Typo in 'init' debug option mask
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_sem *startup_sem;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 dprint(FD_PROCESS, "%d: runstate %d -> %d\n", td->pid, td->runstate,
64 runstate);
65 td->runstate = runstate;
66}
67
68static void terminate_threads(int group_id)
69{
70 struct thread_data *td;
71 int i;
72
73 for_each_td(td, i) {
74 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
75 dprint(FD_PROCESS, "setting terminate on %d\n",td->pid);
76 /*
77 * if the thread is running, just let it exit
78 */
79 if (td->runstate < TD_RUNNING)
80 kill(td->pid, SIGQUIT);
81 td->terminate = 1;
82 td->o.start_delay = 0;
83 }
84 }
85}
86
87static void sig_handler(int sig)
88{
89 switch (sig) {
90 case SIGALRM:
91 update_io_ticks();
92 disk_util_timer_arm();
93 print_thread_status();
94 break;
95 default:
96 printf("\nfio: terminating on signal %d\n", sig);
97 fflush(stdout);
98 terminate_threads(TERMINATE_ALL);
99 break;
100 }
101}
102
103/*
104 * Check if we are above the minimum rate given.
105 */
106static int check_min_rate(struct thread_data *td, struct timeval *now)
107{
108 unsigned long long bytes = 0;
109 unsigned long iops = 0;
110 unsigned long spent;
111 unsigned long rate;
112
113 /*
114 * No minimum rate set, always ok
115 */
116 if (!td->o.ratemin && !td->o.rate_iops_min)
117 return 0;
118
119 /*
120 * allow a 2 second settle period in the beginning
121 */
122 if (mtime_since(&td->start, now) < 2000)
123 return 0;
124
125 if (td_read(td)) {
126 iops += td->io_blocks[DDIR_READ];
127 bytes += td->this_io_bytes[DDIR_READ];
128 }
129 if (td_write(td)) {
130 iops += td->io_blocks[DDIR_WRITE];
131 bytes += td->this_io_bytes[DDIR_WRITE];
132 }
133
134 /*
135 * if rate blocks is set, sample is running
136 */
137 if (td->rate_bytes || td->rate_blocks) {
138 spent = mtime_since(&td->lastrate, now);
139 if (spent < td->o.ratecycle)
140 return 0;
141
142 if (td->o.rate) {
143 /*
144 * check bandwidth specified rate
145 */
146 if (bytes < td->rate_bytes) {
147 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
148 return 1;
149 } else {
150 rate = (bytes - td->rate_bytes) / spent;
151 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
152 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
153 return 1;
154 }
155 }
156 } else {
157 /*
158 * checks iops specified rate
159 */
160 if (iops < td->o.rate_iops) {
161 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
162 return 1;
163 } else {
164 rate = (iops - td->rate_blocks) / spent;
165 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
166 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
167 }
168 }
169 }
170 }
171
172 td->rate_bytes = bytes;
173 td->rate_blocks = iops;
174 memcpy(&td->lastrate, now, sizeof(*now));
175 return 0;
176}
177
178static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
179{
180 if (!td->o.timeout)
181 return 0;
182 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
183 return 1;
184
185 return 0;
186}
187
188/*
189 * When job exits, we can cancel the in-flight IO if we are using async
190 * io. Attempt to do so.
191 */
192static void cleanup_pending_aio(struct thread_data *td)
193{
194 struct list_head *entry, *n;
195 struct io_u *io_u;
196 int r;
197
198 /*
199 * get immediately available events, if any
200 */
201 r = io_u_queued_complete(td, 0);
202 if (r < 0)
203 return;
204
205 /*
206 * now cancel remaining active events
207 */
208 if (td->io_ops->cancel) {
209 list_for_each_safe(entry, n, &td->io_u_busylist) {
210 io_u = list_entry(entry, struct io_u, list);
211
212 /*
213 * if the io_u isn't in flight, then that generally
214 * means someone leaked an io_u. complain but fix
215 * it up, so we don't stall here.
216 */
217 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
218 log_err("fio: non-busy IO on busy list\n");
219 put_io_u(td, io_u);
220 } else {
221 r = td->io_ops->cancel(td, io_u);
222 if (!r)
223 put_io_u(td, io_u);
224 }
225 }
226 }
227
228 if (td->cur_depth)
229 r = io_u_queued_complete(td, td->cur_depth);
230}
231
232/*
233 * Helper to handle the final sync of a file. Works just like the normal
234 * io path, just does everything sync.
