Fio 1.44.2
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "trim.h"
42#include "diskutil.h"
43#include "cgroup.h"
44#include "profile.h"
45#include "lib/rand.h"
46
47unsigned long page_mask;
48unsigned long page_size;
49
50#define PAGE_ALIGN(buf) \
51 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
52
53int groupid = 0;
54int thread_number = 0;
55int nr_process = 0;
56int nr_thread = 0;
57int shm_id = 0;
58int temp_stall_ts;
59unsigned long done_secs = 0;
60
61static struct fio_mutex *startup_mutex;
62static struct fio_mutex *writeout_mutex;
63static volatile int fio_abort;
64static int exit_value;
65static struct itimerval itimer;
66static pthread_t gtod_thread;
67static struct flist_head *cgroup_list;
68static char *cgroup_mnt;
69
70struct io_log *agg_io_log[2];
71
72#define TERMINATE_ALL (-1)
73#define JOB_START_TIMEOUT (5 * 1000)
74
75void td_set_runstate(struct thread_data *td, int runstate)
76{
77 if (td->runstate == runstate)
78 return;
79
80 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
81 td->runstate, runstate);
82 td->runstate = runstate;
83}
84
85static void terminate_threads(int group_id)
86{
87 struct thread_data *td;
88 int i;
89
90 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
91
92 for_each_td(td, i) {
93 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
94 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
95 td->o.name, (int) td->pid);
96 td->terminate = 1;
97 td->o.start_delay = 0;
98
99 /*
100 * if the thread is running, just let it exit
101 */
102 if (td->runstate < TD_RUNNING)
103 kill(td->pid, SIGQUIT);
104 else {
105 struct ioengine_ops *ops = td->io_ops;
106
107 if (ops && (ops->flags & FIO_SIGQUIT))
108 kill(td->pid, SIGQUIT);
109 }
110 }
111 }
112}
113
114static void status_timer_arm(void)
115{
116 itimer.it_value.tv_sec = 0;
117 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
118 setitimer(ITIMER_REAL, &itimer, NULL);
119}
120
121static void sig_alrm(int fio_unused sig)
122{
123 if (threads) {
124 update_io_ticks();
125 print_thread_status();
126 status_timer_arm();
127 }
128}
129
130/*
131 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
132 */
133static void sig_quit(int sig)
134{
135}
136
137static void sig_int(int sig)
138{
139 if (threads) {
140 log_info("\nfio: terminating on signal %d\n", sig);
141 fflush(stdout);
142 terminate_threads(TERMINATE_ALL);
143 }
144}
145
146static void set_sig_handlers(void)
147{
148 struct sigaction act;
149
150 memset(&act, 0, sizeof(act));
151 act.sa_handler = sig_alrm;
152 act.sa_flags = SA_RESTART;
153 sigaction(SIGALRM, &act, NULL);
154
155 memset(&act, 0, sizeof(act));
156 act.sa_handler = sig_int;
157 act.sa_flags = SA_RESTART;
158 sigaction(SIGINT, &act, NULL);
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_quit;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGQUIT, &act, NULL);
164}
165
166/*
167 * Check if we are above the minimum rate given.
168 */
169static int __check_min_rate(struct thread_data *td, struct timeval *now,
170 enum td_ddir ddir)
171{
172 unsigned long long bytes = 0;
173 unsigned long iops = 0;
174 unsigned long spent;
175 unsigned long rate;
176 unsigned int ratemin = 0;
177 unsigned int rate_iops = 0;
178 unsigned int rate_iops_min = 0;
179
180 assert(ddir_rw(ddir));
181
182 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
183 return 0;
184
185 /*
186 * allow a 2 second settle period in the beginning
187 */
188 if (mtime_since(&td->start, now) < 2000)
189 return 0;
190
191 iops += td->io_blocks[ddir];
192 bytes += td->this_io_bytes[ddir];
193 ratemin += td->o.ratemin[ddir];
194 rate_iops += td->o.rate_iops[ddir];
195 rate_iops_min += td->o.rate_iops_min[ddir];
196
197 /*
198 * if rate blocks is set, sample is running
199 */
200 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
201 spent = mtime_since(&td->lastrate[ddir], now);
202 if (spent < td->o.ratecycle)
203 return 0;
204
205 if (td->o.rate[ddir]) {
206 /*
207 * check bandwidth specified rate
208 */
209 if (bytes < td->rate_bytes[ddir]) {
210 log_err("%s: min rate %u not met\n", td->o.name,
211 ratemin);
212 return 1;
213 } else {
214 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
215 if (rate < ratemin ||
216 bytes < td->rate_bytes[ddir]) {
217 log_err("%s: min rate %u not met, got"
218 " %luKB/sec\n", td->o.name,
219 ratemin, rate);
220 return 1;
221 }
222 }
223 } else {
224 /*
225 * checks iops specified rate
226 */
227 if (iops < rate_iops) {
228 log_err("%s: min iops rate %u not met\n",
229 td->o.name, rate_iops);
230 return 1;
231 } else {
232 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
233 if (rate < rate_iops_min ||
234 iops < td->rate_blocks[ddir]) {
235 log_err("%s: min iops rate %u not met,"
236 " got %lu\n", td->o.name,
237 rate_iops_min, rate);
238 }
239 }
240 }
241 }
242
243 td->rate_bytes[ddir] = bytes;
244 td->rate_blocks[ddir] = iops;
245 memcpy(&td->lastrate[ddir], now, sizeof(*now));
246 return 0;
247}
248
249static int check_min_rate(struct thread_data *td, struct timeval *now,
250 unsigned long *bytes_done)
251{
252 int ret = 0;
253
254 if (bytes_done[0])
255 ret |= __check_min_rate(td, now, 0);
256 if (bytes_done[1])
257 ret |= __check_min_rate(td, now, 1);
258
259 return ret;
260}
261
262static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
263{
264 if (!td->o.timeout)
265 return 0;
266 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
267 return 1;
268
269 return 0;
270}
271
272/*
273 * When job exits, we can cancel the in-flight IO if we are using async
274 * io. Attempt to do so.
