Fix backwards clock on tsc source with Linux
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int fio_unused sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 printf("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 terminate_threads(TERMINATE_ALL);
125 }
126}
127
128static void sig_ill(int fio_unused sig)
129{
130 if (!threads)
131 return;
132
133 log_err("fio: illegal instruction. your cpu does not support "
134 "the sse4.2 instruction for crc32c\n");
135 terminate_threads(TERMINATE_ALL);
136 exit(4);
137}
138
139static void set_sig_handlers(void)
140{
141 struct sigaction act;
142
143 memset(&act, 0, sizeof(act));
144 act.sa_handler = sig_alrm;
145 act.sa_flags = SA_RESTART;
146 sigaction(SIGALRM, &act, NULL);
147
148 memset(&act, 0, sizeof(act));
149 act.sa_handler = sig_int;
150 act.sa_flags = SA_RESTART;
151 sigaction(SIGINT, &act, NULL);
152
153 memset(&act, 0, sizeof(act));
154 act.sa_handler = sig_ill;
155 act.sa_flags = SA_RESTART;
156 sigaction(SIGILL, &act, NULL);
157}
158
159/*
160 * Check if we are above the minimum rate given.
161 */
162static int check_min_rate(struct thread_data *td, struct timeval *now)
163{
164 unsigned long long bytes = 0;
165 unsigned long iops = 0;
166 unsigned long spent;
167 unsigned long rate;
168
169 /*
170 * No minimum rate set, always ok
171 */
172 if (!td->o.ratemin && !td->o.rate_iops_min)
173 return 0;
174
175 /*
176 * allow a 2 second settle period in the beginning
177 */
178 if (mtime_since(&td->start, now) < 2000)
179 return 0;
180
181 if (td_read(td)) {
182 iops += td->io_blocks[DDIR_READ];
183 bytes += td->this_io_bytes[DDIR_READ];
184 }
185 if (td_write(td)) {
186 iops += td->io_blocks[DDIR_WRITE];
187 bytes += td->this_io_bytes[DDIR_WRITE];
188 }
189
190 /*
191 * if rate blocks is set, sample is running
192 */
193 if (td->rate_bytes || td->rate_blocks) {
194 spent = mtime_since(&td->lastrate, now);
195 if (spent < td->o.ratecycle)
196 return 0;
197
198 if (td->o.rate) {
199 /*
200 * check bandwidth specified rate
201 */
202 if (bytes < td->rate_bytes) {
203 log_err("%s: min rate %u not met\n", td->o.name,
204 td->o.ratemin);
205 return 1;
206 } else {
207 rate = (bytes - td->rate_bytes) / spent;
208 if (rate < td->o.ratemin ||
209 bytes < td->rate_bytes) {
210 log_err("%s: min rate %u not met, got"
211 " %luKiB/sec\n", td->o.name,
212 td->o.ratemin, rate);
213 return 1;
214 }
215 }
216 } else {
217 /*
218 * checks iops specified rate
219 */
220 if (iops < td->o.rate_iops) {
221 log_err("%s: min iops rate %u not met\n",
222 td->o.name, td->o.rate_iops);
223 return 1;
224 } else {
225 rate = (iops - td->rate_blocks) / spent;
226 if (rate < td->o.rate_iops_min ||
227 iops < td->rate_blocks) {
228 log_err("%s: min iops rate %u not met,"
229 " got %lu\n", td->o.name,
230 td->o.rate_iops_min,
231 rate);
232 }
233 }
234 }
235 }
236
237 td->rate_bytes = bytes;
238 td->rate_blocks = iops;
239 memcpy(&td->lastrate, now, sizeof(*now));
240 return 0;
241}
242
243static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
244{
245 if (!td->o.timeout)
246 return 0;
247 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
248 return 1;
249
250 return 0;
251}
252
253/*
254 * When job exits, we can cancel the in-flight IO if we are using async
255 * io. Attempt to do so.
256 */
257static void cleanup_pending_aio(struct thread_data *td)
258{
259 struct flist_head *entry, *n;
260 struct io_u *io_u;
261 int r;
262
263 /*
264 * get immediately available events, if any
265 */
266 r = io_u_queued_complete(td, 0);
267 if (r < 0)
268 return;
269
270 /*
271 * now cancel remaining active events
272 */
273 if (td->io_ops->cancel) {
274 flist_for_each_safe(entry, n, &td->io_u_busylist) {
275 io_u = flist_entry(entry, struct io_u, list);
276
277 /*
278 * if the io_u isn't in flight, then that generally
279 * means someone leaked an io_u. complain but fix
280 * it up, so we don't stall here.