235 */
236static int fio_io_sync(struct thread_data *td, struct fio_file *f)
237{
238 struct io_u *io_u = __get_io_u(td);
239 int ret;
240
241 if (!io_u)
242 return 1;
243
244 io_u->ddir = DDIR_SYNC;
245 io_u->file = f;
246
247 if (td_io_prep(td, io_u)) {
248 put_io_u(td, io_u);
249 return 1;
250 }
251
252requeue:
253 ret = td_io_queue(td, io_u);
254 if (ret < 0) {
255 td_verror(td, io_u->error, "td_io_queue");
256 put_io_u(td, io_u);
257 return 1;
258 } else if (ret == FIO_Q_QUEUED) {
259 if (io_u_queued_complete(td, 1) < 0)
260 return 1;
261 } else if (ret == FIO_Q_COMPLETED) {
262 if (io_u->error) {
263 td_verror(td, io_u->error, "td_io_queue");
264 return 1;
265 }
266
267 if (io_u_sync_complete(td, io_u) < 0)
268 return 1;
269 } else if (ret == FIO_Q_BUSY) {
270 if (td_io_commit(td))
271 return 1;
272 goto requeue;
273 }
274
275 return 0;
276}
277
278/*
279 * The main verify engine. Runs over the writes we previously submitted,
280 * reads the blocks back in, and checks the crc/md5 of the data.
281 */
282static void do_verify(struct thread_data *td)
283{
284 struct fio_file *f;
285 struct io_u *io_u;
286 int ret, min_events;
287 unsigned int i;
288
289 /*
290 * sync io first and invalidate cache, to make sure we really
291 * read from disk.
292 */
293 for_each_file(td, f, i) {
294 if (!(f->flags & FIO_FILE_OPEN))
295 continue;
296 if (fio_io_sync(td, f))
297 break;
298 if (file_invalidate_cache(td, f))
299 break;
300 }
301
302 if (td->error)
303 return;
304
305 td_set_runstate(td, TD_VERIFYING);
306
307 io_u = NULL;
308 while (!td->terminate) {
309 int ret2;
310
311 io_u = __get_io_u(td);
312 if (!io_u)
313 break;
314
315 if (runtime_exceeded(td, &io_u->start_time)) {
316 put_io_u(td, io_u);
317 td->terminate = 1;
318 break;
319 }
320
321 if (get_next_verify(td, io_u)) {
322 put_io_u(td, io_u);
323 break;
324 }
325
326 if (td_io_prep(td, io_u)) {
327 put_io_u(td, io_u);
328 break;
329 }
330
331 io_u->end_io = verify_io_u;
332
333 ret = td_io_queue(td, io_u);
334 switch (ret) {
335 case FIO_Q_COMPLETED:
336 if (io_u->error)
337 ret = -io_u->error;
338 else if (io_u->resid) {
339 int bytes = io_u->xfer_buflen - io_u->resid;
340 struct fio_file *f = io_u->file;
341
342 /*
343 * zero read, fail
344 */
345 if (!bytes) {
346 td_verror(td, ENODATA, "full resid");
347 put_io_u(td, io_u);
348 break;
349 }
350
351 io_u->xfer_buflen = io_u->resid;
352 io_u->xfer_buf += bytes;
353 io_u->offset += bytes;
354 f->last_completed_pos = io_u->offset;
355
356 td->ts.short_io_u[io_u->ddir]++;
357
358 if (io_u->offset == f->real_file_size)
359 goto sync_done;
360
361 requeue_io_u(td, &io_u);
362 } else {
363sync_done:
364 ret = io_u_sync_complete(td, io_u);
365 if (ret < 0)
366 break;
367 }
368 continue;
369 case FIO_Q_QUEUED:
370 break;
371 case FIO_Q_BUSY:
372 requeue_io_u(td, &io_u);
373 ret2 = td_io_commit(td);
374 if (ret2 < 0)
375 ret = ret2;
376 break;
377 default:
378 assert(ret < 0);
379 td_verror(td, -ret, "td_io_queue");
380 break;
381 }
382
383 if (ret < 0 || td->error)
384 break;
385
386 /*
387 * if we can queue more, do so. but check if there are
388 * completed io_u's first.