275 */
276static void cleanup_pending_aio(struct thread_data *td)
277{
278 struct flist_head *entry, *n;
279 struct io_u *io_u;
280 int r;
281
282 /*
283 * get immediately available events, if any
284 */
285 r = io_u_queued_complete(td, 0, NULL);
286 if (r < 0)
287 return;
288
289 /*
290 * now cancel remaining active events
291 */
292 if (td->io_ops->cancel) {
293 flist_for_each_safe(entry, n, &td->io_u_busylist) {
294 io_u = flist_entry(entry, struct io_u, list);
295
296 /*
297 * if the io_u isn't in flight, then that generally
298 * means someone leaked an io_u. complain but fix
299 * it up, so we don't stall here.
300 */
301 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
302 log_err("fio: non-busy IO on busy list\n");
303 put_io_u(td, io_u);
304 } else {
305 r = td->io_ops->cancel(td, io_u);
306 if (!r)
307 put_io_u(td, io_u);
308 }
309 }
310 }
311
312 if (td->cur_depth)
313 r = io_u_queued_complete(td, td->cur_depth, NULL);
314}
315
316/*
317 * Helper to handle the final sync of a file. Works just like the normal
318 * io path, just does everything sync.
319 */
320static int fio_io_sync(struct thread_data *td, struct fio_file *f)
321{
322 struct io_u *io_u = __get_io_u(td);
323 int ret;
324
325 if (!io_u)
326 return 1;
327
328 io_u->ddir = DDIR_SYNC;
329 io_u->file = f;
330
331 if (td_io_prep(td, io_u)) {
332 put_io_u(td, io_u);
333 return 1;
334 }
335
336requeue:
337 ret = td_io_queue(td, io_u);
338 if (ret < 0) {
339 td_verror(td, io_u->error, "td_io_queue");
340 put_io_u(td, io_u);
341 return 1;
342 } else if (ret == FIO_Q_QUEUED) {
343 if (io_u_queued_complete(td, 1, NULL) < 0)
344 return 1;
345 } else if (ret == FIO_Q_COMPLETED) {
346 if (io_u->error) {
347 td_verror(td, io_u->error, "td_io_queue");
348 return 1;
349 }
350
351 if (io_u_sync_complete(td, io_u, NULL) < 0)
352 return 1;
353 } else if (ret == FIO_Q_BUSY) {
354 if (td_io_commit(td))
355 return 1;
356 goto requeue;
357 }
358
359 return 0;
360}
361
362static inline void update_tv_cache(struct thread_data *td)
363{
364 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
365 fio_gettime(&td->tv_cache, NULL);
366}
367
368static int break_on_this_error(struct thread_data *td, int *retptr)
369{
370 int ret = *retptr;
371
372 if (ret < 0 || td->error) {
373 int err;
374
375 if (!td->o.continue_on_error)
376 return 1;
377
378 if (ret < 0)
379 err = -ret;
380 else
381 err = td->error;
382
383 if (td_non_fatal_error(err)) {
384 /*
385 * Continue with the I/Os in case of
386 * a non fatal error.
387 */
388 update_error_count(td, err);
389 td_clear_error(td);
390 *retptr = 0;
391 return 0;
392 } else if (td->o.fill_device && err == ENOSPC) {
393 /*
394 * We expect to hit this error if
395 * fill_device option is set.
396 */
397 td_clear_error(td);
398 td->terminate = 1;
399 return 1;
400 } else {
401 /*
402 * Stop the I/O in case of a fatal
403 * error.
404 */
405 update_error_count(td, err);
406 return 1;
407 }
408 }
409
410 return 0;
411}
412
413/*
414 * The main verify engine. Runs over the writes we previously submitted,
415 * reads the blocks back in, and checks the crc/md5 of the data.
416 */
417static void do_verify(struct thread_data *td)
418{
419 struct fio_file *f;
420 struct io_u *io_u;
421 int ret, min_events;
422 unsigned int i;
423
424 dprint(FD_VERIFY, "starting loop\n");
425
426 /*
427 * sync io first and invalidate cache, to make sure we really
428 * read from disk.
429 */
430 for_each_file(td, f, i) {
431 if (!fio_file_open(f))
432 continue;
433 if (fio_io_sync(td, f))
434 break;
435 if (file_invalidate_cache(td, f))
436 break;
437 }
438
439 if (td->error)
440 return;
441
442 td_set_runstate(td, TD_VERIFYING);
443
444 io_u = NULL;
445 while (!td->terminate) {
446 int ret2, full;
447
448 update_tv_cache(td);
449
450 if (runtime_exceeded(td, &td->tv_cache)) {
451 td->terminate = 1;
452 break;
453 }
454
455 io_u = __get_io_u(td);
456 if (!io_u)
457 break;
458
459 if (get_next_verify(td, io_u)) {
460 put_io_u(td, io_u);
461 break;
462 }
463
464 if (td_io_prep(td, io_u)) {
465 put_io_u(td, io_u);
466 break;
467 }
468
469 if (td->o.verify_async)
470 io_u->end_io = verify_io_u_async;
471 else
472 io_u->end_io = verify_io_u;
473
474 ret = td_io_queue(td, io_u);
475 switch (ret) {
476 case FIO_Q_COMPLETED:
477 if (io_u->error) {
478 ret = -io_u->error;
479 clear_io_u(td, io_u);
480 } else if (io_u->resid) {
481 int bytes = io_u->xfer_buflen - io_u->resid;
482 struct fio_file *f = io_u->file;
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 td_verror(td, EIO, "full resid");
489 put_io_u(td, io_u);
490 break;
491 }
492
493 io_u->xfer_buflen = io_u->resid;
494 io_u->xfer_buf += bytes;
495 io_u->offset += bytes;
496
497 if (ddir_rw(io_u->ddir))
498 td->ts.short_io_u[io_u->ddir]++;
499
500 if (io_u->offset == f->real_file_size)
501 goto sync_done;
502
503 requeue_io_u(td, &io_u);
504 } else {
505sync_done:
506 ret = io_u_sync_complete(td, io_u, NULL);
507 if (ret < 0)
508 break;
509 }
510 continue;
511 case FIO_Q_QUEUED:
512 break;
513 case FIO_Q_BUSY:
514 requeue_io_u(td, &io_u);
515 ret2 = td_io_commit(td);
516 if (ret2 < 0)
517 ret = ret2;
518 break;
519 default:
520 assert(ret < 0);
521 td_verror(td, -ret, "td_io_queue");
522 break;
523 }
524
525 if (break_on_this_error(td, &ret))
526 break;
527
528 /*
529 * if we can queue more, do so. but check if there are
530 * completed io_u's first.
