Add --debug=mutex
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58static pthread_t gtod_thread;
59
60struct io_log *agg_io_log[2];
61
62#define TERMINATE_ALL (-1)
63#define JOB_START_TIMEOUT (5 * 1000)
64
65void td_set_runstate(struct thread_data *td, int runstate)
66{
67 if (td->runstate == runstate)
68 return;
69
70 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
71 td->runstate, runstate);
72 td->runstate = runstate;
73}
74
75static void terminate_threads(int group_id)
76{
77 struct thread_data *td;
78 int i;
79
80 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
81
82 for_each_td(td, i) {
83 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
84 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
85 td->o.name, (int) td->pid);
86 td->terminate = 1;
87 td->o.start_delay = 0;
88
89 /*
90 * if the thread is running, just let it exit
91 */
92 if (td->runstate < TD_RUNNING)
93 kill(td->pid, SIGQUIT);
94 else {
95 struct ioengine_ops *ops = td->io_ops;
96
97 if (ops && (ops->flags & FIO_SIGQUIT))
98 kill(td->pid, SIGQUIT);
99 }
100 }
101 }
102}
103
104static void status_timer_arm(void)
105{
106 itimer.it_value.tv_sec = 0;
107 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
108 setitimer(ITIMER_REAL, &itimer, NULL);
109}
110
111static void sig_alrm(int fio_unused sig)
112{
113 if (threads) {
114 update_io_ticks();
115 print_thread_status();
116 status_timer_arm();
117 }
118}
119
120/*
121 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
122 */
123static void sig_quit(int sig)
124{
125}
126
127static void sig_int(int sig)
128{
129 if (threads) {
130 printf("\nfio: terminating on signal %d\n", sig);
131 fflush(stdout);
132 terminate_threads(TERMINATE_ALL);
133 }
134}
135
136static void sig_ill(int fio_unused sig)
137{
138 if (!threads)
139 return;
140
141 log_err("fio: illegal instruction. your cpu does not support "
142 "the sse4.2 instruction for crc32c\n");
143 terminate_threads(TERMINATE_ALL);
144 exit(4);
145}
146
147static void set_sig_handlers(void)
148{
149 struct sigaction act;
150
151 memset(&act, 0, sizeof(act));
152 act.sa_handler = sig_alrm;
153 act.sa_flags = SA_RESTART;
154 sigaction(SIGALRM, &act, NULL);
155
156 memset(&act, 0, sizeof(act));
157 act.sa_handler = sig_int;
158 act.sa_flags = SA_RESTART;
159 sigaction(SIGINT, &act, NULL);
160
161 memset(&act, 0, sizeof(act));
162 act.sa_handler = sig_ill;
163 act.sa_flags = SA_RESTART;
164 sigaction(SIGILL, &act, NULL);
165
166 memset(&act, 0, sizeof(act));
167 act.sa_handler = sig_quit;
168 act.sa_flags = SA_RESTART;
169 sigaction(SIGQUIT, &act, NULL);
170}
171
172static inline int should_check_rate(struct thread_data *td)
173{
174 /*
175 * No minimum rate set, always ok
176 */
177 if (!td->o.ratemin && !td->o.rate_iops_min)
178 return 0;
179
180 return 1;
181}
182
183/*
184 * Check if we are above the minimum rate given.
185 */
186static int check_min_rate(struct thread_data *td, struct timeval *now)
187{
188 unsigned long long bytes = 0;
189 unsigned long iops = 0;
190 unsigned long spent;
191 unsigned long rate;
192
193 /*
194 * allow a 2 second settle period in the beginning
195 */
196 if (mtime_since(&td->start, now) < 2000)
197 return 0;
198
199 if (td_read(td)) {
200 iops += td->io_blocks[DDIR_READ];
201 bytes += td->this_io_bytes[DDIR_READ];
202 }
203 if (td_write(td)) {
204 iops += td->io_blocks[DDIR_WRITE];
205 bytes += td->this_io_bytes[DDIR_WRITE];
206 }
207
208 /*
209 * if rate blocks is set, sample is running
210 */
211 if (td->rate_bytes || td->rate_blocks) {
212 spent = mtime_since(&td->lastrate, now);
213 if (spent < td->o.ratecycle)
214 return 0;
215
216 if (td->o.rate) {
217 /*
218 * check bandwidth specified rate
219 */
220 if (bytes < td->rate_bytes) {
221 log_err("%s: min rate %u not met\n", td->o.name,
222 td->o.ratemin);
223 return 1;
224 } else {
225 rate = (bytes - td->rate_bytes) / spent;
226 if (rate < td->o.ratemin ||
227 bytes < td->rate_bytes) {
228 log_err("%s: min rate %u not met, got"
229 " %luKiB/sec\n", td->o.name,
230 td->o.ratemin, rate);
231 return 1;
232 }
233 }
234 } else {
235 /*
236 * checks iops specified rate
237 */
238 if (iops < td->o.rate_iops) {
239 log_err("%s: min iops rate %u not met\n",
240 td->o.name, td->o.rate_iops);
241 return 1;
242 } else {
243 rate = (iops - td->rate_blocks) / spent;
244 if (rate < td->o.rate_iops_min ||
245 iops < td->rate_blocks) {
246 log_err("%s: min iops rate %u not met,"
247 " got %lu\n", td->o.name,
248 td->o.rate_iops_min,
249 rate);
250 }
251 }
252 }
253 }
254
255 td->rate_bytes = bytes;
256 td->rate_blocks = iops;
257 memcpy(&td->lastrate, now, sizeof(*now));
258 return 0;
259}
260
261static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
262{
263 if (!td->o.timeout)
264 return 0;
265 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
266 return 1;
267
268 return 0;
269}
270
271/*
272 * When job exits, we can cancel the in-flight IO if we are using async
273 * io. Attempt to do so.