389 */
390 min_events = 0;
391 if (queue_full(td) || ret == FIO_Q_BUSY) {
392 min_events = 1;
393
394 if (td->cur_depth > td->o.iodepth_low)
395 min_events = td->cur_depth - td->o.iodepth_low;
396 }
397
398 /*
399 * Reap required number of io units, if any, and do the
400 * verification on them through the callback handler
401 */
402 if (io_u_queued_complete(td, min_events) < 0)
403 break;
404 }
405
406 if (!td->error) {
407 min_events = td->cur_depth;
408
409 if (min_events)
410 ret = io_u_queued_complete(td, min_events);
411 } else
412 cleanup_pending_aio(td);
413
414 td_set_runstate(td, TD_RUNNING);
415}
416
417/*
418 * Main IO worker function. It retrieves io_u's to process and queues
419 * and reaps them, checking for rate and errors along the way.
420 */
421static void do_io(struct thread_data *td)
422{
423 struct timeval s;
424 unsigned long usec;
425 unsigned int i;
426 int ret = 0;
427
428 td_set_runstate(td, TD_RUNNING);
429
430 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
431 struct timeval comp_time;
432 long bytes_done = 0;
433 int min_evts = 0;
434 struct io_u *io_u;
435 int ret2;
436
437 if (td->terminate)
438 break;
439
440 io_u = get_io_u(td);
441 if (!io_u)
442 break;
443
444 memcpy(&s, &io_u->start_time, sizeof(s));
445
446 if (runtime_exceeded(td, &s)) {
447 put_io_u(td, io_u);
448 td->terminate = 1;
449 break;
450 }
451
452 /*
453 * Add verification end_io handler, if asked to verify
454 * a previously written file.
455 */
456 if (td->o.verify != VERIFY_NONE)
457 io_u->end_io = verify_io_u;
458
459 ret = td_io_queue(td, io_u);
460 switch (ret) {
461 case FIO_Q_COMPLETED:
462 if (io_u->error)
463 ret = -io_u->error;
464 else if (io_u->resid) {
465 int bytes = io_u->xfer_buflen - io_u->resid;
466 struct fio_file *f = io_u->file;
467
468 /*
469 * zero read, fail
470 */
471 if (!bytes) {
472 td_verror(td, ENODATA, "full resid");
473 put_io_u(td, io_u);
474 break;
475 }
476
477 io_u->xfer_buflen = io_u->resid;
478 io_u->xfer_buf += bytes;
479 io_u->offset += bytes;
480 f->last_completed_pos = io_u->offset;
481
482 td->ts.short_io_u[io_u->ddir]++;
483
484 if (io_u->offset == f->real_file_size)
485 goto sync_done;
486
487 requeue_io_u(td, &io_u);
488 } else {
489sync_done:
490 fio_gettime(&comp_time, NULL);
491 bytes_done = io_u_sync_complete(td, io_u);
492 if (bytes_done < 0)
493 ret = bytes_done;
494 }
495 break;
496 case FIO_Q_QUEUED:
497 /*
498 * if the engine doesn't have a commit hook,
499 * the io_u is really queued. if it does have such
500 * a hook, it has to call io_u_queued() itself.