281 */
282 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
283 log_err("fio: non-busy IO on busy list\n");
284 put_io_u(td, io_u);
285 } else {
286 r = td->io_ops->cancel(td, io_u);
287 if (!r)
288 put_io_u(td, io_u);
289 }
290 }
291 }
292
293 if (td->cur_depth)
294 r = io_u_queued_complete(td, td->cur_depth);
295}
296
297/*
298 * Helper to handle the final sync of a file. Works just like the normal
299 * io path, just does everything sync.
300 */
301static int fio_io_sync(struct thread_data *td, struct fio_file *f)
302{
303 struct io_u *io_u = __get_io_u(td);
304 int ret;
305
306 if (!io_u)
307 return 1;
308
309 io_u->ddir = DDIR_SYNC;
310 io_u->file = f;
311
312 if (td_io_prep(td, io_u)) {
313 put_io_u(td, io_u);
314 return 1;
315 }
316
317requeue:
318 ret = td_io_queue(td, io_u);
319 if (ret < 0) {
320 td_verror(td, io_u->error, "td_io_queue");
321 put_io_u(td, io_u);
322 return 1;
323 } else if (ret == FIO_Q_QUEUED) {
324 if (io_u_queued_complete(td, 1) < 0)
325 return 1;
326 } else if (ret == FIO_Q_COMPLETED) {
327 if (io_u->error) {
328 td_verror(td, io_u->error, "td_io_queue");
329 return 1;
330 }
331
332 if (io_u_sync_complete(td, io_u) < 0)
333 return 1;
334 } else if (ret == FIO_Q_BUSY) {
335 if (td_io_commit(td))
336 return 1;
337 goto requeue;
338 }
339
340 return 0;
341}
342
343/*
344 * The main verify engine. Runs over the writes we previously submitted,
345 * reads the blocks back in, and checks the crc/md5 of the data.
346 */
347static void do_verify(struct thread_data *td)
348{
349 struct fio_file *f;
350 struct io_u *io_u;
351 int ret, min_events;
352 unsigned int i;
353
354 /*
355 * sync io first and invalidate cache, to make sure we really
356 * read from disk.
357 */
358 for_each_file(td, f, i) {
359 if (!(f->flags & FIO_FILE_OPEN))
360 continue;
361 if (fio_io_sync(td, f))
362 break;
363 if (file_invalidate_cache(td, f))
364 break;
365 }
366
367 if (td->error)
368 return;
369
370 td_set_runstate(td, TD_VERIFYING);
371
372 io_u = NULL;
373 while (!td->terminate) {
374 int ret2, full;
375
376 io_u = __get_io_u(td);
377 if (!io_u)
378 break;
379
380 if (runtime_exceeded(td, &io_u->start_time)) {
381 put_io_u(td, io_u);
382 td->terminate = 1;
383 break;
384 }
385
386 if (get_next_verify(td, io_u)) {
387 put_io_u(td, io_u);
388 break;
389 }
390
391 if (td_io_prep(td, io_u)) {
392 put_io_u(td, io_u);
393 break;
394 }
395
396 io_u->end_io = verify_io_u;
397
398 ret = td_io_queue(td, io_u);
399 switch (ret) {
400 case FIO_Q_COMPLETED:
401 if (io_u->error)
402 ret = -io_u->error;
403 else if (io_u->resid) {
404 int bytes = io_u->xfer_buflen - io_u->resid;
405 struct fio_file *f = io_u->file;
406
407 /*
408 * zero read, fail
409 */
410 if (!bytes) {
411 td_verror(td, EIO, "full resid");
412 put_io_u(td, io_u);
413 break;
414 }
415
416 io_u->xfer_buflen = io_u->resid;
417 io_u->xfer_buf += bytes;
418 io_u->offset += bytes;
419
420 td->ts.short_io_u[io_u->ddir]++;
421
422 if (io_u->offset == f->real_file_size)
423 goto sync_done;
424
425 requeue_io_u(td, &io_u);
426 } else {
427sync_done:
428 ret = io_u_sync_complete(td, io_u);
429 if (ret < 0)
430 break;
431 }
432 continue;
433 case FIO_Q_QUEUED:
434 break;
435 case FIO_Q_BUSY:
436 requeue_io_u(td, &io_u);
437 ret2 = td_io_commit(td);
438 if (ret2 < 0)
439 ret = ret2;
440 break;
441 default:
442 assert(ret < 0);
443 td_verror(td, -ret, "td_io_queue");
444 break;
445 }
446
447 if (ret < 0 || td->error)
448 break;
449
450 /*
451 * if we can queue more, do so. but check if there are
452 * completed io_u's first.