531 */
532 full = queue_full(td) || ret == FIO_Q_BUSY;
533 if (full || !td->o.iodepth_batch_complete) {
534 min_events = min(td->o.iodepth_batch_complete,
535 td->cur_depth);
536 if (full && !min_events)
537 min_events = 1;
538
539 do {
540 /*
541 * Reap required number of io units, if any,
542 * and do the verification on them through
543 * the callback handler
544 */
545 if (io_u_queued_complete(td, min_events, NULL) < 0) {
546 ret = -1;
547 break;
548 }
549 } while (full && (td->cur_depth > td->o.iodepth_low));
550 }
551 if (ret < 0)
552 break;
553 }
554
555 if (!td->error) {
556 min_events = td->cur_depth;
557
558 if (min_events)
559 ret = io_u_queued_complete(td, min_events, NULL);
560 } else
561 cleanup_pending_aio(td);
562
563 td_set_runstate(td, TD_RUNNING);
564
565 dprint(FD_VERIFY, "exiting loop\n");
566}
567
568/*
569 * Main IO worker function. It retrieves io_u's to process and queues
570 * and reaps them, checking for rate and errors along the way.
571 */
572static void do_io(struct thread_data *td)
573{
574 unsigned int i;
575 int ret = 0;
576
577 if (in_ramp_time(td))
578 td_set_runstate(td, TD_RAMP);
579 else
580 td_set_runstate(td, TD_RUNNING);
581
582 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
583 (!flist_empty(&td->trim_list)) ||
584 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
585 struct timeval comp_time;
586 unsigned long bytes_done[2] = { 0, 0 };
587 int min_evts = 0;
588 struct io_u *io_u;
589 int ret2, full;
590
591 if (td->terminate)
592 break;
593
594 update_tv_cache(td);
595
596 if (runtime_exceeded(td, &td->tv_cache)) {
597 td->terminate = 1;
598 break;
599 }
600
601 io_u = get_io_u(td);
602 if (!io_u)
603 break;
604
605 /*
606 * Add verification end_io handler, if asked to verify
607 * a previously written file.
608 */
609 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
610 !td_rw(td)) {
611 if (td->o.verify_async)
612 io_u->end_io = verify_io_u_async;
613 else
614 io_u->end_io = verify_io_u;
615 td_set_runstate(td, TD_VERIFYING);
616 } else if (in_ramp_time(td))
617 td_set_runstate(td, TD_RAMP);
618 else
619 td_set_runstate(td, TD_RUNNING);
620
621 ret = td_io_queue(td, io_u);
622 switch (ret) {
623 case FIO_Q_COMPLETED:
624 if (io_u->error) {
625 ret = -io_u->error;
626 clear_io_u(td, io_u);
627 } else if (io_u->resid) {
628 int bytes = io_u->xfer_buflen - io_u->resid;
629 struct fio_file *f = io_u->file;
630
631 /*
632 * zero read, fail
633 */
634 if (!bytes) {
635 td_verror(td, EIO, "full resid");
636 put_io_u(td, io_u);
637 break;
638 }
639
640 io_u->xfer_buflen = io_u->resid;
641 io_u->xfer_buf += bytes;
642 io_u->offset += bytes;
643
644 if (ddir_rw(io_u->ddir))
645 td->ts.short_io_u[io_u->ddir]++;
646
647 if (io_u->offset == f->real_file_size)
648 goto sync_done;
649
650 requeue_io_u(td, &io_u);
651 } else {
652sync_done:
653 if (__should_check_rate(td, 0) ||
654 __should_check_rate(td, 1))
655 fio_gettime(&comp_time, NULL);
656
657 ret = io_u_sync_complete(td, io_u, bytes_done);
658 if (ret < 0)
659 break;
660 }
661 break;
662 case FIO_Q_QUEUED:
663 /*
664 * if the engine doesn't have a commit hook,
665 * the io_u is really queued. if it does have such
666 * a hook, it has to call io_u_queued() itself.