501 */
502 if (td->io_ops->commit == NULL)
503 io_u_queued(td, io_u);
504 break;
505 case FIO_Q_BUSY:
506 requeue_io_u(td, &io_u);
507 ret2 = td_io_commit(td);
508 if (ret2 < 0)
509 ret = ret2;
510 break;
511 default:
512 assert(ret < 0);
513 put_io_u(td, io_u);
514 break;
515 }
516
517 if (ret < 0 || td->error)
518 break;
519
520 /*
521 * See if we need to complete some commands
522 */
523 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
524 min_evts = 0;
525 if (queue_full(td) || ret == FIO_Q_BUSY) {
526 min_evts = 1;
527
528 if (td->cur_depth > td->o.iodepth_low)
529 min_evts = td->cur_depth - td->o.iodepth_low;
530 }
531
532 fio_gettime(&comp_time, NULL);
533 bytes_done = io_u_queued_complete(td, min_evts);
534 if (bytes_done < 0)
535 break;
536 }
537
538 if (!bytes_done)
539 continue;
540
541 /*
542 * the rate is batched for now, it should work for batches
543 * of completions except the very first one which may look
544 * a little bursty
545 */
546 usec = utime_since(&s, &comp_time);
547
548 rate_throttle(td, usec, bytes_done);
549
550 if (check_min_rate(td, &comp_time)) {
551 if (exitall_on_terminate)
552 terminate_threads(td->groupid);
553 td_verror(td, ENODATA, "check_min_rate");
554 break;
555 }
556
557 if (td->o.thinktime) {
558 unsigned long long b;
559
560 b = td->io_blocks[0] + td->io_blocks[1];
561 if (!(b % td->o.thinktime_blocks)) {
562 int left;
563
564 if (td->o.thinktime_spin)
565 __usec_sleep(td->o.thinktime_spin);
566
567 left = td->o.thinktime - td->o.thinktime_spin;
568 if (left)
569 usec_sleep(td, left);
570 }
571 }
572 }
573
574 /*
575 * stop job if we failed doing any IO
576 */
577 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
578 td->done = 1;
579
580 if (td->o.fill_device && td->error == ENOSPC) {
581 td->error = 0;
582 td->terminate = 1;
583 }
584 if (!td->error) {
585 struct fio_file *f;
586
587 i = td->cur_depth;
588 if (i)
589 ret = io_u_queued_complete(td, i);
590
591 if (should_fsync(td) && td->o.end_fsync) {
592 td_set_runstate(td, TD_FSYNCING);
593
594 for_each_file(td, f, i) {
595 if (!(f->flags & FIO_FILE_OPEN))
596 continue;
597 fio_io_sync(td, f);
598 }
599 }
600 } else
601 cleanup_pending_aio(td);
602}
603
604static void cleanup_io_u(struct thread_data *td)
605{
606 struct list_head *entry, *n;
607 struct io_u *io_u;
608
609 list_for_each_safe(entry, n, &td->io_u_freelist) {
610 io_u = list_entry(entry, struct io_u, list);
611
612 list_del(&io_u->list);
613 free(io_u);
614 }
615
616 free_io_mem(td);
617}
618
619/*
620 * "randomly" fill the buffer contents
621 */
622static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
623{
624 long *ptr = io_u->buf;
625
626 if (!td->o.zero_buffers) {
627 while ((void *) ptr - io_u->buf < max_bs) {
628 *ptr = rand() * GOLDEN_RATIO_PRIME;
629 ptr++;
630 }
631 } else
632 memset(ptr, 0, max_bs);
633}
634
635static int init_io_u(struct thread_data *td)
636{
637 struct io_u *io_u;
638 unsigned int max_bs;
639 int i, max_units;
640 char *p;
641
642 if (td->io_ops->flags & FIO_SYNCIO)
643 max_units = 1;
644 else
645 max_units = td->o.iodepth;
646
647 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
648 td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units;
649
650 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
651 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
652
653 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
654 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
655 return 1;
656 }
657
658 if (allocate_io_mem(td))
659 return 1;
660
661 if (td->o.odirect)
662 p = ALIGN(td->orig_buffer);
663 else
664 p = td->orig_buffer;
665
666 for (i = 0; i < max_units; i++) {
667 if (td->terminate)
668 return 1;
669 io_u = malloc(sizeof(*io_u));
670 memset(io_u, 0, sizeof(*io_u));
671 INIT_LIST_HEAD(&io_u->list);
672
673 if (!(td->io_ops->flags & FIO_NOIO)) {
674 io_u->buf = p + max_bs * i;
675
676 if (td_write(td))
677 fill_io_buf(td, io_u, max_bs);
678 }
679
680 io_u->index = i;
681 io_u->flags = IO_U_F_FREE;
682 list_add(&io_u->list, &td->io_u_freelist);
683 }
684
685 io_u_init_timeout();
686
687 return 0;
688}
689
690static int switch_ioscheduler(struct thread_data *td)
691{
692 char tmp[256], tmp2[128];
693 FILE *f;
694 int ret;
695
696 if (td->io_ops->flags & FIO_DISKLESSIO)
697 return 0;
698
699 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
700
701 f = fopen(tmp, "r+");
702 if (!f) {
703 if (errno == ENOENT) {
704 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
705 return 0;
706 }
707 td_verror(td, errno, "fopen iosched");
708 return 1;
709 }
710
711 /*
712 * Set io scheduler.