453 */
454 full = queue_full(td) || ret == FIO_Q_BUSY;
455 if (full || !td->o.iodepth_batch_complete) {
456 min_events = td->o.iodepth_batch_complete;
457 if (full && !min_events)
458 min_events = 1;
459
460 do {
461 /*
462 * Reap required number of io units, if any,
463 * and do the verification on them through
464 * the callback handler
465 */
466 if (io_u_queued_complete(td, min_events) < 0) {
467 ret = -1;
468 break;
469 }
470 } while (full && (td->cur_depth > td->o.iodepth_low));
471 }
472 if (ret < 0)
473 break;
474 }
475
476 if (!td->error) {
477 min_events = td->cur_depth;
478
479 if (min_events)
480 ret = io_u_queued_complete(td, min_events);
481 } else
482 cleanup_pending_aio(td);
483
484 td_set_runstate(td, TD_RUNNING);
485}
486
487/*
488 * Main IO worker function. It retrieves io_u's to process and queues
489 * and reaps them, checking for rate and errors along the way.
490 */
491static void do_io(struct thread_data *td)
492{
493 struct timeval s;
494 unsigned long usec;
495 unsigned int i;
496 int ret = 0;
497
498 if (in_ramp_time(td))
499 td_set_runstate(td, TD_RAMP);
500 else
501 td_set_runstate(td, TD_RUNNING);
502
503 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
504 struct timeval comp_time;
505 long bytes_done = 0;
506 int min_evts = 0;
507 struct io_u *io_u;
508 int ret2, full;
509
510 if (td->terminate)
511 break;
512
513 io_u = get_io_u(td);
514 if (!io_u)
515 break;
516
517 memcpy(&s, &io_u->start_time, sizeof(s));
518
519 if (runtime_exceeded(td, &s)) {
520 put_io_u(td, io_u);
521 td->terminate = 1;
522 break;
523 }
524
525 /*
526 * Add verification end_io handler, if asked to verify
527 * a previously written file.
528 */
529 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
530 io_u->end_io = verify_io_u;
531 td_set_runstate(td, TD_VERIFYING);
532 } else if (in_ramp_time(td))
533 td_set_runstate(td, TD_RAMP);
534 else
535 td_set_runstate(td, TD_RUNNING);
536
537 ret = td_io_queue(td, io_u);
538 switch (ret) {
539 case FIO_Q_COMPLETED:
540 if (io_u->error)
541 ret = -io_u->error;
542 else if (io_u->resid) {
543 int bytes = io_u->xfer_buflen - io_u->resid;
544 struct fio_file *f = io_u->file;
545
546 /*
547 * zero read, fail
548 */
549 if (!bytes) {
550 td_verror(td, EIO, "full resid");
551 put_io_u(td, io_u);
552 break;
553 }
554
555 io_u->xfer_buflen = io_u->resid;
556 io_u->xfer_buf += bytes;
557 io_u->offset += bytes;
558
559 td->ts.short_io_u[io_u->ddir]++;
560
561 if (io_u->offset == f->real_file_size)
562 goto sync_done;
563
564 requeue_io_u(td, &io_u);
565 } else {
566sync_done:
567 fio_gettime(&comp_time, NULL);
568 bytes_done = io_u_sync_complete(td, io_u);
569 if (bytes_done < 0)
570 ret = bytes_done;
571 }
572 break;
573 case FIO_Q_QUEUED:
574 /*
575 * if the engine doesn't have a commit hook,
576 * the io_u is really queued. if it does have such
577 * a hook, it has to call io_u_queued() itself.