667 */
668 if (td->io_ops->commit == NULL)
669 io_u_queued(td, io_u);
670 break;
671 case FIO_Q_BUSY:
672 requeue_io_u(td, &io_u);
673 ret2 = td_io_commit(td);
674 if (ret2 < 0)
675 ret = ret2;
676 break;
677 default:
678 assert(ret < 0);
679 put_io_u(td, io_u);
680 break;
681 }
682
683 if (break_on_this_error(td, &ret))
684 break;
685
686 /*
687 * See if we need to complete some commands
688 */
689 full = queue_full(td) || ret == FIO_Q_BUSY;
690 if (full || !td->o.iodepth_batch_complete) {
691 min_evts = min(td->o.iodepth_batch_complete,
692 td->cur_depth);
693 if (full && !min_evts)
694 min_evts = 1;
695
696 if (__should_check_rate(td, 0) ||
697 __should_check_rate(td, 1))
698 fio_gettime(&comp_time, NULL);
699
700 do {
701 ret = io_u_queued_complete(td, min_evts, bytes_done);
702 if (ret < 0)
703 break;
704
705 } while (full && (td->cur_depth > td->o.iodepth_low));
706 }
707
708 if (ret < 0)
709 break;
710 if (!(bytes_done[0] + bytes_done[1]))
711 continue;
712
713 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
714 if (check_min_rate(td, &comp_time, bytes_done)) {
715 if (exitall_on_terminate)
716 terminate_threads(td->groupid);
717 td_verror(td, EIO, "check_min_rate");
718 break;
719 }
720 }
721
722 if (td->o.thinktime) {
723 unsigned long long b;
724
725 b = td->io_blocks[0] + td->io_blocks[1];
726 if (!(b % td->o.thinktime_blocks)) {
727 int left;
728
729 if (td->o.thinktime_spin)
730 usec_spin(td->o.thinktime_spin);
731
732 left = td->o.thinktime - td->o.thinktime_spin;
733 if (left)
734 usec_sleep(td, left);
735 }
736 }
737 }
738
739 if (td->trim_entries)
740 printf("trim entries %ld\n", td->trim_entries);
741
742 if (td->o.fill_device && td->error == ENOSPC) {
743 td->error = 0;
744 td->terminate = 1;
745 }
746 if (!td->error) {
747 struct fio_file *f;
748
749 i = td->cur_depth;
750 if (i)
751 ret = io_u_queued_complete(td, i, NULL);
752
753 if (should_fsync(td) && td->o.end_fsync) {
754 td_set_runstate(td, TD_FSYNCING);
755
756 for_each_file(td, f, i) {
757 if (!fio_file_open(f))
758 continue;
759 fio_io_sync(td, f);
760 }
761 }
762 } else
763 cleanup_pending_aio(td);
764
765 /*
766 * stop job if we failed doing any IO
767 */
768 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
769 td->done = 1;
770}
771
772static void cleanup_io_u(struct thread_data *td)
773{
774 struct flist_head *entry, *n;
775 struct io_u *io_u;
776
777 flist_for_each_safe(entry, n, &td->io_u_freelist) {
778 io_u = flist_entry(entry, struct io_u, list);
779
780 flist_del(&io_u->list);
781 free(io_u);
782 }
783
784 free_io_mem(td);
785}
786
787static int init_io_u(struct thread_data *td)
788{
789 struct io_u *io_u;
790 unsigned int max_bs;
791 int cl_align, i, max_units;
792 char *p;
793
794 max_units = td->o.iodepth;
795 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
796 td->orig_buffer_size = (unsigned long long) max_bs
797 * (unsigned long long) max_units;
798
799 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
800 unsigned long bs;
801
802 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
803 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
804 }
805
806 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
807 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
808 return 1;
809 }
810
811 if (allocate_io_mem(td))
812 return 1;
813
814 if (td->o.odirect || td->o.mem_align ||
815 (td->io_ops->flags & FIO_RAWIO))
816 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
817 else
818 p = td->orig_buffer;
819
820 cl_align = os_cache_line_size();
821
822 for (i = 0; i < max_units; i++) {
823 void *ptr;
824
825 if (td->terminate)
826 return 1;
827
828 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
829 log_err("fio: posix_memalign=%s\n", strerror(errno));
830 break;
831 }
832
833 io_u = ptr;
834 memset(io_u, 0, sizeof(*io_u));
835 INIT_FLIST_HEAD(&io_u->list);
836 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
837
838 if (!(td->io_ops->flags & FIO_NOIO)) {
839 io_u->buf = p + max_bs * i;
840 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
841
842 if (td_write(td) && !td->o.refill_buffers)
843 io_u_fill_buffer(td, io_u, max_bs);
844 else if (td_write(td) && td->o.verify_pattern_bytes) {
845 /*
846 * Fill the buffer with the pattern if we are
847 * going to be doing writes.
848 */
849 fill_pattern(td, io_u->buf, max_bs, io_u);
850 }
851 }
852
853 io_u->index = i;
854 io_u->flags = IO_U_F_FREE;
855 flist_add(&io_u->list, &td->io_u_freelist);
856 }
857
858 return 0;
859}
860
861static int switch_ioscheduler(struct thread_data *td)
862{
863 char tmp[256], tmp2[128];
864 FILE *f;
865 int ret;
866
867 if (td->io_ops->flags & FIO_DISKLESSIO)
868 return 0;
869
870 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
871
872 f = fopen(tmp, "r+");
873 if (!f) {
874 if (errno == ENOENT) {
875 log_err("fio: os or kernel doesn't support IO scheduler"
876 " switching\n");
877 return 0;
878 }
879 td_verror(td, errno, "fopen iosched");
880 return 1;
881 }
882
883 /*
884 * Set io scheduler.
885 */
886 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
887 if (ferror(f) || ret != 1) {
888 td_verror(td, errno, "fwrite");
889 fclose(f);
890 return 1;
891 }
892
893 rewind(f);
894
895 /*
896 * Read back and check that the selected scheduler is now the default.