274 */
275static void cleanup_pending_aio(struct thread_data *td)
276{
277 struct flist_head *entry, *n;
278 struct io_u *io_u;
279 int r;
280
281 /*
282 * get immediately available events, if any
283 */
284 r = io_u_queued_complete(td, 0);
285 if (r < 0)
286 return;
287
288 /*
289 * now cancel remaining active events
290 */
291 if (td->io_ops->cancel) {
292 flist_for_each_safe(entry, n, &td->io_u_busylist) {
293 io_u = flist_entry(entry, struct io_u, list);
294
295 /*
296 * if the io_u isn't in flight, then that generally
297 * means someone leaked an io_u. complain but fix
298 * it up, so we don't stall here.
299 */
300 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
301 log_err("fio: non-busy IO on busy list\n");
302 put_io_u(td, io_u);
303 } else {
304 r = td->io_ops->cancel(td, io_u);
305 if (!r)
306 put_io_u(td, io_u);
307 }
308 }
309 }
310
311 if (td->cur_depth)
312 r = io_u_queued_complete(td, td->cur_depth);
313}
314
315/*
316 * Helper to handle the final sync of a file. Works just like the normal
317 * io path, just does everything sync.
318 */
319static int fio_io_sync(struct thread_data *td, struct fio_file *f)
320{
321 struct io_u *io_u = __get_io_u(td);
322 int ret;
323
324 if (!io_u)
325 return 1;
326
327 io_u->ddir = DDIR_SYNC;
328 io_u->file = f;
329
330 if (td_io_prep(td, io_u)) {
331 put_io_u(td, io_u);
332 return 1;
333 }
334
335requeue:
336 ret = td_io_queue(td, io_u);
337 if (ret < 0) {
338 td_verror(td, io_u->error, "td_io_queue");
339 put_io_u(td, io_u);
340 return 1;
341 } else if (ret == FIO_Q_QUEUED) {
342 if (io_u_queued_complete(td, 1) < 0)
343 return 1;
344 } else if (ret == FIO_Q_COMPLETED) {
345 if (io_u->error) {
346 td_verror(td, io_u->error, "td_io_queue");
347 return 1;
348 }
349
350 if (io_u_sync_complete(td, io_u) < 0)
351 return 1;
352 } else if (ret == FIO_Q_BUSY) {
353 if (td_io_commit(td))
354 return 1;
355 goto requeue;
356 }
357
358 return 0;
359}
360
361static inline void update_tv_cache(struct thread_data *td)
362{
363 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
364 fio_gettime(&td->tv_cache, NULL);
365}
366
367/*
368 * The main verify engine. Runs over the writes we previously submitted,
369 * reads the blocks back in, and checks the crc/md5 of the data.
370 */
371static void do_verify(struct thread_data *td)
372{
373 struct fio_file *f;
374 struct io_u *io_u;
375 int ret, min_events;
376 unsigned int i;
377
378 /*
379 * sync io first and invalidate cache, to make sure we really
380 * read from disk.