578 */
579 if (td->io_ops->commit == NULL)
580 io_u_queued(td, io_u);
581 break;
582 case FIO_Q_BUSY:
583 requeue_io_u(td, &io_u);
584 ret2 = td_io_commit(td);
585 if (ret2 < 0)
586 ret = ret2;
587 break;
588 default:
589 assert(ret < 0);
590 put_io_u(td, io_u);
591 break;
592 }
593
594 if (ret < 0 || td->error)
595 break;
596
597 /*
598 * See if we need to complete some commands
599 */
600 full = queue_full(td) || ret == FIO_Q_BUSY;
601 if (full || !td->o.iodepth_batch_complete) {
602 min_evts = td->o.iodepth_batch_complete;
603 if (full && !min_evts)
604 min_evts = 1;
605
606 fio_gettime(&comp_time, NULL);
607
608 do {
609 ret = io_u_queued_complete(td, min_evts);
610 if (ret <= 0)
611 break;
612
613 bytes_done += ret;
614 } while (full && (td->cur_depth > td->o.iodepth_low));
615 }
616
617 if (ret < 0)
618 break;
619 if (!bytes_done)
620 continue;
621
622 /*
623 * the rate is batched for now, it should work for batches
624 * of completions except the very first one which may look
625 * a little bursty
626 */
627 if (!in_ramp_time(td)) {
628 usec = utime_since(&s, &comp_time);
629
630 rate_throttle(td, usec, bytes_done);
631
632 if (check_min_rate(td, &comp_time)) {
633 if (exitall_on_terminate)
634 terminate_threads(td->groupid);
635 td_verror(td, EIO, "check_min_rate");
636 break;
637 }
638 }
639
640 if (td->o.thinktime) {
641 unsigned long long b;
642
643 b = td->io_blocks[0] + td->io_blocks[1];
644 if (!(b % td->o.thinktime_blocks)) {
645 int left;
646
647 if (td->o.thinktime_spin)
648 __usec_sleep(td->o.thinktime_spin);
649
650 left = td->o.thinktime - td->o.thinktime_spin;
651 if (left)
652 usec_sleep(td, left);
653 }
654 }
655 }
656
657 if (td->o.fill_device && td->error == ENOSPC) {
658 td->error = 0;
659 td->terminate = 1;
660 }
661 if (!td->error) {
662 struct fio_file *f;
663
664 i = td->cur_depth;
665 if (i)
666 ret = io_u_queued_complete(td, i);
667
668 if (should_fsync(td) && td->o.end_fsync) {
669 td_set_runstate(td, TD_FSYNCING);
670
671 for_each_file(td, f, i) {
672 if (!(f->flags & FIO_FILE_OPEN))
673 continue;
674 fio_io_sync(td, f);
675 }
676 }
677 } else
678 cleanup_pending_aio(td);
679
680 /*
681 * stop job if we failed doing any IO
682 */
683 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
684 td->done = 1;
685}
686
687static void cleanup_io_u(struct thread_data *td)
688{
689 struct flist_head *entry, *n;
690 struct io_u *io_u;
691
692 flist_for_each_safe(entry, n, &td->io_u_freelist) {
693 io_u = flist_entry(entry, struct io_u, list);
694
695 flist_del(&io_u->list);
696 free(io_u);
697 }
698
699 free_io_mem(td);
700}
701
702static int init_io_u(struct thread_data *td)
703{
704 struct io_u *io_u;
705 unsigned int max_bs;
706 int i, max_units;
707 char *p;
708
709 max_units = td->o.iodepth;
710 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
711 td->orig_buffer_size = (unsigned long long) max_bs
712 * (unsigned long long) max_units;
713
714 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
715 unsigned long bs;
716
717 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
718 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
719 }
720
721 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
722 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
723 return 1;
724 }
725
726 if (allocate_io_mem(td))
727 return 1;
728
729 if (td->o.odirect)
730 p = ALIGN(td->orig_buffer);
731 else
732 p = td->orig_buffer;
733
734 for (i = 0; i < max_units; i++) {
735 if (td->terminate)
736 return 1;
737 io_u = malloc(sizeof(*io_u));
738 memset(io_u, 0, sizeof(*io_u));
739 INIT_FLIST_HEAD(&io_u->list);
740
741 if (!(td->io_ops->flags & FIO_NOIO)) {
742 io_u->buf = p + max_bs * i;
743
744 if (td_write(td) && !td->o.refill_buffers)
745 io_u_fill_buffer(td, io_u, max_bs);
746 }
747
748 io_u->index = i;
749 io_u->flags = IO_U_F_FREE;
750 flist_add(&io_u->list, &td->io_u_freelist);
751 }
752
753 return 0;
754}
755
756static int switch_ioscheduler(struct thread_data *td)
757{
758 char tmp[256], tmp2[128];
759 FILE *f;
760 int ret;
761
762 if (td->io_ops->flags & FIO_DISKLESSIO)
763 return 0;
764
765 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
766
767 f = fopen(tmp, "r+");
768 if (!f) {
769 if (errno == ENOENT) {
770 log_err("fio: os or kernel doesn't support IO scheduler"
771 " switching\n");
772 return 0;
773 }
774 td_verror(td, errno, "fopen iosched");
775 return 1;
776 }
777
778 /*
779 * Set io scheduler.
780 */
781 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
782 if (ferror(f) || ret != 1) {
783 td_verror(td, errno, "fwrite");
784 fclose(f);
785 return 1;
786 }
787
788 rewind(f);
789
790 /*
791 * Read back and check that the selected scheduler is now the default.
