Update Windows version
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48
49unsigned long page_mask;
50unsigned long page_size;
51
52#define PAGE_ALIGN(buf) \
53 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
54
55int groupid = 0;
56int thread_number = 0;
57int nr_process = 0;
58int nr_thread = 0;
59int shm_id = 0;
60int temp_stall_ts;
61unsigned long done_secs = 0;
62
63static struct fio_mutex *startup_mutex;
64static struct fio_mutex *writeout_mutex;
65static volatile int fio_abort;
66static int exit_value;
67static timer_t ival_timer;
68static pthread_t gtod_thread;
69static struct flist_head *cgroup_list;
70static char *cgroup_mnt;
71
72struct io_log *agg_io_log[2];
73
74#define TERMINATE_ALL (-1)
75#define JOB_START_TIMEOUT (5 * 1000)
76
77void td_set_runstate(struct thread_data *td, int runstate)
78{
79 if (td->runstate == runstate)
80 return;
81
82 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
83 td->runstate, runstate);
84 td->runstate = runstate;
85}
86
87static void terminate_threads(int group_id)
88{
89 struct thread_data *td;
90 int i;
91
92 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
93
94 for_each_td(td, i) {
95 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
96 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
97 td->o.name, (int) td->pid);
98 td->terminate = 1;
99 td->o.start_delay = 0;
100
101 /*
102 * if the thread is running, just let it exit
103 */
104 if (td->runstate < TD_RUNNING)
105 kill(td->pid, SIGTERM);
106 else {
107 struct ioengine_ops *ops = td->io_ops;
108
109 if (ops && (ops->flags & FIO_SIGTERM))
110 kill(td->pid, SIGTERM);
111 }
112 }
113 }
114}
115
116static void status_timer_arm(void)
117{
118 struct itimerspec value;
119
120 value.it_value.tv_sec = 0;
121 value.it_value.tv_nsec = DISK_UTIL_MSEC * 1000000;
122 value.it_interval.tv_sec = 0;
123 value.it_interval.tv_nsec = DISK_UTIL_MSEC * 1000000;
124
125 timer_settime(ival_timer, 0, &value, NULL);
126}
127
128static void ival_fn(union sigval sig)
129{
130 if (threads) {
131 update_io_ticks();
132 print_thread_status();
133 }
134}
135
136/*
137 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
138 */
139static void sig_quit(int sig)
140{
141}
142
143static void sig_int(int sig)
144{
145 if (threads) {
146 log_info("\nfio: terminating on signal %d\n", sig);
147 fflush(stdout);
148 terminate_threads(TERMINATE_ALL);
149 }
150}
151
152static void posix_timer_teardown(void)
153{
154 timer_delete(ival_timer);
155}
156
157static void posix_timer_setup(void)
158{
159 struct sigevent evt;
160
161 memset(&evt, 0, sizeof(evt));
162 evt.sigev_notify = SIGEV_THREAD;
163 evt.sigev_notify_function = ival_fn;
164
165 if (timer_create(FIO_TIMER_CLOCK, &evt, &ival_timer) < 0)
166 perror("timer_create");
167
168}
169
170static void set_sig_handlers(void)
171{
172 struct sigaction act;
173
174 memset(&act, 0, sizeof(act));
175 act.sa_handler = sig_int;
176 act.sa_flags = SA_RESTART;
177 sigaction(SIGINT, &act, NULL);
178
179 memset(&act, 0, sizeof(act));
180 act.sa_handler = sig_quit;
181 act.sa_flags = SA_RESTART;
182 sigaction(SIGTERM, &act, NULL);
183}
184
185/*
186 * Check if we are above the minimum rate given.
187 */
188static int __check_min_rate(struct thread_data *td, struct timeval *now,
189 enum td_ddir ddir)
190{
191 unsigned long long bytes = 0;
192 unsigned long iops = 0;
193 unsigned long spent;
194 unsigned long rate;
195 unsigned int ratemin = 0;
196 unsigned int rate_iops = 0;
197 unsigned int rate_iops_min = 0;
198
199 assert(ddir_rw(ddir));
200
201 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
202 return 0;
203
204 /*
205 * allow a 2 second settle period in the beginning
206 */
207 if (mtime_since(&td->start, now) < 2000)
208 return 0;
209
210 iops += td->io_blocks[ddir];
211 bytes += td->this_io_bytes[ddir];
212 ratemin += td->o.ratemin[ddir];
213 rate_iops += td->o.rate_iops[ddir];
214 rate_iops_min += td->o.rate_iops_min[ddir];
215
216 /*
217 * if rate blocks is set, sample is running
218 */
219 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
220 spent = mtime_since(&td->lastrate[ddir], now);
221 if (spent < td->o.ratecycle)
222 return 0;
223
224 if (td->o.rate[ddir]) {
225 /*
226 * check bandwidth specified rate
227 */
228 if (bytes < td->rate_bytes[ddir]) {
229 log_err("%s: min rate %u not met\n", td->o.name,
230 ratemin);
231 return 1;
232 } else {
233 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
234 if (rate < ratemin ||
235 bytes < td->rate_bytes[ddir]) {
236 log_err("%s: min rate %u not met, got"
237 " %luKB/sec\n", td->o.name,
238 ratemin, rate);
239 return 1;
240 }
241 }
242 } else {
243 /*
244 * checks iops specified rate
245 */
246 if (iops < rate_iops) {
247 log_err("%s: min iops rate %u not met\n",
248 td->o.name, rate_iops);
249 return 1;
250 } else {
251 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
252 if (rate < rate_iops_min ||
253 iops < td->rate_blocks[ddir]) {
254 log_err("%s: min iops rate %u not met,"
255 " got %lu\n", td->o.name,
256 rate_iops_min, rate);
257 }
258 }
259 }
260 }
261
262 td->rate_bytes[ddir] = bytes;
263 td->rate_blocks[ddir] = iops;
264 memcpy(&td->lastrate[ddir], now, sizeof(*now));
265 return 0;
266}
267
268static int check_min_rate(struct thread_data *td, struct timeval *now,
269 unsigned long *bytes_done)
270{
271 int ret = 0;
272
273 if (bytes_done[0])
274 ret |= __check_min_rate(td, now, 0);
275 if (bytes_done[1])
276 ret |= __check_min_rate(td, now, 1);
277
278 return ret;
279}
280
281static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
282{
283 if (!td->o.timeout)
284 return 0;
285 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
286 return 1;
287
288 return 0;
289}
290
291/*
292 * When job exits, we can cancel the in-flight IO if we are using async
293 * io. Attempt to do so.