713 */
714 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
715 if (ferror(f) || ret != 1) {
716 td_verror(td, errno, "fwrite");
717 fclose(f);
718 return 1;
719 }
720
721 rewind(f);
722
723 /*
724 * Read back and check that the selected scheduler is now the default.
725 */
726 ret = fread(tmp, 1, sizeof(tmp), f);
727 if (ferror(f) || ret < 0) {
728 td_verror(td, errno, "fread");
729 fclose(f);
730 return 1;
731 }
732
733 sprintf(tmp2, "[%s]", td->o.ioscheduler);
734 if (!strstr(tmp, tmp2)) {
735 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
736 td_verror(td, EINVAL, "iosched_switch");
737 fclose(f);
738 return 1;
739 }
740
741 fclose(f);
742 return 0;
743}
744
745static int keep_running(struct thread_data *td)
746{
747 unsigned long long io_done;
748
749 if (td->done)
750 return 0;
751 if (td->o.time_based)
752 return 1;
753 if (td->o.loops) {
754 td->o.loops--;
755 return 1;
756 }
757
758 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] + td->io_skip_bytes;
759 if (io_done < td->o.size)
760 return 1;
761
762 return 0;
763}
764
765static int clear_io_state(struct thread_data *td)
766{
767 struct fio_file *f;
768 unsigned int i;
769 int ret;
770
771 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
772 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
773 td->zone_bytes = 0;
774 td->rate_bytes = 0;
775 td->rate_blocks = 0;
776 td->rw_end_set[0] = td->rw_end_set[1] = 0;
777
778 td->last_was_sync = 0;
779
780 if (td->o.time_based)
781 td->nr_done_files = 0;
782
783 for_each_file(td, f, i)
784 td_io_close_file(td, f);
785
786 ret = 0;
787 for_each_file(td, f, i) {
788 f->flags &= ~FIO_FILE_DONE;
789 ret = td_io_open_file(td, f);
790 if (ret)
791 break;
792 }
793
794 return ret;
795}
796
797/*
798 * Entry point for the thread based jobs. The process based jobs end up
799 * here as well, after a little setup.
800 */
801static void *thread_main(void *data)
802{
803 unsigned long long runtime[2], elapsed;
804 struct thread_data *td = data;
805 int clear_state;
806
807 if (!td->o.use_thread)
808 setsid();
809
810 td->pid = getpid();
811
812 dprint(FD_PROCESS, "jobs pid=%d started\n", td->pid);
813
814 INIT_LIST_HEAD(&td->io_u_freelist);
815 INIT_LIST_HEAD(&td->io_u_busylist);
816 INIT_LIST_HEAD(&td->io_u_requeues);
817 INIT_LIST_HEAD(&td->io_log_list);
818 INIT_LIST_HEAD(&td->io_hist_list);
819 td->io_hist_tree = RB_ROOT;
820
821 td_set_runstate(td, TD_INITIALIZED);
822 fio_sem_up(startup_sem);
823 fio_sem_down(td->mutex);
824
825 /*
826 * the ->mutex semaphore is now no longer used, close it to avoid
827 * eating a file descriptor
828 */
829 fio_sem_remove(td->mutex);
830
831 /*
832 * May alter parameters that init_io_u() will use, so we need to
833 * do this first.