792 */
793 ret = fread(tmp, 1, sizeof(tmp), f);
794 if (ferror(f) || ret < 0) {
795 td_verror(td, errno, "fread");
796 fclose(f);
797 return 1;
798 }
799
800 sprintf(tmp2, "[%s]", td->o.ioscheduler);
801 if (!strstr(tmp, tmp2)) {
802 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
803 td_verror(td, EINVAL, "iosched_switch");
804 fclose(f);
805 return 1;
806 }
807
808 fclose(f);
809 return 0;
810}
811
812static int keep_running(struct thread_data *td)
813{
814 unsigned long long io_done;
815
816 if (td->done)
817 return 0;
818 if (td->o.time_based)
819 return 1;
820 if (td->o.loops) {
821 td->o.loops--;
822 return 1;
823 }
824
825 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
826 + td->io_skip_bytes;
827 if (io_done < td->o.size)
828 return 1;
829
830 return 0;
831}
832
833static void reset_io_counters(struct thread_data *td)
834{
835 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
836 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
837 td->zone_bytes = 0;
838 td->rate_bytes = 0;
839 td->rate_blocks = 0;
840 td->rw_end_set[0] = td->rw_end_set[1] = 0;
841
842 td->last_was_sync = 0;
843
844 /*
845 * reset file done count if we are to start over
846 */
847 if (td->o.time_based || td->o.loops)
848 td->nr_done_files = 0;
849}
850
851void reset_all_stats(struct thread_data *td)
852{
853 struct timeval tv;
854 int i;
855
856 reset_io_counters(td);
857
858 for (i = 0; i < 2; i++) {
859 td->io_bytes[i] = 0;
860 td->io_blocks[i] = 0;
861 td->io_issues[i] = 0;
862 td->ts.total_io_u[i] = 0;
863 }
864
865 fio_gettime(&tv, NULL);
866 memcpy(&td->epoch, &tv, sizeof(tv));
867 memcpy(&td->start, &tv, sizeof(tv));
868}
869
870static int clear_io_state(struct thread_data *td)
871{
872 struct fio_file *f;
873 unsigned int i;
874 int ret;
875
876 reset_io_counters(td);
877
878 close_files(td);
879
880 ret = 0;
881 for_each_file(td, f, i) {
882 f->flags &= ~FIO_FILE_DONE;
883 ret = td_io_open_file(td, f);
884 if (ret)
885 break;
886 }
887
888 return ret;
889}
890
891/*
892 * Entry point for the thread based jobs. The process based jobs end up
893 * here as well, after a little setup.
894 */
895static void *thread_main(void *data)
896{
897 unsigned long long runtime[2], elapsed;
898 struct thread_data *td = data;
899 int clear_state;
900
901 if (!td->o.use_thread)
902 setsid();
903
904 td->pid = getpid();
905
906 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
907
908 INIT_FLIST_HEAD(&td->io_u_freelist);
909 INIT_FLIST_HEAD(&td->io_u_busylist);
910 INIT_FLIST_HEAD(&td->io_u_requeues);
911 INIT_FLIST_HEAD(&td->io_log_list);
912 INIT_FLIST_HEAD(&td->io_hist_list);
913 td->io_hist_tree = RB_ROOT;
914
915 td_set_runstate(td, TD_INITIALIZED);
916 fio_mutex_up(startup_mutex);
917 fio_mutex_down(td->mutex);
918
919 /*
920 * the ->mutex mutex is now no longer used, close it to avoid
921 * eating a file descriptor
922 */
923 fio_mutex_remove(td->mutex);
924
925 /*
926 * May alter parameters that init_io_u() will use, so we need to
927 * do this first.