897 */
898 ret = fread(tmp, 1, sizeof(tmp), f);
899 if (ferror(f) || ret < 0) {
900 td_verror(td, errno, "fread");
901 fclose(f);
902 return 1;
903 }
904
905 sprintf(tmp2, "[%s]", td->o.ioscheduler);
906 if (!strstr(tmp, tmp2)) {
907 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
908 td_verror(td, EINVAL, "iosched_switch");
909 fclose(f);
910 return 1;
911 }
912
913 fclose(f);
914 return 0;
915}
916
917static int keep_running(struct thread_data *td)
918{
919 unsigned long long io_done;
920
921 if (td->done)
922 return 0;
923 if (td->o.time_based)
924 return 1;
925 if (td->o.loops) {
926 td->o.loops--;
927 return 1;
928 }
929
930 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
931 + td->io_skip_bytes;
932 if (io_done < td->o.size)
933 return 1;
934
935 return 0;
936}
937
938static void reset_io_counters(struct thread_data *td)
939{
940 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
941 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
942 td->zone_bytes = 0;
943 td->rate_bytes[0] = td->rate_bytes[1] = 0;
944 td->rate_blocks[0] = td->rate_blocks[1] = 0;
945
946 td->last_was_sync = 0;
947
948 /*
949 * reset file done count if we are to start over
950 */
951 if (td->o.time_based || td->o.loops)
952 td->nr_done_files = 0;
953
954 /*
955 * Set the same seed to get repeatable runs
956 */
957 td_fill_rand_seeds(td);
958}
959
960void reset_all_stats(struct thread_data *td)
961{
962 struct timeval tv;
963 int i;
964
965 reset_io_counters(td);
966
967 for (i = 0; i < 2; i++) {
968 td->io_bytes[i] = 0;
969 td->io_blocks[i] = 0;
970 td->io_issues[i] = 0;
971 td->ts.total_io_u[i] = 0;
972 }
973
974 fio_gettime(&tv, NULL);
975 memcpy(&td->epoch, &tv, sizeof(tv));
976 memcpy(&td->start, &tv, sizeof(tv));
977}
978
979static void clear_io_state(struct thread_data *td)
980{
981 struct fio_file *f;
982 unsigned int i;
983
984 reset_io_counters(td);
985
986 close_files(td);
987 for_each_file(td, f, i)
988 fio_file_clear_done(f);
989}
990
991static int exec_string(const char *string)
992{
993 int ret, newlen = strlen(string) + 1 + 8;
994 char *str;
995
996 str = malloc(newlen);
997 sprintf(str, "sh -c %s", string);
998
999 ret = system(str);
1000 if (ret == -1)
1001 log_err("fio: exec of cmd <%s> failed\n", str);
1002
1003 free(str);
1004 return ret;
1005}
1006
1007/*
1008 * Entry point for the thread based jobs. The process based jobs end up
1009 * here as well, after a little setup.
1010 */
1011static void *thread_main(void *data)
1012{
1013 unsigned long long runtime[2], elapsed;
1014 struct thread_data *td = data;
1015 pthread_condattr_t attr;
1016 int clear_state;
1017
1018 if (!td->o.use_thread)
1019 setsid();
1020
1021 td->pid = getpid();
1022
1023 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1024
1025 INIT_FLIST_HEAD(&td->io_u_freelist);
1026 INIT_FLIST_HEAD(&td->io_u_busylist);
1027 INIT_FLIST_HEAD(&td->io_u_requeues);
1028 INIT_FLIST_HEAD(&td->io_log_list);
1029 INIT_FLIST_HEAD(&td->io_hist_list);
1030 INIT_FLIST_HEAD(&td->verify_list);
1031 INIT_FLIST_HEAD(&td->trim_list);
1032 pthread_mutex_init(&td->io_u_lock, NULL);
1033 td->io_hist_tree = RB_ROOT;
1034
1035 pthread_condattr_init(&attr);
1036 pthread_cond_init(&td->verify_cond, &attr);
1037 pthread_cond_init(&td->free_cond, &attr);
1038
1039 td_set_runstate(td, TD_INITIALIZED);
1040 dprint(FD_MUTEX, "up startup_mutex\n");
1041 fio_mutex_up(startup_mutex);
1042 dprint(FD_MUTEX, "wait on td->mutex\n");
1043 fio_mutex_down(td->mutex);
1044 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1045
1046 /*
1047 * the ->mutex mutex is now no longer used, close it to avoid
1048 * eating a file descriptor
1049 */
1050 fio_mutex_remove(td->mutex);
1051
1052 if (td->o.uid != -1U && setuid(td->o.uid)) {
1053 td_verror(td, errno, "setuid");
1054 goto err;
1055 }
1056 if (td->o.gid != -1U && setgid(td->o.gid)) {
1057 td_verror(td, errno, "setgid");
1058 goto err;
1059 }
1060
1061 /*
1062 * May alter parameters that init_io_u() will use, so we need to
1063 * do this first.