294 */
295static void cleanup_pending_aio(struct thread_data *td)
296{
297 struct flist_head *entry, *n;
298 struct io_u *io_u;
299 int r;
300
301 /*
302 * get immediately available events, if any
303 */
304 r = io_u_queued_complete(td, 0, NULL);
305 if (r < 0)
306 return;
307
308 /*
309 * now cancel remaining active events
310 */
311 if (td->io_ops->cancel) {
312 flist_for_each_safe(entry, n, &td->io_u_busylist) {
313 io_u = flist_entry(entry, struct io_u, list);
314
315 /*
316 * if the io_u isn't in flight, then that generally
317 * means someone leaked an io_u. complain but fix
318 * it up, so we don't stall here.
319 */
320 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
321 log_err("fio: non-busy IO on busy list\n");
322 put_io_u(td, io_u);
323 } else {
324 r = td->io_ops->cancel(td, io_u);
325 if (!r)
326 put_io_u(td, io_u);
327 }
328 }
329 }
330
331 if (td->cur_depth)
332 r = io_u_queued_complete(td, td->cur_depth, NULL);
333}
334
335/*
336 * Helper to handle the final sync of a file. Works just like the normal
337 * io path, just does everything sync.
338 */
339static int fio_io_sync(struct thread_data *td, struct fio_file *f)
340{
341 struct io_u *io_u = __get_io_u(td);
342 int ret;
343
344 if (!io_u)
345 return 1;
346
347 io_u->ddir = DDIR_SYNC;
348 io_u->file = f;
349
350 if (td_io_prep(td, io_u)) {
351 put_io_u(td, io_u);
352 return 1;
353 }
354
355requeue:
356 ret = td_io_queue(td, io_u);
357 if (ret < 0) {
358 td_verror(td, io_u->error, "td_io_queue");
359 put_io_u(td, io_u);
360 return 1;
361 } else if (ret == FIO_Q_QUEUED) {
362 if (io_u_queued_complete(td, 1, NULL) < 0)
363 return 1;
364 } else if (ret == FIO_Q_COMPLETED) {
365 if (io_u->error) {
366 td_verror(td, io_u->error, "td_io_queue");
367 return 1;
368 }
369
370 if (io_u_sync_complete(td, io_u, NULL) < 0)
371 return 1;
372 } else if (ret == FIO_Q_BUSY) {
373 if (td_io_commit(td))
374 return 1;
375 goto requeue;
376 }
377
378 return 0;
379}
380
381static inline void update_tv_cache(struct thread_data *td)
382{
383 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
384 fio_gettime(&td->tv_cache, NULL);
385}
386
387static int break_on_this_error(struct thread_data *td, int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err;
393
394 if (!td->o.continue_on_error)
395 return 1;
396
397 if (ret < 0)
398 err = -ret;
399 else
400 err = td->error;
401
402 if (td_non_fatal_error(err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return 0;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 td->terminate = 1;
418 return 1;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return 1;
426 }
427 }
428
429 return 0;
430}
431
432/*
433 * The main verify engine. Runs over the writes we previously submitted,
434 * reads the blocks back in, and checks the crc/md5 of the data.
435 */
436static void do_verify(struct thread_data *td)
437{
438 struct fio_file *f;
439 struct io_u *io_u;
440 int ret, min_events;
441 unsigned int i;
442
443 dprint(FD_VERIFY, "starting loop\n");
444
445 /*
446 * sync io first and invalidate cache, to make sure we really
447 * read from disk.
448 */
449 for_each_file(td, f, i) {
450 if (!fio_file_open(f))
451 continue;
452 if (fio_io_sync(td, f))
453 break;
454 if (file_invalidate_cache(td, f))
455 break;
456 }
457
458 if (td->error)
459 return;
460
461 td_set_runstate(td, TD_VERIFYING);
462
463 io_u = NULL;
464 while (!td->terminate) {
465 int ret2, full;
466
467 update_tv_cache(td);
468
469 if (runtime_exceeded(td, &td->tv_cache)) {
470 td->terminate = 1;
471 break;
472 }
473
474 io_u = __get_io_u(td);
475 if (!io_u)
476 break;
477
478 if (get_next_verify(td, io_u)) {
479 put_io_u(td, io_u);
480 break;
481 }
482
483 if (td_io_prep(td, io_u)) {
484 put_io_u(td, io_u);
485 break;
486 }
487
488 if (td->o.verify_async)
489 io_u->end_io = verify_io_u_async;
490 else
491 io_u->end_io = verify_io_u;
492
493 ret = td_io_queue(td, io_u);
494 switch (ret) {
495 case FIO_Q_COMPLETED:
496 if (io_u->error) {
497 ret = -io_u->error;
498 clear_io_u(td, io_u);
499 } else if (io_u->resid) {
500 int bytes = io_u->xfer_buflen - io_u->resid;
501 struct fio_file *f = io_u->file;
502
503 /*
504 * zero read, fail
505 */
506 if (!bytes) {
507 td_verror(td, EIO, "full resid");
508 put_io_u(td, io_u);
509 break;
510 }
511
512 io_u->xfer_buflen = io_u->resid;
513 io_u->xfer_buf += bytes;
514 io_u->offset += bytes;
515
516 if (ddir_rw(io_u->ddir))
517 td->ts.short_io_u[io_u->ddir]++;
518
519 if (io_u->offset == f->real_file_size)
520 goto sync_done;
521
522 requeue_io_u(td, &io_u);
523 } else {
524sync_done:
525 ret = io_u_sync_complete(td, io_u, NULL);
526 if (ret < 0)
527 break;
528 }
529 continue;
530 case FIO_Q_QUEUED:
531 break;
532 case FIO_Q_BUSY:
533 requeue_io_u(td, &io_u);
534 ret2 = td_io_commit(td);
535 if (ret2 < 0)
536 ret = ret2;
537 break;
538 default:
539 assert(ret < 0);
540 td_verror(td, -ret, "td_io_queue");
541 break;
542 }
543
544 if (break_on_this_error(td, &ret))
545 break;
546
547 /*
548 * if we can queue more, do so. but check if there are
549 * completed io_u's first.