928 */
929 if (init_iolog(td))
930 goto err;
931
932 if (init_io_u(td))
933 goto err;
934
935 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
936 td_verror(td, errno, "cpu_set_affinity");
937 goto err;
938 }
939
940 if (td->ioprio_set) {
941 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
942 td_verror(td, errno, "ioprio_set");
943 goto err;
944 }
945 }
946
947 if (nice(td->o.nice) == -1) {
948 td_verror(td, errno, "nice");
949 goto err;
950 }
951
952 if (td->o.ioscheduler && switch_ioscheduler(td))
953 goto err;
954
955 if (!td->o.create_serialize && setup_files(td))
956 goto err;
957
958 if (td_io_init(td))
959 goto err;
960
961 if (open_files(td))
962 goto err;
963
964 if (init_random_map(td))
965 goto err;
966
967 if (td->o.exec_prerun) {
968 if (system(td->o.exec_prerun) < 0)
969 goto err;
970 }
971
972 fio_gettime(&td->epoch, NULL);
973 getrusage(RUSAGE_SELF, &td->ts.ru_start);
974
975 runtime[0] = runtime[1] = 0;
976 clear_state = 0;
977 while (keep_running(td)) {
978 fio_gettime(&td->start, NULL);
979 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
980
981 if (td->o.ratemin)
982 memcpy(&td->lastrate, &td->ts.stat_sample_time,
983 sizeof(td->lastrate));
984
985 if (clear_state && clear_io_state(td))
986 break;
987
988 prune_io_piece_log(td);
989
990 do_io(td);
991
992 clear_state = 1;
993
994 if (td_read(td) && td->io_bytes[DDIR_READ]) {
995 if (td->rw_end_set[DDIR_READ])
996 elapsed = utime_since(&td->start,
997 &td->rw_end[DDIR_READ]);
998 else
999 elapsed = utime_since_now(&td->start);
1000
1001 runtime[DDIR_READ] += elapsed;
1002 }
1003 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1004 if (td->rw_end_set[DDIR_WRITE])
1005 elapsed = utime_since(&td->start,
1006 &td->rw_end[DDIR_WRITE]);
1007 else
1008 elapsed = utime_since_now(&td->start);
1009
1010 runtime[DDIR_WRITE] += elapsed;
1011 }
1012
1013 if (td->error || td->terminate)
1014 break;
1015
1016 if (!td->o.do_verify ||
1017 td->o.verify == VERIFY_NONE ||
1018 (td->io_ops->flags & FIO_UNIDIR))
1019 continue;
1020
1021 if (clear_io_state(td))
1022 break;
1023
1024 fio_gettime(&td->start, NULL);
1025
1026 do_verify(td);
1027
1028 runtime[DDIR_READ] += utime_since_now(&td->start);
1029
1030 if (td->error || td->terminate)
1031 break;
1032 }
1033
1034 update_rusage_stat(td);
1035 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1036 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1037 td->ts.total_run_time = mtime_since_now(&td->epoch);
1038 td->ts.io_bytes[0] = td->io_bytes[0];
1039 td->ts.io_bytes[1] = td->io_bytes[1];
1040
1041 if (td->ts.bw_log)
1042 finish_log(td, td->ts.bw_log, "bw");
1043 if (td->ts.slat_log)
1044 finish_log(td, td->ts.slat_log, "slat");
1045 if (td->ts.clat_log)
1046 finish_log(td, td->ts.clat_log, "clat");
1047 if (td->o.exec_postrun) {
1048 if (system(td->o.exec_postrun) < 0)
1049 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1050 }
1051
1052 if (exitall_on_terminate)
1053 terminate_threads(td->groupid);
1054
1055err:
1056 if (td->error)
1057 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1058 td->verror);
1059 close_and_free_files(td);
1060 close_ioengine(td);
1061 cleanup_io_u(td);
1062
1063 /*
1064 * do this very late, it will log file closing as well
1065 */
1066 if (td->o.write_iolog_file)
1067 write_iolog_close(td);
1068
1069 options_mem_free(td);
1070 td_set_runstate(td, TD_EXITED);
1071 return (void *) (unsigned long) td->error;
1072}
1073
1074/*
1075 * We cannot pass the td data into a forked process, so attach the td and
1076 * pass it to the thread worker.
1077 */
1078static int fork_main(int shmid, int offset)
1079{
1080 struct thread_data *td;
1081 void *data, *ret;
1082
1083 data = shmat(shmid, NULL, 0);
1084 if (data == (void *) -1) {
1085 int __err = errno;
1086
1087 perror("shmat");
1088 return __err;
1089 }
1090
1091 td = data + offset * sizeof(struct thread_data);
1092 ret = thread_main(td);
1093 shmdt(data);
1094 return (int) (unsigned long) ret;
1095}
1096
1097/*
1098 * Run over the job map and reap the threads that have exited, if any.
