running, nr_pending, t_rate, m_rate, *eta_secs, eta_sec;
1664 char eta_str[32];
1665 double perc = 0.0;
1666
1667 if (temp_stall_ts || terse_output)
1668 return;
1669
1670 eta_secs = malloc(thread_number * sizeof(int));
1671 memset(eta_secs, 0, thread_number * sizeof(int));
1672
1673 nr_pending = nr_running = t_rate = m_rate = 0;
1674 for (i = 0; i < thread_number; i++) {
1675 struct thread_data *td = &threads[i];
1676
1677 if (td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING||
1678 td->runstate == TD_FSYNCING) {
1679 nr_running++;
1680 t_rate += td->rate;
1681 m_rate += td->ratemin;
1682 } else if (td->runstate < TD_RUNNING)
1683 nr_pending++;
1684
1685 if (elapsed >= 3)
1686 eta_secs[i] = thread_eta(td, elapsed);
1687 else
1688 eta_secs[i] = INT_MAX;
1689
1690 check_str_update(td);
1691 }
1692
1693 if (exitall_on_terminate)
1694 eta_sec = INT_MAX;
1695 else
1696 eta_sec = 0;
1697
1698 for (i = 0; i < thread_number; i++) {
1699 if (exitall_on_terminate) {
1700 if (eta_secs[i] < eta_sec)
1701 eta_sec = eta_secs[i];
1702 } else {
1703 if (eta_secs[i] > eta_sec)
1704 eta_sec = eta_secs[i];
1705 }
1706 }
1707
1708 if (eta_sec != INT_MAX && elapsed) {
1709 perc = (double) elapsed / (double) (elapsed + eta_sec);
1710 eta_to_str(eta_str, eta_sec);
1711 }
1712
1713 if (!nr_running && !nr_pending)
1714 return;
1715
1716 printf("Threads running: %d", nr_running);
1717 if (m_rate || t_rate)
1718 printf(", commitrate %d/%dKiB/sec", t_rate, m_rate);
1719 if (eta_sec != INT_MAX && nr_running) {
1720 perc *= 100.0;
1721 printf(": [%s] [%3.2f%% done] [eta %s]", run_str, perc,eta_str);
1722 }
1723 printf("\r");
1724 fflush(stdout);
1725 free(eta_secs);
1726}
1727
1728/*
1729 * Run over the job map and reap the threads that have exited, if any.
1730 */
1731static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1732{
1733 int i, cputhreads;
1734
1735 /*
1736 * reap exited threads (TD_EXITED -> TD_REAPED)
1737 */
1738 for (i = 0, cputhreads = 0; i < thread_number; i++) {
1739 struct thread_data *td = &threads[i];
1740
1741 if (td->io_engine == FIO_CPUIO)
1742 cputhreads++;
1743
1744 if (td->runstate != TD_EXITED)
1745 continue;
1746
1747 td_set_runstate(td, TD_REAPED);
1748
1749 if (td->use_thread) {
1750 long ret;
1751
1752 if (pthread_join(td->thread, (void *) &ret))
1753 perror("thread_join");
1754 } else
1755 waitpid(td->pid, NULL, 0);
1756
1757 (*nr_running)--;
1758 (*m_rate) -= td->ratemin;
1759 (*t_rate) -= td->rate;
1760 }
1761
1762 if (*nr_running == cputhreads)
1763 terminate_threads(TERMINATE_ALL);
1764}
1765
1766static void fio_unpin_memory(void *pinned)
1767{
1768 if (pinned) {
1769 if (munlock(pinned, mlock_size) < 0)
1770 perror("munlock");
1771 munmap(pinned, mlock_size);
1772 }
1773}
1774
1775static void *fio_pin_memory(void)
1776{
1777 unsigned long long phys_mem;
1778 void *ptr;
1779
1780 if (!mlock_size)
1781 return NULL;
1782
1783 /*
1784 * Don't allow mlock of more than real_mem-128MB
1785 */
1786 phys_mem = os_phys_mem();
1787 if (phys_mem) {
1788 if ((mlock_size + 128 * 1024 * 1024) > phys_mem) {
1789 mlock_size = phys_mem - 128 * 1024 * 1024;
1790 fprintf(f_out, "fio: limiting mlocked memory to %lluMiB\n", mlock_size >> 20);
1791 }
1792 }
1793
1794 ptr = mmap(NULL, mlock_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | OS_MAP_ANON, 0, 0);
1795 if (!ptr) {
1796 perror("malloc locked mem");
1797 return NULL;
1798 }
1799 if (mlock(ptr, mlock_size) < 0) {
1800 munmap(ptr, mlock_size);
1801 perror("mlock");
1802 return NULL;
1803 }
1804
1805 return ptr;
1806}
1807
1808/*
1809 * Main function for kicking off and reaping jobs, as needed.