550 */
551 full = queue_full(td) || ret == FIO_Q_BUSY;
552 if (full || !td->o.iodepth_batch_complete) {
553 min_events = min(td->o.iodepth_batch_complete,
554 td->cur_depth);
555 if (full && !min_events)
556 min_events = 1;
557
558 do {
559 /*
560 * Reap required number of io units, if any,
561 * and do the verification on them through
562 * the callback handler
563 */
564 if (io_u_queued_complete(td, min_events, NULL) < 0) {
565 ret = -1;
566 break;
567 }
568 } while (full && (td->cur_depth > td->o.iodepth_low));
569 }
570 if (ret < 0)
571 break;
572 }
573
574 if (!td->error) {
575 min_events = td->cur_depth;
576
577 if (min_events)
578 ret = io_u_queued_complete(td, min_events, NULL);
579 } else
580 cleanup_pending_aio(td);
581
582 td_set_runstate(td, TD_RUNNING);
583
584 dprint(FD_VERIFY, "exiting loop\n");
585}
586
587/*
588 * Main IO worker function. It retrieves io_u's to process and queues
589 * and reaps them, checking for rate and errors along the way.
590 */
591static void do_io(struct thread_data *td)
592{
593 unsigned int i;
594 int ret = 0;
595
596 if (in_ramp_time(td))
597 td_set_runstate(td, TD_RAMP);
598 else
599 td_set_runstate(td, TD_RUNNING);
600
601 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
602 (!flist_empty(&td->trim_list)) ||
603 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
604 struct timeval comp_time;
605 unsigned long bytes_done[2] = { 0, 0 };
606 int min_evts = 0;
607 struct io_u *io_u;
608 int ret2, full;
609
610 if (td->terminate)
611 break;
612
613 update_tv_cache(td);
614
615 if (runtime_exceeded(td, &td->tv_cache)) {
616 td->terminate = 1;
617 break;
618 }
619
620 io_u = get_io_u(td);
621 if (!io_u)
622 break;
623
624 /*
625 * Add verification end_io handler, if asked to verify
626 * a previously written file.
627 */
628 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
629 !td_rw(td)) {
630 if (td->o.verify_async)
631 io_u->end_io = verify_io_u_async;
632 else
633 io_u->end_io = verify_io_u;
634 td_set_runstate(td, TD_VERIFYING);
635 } else if (in_ramp_time(td))
636 td_set_runstate(td, TD_RAMP);
637 else
638 td_set_runstate(td, TD_RUNNING);
639
640 ret = td_io_queue(td, io_u);
641 switch (ret) {
642 case FIO_Q_COMPLETED:
643 if (io_u->error) {
644 ret = -io_u->error;
645 clear_io_u(td, io_u);
646 } else if (io_u->resid) {
647 int bytes = io_u->xfer_buflen - io_u->resid;
648 struct fio_file *f = io_u->file;
649
650 /*
651 * zero read, fail
652 */
653 if (!bytes) {
654 td_verror(td, EIO, "full resid");
655 put_io_u(td, io_u);
656 break;
657 }
658
659 io_u->xfer_buflen = io_u->resid;
660 io_u->xfer_buf += bytes;
661 io_u->offset += bytes;
662
663 if (ddir_rw(io_u->ddir))
664 td->ts.short_io_u[io_u->ddir]++;
665
666 if (io_u->offset == f->real_file_size)
667 goto sync_done;
668
669 requeue_io_u(td, &io_u);
670 } else {
671sync_done:
672 if (__should_check_rate(td, 0) ||
673 __should_check_rate(td, 1))
674 fio_gettime(&comp_time, NULL);
675
676 ret = io_u_sync_complete(td, io_u, bytes_done);
677 if (ret < 0)
678 break;
679 }
680 break;
681 case FIO_Q_QUEUED:
682 /*
683 * if the engine doesn't have a commit hook,
684 * the io_u is really queued. if it does have such
685 * a hook, it has to call io_u_queued() itself.