1099 */
1100static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1101{
1102 struct thread_data *td;
1103 int i, cputhreads, realthreads, pending, status, ret;
1104
1105 /*
1106 * reap exited threads (TD_EXITED -> TD_REAPED)
1107 */
1108 realthreads = pending = cputhreads = 0;
1109 for_each_td(td, i) {
1110 int flags = 0;
1111
1112 /*
1113 * ->io_ops is NULL for a thread that has closed its
1114 * io engine
1115 */
1116 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1117 cputhreads++;
1118 else
1119 realthreads++;
1120
1121 if (!td->pid) {
1122 pending++;
1123 continue;
1124 }
1125 if (td->runstate == TD_REAPED)
1126 continue;
1127 if (td->o.use_thread) {
1128 if (td->runstate == TD_EXITED) {
1129 td_set_runstate(td, TD_REAPED);
1130 goto reaped;
1131 }
1132 continue;
1133 }
1134
1135 flags = WNOHANG;
1136 if (td->runstate == TD_EXITED)
1137 flags = 0;
1138
1139 /*
1140 * check if someone quit or got killed in an unusual way
1141 */
1142 ret = waitpid(td->pid, &status, flags);
1143 if (ret < 0) {
1144 if (errno == ECHILD) {
1145 log_err("fio: pid=%d disappeared %d\n",
1146 (int) td->pid, td->runstate);
1147 td_set_runstate(td, TD_REAPED);
1148 goto reaped;
1149 }
1150 perror("waitpid");
1151 } else if (ret == td->pid) {
1152 if (WIFSIGNALED(status)) {
1153 int sig = WTERMSIG(status);
1154
1155 if (sig != SIGQUIT)
1156 log_err("fio: pid=%d, got signal=%d\n",
1157 (int) td->pid, sig);
1158 td_set_runstate(td, TD_REAPED);
1159 goto reaped;
1160 }
1161 if (WIFEXITED(status)) {
1162 if (WEXITSTATUS(status) && !td->error)
1163 td->error = WEXITSTATUS(status);
1164
1165 td_set_runstate(td, TD_REAPED);
1166 goto reaped;
1167 }
1168 }
1169
1170 /*
1171 * thread is not dead, continue
1172 */
1173 pending++;
1174 continue;
1175reaped:
1176 (*nr_running)--;
1177 (*m_rate) -= td->o.ratemin;
1178 (*t_rate) -= td->o.rate;
1179 if (!td->pid)
1180 pending--;
1181
1182 if (td->error)
1183 exit_value++;
1184
1185 done_secs += mtime_since_now(&td->epoch) / 1000;
1186 }
1187
1188 if (*nr_running == cputhreads && !pending && realthreads)
1189 terminate_threads(TERMINATE_ALL);
1190}
1191
1192/*
1193 * Main function for kicking off and reaping jobs, as needed.
1194 */
1195static void run_threads(void)
1196{
1197 struct thread_data *td;
1198 unsigned long spent;
1199 int i, todo, nr_running, m_rate, t_rate, nr_started;
1200
1201 if (fio_pin_memory())
1202 return;
1203
1204 if (!terse_output) {
1205 printf("Starting ");
1206 if (nr_thread)
1207 printf("%d thread%s", nr_thread,
1208 nr_thread > 1 ? "s" : "");
1209 if (nr_process) {
1210 if (nr_thread)
1211 printf(" and ");
1212 printf("%d process%s", nr_process,
1213 nr_process > 1 ? "es" : "");
1214 }
1215 printf("\n");
1216 fflush(stdout);
1217 }
1218
1219 set_sig_handlers();
1220
1221 todo = thread_number;
1222 nr_running = 0;
1223 nr_started = 0;
1224 m_rate = t_rate = 0;
1225
1226 for_each_td(td, i) {
1227 print_status_init(td->thread_number - 1);
1228
1229 if (!td->o.create_serialize) {
1230 init_disk_util(td);
1231 continue;
1232 }
1233
1234 /*
1235 * do file setup here so it happens sequentially,
1236 * we don't want X number of threads getting their
1237 * client data interspersed on disk
1238 */
1239 if (setup_files(td)) {
1240 exit_value++;
1241 if (td->error)
1242 log_err("fio: pid=%d, err=%d/%s\n",
1243 (int) td->pid, td->error, td->verror);
1244 td_set_runstate(td, TD_REAPED);
1245 todo--;
1246 } else {
1247 struct fio_file *f;
1248 unsigned int i;
1249
1250 /*
1251 * for sharing to work, each job must always open
1252 * its own files. so close them, if we opened them
1253 * for creation
1254 */
1255 for_each_file(td, f, i)
1256 td_io_close_file(td, f);
1257 }
1258
1259 init_disk_util(td);
1260 }
1261
1262 set_genesis_time();
1263
1264 while (todo) {
1265 struct thread_data *map[MAX_JOBS];
1266 struct timeval this_start;
1267 int this_jobs = 0, left;
1268
1269 /*
1270 * create threads (TD_NOT_CREATED -> TD_CREATED)
1271 */
1272 for_each_td(td, i) {
1273 if (td->runstate != TD_NOT_CREATED)
1274 continue;
1275
1276 /*
1277 * never got a chance to start, killed by other
1278 * thread for some reason
1279 */
1280 if (td->terminate) {
1281 todo--;
1282 continue;
1283 }
1284
1285 if (td->o.start_delay) {
1286 spent = mtime_since_genesis();
1287
1288 if (td->o.start_delay * 1000 > spent)
1289 continue;
1290 }
1291
1292 if (td->o.stonewall && (nr_started || nr_running)) {
1293 dprint(FD_PROCESS, "%s: stonewall wait\n",
1294 td->o.name);
1295 break;
1296 }
1297
1298 /*
1299 * Set state to created. Thread will transition
1300 * to TD_INITIALIZED when it's done setting up.