834 */
835 if (init_iolog(td))
836 goto err;
837
838 if (init_io_u(td))
839 goto err;
840
841 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
842 td_verror(td, errno, "cpu_set_affinity");
843 goto err;
844 }
845
846 if (td->ioprio_set) {
847 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
848 td_verror(td, errno, "ioprio_set");
849 goto err;
850 }
851 }
852
853 if (nice(td->o.nice) == -1) {
854 td_verror(td, errno, "nice");
855 goto err;
856 }
857
858 if (td->o.ioscheduler && switch_ioscheduler(td))
859 goto err;
860
861 if (!td->o.create_serialize && setup_files(td))
862 goto err;
863
864 if (td_io_init(td))
865 goto err;
866
867 if (open_files(td))
868 goto err;
869
870 if (init_random_map(td))
871 goto err;
872
873 if (td->o.exec_prerun) {
874 if (system(td->o.exec_prerun) < 0)
875 goto err;
876 }
877
878 fio_gettime(&td->epoch, NULL);
879 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
880 getrusage(RUSAGE_SELF, &td->ts.ru_start);
881
882 runtime[0] = runtime[1] = 0;
883 clear_state = 0;
884 while (keep_running(td)) {
885 fio_gettime(&td->start, NULL);
886 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
887
888 if (td->o.ratemin)
889 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
890
891 if (clear_state && clear_io_state(td))
892 break;
893
894 prune_io_piece_log(td);
895
896 do_io(td);
897
898 clear_state = 1;
899
900 if (td_read(td) && td->io_bytes[DDIR_READ]) {
901 if (td->rw_end_set[DDIR_READ])
902 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
903 else
904 elapsed = utime_since_now(&td->start);
905
906 runtime[DDIR_READ] += elapsed;
907 }
908 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
909 if (td->rw_end_set[DDIR_WRITE])
910 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
911 else
912 elapsed = utime_since_now(&td->start);
913
914 runtime[DDIR_WRITE] += elapsed;
915 }
916
917 if (td->error || td->terminate)
918 break;
919
920 if (!td->o.do_verify ||
921 td->o.verify == VERIFY_NONE ||
922 (td->io_ops->flags & FIO_UNIDIR))
923 continue;
924
925 if (clear_io_state(td))
926 break;
927
928 fio_gettime(&td->start, NULL);
929
930 do_verify(td);
931
932 runtime[DDIR_READ] += utime_since_now(&td->start);
933
934 if (td->error || td->terminate)
935 break;
936 }
937
938 update_rusage_stat(td);
939 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
940 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
941 td->ts.total_run_time = mtime_since_now(&td->epoch);
942 td->ts.io_bytes[0] = td->io_bytes[0];
943 td->ts.io_bytes[1] = td->io_bytes[1];
944
945 if (td->ts.bw_log)
946 finish_log(td, td->ts.bw_log, "bw");
947 if (td->ts.slat_log)
948 finish_log(td, td->ts.slat_log, "slat");
949 if (td->ts.clat_log)
950 finish_log(td, td->ts.clat_log, "clat");
951 if (td->o.exec_postrun) {
952 if (system(td->o.exec_postrun) < 0)
953 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
954 }
955
956 if (exitall_on_terminate)
957 terminate_threads(td->groupid);
958
959err:
960 if (td->error)
961 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
962 close_files(td);
963 close_ioengine(td);
964 cleanup_io_u(td);
965
966 /*
967 * do this very late, it will log file closing as well
968 */
969 if (td->o.write_iolog_file)
970 write_iolog_close(td);
971
972 options_mem_free(td);
973 td_set_runstate(td, TD_EXITED);
974 return (void *) (unsigned long) td->error;
975}
976
977/*
978 * We cannot pass the td data into a forked process, so attach the td and
979 * pass it to the thread worker.
980 */
981static int fork_main(int shmid, int offset)
982{
983 struct thread_data *td;
984 void *data, *ret;
985
986 data = shmat(shmid, NULL, 0);
987 if (data == (void *) -1) {
988 int __err = errno;
989
990 perror("shmat");
991 return __err;
992 }
993
994 td = data + offset * sizeof(struct thread_data);
995 ret = thread_main(td);
996 shmdt(data);
997 return (int) (unsigned long) ret;
998}
999
1000/*
1001 * Run over the job map and reap the threads that have exited, if any.