686 */
687 if (td->io_ops->commit == NULL)
688 io_u_queued(td, io_u);
689 break;
690 case FIO_Q_BUSY:
691 requeue_io_u(td, &io_u);
692 ret2 = td_io_commit(td);
693 if (ret2 < 0)
694 ret = ret2;
695 break;
696 default:
697 assert(ret < 0);
698 put_io_u(td, io_u);
699 break;
700 }
701
702 if (break_on_this_error(td, &ret))
703 break;
704
705 /*
706 * See if we need to complete some commands
707 */
708 full = queue_full(td) || ret == FIO_Q_BUSY;
709 if (full || !td->o.iodepth_batch_complete) {
710 min_evts = min(td->o.iodepth_batch_complete,
711 td->cur_depth);
712 if (full && !min_evts)
713 min_evts = 1;
714
715 if (__should_check_rate(td, 0) ||
716 __should_check_rate(td, 1))
717 fio_gettime(&comp_time, NULL);
718
719 do {
720 ret = io_u_queued_complete(td, min_evts, bytes_done);
721 if (ret < 0)
722 break;
723
724 } while (full && (td->cur_depth > td->o.iodepth_low));
725 }
726
727 if (ret < 0)
728 break;
729 if (!(bytes_done[0] + bytes_done[1]))
730 continue;
731
732 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
733 if (check_min_rate(td, &comp_time, bytes_done)) {
734 if (exitall_on_terminate)
735 terminate_threads(td->groupid);
736 td_verror(td, EIO, "check_min_rate");
737 break;
738 }
739 }
740
741 if (td->o.thinktime) {
742 unsigned long long b;
743
744 b = td->io_blocks[0] + td->io_blocks[1];
745 if (!(b % td->o.thinktime_blocks)) {
746 int left;
747
748 if (td->o.thinktime_spin)
749 usec_spin(td->o.thinktime_spin);
750
751 left = td->o.thinktime - td->o.thinktime_spin;
752 if (left)
753 usec_sleep(td, left);
754 }
755 }
756 }
757
758 if (td->trim_entries)
759 printf("trim entries %ld\n", td->trim_entries);
760
761 if (td->o.fill_device && td->error == ENOSPC) {
762 td->error = 0;
763 td->terminate = 1;
764 }
765 if (!td->error) {
766 struct fio_file *f;
767
768 i = td->cur_depth;
769 if (i)
770 ret = io_u_queued_complete(td, i, NULL);
771
772 if (should_fsync(td) && td->o.end_fsync) {
773 td_set_runstate(td, TD_FSYNCING);
774
775 for_each_file(td, f, i) {
776 if (!fio_file_open(f))
777 continue;
778 fio_io_sync(td, f);
779 }
780 }
781 } else
782 cleanup_pending_aio(td);
783
784 /*
785 * stop job if we failed doing any IO
786 */
787 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
788 td->done = 1;
789}
790
791static void cleanup_io_u(struct thread_data *td)
792{
793 struct flist_head *entry, *n;
794 struct io_u *io_u;
795
796 flist_for_each_safe(entry, n, &td->io_u_freelist) {
797 io_u = flist_entry(entry, struct io_u, list);
798
799 flist_del(&io_u->list);
800 free(io_u);
801 }
802
803 free_io_mem(td);
804}
805
806static int init_io_u(struct thread_data *td)
807{
808 struct io_u *io_u;
809 unsigned int max_bs;
810 int cl_align, i, max_units;
811 char *p;
812
813 max_units = td->o.iodepth;
814 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
815 td->orig_buffer_size = (unsigned long long) max_bs
816 * (unsigned long long) max_units;
817
818 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
819 unsigned long bs;
820
821 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
822 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
823 }
824
825 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
826 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
827 return 1;
828 }
829
830 if (allocate_io_mem(td))
831 return 1;
832
833 if (td->o.odirect || td->o.mem_align ||
834 (td->io_ops->flags & FIO_RAWIO))
835 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
836 else
837 p = td->orig_buffer;
838
839 cl_align = os_cache_line_size();
840
841 for (i = 0; i < max_units; i++) {
842 void *ptr;
843
844 if (td->terminate)
845 return 1;
846
847 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
848 log_err("fio: posix_memalign=%s\n", strerror(errno));
849 break;
850 }
851
852 io_u = ptr;
853 memset(io_u, 0, sizeof(*io_u));
854 INIT_FLIST_HEAD(&io_u->list);
855 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
856
857 if (!(td->io_ops->flags & FIO_NOIO)) {
858 io_u->buf = p + max_bs * i;
859 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
860
861 if (td_write(td) && !td->o.refill_buffers)
862 io_u_fill_buffer(td, io_u, max_bs);
863 else if (td_write(td) && td->o.verify_pattern_bytes) {
864 /*
865 * Fill the buffer with the pattern if we are
866 * going to be doing writes.
867 */
868 fill_pattern(td, io_u->buf, max_bs, io_u);
869 }
870 }
871
872 io_u->index = i;
873 io_u->flags = IO_U_F_FREE;
874 flist_add(&io_u->list, &td->io_u_freelist);
875 }
876
877 return 0;
878}
879
880static int switch_ioscheduler(struct thread_data *td)
881{
882 char tmp[256], tmp2[128];
883 FILE *f;
884 int ret;
885
886 if (td->io_ops->flags & FIO_DISKLESSIO)
887 return 0;
888
889 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
890
891 f = fopen(tmp, "r+");
892 if (!f) {
893 if (errno == ENOENT) {
894 log_err("fio: os or kernel doesn't support IO scheduler"
895 " switching\n");
896 return 0;
897 }
898 td_verror(td, errno, "fopen iosched");
899 return 1;
900 }
901
902 /*
903 * Set io scheduler.
904 */
905 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
906 if (ferror(f) || ret != 1) {
907 td_verror(td, errno, "fwrite");
908 fclose(f);
909 return 1;
910 }
911
912 rewind(f);
913
914 /*
915 * Read back and check that the selected scheduler is now the default.