1810 */
1811static void run_threads(void)
1812{
1813 struct thread_data *td;
1814 unsigned long spent;
1815 int i, todo, nr_running, m_rate, t_rate, nr_started;
1816 void *mlocked_mem;
1817
1818 mlocked_mem = fio_pin_memory();
1819
1820 if (!terse_output) {
1821 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
1822 fflush(stdout);
1823 }
1824
1825 signal(SIGINT, sig_handler);
1826 signal(SIGALRM, sig_handler);
1827
1828 todo = thread_number;
1829 nr_running = 0;
1830 nr_started = 0;
1831 m_rate = t_rate = 0;
1832
1833 for (i = 0; i < thread_number; i++) {
1834 td = &threads[i];
1835
1836 run_str[td->thread_number - 1] = 'P';
1837
1838 init_disk_util(td);
1839
1840 if (!td->create_serialize)
1841 continue;
1842
1843 /*
1844 * do file setup here so it happens sequentially,
1845 * we don't want X number of threads getting their
1846 * client data interspersed on disk
1847 */
1848 if (setup_file(td)) {
1849 td_set_runstate(td, TD_REAPED);
1850 todo--;
1851 }
1852 }
1853
1854 gettimeofday(&genesis, NULL);
1855
1856 while (todo) {
1857 struct thread_data *map[MAX_JOBS];
1858 struct timeval this_start;
1859 int this_jobs = 0, left;
1860
1861 /*
1862 * create threads (TD_NOT_CREATED -> TD_CREATED)
1863 */
1864 for (i = 0; i < thread_number; i++) {
1865 td = &threads[i];
1866
1867 if (td->runstate != TD_NOT_CREATED)
1868 continue;
1869
1870 /*
1871 * never got a chance to start, killed by other
1872 * thread for some reason
1873 */
1874 if (td->terminate) {
1875 todo--;
1876 continue;
1877 }
1878
1879 if (td->start_delay) {
1880 spent = mtime_since_now(&genesis);
1881
1882 if (td->start_delay * 1000 > spent)
1883 continue;
1884 }
1885
1886 if (td->stonewall && (nr_started || nr_running))
1887 break;
1888
1889 /*
1890 * Set state to created. Thread will transition
1891 * to TD_INITIALIZED when it's done setting up.
1892 */
1893 td_set_runstate(td, TD_CREATED);
1894 map[this_jobs++] = td;
1895 fio_sem_init(&startup_sem, 1);
1896 nr_started++;
1897
1898 if (td->use_thread) {
1899 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1900 perror("thread_create");
1901 nr_started--;
1902 }
1903 } else {
1904 if (fork())
1905 fio_sem_down(&startup_sem);
1906 else {
1907 fork_main(shm_id, i);
1908 exit(0);
1909 }
1910 }
1911 }
1912
1913 /*
1914 * Wait for the started threads to transition to
1915 * TD_INITIALIZED.
1916 */
1917 gettimeofday(&this_start, NULL);
1918 left = this_jobs;
1919 while (left) {
1920 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1921 break;
1922
1923 usleep(100000);
1924
1925 for (i = 0; i < this_jobs; i++) {
1926 td = map[i];
1927 if (!td)
1928 continue;
1929 if (td->runstate == TD_INITIALIZED) {
1930 map[i] = NULL;
1931 left--;
1932 } else if (td->runstate >= TD_EXITED) {
1933 map[i] = NULL;
1934 left--;
1935 todo--;
1936 nr_running++; /* work-around... */
1937 }
1938 }
1939 }
1940
1941 if (left) {
1942 log_err("fio: %d jobs failed to start\n", left);
1943 for (i = 0; i < this_jobs; i++) {
1944 td = map[i];
1945 if (!td)
1946 continue;
1947 kill(td->pid, SIGTERM);
1948 }
1949 break;
1950 }
1951
1952 /*
1953 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1954 */
1955 for (i = 0; i < thread_number; i++) {
1956 td = &threads[i];
1957
1958 if (td->runstate != TD_INITIALIZED)
1959 continue;
1960
1961 td_set_runstate(td, TD_RUNNING);
1962 nr_running++;
1963 nr_started--;
1964 m_rate += td->ratemin;
1965 t_rate += td->rate;
1966 todo--;
1967 fio_sem_up(&td->mutex);
1968 }
1969
1970 reap_threads(&nr_running, &t_rate, &m_rate);
1971
1972 if (todo)
1973 usleep(100000);
1974 }
1975
1976 while (nr_running) {
1977 reap_threads(&nr_running, &t_rate, &m_rate);
1978 usleep(10000);
1979 }
1980
1981 update_io_ticks();
1982 fio_unpin_memory(mlocked_mem);
1983}
1984
1985int main(int argc, char *argv[])
1986{
1987 if (parse_options(argc, argv))
1988 return 1;
1989
1990 if (!thread_number) {
1991 log_err("Nothing to do\n");
1992 return 1;
1993 }
1994
1995 disk_util_timer_arm();
1996
1997 run_threads();
1998 show_run_stats();
1999
2000 return 0;
2001}