1002 */
1003static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1004{
1005 struct thread_data *td;
1006 int i, cputhreads, realthreads, pending, status, ret;
1007
1008 /*
1009 * reap exited threads (TD_EXITED -> TD_REAPED)
1010 */
1011 realthreads = pending = cputhreads = 0;
1012 for_each_td(td, i) {
1013 int flags = 0;
1014
1015 /*
1016 * ->io_ops is NULL for a thread that has closed its
1017 * io engine
1018 */
1019 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1020 cputhreads++;
1021 else
1022 realthreads++;
1023
1024 if (!td->pid || td->runstate == TD_REAPED)
1025 continue;
1026 if (td->o.use_thread) {
1027 if (td->runstate == TD_EXITED) {
1028 td_set_runstate(td, TD_REAPED);
1029 goto reaped;
1030 }
1031 continue;
1032 }
1033
1034 flags = WNOHANG;
1035 if (td->runstate == TD_EXITED)
1036 flags = 0;
1037
1038 /*
1039 * check if someone quit or got killed in an unusual way
1040 */
1041 ret = waitpid(td->pid, &status, flags);
1042 if (ret < 0) {
1043 if (errno == ECHILD) {
1044 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
1045 td_set_runstate(td, TD_REAPED);
1046 goto reaped;
1047 }
1048 perror("waitpid");
1049 } else if (ret == td->pid) {
1050 if (WIFSIGNALED(status)) {
1051 int sig = WTERMSIG(status);
1052
1053 if (sig != SIGQUIT)
1054 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
1055 td_set_runstate(td, TD_REAPED);
1056 goto reaped;
1057 }
1058 if (WIFEXITED(status)) {
1059 if (WEXITSTATUS(status) && !td->error)
1060 td->error = WEXITSTATUS(status);
1061
1062 td_set_runstate(td, TD_REAPED);
1063 goto reaped;
1064 }
1065 }
1066
1067 /*
1068 * thread is not dead, continue
1069 */
1070 pending++;
1071 continue;
1072reaped:
1073 if (td->o.use_thread) {
1074 long ret;
1075
1076 dprint(FD_PROCESS, "joining tread %d\n", td->pid);
1077 if (pthread_join(td->thread, (void *) &ret)) {
1078 dprint(FD_PROCESS, "join failed %ld\n", ret);
1079 perror("pthread_join");
1080 }
1081 }
1082
1083 (*nr_running)--;
1084 (*m_rate) -= td->o.ratemin;
1085 (*t_rate) -= td->o.rate;
1086 pending--;
1087
1088 if (td->error)
1089 exit_value++;
1090 }
1091
1092 if (*nr_running == cputhreads && !pending && realthreads)
1093 terminate_threads(TERMINATE_ALL);
1094}
1095
1096/*
1097 * Main function for kicking off and reaping jobs, as needed.
1098 */
1099static void run_threads(void)
1100{
1101 struct thread_data *td;
1102 unsigned long spent;
1103 int i, todo, nr_running, m_rate, t_rate, nr_started;
1104
1105 if (fio_pin_memory())
1106 return;
1107
1108 if (!terse_output) {
1109 printf("Starting ");
1110 if (nr_thread)
1111 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1112 if (nr_process) {
1113 if (nr_thread)
1114 printf(" and ");
1115 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1116 }
1117 printf("\n");
1118 fflush(stdout);
1119 }
1120
1121 signal(SIGINT, sig_handler);
1122 signal(SIGALRM, sig_handler);
1123
1124 todo = thread_number;
1125 nr_running = 0;
1126 nr_started = 0;
1127 m_rate = t_rate = 0;
1128
1129 for_each_td(td, i) {
1130 print_status_init(td->thread_number - 1);
1131
1132 if (!td->o.create_serialize) {
1133 init_disk_util(td);
1134 continue;
1135 }
1136
1137 /*
1138 * do file setup here so it happens sequentially,
1139 * we don't want X number of threads getting their
1140 * client data interspersed on disk
1141 */
1142 if (setup_files(td)) {
1143 exit_value++;
1144 if (td->error)
1145 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1146 td_set_runstate(td, TD_REAPED);
1147 todo--;
1148 }
1149
1150 init_disk_util(td);
1151 }
1152
1153 set_genesis_time();
1154
1155 while (todo) {
1156 struct thread_data *map[MAX_JOBS];
1157 struct timeval this_start;
1158 int this_jobs = 0, left;
1159
1160 /*
1161 * create threads (TD_NOT_CREATED -> TD_CREATED)
1162 */
1163 for_each_td(td, i) {
1164 if (td->runstate != TD_NOT_CREATED)
1165 continue;
1166
1167 /*
1168 * never got a chance to start, killed by other
1169 * thread for some reason
1170 */
1171 if (td->terminate) {
1172 todo--;
1173 continue;
1174 }
1175
1176 if (td->o.start_delay) {
1177 spent = mtime_since_genesis();
1178
1179 if (td->o.start_delay * 1000 > spent)
1180 continue;
1181 }
1182
1183 if (td->o.stonewall && (nr_started || nr_running))
1184 break;
1185
1186 /*
1187 * Set state to created. Thread will transition
1188 * to TD_INITIALIZED when it's done setting up.