1064 */
1065 if (init_iolog(td))
1066 goto err;
1067
1068 if (init_io_u(td))
1069 goto err;
1070
1071 if (td->o.verify_async && verify_async_init(td))
1072 goto err;
1073
1074 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1075 td_verror(td, errno, "cpu_set_affinity");
1076 goto err;
1077 }
1078
1079 /*
1080 * If we have a gettimeofday() thread, make sure we exclude that
1081 * thread from this job
1082 */
1083 if (td->o.gtod_cpu) {
1084 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1085 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1086 td_verror(td, errno, "cpu_set_affinity");
1087 goto err;
1088 }
1089 }
1090
1091 if (td->ioprio_set) {
1092 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1093 td_verror(td, errno, "ioprio_set");
1094 goto err;
1095 }
1096 }
1097
1098 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1099 goto err;
1100
1101 if (nice(td->o.nice) == -1) {
1102 td_verror(td, errno, "nice");
1103 goto err;
1104 }
1105
1106 if (td->o.ioscheduler && switch_ioscheduler(td))
1107 goto err;
1108
1109 if (!td->o.create_serialize && setup_files(td))
1110 goto err;
1111
1112 if (td_io_init(td))
1113 goto err;
1114
1115 if (init_random_map(td))
1116 goto err;
1117
1118 if (td->o.exec_prerun) {
1119 if (exec_string(td->o.exec_prerun))
1120 goto err;
1121 }
1122
1123 if (td->o.pre_read) {
1124 if (pre_read_files(td) < 0)
1125 goto err;
1126 }
1127
1128 fio_gettime(&td->epoch, NULL);
1129 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1130
1131 runtime[0] = runtime[1] = 0;
1132 clear_state = 0;
1133 while (keep_running(td)) {
1134 fio_gettime(&td->start, NULL);
1135 memcpy(&td->ts.stat_sample_time[0], &td->start,
1136 sizeof(td->start));
1137 memcpy(&td->ts.stat_sample_time[1], &td->start,
1138 sizeof(td->start));
1139 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1140
1141 if (td->o.ratemin[0] || td->o.ratemin[1])
1142 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1143 sizeof(td->lastrate));
1144
1145 if (clear_state)
1146 clear_io_state(td);
1147
1148 prune_io_piece_log(td);
1149
1150 do_io(td);
1151
1152 clear_state = 1;
1153
1154 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1155 elapsed = utime_since_now(&td->start);
1156 runtime[DDIR_READ] += elapsed;
1157 }
1158 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1159 elapsed = utime_since_now(&td->start);
1160 runtime[DDIR_WRITE] += elapsed;
1161 }
1162
1163 if (td->error || td->terminate)
1164 break;
1165
1166 if (!td->o.do_verify ||
1167 td->o.verify == VERIFY_NONE ||
1168 (td->io_ops->flags & FIO_UNIDIR))
1169 continue;
1170
1171 clear_io_state(td);
1172
1173 fio_gettime(&td->start, NULL);
1174
1175 do_verify(td);
1176
1177 runtime[DDIR_READ] += utime_since_now(&td->start);
1178
1179 if (td->error || td->terminate)
1180 break;
1181 }
1182
1183 update_rusage_stat(td);
1184 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1185 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1186 td->ts.total_run_time = mtime_since_now(&td->epoch);
1187 td->ts.io_bytes[0] = td->io_bytes[0];
1188 td->ts.io_bytes[1] = td->io_bytes[1];
1189
1190 fio_mutex_down(writeout_mutex);
1191 if (td->ts.bw_log) {
1192 if (td->o.bw_log_file) {
1193 finish_log_named(td, td->ts.bw_log,
1194 td->o.bw_log_file, "bw");
1195 } else
1196 finish_log(td, td->ts.bw_log, "bw");
1197 }
1198 if (td->ts.lat_log) {
1199 if (td->o.lat_log_file) {
1200 finish_log_named(td, td->ts.lat_log,
1201 td->o.lat_log_file, "lat");
1202 } else
1203 finish_log(td, td->ts.lat_log, "lat");
1204 }
1205 if (td->ts.slat_log) {
1206 if (td->o.lat_log_file) {
1207 finish_log_named(td, td->ts.slat_log,
1208 td->o.lat_log_file, "slat");
1209 } else
1210 finish_log(td, td->ts.slat_log, "slat");
1211 }
1212 if (td->ts.clat_log) {
1213 if (td->o.lat_log_file) {
1214 finish_log_named(td, td->ts.clat_log,
1215 td->o.lat_log_file, "clat");
1216 } else
1217 finish_log(td, td->ts.clat_log, "clat");
1218 }
1219 fio_mutex_up(writeout_mutex);
1220 if (td->o.exec_postrun)
1221 exec_string(td->o.exec_postrun);
1222
1223 if (exitall_on_terminate)
1224 terminate_threads(td->groupid);
1225
1226err:
1227 if (td->error)
1228 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1229 td->verror);
1230
1231 if (td->o.verify_async)
1232 verify_async_exit(td);
1233
1234 close_and_free_files(td);
1235 close_ioengine(td);
1236 cleanup_io_u(td);
1237 cgroup_shutdown(td, &cgroup_mnt);
1238
1239 if (td->o.cpumask_set) {
1240 int ret = fio_cpuset_exit(&td->o.cpumask);
1241
1242 td_verror(td, ret, "fio_cpuset_exit");
1243 }
1244
1245 /*
1246 * do this very late, it will log file closing as well
1247 */
1248 if (td->o.write_iolog_file)
1249 write_iolog_close(td);
1250
1251 options_mem_free(td);
1252 td_set_runstate(td, TD_EXITED);
1253 return (void *) (unsigned long) td->error;
1254}
1255
1256/*
1257 * We cannot pass the td data into a forked process, so attach the td and
1258 * pass it to the thread worker.
1259 */
1260static int fork_main(int shmid, int offset)
1261{
1262 struct thread_data *td;
1263 void *data, *ret;
1264
1265 data = shmat(shmid, NULL, 0);
1266 if (data == (void *) -1) {
1267 int __err = errno;
1268
1269 perror("shmat");
1270 return __err;
1271 }
1272
1273 td = data + offset * sizeof(struct thread_data);
1274 ret = thread_main(td);
1275 shmdt(data);
1276 return (int) (unsigned long) ret;
1277}
1278
1279/*
1280 * Run over the job map and reap the threads that have exited, if any.