916 */
917 ret = fread(tmp, 1, sizeof(tmp), f);
918 if (ferror(f) || ret < 0) {
919 td_verror(td, errno, "fread");
920 fclose(f);
921 return 1;
922 }
923
924 sprintf(tmp2, "[%s]", td->o.ioscheduler);
925 if (!strstr(tmp, tmp2)) {
926 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
927 td_verror(td, EINVAL, "iosched_switch");
928 fclose(f);
929 return 1;
930 }
931
932 fclose(f);
933 return 0;
934}
935
936static int keep_running(struct thread_data *td)
937{
938 unsigned long long io_done;
939
940 if (td->done)
941 return 0;
942 if (td->o.time_based)
943 return 1;
944 if (td->o.loops) {
945 td->o.loops--;
946 return 1;
947 }
948
949 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
950 + td->io_skip_bytes;
951 if (io_done < td->o.size)
952 return 1;
953
954 return 0;
955}
956
957static void reset_io_counters(struct thread_data *td)
958{
959 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
960 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
961 td->zone_bytes = 0;
962 td->rate_bytes[0] = td->rate_bytes[1] = 0;
963 td->rate_blocks[0] = td->rate_blocks[1] = 0;
964
965 td->last_was_sync = 0;
966
967 /*
968 * reset file done count if we are to start over
969 */
970 if (td->o.time_based || td->o.loops)
971 td->nr_done_files = 0;
972
973 /*
974 * Set the same seed to get repeatable runs
975 */
976 td_fill_rand_seeds(td);
977}
978
979void reset_all_stats(struct thread_data *td)
980{
981 struct timeval tv;
982 int i;
983
984 reset_io_counters(td);
985
986 for (i = 0; i < 2; i++) {
987 td->io_bytes[i] = 0;
988 td->io_blocks[i] = 0;
989 td->io_issues[i] = 0;
990 td->ts.total_io_u[i] = 0;
991 }
992
993 fio_gettime(&tv, NULL);
994 td->ts.runtime[0] = 0;
995 td->ts.runtime[1] = 0;
996 memcpy(&td->epoch, &tv, sizeof(tv));
997 memcpy(&td->start, &tv, sizeof(tv));
998}
999
1000static void clear_io_state(struct thread_data *td)
1001{
1002 struct fio_file *f;
1003 unsigned int i;
1004
1005 reset_io_counters(td);
1006
1007 close_files(td);
1008 for_each_file(td, f, i)
1009 fio_file_clear_done(f);
1010}
1011
1012static int exec_string(const char *string)
1013{
1014 int ret, newlen = strlen(string) + 1 + 8;
1015 char *str;
1016
1017 str = malloc(newlen);
1018 sprintf(str, "sh -c %s", string);
1019
1020 ret = system(str);
1021 if (ret == -1)
1022 log_err("fio: exec of cmd <%s> failed\n", str);
1023
1024 free(str);
1025 return ret;
1026}
1027
1028/*
1029 * Entry point for the thread based jobs. The process based jobs end up
1030 * here as well, after a little setup.
1031 */
1032static void *thread_main(void *data)
1033{
1034 unsigned long long elapsed;
1035 struct thread_data *td = data;
1036 pthread_condattr_t attr;
1037 int clear_state;
1038
1039 if (!td->o.use_thread)
1040 setsid();
1041
1042 td->pid = getpid();
1043
1044 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1045
1046 INIT_FLIST_HEAD(&td->io_u_freelist);
1047 INIT_FLIST_HEAD(&td->io_u_busylist);
1048 INIT_FLIST_HEAD(&td->io_u_requeues);
1049 INIT_FLIST_HEAD(&td->io_log_list);
1050 INIT_FLIST_HEAD(&td->io_hist_list);
1051 INIT_FLIST_HEAD(&td->verify_list);
1052 INIT_FLIST_HEAD(&td->trim_list);
1053 pthread_mutex_init(&td->io_u_lock, NULL);
1054 td->io_hist_tree = RB_ROOT;
1055
1056 pthread_condattr_init(&attr);
1057 pthread_cond_init(&td->verify_cond, &attr);
1058 pthread_cond_init(&td->free_cond, &attr);
1059
1060 td_set_runstate(td, TD_INITIALIZED);
1061 dprint(FD_MUTEX, "up startup_mutex\n");
1062 fio_mutex_up(startup_mutex);
1063 dprint(FD_MUTEX, "wait on td->mutex\n");
1064 fio_mutex_down(td->mutex);
1065 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1066
1067 /*
1068 * the ->mutex mutex is now no longer used, close it to avoid
1069 * eating a file descriptor
1070 */
1071 fio_mutex_remove(td->mutex);
1072
1073 /*
1074 * A new gid requires privilege, so we need to do this before setting
1075 * the uid.
1076 */
1077 if (td->o.gid != -1U && setgid(td->o.gid)) {
1078 td_verror(td, errno, "setgid");
1079 goto err;
1080 }
1081 if (td->o.uid != -1U && setuid(td->o.uid)) {
1082 td_verror(td, errno, "setuid");
1083 goto err;
1084 }
1085
1086 /*
1087 * May alter parameters that init_io_u() will use, so we need to
1088 * do this first.