1189 */
1190 td_set_runstate(td, TD_CREATED);
1191 map[this_jobs++] = td;
1192 nr_started++;
1193
1194 if (td->o.use_thread) {
1195 dprint(FD_PROCESS, "will pthread_create\n");
1196 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1197 perror("thread_create");
1198 nr_started--;
1199 break;
1200 }
1201 } else {
1202 dprint(FD_PROCESS, "will fork\n");
1203 if (!fork()) {
1204 int ret = fork_main(shm_id, i);
1205
1206 exit(ret);
1207 }
1208 }
1209 fio_sem_down(startup_sem);
1210 }
1211
1212 /*
1213 * Wait for the started threads to transition to
1214 * TD_INITIALIZED.
1215 */
1216 fio_gettime(&this_start, NULL);
1217 left = this_jobs;
1218 while (left && !fio_abort) {
1219 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1220 break;
1221
1222 usleep(100000);
1223
1224 for (i = 0; i < this_jobs; i++) {
1225 td = map[i];
1226 if (!td)
1227 continue;
1228 if (td->runstate == TD_INITIALIZED) {
1229 map[i] = NULL;
1230 left--;
1231 } else if (td->runstate >= TD_EXITED) {
1232 map[i] = NULL;
1233 left--;
1234 todo--;
1235 nr_running++; /* work-around... */
1236 }
1237 }
1238 }
1239
1240 if (left) {
1241 log_err("fio: %d jobs failed to start\n", left);
1242 for (i = 0; i < this_jobs; i++) {
1243 td = map[i];
1244 if (!td)
1245 continue;
1246 kill(td->pid, SIGTERM);
1247 }
1248 break;
1249 }
1250
1251 /*
1252 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1253 */
1254 for_each_td(td, i) {
1255 if (td->runstate != TD_INITIALIZED)
1256 continue;
1257
1258 td_set_runstate(td, TD_RUNNING);
1259 nr_running++;
1260 nr_started--;
1261 m_rate += td->o.ratemin;
1262 t_rate += td->o.rate;
1263 todo--;
1264 fio_sem_up(td->mutex);
1265 }
1266
1267 reap_threads(&nr_running, &t_rate, &m_rate);
1268
1269 if (todo)
1270 usleep(100000);
1271 }
1272
1273 while (nr_running) {
1274 reap_threads(&nr_running, &t_rate, &m_rate);
1275 usleep(10000);
1276 }
1277
1278 update_io_ticks();
1279 fio_unpin_memory();
1280}
1281
1282int main(int argc, char *argv[])
1283{
1284 long ps;
1285
1286 /*
1287 * We need locale for number printing, if it isn't set then just
1288 * go with the US format.
1289 */
1290 if (!getenv("LC_NUMERIC"))
1291 setlocale(LC_NUMERIC, "en_US");
1292
1293 if (parse_options(argc, argv))
1294 return 1;
1295
1296 if (!thread_number)
1297 return 0;
1298
1299 ps = sysconf(_SC_PAGESIZE);
1300 if (ps < 0) {
1301 log_err("Failed to get page size\n");
1302 return 1;
1303 }
1304
1305 page_size = ps;
1306 page_mask = ps - 1;
1307
1308 if (write_bw_log) {
1309 setup_log(&agg_io_log[DDIR_READ]);
1310 setup_log(&agg_io_log[DDIR_WRITE]);
1311 }
1312
1313 startup_sem = fio_sem_init(0);
1314
1315 set_genesis_time();
1316
1317 disk_util_timer_arm();
1318
1319 run_threads();
1320
1321 if (!fio_abort) {
1322 show_run_stats();
1323 if (write_bw_log) {
1324 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1325 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1326 }
1327 }
1328
1329 fio_sem_remove(startup_sem);
1330 return exit_value;
1331}