381 */
382 for_each_file(td, f, i) {
383 if (!(f->flags & FIO_FILE_OPEN))
384 continue;
385 if (fio_io_sync(td, f))
386 break;
387 if (file_invalidate_cache(td, f))
388 break;
389 }
390
391 if (td->error)
392 return;
393
394 td_set_runstate(td, TD_VERIFYING);
395
396 io_u = NULL;
397 while (!td->terminate) {
398 int ret2, full;
399
400 io_u = __get_io_u(td);
401 if (!io_u)
402 break;
403
404 update_tv_cache(td);
405
406 if (runtime_exceeded(td, &td->tv_cache)) {
407 put_io_u(td, io_u);
408 td->terminate = 1;
409 break;
410 }
411
412 if (get_next_verify(td, io_u)) {
413 put_io_u(td, io_u);
414 break;
415 }
416
417 if (td_io_prep(td, io_u)) {
418 put_io_u(td, io_u);
419 break;
420 }
421
422 io_u->end_io = verify_io_u;
423
424 ret = td_io_queue(td, io_u);
425 switch (ret) {
426 case FIO_Q_COMPLETED:
427 if (io_u->error)
428 ret = -io_u->error;
429 else if (io_u->resid) {
430 int bytes = io_u->xfer_buflen - io_u->resid;
431 struct fio_file *f = io_u->file;
432
433 /*
434 * zero read, fail
435 */
436 if (!bytes) {
437 td_verror(td, EIO, "full resid");
438 put_io_u(td, io_u);
439 break;
440 }
441
442 io_u->xfer_buflen = io_u->resid;
443 io_u->xfer_buf += bytes;
444 io_u->offset += bytes;
445
446 td->ts.short_io_u[io_u->ddir]++;
447
448 if (io_u->offset == f->real_file_size)
449 goto sync_done;
450
451 requeue_io_u(td, &io_u);
452 } else {
453sync_done:
454 ret = io_u_sync_complete(td, io_u);
455 if (ret < 0)
456 break;
457 }
458 continue;
459 case FIO_Q_QUEUED:
460 break;
461 case FIO_Q_BUSY:
462 requeue_io_u(td, &io_u);
463 ret2 = td_io_commit(td);
464 if (ret2 < 0)
465 ret = ret2;
466 break;
467 default:
468 assert(ret < 0);
469 td_verror(td, -ret, "td_io_queue");
470 break;
471 }
472
473 if (ret < 0 || td->error)
474 break;
475
476 /*
477 * if we can queue more, do so. but check if there are
478 * completed io_u's first.
479 */
480 full = queue_full(td) || ret == FIO_Q_BUSY;
481 if (full || !td->o.iodepth_batch_complete) {
482 min_events = td->o.iodepth_batch_complete;
483 if (full && !min_events)
484 min_events = 1;
485
486 do {
487 /*
488 * Reap required number of io units, if any,
489 * and do the verification on them through
490 * the callback handler
491 */
492 if (io_u_queued_complete(td, min_events) < 0) {
493 ret = -1;
494 break;
495 }
496 } while (full && (td->cur_depth > td->o.iodepth_low));
497 }
498 if (ret < 0)
499 break;
500 }
501
502 if (!td->error) {
503 min_events = td->cur_depth;
504
505 if (min_events)
506 ret = io_u_queued_complete(td, min_events);
507 } else
508 cleanup_pending_aio(td);
509
510 td_set_runstate(td, TD_RUNNING);
511}
512
513/*
514 * Main IO worker function. It retrieves io_u's to process and queues
515 * and reaps them, checking for rate and errors along the way.
516 */
517static void do_io(struct thread_data *td)
518{
519 unsigned long usec;
520 unsigned int i;
521 int ret = 0;
522
523 if (in_ramp_time(td))
524 td_set_runstate(td, TD_RAMP);
525 else
526 td_set_runstate(td, TD_RUNNING);
527
528 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
529 struct timeval comp_time;
530 long bytes_done = 0;
531 int min_evts = 0;
532 struct io_u *io_u;
533 int ret2, full;
534
535 if (td->terminate)
536 break;
537
538 io_u = get_io_u(td);
539 if (!io_u)
540 break;
541
542 update_tv_cache(td);
543
544 if (runtime_exceeded(td, &td->tv_cache)) {
545 put_io_u(td, io_u);
546 td->terminate = 1;
547 break;
548 }
549
550 /*
551 * Add verification end_io handler, if asked to verify
552 * a previously written file.
553 */
554 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
555 io_u->end_io = verify_io_u;
556 td_set_runstate(td, TD_VERIFYING);
557 } else if (in_ramp_time(td))
558 td_set_runstate(td, TD_RAMP);
559 else
560 td_set_runstate(td, TD_RUNNING);
561
562 ret = td_io_queue(td, io_u);
563 switch (ret) {
564 case FIO_Q_COMPLETED:
565 if (io_u->error)
566 ret = -io_u->error;
567 else if (io_u->resid) {
568 int bytes = io_u->xfer_buflen - io_u->resid;
569 struct fio_file *f = io_u->file;
570
571 /*
572 * zero read, fail
573 */
574 if (!bytes) {
575 td_verror(td, EIO, "full resid");
576 put_io_u(td, io_u);
577 break;
578 }
579
580 io_u->xfer_buflen = io_u->resid;
581 io_u->xfer_buf += bytes;
582 io_u->offset += bytes;
583
584 td->ts.short_io_u[io_u->ddir]++;
585
586 if (io_u->offset == f->real_file_size)
587 goto sync_done;
588
589 requeue_io_u(td, &io_u);
590 } else {
591sync_done:
592 if (should_check_rate(td))
593 fio_gettime(&comp_time, NULL);
594
595 bytes_done = io_u_sync_complete(td, io_u);
596 if (bytes_done < 0)
597 ret = bytes_done;
598 }
599 break;
600 case FIO_Q_QUEUED:
601 /*
602 * if the engine doesn't have a commit hook,
603 * the io_u is really queued. if it does have such
604 * a hook, it has to call io_u_queued() itself.