1089 */
1090 if (init_iolog(td))
1091 goto err;
1092
1093 if (init_io_u(td))
1094 goto err;
1095
1096 if (td->o.verify_async && verify_async_init(td))
1097 goto err;
1098
1099 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1100 td_verror(td, errno, "cpu_set_affinity");
1101 goto err;
1102 }
1103
1104 /*
1105 * If we have a gettimeofday() thread, make sure we exclude that
1106 * thread from this job
1107 */
1108 if (td->o.gtod_cpu) {
1109 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1110 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1111 td_verror(td, errno, "cpu_set_affinity");
1112 goto err;
1113 }
1114 }
1115
1116 if (td->ioprio_set) {
1117 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1118 td_verror(td, errno, "ioprio_set");
1119 goto err;
1120 }
1121 }
1122
1123 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1124 goto err;
1125
1126 if (nice(td->o.nice) == -1) {
1127 td_verror(td, errno, "nice");
1128 goto err;
1129 }
1130
1131 if (td->o.ioscheduler && switch_ioscheduler(td))
1132 goto err;
1133
1134 if (!td->o.create_serialize && setup_files(td))
1135 goto err;
1136
1137 if (td_io_init(td))
1138 goto err;
1139
1140 if (init_random_map(td))
1141 goto err;
1142
1143 if (td->o.exec_prerun) {
1144 if (exec_string(td->o.exec_prerun))
1145 goto err;
1146 }
1147
1148 if (td->o.pre_read) {
1149 if (pre_read_files(td) < 0)
1150 goto err;
1151 }
1152
1153 fio_gettime(&td->epoch, NULL);
1154 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1155
1156 clear_state = 0;
1157 while (keep_running(td)) {
1158 fio_gettime(&td->start, NULL);
1159 memcpy(&td->ts.stat_sample_time[0], &td->start,
1160 sizeof(td->start));
1161 memcpy(&td->ts.stat_sample_time[1], &td->start,
1162 sizeof(td->start));
1163 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1164
1165 if (td->o.ratemin[0] || td->o.ratemin[1])
1166 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1167 sizeof(td->lastrate));
1168
1169 if (clear_state)
1170 clear_io_state(td);
1171
1172 prune_io_piece_log(td);
1173
1174 do_io(td);
1175
1176 clear_state = 1;
1177
1178 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1179 elapsed = utime_since_now(&td->start);
1180 td->ts.runtime[DDIR_READ] += elapsed;
1181 }
1182 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1183 elapsed = utime_since_now(&td->start);
1184 td->ts.runtime[DDIR_WRITE] += elapsed;
1185 }
1186
1187 if (td->error || td->terminate)
1188 break;
1189
1190 if (!td->o.do_verify ||
1191 td->o.verify == VERIFY_NONE ||
1192 (td->io_ops->flags & FIO_UNIDIR))
1193 continue;
1194
1195 clear_io_state(td);
1196
1197 fio_gettime(&td->start, NULL);
1198
1199 do_verify(td);
1200
1201 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1202
1203 if (td->error || td->terminate)
1204 break;
1205 }
1206
1207 update_rusage_stat(td);
1208 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1209 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1210 td->ts.total_run_time = mtime_since_now(&td->epoch);
1211 td->ts.io_bytes[0] = td->io_bytes[0];
1212 td->ts.io_bytes[1] = td->io_bytes[1];
1213
1214 fio_mutex_down(writeout_mutex);
1215 if (td->ts.bw_log) {
1216 if (td->o.bw_log_file) {
1217 finish_log_named(td, td->ts.bw_log,
1218 td->o.bw_log_file, "bw");
1219 } else
1220 finish_log(td, td->ts.bw_log, "bw");
1221 }
1222 if (td->ts.lat_log) {
1223 if (td->o.lat_log_file) {
1224 finish_log_named(td, td->ts.lat_log,
1225 td->o.lat_log_file, "lat");
1226 } else
1227 finish_log(td, td->ts.lat_log, "lat");
1228 }
1229 if (td->ts.slat_log) {
1230 if (td->o.lat_log_file) {
1231 finish_log_named(td, td->ts.slat_log,
1232 td->o.lat_log_file, "slat");
1233 } else
1234 finish_log(td, td->ts.slat_log, "slat");
1235 }
1236 if (td->ts.clat_log) {
1237 if (td->o.lat_log_file) {
1238 finish_log_named(td, td->ts.clat_log,
1239 td->o.lat_log_file, "clat");
1240 } else
1241 finish_log(td, td->ts.clat_log, "clat");
1242 }
1243 fio_mutex_up(writeout_mutex);
1244 if (td->o.exec_postrun)
1245 exec_string(td->o.exec_postrun);
1246
1247 if (exitall_on_terminate)
1248 terminate_threads(td->groupid);
1249
1250err:
1251 if (td->error)
1252 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1253 td->verror);
1254
1255 if (td->o.verify_async)
1256 verify_async_exit(td);
1257
1258 close_and_free_files(td);
1259 close_ioengine(td);
1260 cleanup_io_u(td);
1261 cgroup_shutdown(td, &cgroup_mnt);
1262
1263 if (td->o.cpumask_set) {
1264 int ret = fio_cpuset_exit(&td->o.cpumask);
1265
1266 td_verror(td, ret, "fio_cpuset_exit");
1267 }
1268
1269 /*
1270 * do this very late, it will log file closing as well
1271 */
1272 if (td->o.write_iolog_file)
1273 write_iolog_close(td);
1274
1275 options_mem_free(td);
1276 td_set_runstate(td, TD_EXITED);
1277 return (void *) (unsigned long) td->error;
1278}
1279
1280/*
1281 * We cannot pass the td data into a forked process, so attach the td and
1282 * pass it to the thread worker.
1283 */
1284static int fork_main(int shmid, int offset)
1285{
1286 struct thread_data *td;
1287 void *data, *ret;
1288
1289 data = shmat(shmid, NULL, 0);
1290 if (data == (void *) -1) {
1291 int __err = errno;
1292
1293 perror("shmat");
1294 return __err;
1295 }
1296
1297 td = data + offset * sizeof(struct thread_data);
1298 ret = thread_main(td);
1299 shmdt(data);
1300 return (int) (unsigned long) ret;
1301}
1302
1303/*
1304 * Run over the job map and reap the threads that have exited, if any.