1281 */
1282static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1283{
1284 struct thread_data *td;
1285 int i, cputhreads, realthreads, pending, status, ret;
1286
1287 /*
1288 * reap exited threads (TD_EXITED -> TD_REAPED)
1289 */
1290 realthreads = pending = cputhreads = 0;
1291 for_each_td(td, i) {
1292 int flags = 0;
1293
1294 /*
1295 * ->io_ops is NULL for a thread that has closed its
1296 * io engine
1297 */
1298 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1299 cputhreads++;
1300 else
1301 realthreads++;
1302
1303 if (!td->pid) {
1304 pending++;
1305 continue;
1306 }
1307 if (td->runstate == TD_REAPED)
1308 continue;
1309 if (td->o.use_thread) {
1310 if (td->runstate == TD_EXITED) {
1311 td_set_runstate(td, TD_REAPED);
1312 goto reaped;
1313 }
1314 continue;
1315 }
1316
1317 flags = WNOHANG;
1318 if (td->runstate == TD_EXITED)
1319 flags = 0;
1320
1321 /*
1322 * check if someone quit or got killed in an unusual way
1323 */
1324 ret = waitpid(td->pid, &status, flags);
1325 if (ret < 0) {
1326 if (errno == ECHILD) {
1327 log_err("fio: pid=%d disappeared %d\n",
1328 (int) td->pid, td->runstate);
1329 td_set_runstate(td, TD_REAPED);
1330 goto reaped;
1331 }
1332 perror("waitpid");
1333 } else if (ret == td->pid) {
1334 if (WIFSIGNALED(status)) {
1335 int sig = WTERMSIG(status);
1336
1337 if (sig != SIGQUIT)
1338 log_err("fio: pid=%d, got signal=%d\n",
1339 (int) td->pid, sig);
1340 td_set_runstate(td, TD_REAPED);
1341 goto reaped;
1342 }
1343 if (WIFEXITED(status)) {
1344 if (WEXITSTATUS(status) && !td->error)
1345 td->error = WEXITSTATUS(status);
1346
1347 td_set_runstate(td, TD_REAPED);
1348 goto reaped;
1349 }
1350 }
1351
1352 /*
1353 * thread is not dead, continue
1354 */
1355 pending++;
1356 continue;
1357reaped:
1358 (*nr_running)--;
1359 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1360 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1361 if (!td->pid)
1362 pending--;
1363
1364 if (td->error)
1365 exit_value++;
1366
1367 done_secs += mtime_since_now(&td->epoch) / 1000;
1368 }
1369
1370 if (*nr_running == cputhreads && !pending && realthreads)
1371 terminate_threads(TERMINATE_ALL);
1372}
1373
1374static void *gtod_thread_main(void *data)
1375{
1376 fio_mutex_up(startup_mutex);
1377
1378 /*
1379 * As long as we have jobs around, update the clock. It would be nice
1380 * to have some way of NOT hammering that CPU with gettimeofday(),
1381 * but I'm not sure what to use outside of a simple CPU nop to relax
1382 * it - we don't want to lose precision.
1383 */
1384 while (threads) {
1385 fio_gtod_update();
1386 nop;
1387 }
1388
1389 return NULL;
1390}
1391
1392static int fio_start_gtod_thread(void)
1393{
1394 pthread_attr_t attr;
1395 int ret;
1396
1397 pthread_attr_init(&attr);
1398 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1399 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1400 pthread_attr_destroy(&attr);
1401 if (ret) {
1402 log_err("Can't create gtod thread: %s\n", strerror(ret));
1403 return 1;
1404 }
1405
1406 ret = pthread_detach(gtod_thread);
1407 if (ret) {
1408 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1409 return 1;
1410 }
1411
1412 dprint(FD_MUTEX, "wait on startup_mutex\n");
1413 fio_mutex_down(startup_mutex);
1414 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1415 return 0;
1416}
1417
1418/*
1419 * Main function for kicking off and reaping jobs, as needed.
1420 */
1421static void run_threads(void)
1422{
1423 struct thread_data *td;
1424 unsigned long spent;
1425 int i, todo, nr_running, m_rate, t_rate, nr_started;
1426
1427 if (fio_pin_memory())
1428 return;
1429
1430 if (fio_gtod_offload && fio_start_gtod_thread())
1431 return;
1432
1433 if (!terse_output) {
1434 log_info("Starting ");
1435 if (nr_thread)
1436 log_info("%d thread%s", nr_thread,
1437 nr_thread > 1 ? "s" : "");
1438 if (nr_process) {
1439 if (nr_thread)
1440 printf(" and ");
1441 log_info("%d process%s", nr_process,
1442 nr_process > 1 ? "es" : "");
1443 }
1444 log_info("\n");
1445 fflush(stdout);
1446 }
1447
1448 set_sig_handlers();
1449
1450 todo = thread_number;
1451 nr_running = 0;
1452 nr_started = 0;
1453 m_rate = t_rate = 0;
1454
1455 for_each_td(td, i) {
1456 print_status_init(td->thread_number - 1);
1457
1458 if (!td->o.create_serialize) {
1459 init_disk_util(td);
1460 continue;
1461 }
1462
1463 /*
1464 * do file setup here so it happens sequentially,
1465 * we don't want X number of threads getting their
1466 * client data interspersed on disk
1467 */
1468 if (setup_files(td)) {
1469 exit_value++;
1470 if (td->error)
1471 log_err("fio: pid=%d, err=%d/%s\n",
1472 (int) td->pid, td->error, td->verror);
1473 td_set_runstate(td, TD_REAPED);
1474 todo--;
1475 } else {
1476 struct fio_file *f;
1477 unsigned int i;
1478
1479 /*
1480 * for sharing to work, each job must always open
1481 * its own files. so close them, if we opened them
1482 * for creation
1483 */
1484 for_each_file(td, f, i) {
1485 if (fio_file_open(f))
1486 td_io_close_file(td, f);
1487 }
1488 }
1489
1490 init_disk_util(td);
1491 }
1492
1493 set_genesis_time();
1494
1495 while (todo) {
1496 struct thread_data *map[MAX_JOBS];
1497 struct timeval this_start;
1498 int this_jobs = 0, left;
1499
1500 /*
1501 * create threads (TD_NOT_CREATED -> TD_CREATED)
1502 */
1503 for_each_td(td, i) {
1504 if (td->runstate != TD_NOT_CREATED)
1505 continue;
1506
1507 /*
1508 * never got a chance to start, killed by other
1509 * thread for some reason
1510 */
1511 if (td->terminate) {
1512 todo--;
1513 continue;
1514 }
1515
1516 if (td->o.start_delay) {
1517 spent = mtime_since_genesis();
1518
1519 if (td->o.start_delay * 1000 > spent)
1520 continue;
1521 }
1522
1523 if (td->o.stonewall && (nr_started || nr_running)) {
1524 dprint(FD_PROCESS, "%s: stonewall wait\n",
1525 td->o.name);
1526 break;
1527 }
1528
1529 /*
1530 * Set state to created. Thread will transition
1531 * to TD_INITIALIZED when it's done setting up.