1301 */
1302 td_set_runstate(td, TD_CREATED);
1303 map[this_jobs++] = td;
1304 nr_started++;
1305
1306 if (td->o.use_thread) {
1307 dprint(FD_PROCESS, "will pthread_create\n");
1308 if (pthread_create(&td->thread, NULL,
1309 thread_main, td)) {
1310 perror("pthread_create");
1311 nr_started--;
1312 break;
1313 }
1314 if (pthread_detach(td->thread) < 0)
1315 perror("pthread_detach");
1316 } else {
1317 pid_t pid;
1318 dprint(FD_PROCESS, "will fork\n");
1319 pid = fork();
1320 if (!pid) {
1321 int ret = fork_main(shm_id, i);
1322
1323 _exit(ret);
1324 } else if (i == fio_debug_jobno)
1325 *fio_debug_jobp = pid;
1326 }
1327 fio_mutex_down(startup_mutex);
1328 }
1329
1330 /*
1331 * Wait for the started threads to transition to
1332 * TD_INITIALIZED.
1333 */
1334 fio_gettime(&this_start, NULL);
1335 left = this_jobs;
1336 while (left && !fio_abort) {
1337 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1338 break;
1339
1340 usleep(100000);
1341
1342 for (i = 0; i < this_jobs; i++) {
1343 td = map[i];
1344 if (!td)
1345 continue;
1346 if (td->runstate == TD_INITIALIZED) {
1347 map[i] = NULL;
1348 left--;
1349 } else if (td->runstate >= TD_EXITED) {
1350 map[i] = NULL;
1351 left--;
1352 todo--;
1353 nr_running++; /* work-around... */
1354 }
1355 }
1356 }
1357
1358 if (left) {
1359 log_err("fio: %d jobs failed to start\n", left);
1360 for (i = 0; i < this_jobs; i++) {
1361 td = map[i];
1362 if (!td)
1363 continue;
1364 kill(td->pid, SIGTERM);
1365 }
1366 break;
1367 }
1368
1369 /*
1370 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1371 */
1372 for_each_td(td, i) {
1373 if (td->runstate != TD_INITIALIZED)
1374 continue;
1375
1376 if (in_ramp_time(td))
1377 td_set_runstate(td, TD_RAMP);
1378 else
1379 td_set_runstate(td, TD_RUNNING);
1380 nr_running++;
1381 nr_started--;
1382 m_rate += td->o.ratemin;
1383 t_rate += td->o.rate;
1384 todo--;
1385 fio_mutex_up(td->mutex);
1386 }
1387
1388 reap_threads(&nr_running, &t_rate, &m_rate);
1389
1390 if (todo)
1391 usleep(100000);
1392 }
1393
1394 while (nr_running) {
1395 reap_threads(&nr_running, &t_rate, &m_rate);
1396 usleep(10000);
1397 }
1398
1399 update_io_ticks();
1400 fio_unpin_memory();
1401}
1402
1403int main(int argc, char *argv[])
1404{
1405 long ps;
1406
1407 sinit();
1408
1409 /*
1410 * We need locale for number printing, if it isn't set then just
1411 * go with the US format.
1412 */
1413 if (!getenv("LC_NUMERIC"))
1414 setlocale(LC_NUMERIC, "en_US");
1415
1416 if (parse_options(argc, argv))
1417 return 1;
1418
1419 if (!thread_number)
1420 return 0;
1421
1422 ps = sysconf(_SC_PAGESIZE);
1423 if (ps < 0) {
1424 log_err("Failed to get page size\n");
1425 return 1;
1426 }
1427
1428 page_size = ps;
1429 page_mask = ps - 1;
1430
1431 if (write_bw_log) {
1432 setup_log(&agg_io_log[DDIR_READ]);
1433 setup_log(&agg_io_log[DDIR_WRITE]);
1434 }
1435
1436 startup_mutex = fio_mutex_init(0);
1437
1438 set_genesis_time();
1439
1440 status_timer_arm();
1441
1442 run_threads();
1443
1444 if (!fio_abort) {
1445 show_run_stats();
1446 if (write_bw_log) {
1447 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1448 __finish_log(agg_io_log[DDIR_WRITE],
1449 "agg-write_bw.log");
1450 }
1451 }
1452
1453 fio_mutex_remove(startup_mutex);
1454 return exit_value;
1455}