1305 */
1306static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1307{
1308 struct thread_data *td;
1309 int i, cputhreads, realthreads, pending, status, ret;
1310
1311 /*
1312 * reap exited threads (TD_EXITED -> TD_REAPED)
1313 */
1314 realthreads = pending = cputhreads = 0;
1315 for_each_td(td, i) {
1316 int flags = 0;
1317
1318 /*
1319 * ->io_ops is NULL for a thread that has closed its
1320 * io engine
1321 */
1322 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1323 cputhreads++;
1324 else
1325 realthreads++;
1326
1327 if (!td->pid) {
1328 pending++;
1329 continue;
1330 }
1331 if (td->runstate == TD_REAPED)
1332 continue;
1333 if (td->o.use_thread) {
1334 if (td->runstate == TD_EXITED) {
1335 td_set_runstate(td, TD_REAPED);
1336 goto reaped;
1337 }
1338 continue;
1339 }
1340
1341 flags = WNOHANG;
1342 if (td->runstate == TD_EXITED)
1343 flags = 0;
1344
1345 /*
1346 * check if someone quit or got killed in an unusual way
1347 */
1348 ret = waitpid(td->pid, &status, flags);
1349 if (ret < 0) {
1350 if (errno == ECHILD) {
1351 log_err("fio: pid=%d disappeared %d\n",
1352 (int) td->pid, td->runstate);
1353 td_set_runstate(td, TD_REAPED);
1354 goto reaped;
1355 }
1356 perror("waitpid");
1357 } else if (ret == td->pid) {
1358 if (WIFSIGNALED(status)) {
1359 int sig = WTERMSIG(status);
1360
1361 if (sig != SIGTERM)
1362 log_err("fio: pid=%d, got signal=%d\n",
1363 (int) td->pid, sig);
1364 td_set_runstate(td, TD_REAPED);
1365 goto reaped;
1366 }
1367 if (WIFEXITED(status)) {
1368 if (WEXITSTATUS(status) && !td->error)
1369 td->error = WEXITSTATUS(status);
1370
1371 td_set_runstate(td, TD_REAPED);
1372 goto reaped;
1373 }
1374 }
1375
1376 /*
1377 * thread is not dead, continue
1378 */
1379 pending++;
1380 continue;
1381reaped:
1382 (*nr_running)--;
1383 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1384 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1385 if (!td->pid)
1386 pending--;
1387
1388 if (td->error)
1389 exit_value++;
1390
1391 done_secs += mtime_since_now(&td->epoch) / 1000;
1392 }
1393
1394 if (*nr_running == cputhreads && !pending && realthreads)
1395 terminate_threads(TERMINATE_ALL);
1396}
1397
1398static void *gtod_thread_main(void *data)
1399{
1400 fio_mutex_up(startup_mutex);
1401
1402 /*
1403 * As long as we have jobs around, update the clock. It would be nice
1404 * to have some way of NOT hammering that CPU with gettimeofday(),
1405 * but I'm not sure what to use outside of a simple CPU nop to relax
1406 * it - we don't want to lose precision.
1407 */
1408 while (threads) {
1409 fio_gtod_update();
1410 nop;
1411 }
1412
1413 return NULL;
1414}
1415
1416static int fio_start_gtod_thread(void)
1417{
1418 pthread_attr_t attr;
1419 int ret;
1420
1421 pthread_attr_init(&attr);
1422 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1423 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1424 pthread_attr_destroy(&attr);
1425 if (ret) {
1426 log_err("Can't create gtod thread: %s\n", strerror(ret));
1427 return 1;
1428 }
1429
1430 ret = pthread_detach(gtod_thread);
1431 if (ret) {
1432 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1433 return 1;
1434 }
1435
1436 dprint(FD_MUTEX, "wait on startup_mutex\n");
1437 fio_mutex_down(startup_mutex);
1438 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1439 return 0;
1440}
1441
1442/*
1443 * Main function for kicking off and reaping jobs, as needed.
1444 */
1445static void run_threads(void)
1446{
1447 struct thread_data *td;
1448 unsigned long spent;
1449 int i, todo, nr_running, m_rate, t_rate, nr_started;
1450
1451 if (fio_pin_memory())
1452 return;
1453
1454 if (fio_gtod_offload && fio_start_gtod_thread())
1455 return;
1456
1457 if (!terse_output) {
1458 log_info("Starting ");
1459 if (nr_thread)
1460 log_info("%d thread%s", nr_thread,
1461 nr_thread > 1 ? "s" : "");
1462 if (nr_process) {
1463 if (nr_thread)
1464 printf(" and ");
1465 log_info("%d process%s", nr_process,
1466 nr_process > 1 ? "es" : "");
1467 }
1468 log_info("\n");
1469 fflush(stdout);
1470 }
1471
1472 set_sig_handlers();
1473
1474 todo = thread_number;
1475 nr_running = 0;
1476 nr_started = 0;
1477 m_rate = t_rate = 0;
1478
1479 for_each_td(td, i) {
1480 print_status_init(td->thread_number - 1);
1481
1482 if (!td->o.create_serialize) {
1483 init_disk_util(td);
1484 continue;
1485 }
1486
1487 /*
1488 * do file setup here so it happens sequentially,
1489 * we don't want X number of threads getting their
1490 * client data interspersed on disk
1491 */
1492 if (setup_files(td)) {
1493 exit_value++;
1494 if (td->error)
1495 log_err("fio: pid=%d, err=%d/%s\n",
1496 (int) td->pid, td->error, td->verror);
1497 td_set_runstate(td, TD_REAPED);
1498 todo--;
1499 } else {
1500 struct fio_file *f;
1501 unsigned int i;
1502
1503 /*
1504 * for sharing to work, each job must always open
1505 * its own files. so close them, if we opened them
1506 * for creation
1507 */
1508 for_each_file(td, f, i) {
1509 if (fio_file_open(f))
1510 td_io_close_file(td, f);
1511 }
1512 }
1513
1514 init_disk_util(td);
1515 }
1516
1517 set_genesis_time();
1518
1519 while (todo) {
1520 struct thread_data *map[MAX_JOBS];
1521 struct timeval this_start;
1522 int this_jobs = 0, left;
1523
1524 /*
1525 * create threads (TD_NOT_CREATED -> TD_CREATED)
1526 */
1527 for_each_td(td, i) {
1528 if (td->runstate != TD_NOT_CREATED)
1529 continue;
1530
1531 /*
1532 * never got a chance to start, killed by other
1533 * thread for some reason
1534 */
1535 if (td->terminate) {
1536 todo--;
1537 continue;
1538 }
1539
1540 if (td->o.start_delay) {
1541 spent = mtime_since_genesis();
1542
1543 if (td->o.start_delay * 1000 > spent)
1544 continue;
1545 }
1546
1547 if (td->o.stonewall && (nr_started || nr_running)) {
1548 dprint(FD_PROCESS, "%s: stonewall wait\n",
1549 td->o.name);
1550 break;
1551 }
1552
1553 /*
1554 * Set state to created. Thread will transition
1555 * to TD_INITIALIZED when it's done setting up.