1532 */
1533 td_set_runstate(td, TD_CREATED);
1534 map[this_jobs++] = td;
1535 nr_started++;
1536
1537 if (td->o.use_thread) {
1538 int ret;
1539
1540 dprint(FD_PROCESS, "will pthread_create\n");
1541 ret = pthread_create(&td->thread, NULL,
1542 thread_main, td);
1543 if (ret) {
1544 log_err("pthread_create: %s\n",
1545 strerror(ret));
1546 nr_started--;
1547 break;
1548 }
1549 ret = pthread_detach(td->thread);
1550 if (ret)
1551 log_err("pthread_detach: %s",
1552 strerror(ret));
1553 } else {
1554 pid_t pid;
1555 dprint(FD_PROCESS, "will fork\n");
1556 pid = fork();
1557 if (!pid) {
1558 int ret = fork_main(shm_id, i);
1559
1560 _exit(ret);
1561 } else if (i == fio_debug_jobno)
1562 *fio_debug_jobp = pid;
1563 }
1564 dprint(FD_MUTEX, "wait on startup_mutex\n");
1565 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1566 log_err("fio: job startup hung? exiting.\n");
1567 terminate_threads(TERMINATE_ALL);
1568 fio_abort = 1;
1569 nr_started--;
1570 break;
1571 }
1572 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1573 }
1574
1575 /*
1576 * Wait for the started threads to transition to
1577 * TD_INITIALIZED.
1578 */
1579 fio_gettime(&this_start, NULL);
1580 left = this_jobs;
1581 while (left && !fio_abort) {
1582 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1583 break;
1584
1585 usleep(100000);
1586
1587 for (i = 0; i < this_jobs; i++) {
1588 td = map[i];
1589 if (!td)
1590 continue;
1591 if (td->runstate == TD_INITIALIZED) {
1592 map[i] = NULL;
1593 left--;
1594 } else if (td->runstate >= TD_EXITED) {
1595 map[i] = NULL;
1596 left--;
1597 todo--;
1598 nr_running++; /* work-around... */
1599 }
1600 }
1601 }
1602
1603 if (left) {
1604 log_err("fio: %d jobs failed to start\n", left);
1605 for (i = 0; i < this_jobs; i++) {
1606 td = map[i];
1607 if (!td)
1608 continue;
1609 kill(td->pid, SIGTERM);
1610 }
1611 break;
1612 }
1613
1614 /*
1615 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1616 */
1617 for_each_td(td, i) {
1618 if (td->runstate != TD_INITIALIZED)
1619 continue;
1620
1621 if (in_ramp_time(td))
1622 td_set_runstate(td, TD_RAMP);
1623 else
1624 td_set_runstate(td, TD_RUNNING);
1625 nr_running++;
1626 nr_started--;
1627 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1628 t_rate += td->o.rate[0] + td->o.rate[1];
1629 todo--;
1630 fio_mutex_up(td->mutex);
1631 }
1632
1633 reap_threads(&nr_running, &t_rate, &m_rate);
1634
1635 if (todo)
1636 usleep(100000);
1637 }
1638
1639 while (nr_running) {
1640 reap_threads(&nr_running, &t_rate, &m_rate);
1641 usleep(10000);
1642 }
1643
1644 update_io_ticks();
1645 fio_unpin_memory();
1646}
1647
1648int main(int argc, char *argv[])
1649{
1650 long ps;
1651
1652 sinit();
1653 init_rand(&__fio_rand_state);
1654
1655 /*
1656 * We need locale for number printing, if it isn't set then just
1657 * go with the US format.
1658 */
1659 if (!getenv("LC_NUMERIC"))
1660 setlocale(LC_NUMERIC, "en_US");
1661
1662 ps = sysconf(_SC_PAGESIZE);
1663 if (ps < 0) {
1664 log_err("Failed to get page size\n");
1665 return 1;
1666 }
1667
1668 page_size = ps;
1669 page_mask = ps - 1;
1670
1671 fio_keywords_init();
1672
1673 if (parse_options(argc, argv))
1674 return 1;
1675
1676 if (exec_profile && load_profile(exec_profile))
1677 return 1;
1678
1679 if (!thread_number)
1680 return 0;
1681
1682 if (write_bw_log) {
1683 setup_log(&agg_io_log[DDIR_READ]);
1684 setup_log(&agg_io_log[DDIR_WRITE]);
1685 }
1686
1687 startup_mutex = fio_mutex_init(0);
1688 writeout_mutex = fio_mutex_init(1);
1689
1690 set_genesis_time();
1691
1692 status_timer_arm();
1693
1694 cgroup_list = smalloc(sizeof(*cgroup_list));
1695 INIT_FLIST_HEAD(cgroup_list);
1696
1697 run_threads();
1698
1699 if (!fio_abort) {
1700 show_run_stats();
1701 if (write_bw_log) {
1702 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1703 __finish_log(agg_io_log[DDIR_WRITE],
1704 "agg-write_bw.log");
1705 }
1706 }
1707
1708 cgroup_kill(cgroup_list);
1709 sfree(cgroup_list);
1710 sfree(cgroup_mnt);
1711
1712 fio_mutex_remove(startup_mutex);
1713 fio_mutex_remove(writeout_mutex);
1714 return exit_value;
1715}