1556 */
1557 td_set_runstate(td, TD_CREATED);
1558 map[this_jobs++] = td;
1559 nr_started++;
1560
1561 if (td->o.use_thread) {
1562 int ret;
1563
1564 dprint(FD_PROCESS, "will pthread_create\n");
1565 ret = pthread_create(&td->thread, NULL,
1566 thread_main, td);
1567 if (ret) {
1568 log_err("pthread_create: %s\n",
1569 strerror(ret));
1570 nr_started--;
1571 break;
1572 }
1573 ret = pthread_detach(td->thread);
1574 if (ret)
1575 log_err("pthread_detach: %s",
1576 strerror(ret));
1577 } else {
1578 pid_t pid;
1579 dprint(FD_PROCESS, "will fork\n");
1580 pid = fork();
1581 if (!pid) {
1582 int ret = fork_main(shm_id, i);
1583
1584 _exit(ret);
1585 } else if (i == fio_debug_jobno)
1586 *fio_debug_jobp = pid;
1587 }
1588 dprint(FD_MUTEX, "wait on startup_mutex\n");
1589 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1590 log_err("fio: job startup hung? exiting.\n");
1591 terminate_threads(TERMINATE_ALL);
1592 fio_abort = 1;
1593 nr_started--;
1594 break;
1595 }
1596 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1597 }
1598
1599 /*
1600 * Wait for the started threads to transition to
1601 * TD_INITIALIZED.
1602 */
1603 fio_gettime(&this_start, NULL);
1604 left = this_jobs;
1605 while (left && !fio_abort) {
1606 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1607 break;
1608
1609 usleep(100000);
1610
1611 for (i = 0; i < this_jobs; i++) {
1612 td = map[i];
1613 if (!td)
1614 continue;
1615 if (td->runstate == TD_INITIALIZED) {
1616 map[i] = NULL;
1617 left--;
1618 } else if (td->runstate >= TD_EXITED) {
1619 map[i] = NULL;
1620 left--;
1621 todo--;
1622 nr_running++; /* work-around... */
1623 }
1624 }
1625 }
1626
1627 if (left) {
1628 log_err("fio: %d jobs failed to start\n", left);
1629 for (i = 0; i < this_jobs; i++) {
1630 td = map[i];
1631 if (!td)
1632 continue;
1633 kill(td->pid, SIGTERM);
1634 }
1635 break;
1636 }
1637
1638 /*
1639 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1640 */
1641 for_each_td(td, i) {
1642 if (td->runstate != TD_INITIALIZED)
1643 continue;
1644
1645 if (in_ramp_time(td))
1646 td_set_runstate(td, TD_RAMP);
1647 else
1648 td_set_runstate(td, TD_RUNNING);
1649 nr_running++;
1650 nr_started--;
1651 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1652 t_rate += td->o.rate[0] + td->o.rate[1];
1653 todo--;
1654 fio_mutex_up(td->mutex);
1655 }
1656
1657 reap_threads(&nr_running, &t_rate, &m_rate);
1658
1659 if (todo)
1660 usleep(100000);
1661 }
1662
1663 while (nr_running) {
1664 reap_threads(&nr_running, &t_rate, &m_rate);
1665 usleep(10000);
1666 }
1667
1668 update_io_ticks();
1669 fio_unpin_memory();
1670}
1671
1672int main(int argc, char *argv[])
1673{
1674 long ps;
1675
1676 sinit();
1677 init_rand(&__fio_rand_state);
1678
1679 /*
1680 * We need locale for number printing, if it isn't set then just
1681 * go with the US format.
1682 */
1683 if (!getenv("LC_NUMERIC"))
1684 setlocale(LC_NUMERIC, "en_US");
1685
1686 ps = sysconf(_SC_PAGESIZE);
1687 if (ps < 0) {
1688 log_err("Failed to get page size\n");
1689 return 1;
1690 }
1691
1692 page_size = ps;
1693 page_mask = ps - 1;
1694
1695 fio_keywords_init();
1696
1697 if (parse_options(argc, argv))
1698 return 1;
1699
1700 if (exec_profile && load_profile(exec_profile))
1701 return 1;
1702
1703 if (!thread_number)
1704 return 0;
1705
1706 if (write_bw_log) {
1707 setup_log(&agg_io_log[DDIR_READ]);
1708 setup_log(&agg_io_log[DDIR_WRITE]);
1709 }
1710
1711 startup_mutex = fio_mutex_init(0);
1712 if (startup_mutex == NULL)
1713 return 1;
1714 writeout_mutex = fio_mutex_init(1);
1715 if (writeout_mutex == NULL)
1716 return 1;
1717
1718 set_genesis_time();
1719
1720 posix_timer_setup();
1721 status_timer_arm();
1722
1723 cgroup_list = smalloc(sizeof(*cgroup_list));
1724 INIT_FLIST_HEAD(cgroup_list);
1725
1726 run_threads();
1727
1728 if (!fio_abort) {
1729 show_run_stats();
1730 if (write_bw_log) {
1731 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1732 __finish_log(agg_io_log[DDIR_WRITE],
1733 "agg-write_bw.log");
1734 }
1735 }
1736
1737 cgroup_kill(cgroup_list);
1738 sfree(cgroup_list);
1739 sfree(cgroup_mnt);
1740
1741 posix_timer_teardown();
1742 fio_mutex_remove(startup_mutex);
1743 fio_mutex_remove(writeout_mutex);
1744 return exit_value;
1745}