605 */
606 if (td->io_ops->commit == NULL)
607 io_u_queued(td, io_u);
608 break;
609 case FIO_Q_BUSY:
610 requeue_io_u(td, &io_u);
611 ret2 = td_io_commit(td);
612 if (ret2 < 0)
613 ret = ret2;
614 break;
615 default:
616 assert(ret < 0);
617 put_io_u(td, io_u);
618 break;
619 }
620
621 if (ret < 0 || td->error)
622 break;
623
624 /*
625 * See if we need to complete some commands
626 */
627 full = queue_full(td) || ret == FIO_Q_BUSY;
628 if (full || !td->o.iodepth_batch_complete) {
629 min_evts = td->o.iodepth_batch_complete;
630 if (full && !min_evts)
631 min_evts = 1;
632
633 if (should_check_rate(td))
634 fio_gettime(&comp_time, NULL);
635
636 do {
637 ret = io_u_queued_complete(td, min_evts);
638 if (ret <= 0)
639 break;
640
641 bytes_done += ret;
642 } while (full && (td->cur_depth > td->o.iodepth_low));
643 }
644
645 if (ret < 0)
646 break;
647 if (!bytes_done)
648 continue;
649
650 /*
651 * the rate is batched for now, it should work for batches
652 * of completions except the very first one which may look
653 * a little bursty
654 */
655 if (!in_ramp_time(td) && should_check_rate(td)) {
656 usec = utime_since(&td->tv_cache, &comp_time);
657
658 rate_throttle(td, usec, bytes_done);
659
660 if (check_min_rate(td, &comp_time)) {
661 if (exitall_on_terminate)
662 terminate_threads(td->groupid);
663 td_verror(td, EIO, "check_min_rate");
664 break;
665 }
666 }
667
668 if (td->o.thinktime) {
669 unsigned long long b;
670
671 b = td->io_blocks[0] + td->io_blocks[1];
672 if (!(b % td->o.thinktime_blocks)) {
673 int left;
674
675 if (td->o.thinktime_spin)
676 usec_spin(td->o.thinktime_spin);
677
678 left = td->o.thinktime - td->o.thinktime_spin;
679 if (left)
680 usec_sleep(td, left);
681 }
682 }
683 }
684
685 if (td->o.fill_device && td->error == ENOSPC) {
686 td->error = 0;
687 td->terminate = 1;
688 }
689 if (!td->error) {
690 struct fio_file *f;
691
692 i = td->cur_depth;
693 if (i)
694 ret = io_u_queued_complete(td, i);
695
696 if (should_fsync(td) && td->o.end_fsync) {
697 td_set_runstate(td, TD_FSYNCING);
698
699 for_each_file(td, f, i) {
700 if (!(f->flags & FIO_FILE_OPEN))
701 continue;
702 fio_io_sync(td, f);
703 }
704 }
705 } else
706 cleanup_pending_aio(td);
707
708 /*
709 * stop job if we failed doing any IO
710 */
711 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
712 td->done = 1;
713}
714
715static void cleanup_io_u(struct thread_data *td)
716{
717 struct flist_head *entry, *n;
718 struct io_u *io_u;
719
720 flist_for_each_safe(entry, n, &td->io_u_freelist) {
721 io_u = flist_entry(entry, struct io_u, list);
722
723 flist_del(&io_u->list);
724 free(io_u);
725 }
726
727 free_io_mem(td);
728}
729
730static int init_io_u(struct thread_data *td)
731{
732 struct io_u *io_u;
733 unsigned int max_bs;
734 int i, max_units;
735 char *p;
736
737 max_units = td->o.iodepth;
738 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
739 td->orig_buffer_size = (unsigned long long) max_bs
740 * (unsigned long long) max_units;
741
742 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
743 unsigned long bs;
744
745 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
746 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
747 }
748
749 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
750 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
751 return 1;
752 }
753
754 if (allocate_io_mem(td))
755 return 1;
756
757 if (td->o.odirect)
758 p = ALIGN(td->orig_buffer);
759 else
760 p = td->orig_buffer;
761
762 for (i = 0; i < max_units; i++) {
763 if (td->terminate)
764 return 1;
765 io_u = malloc(sizeof(*io_u));
766 memset(io_u, 0, sizeof(*io_u));
767 INIT_FLIST_HEAD(&io_u->list);
768
769 if (!(td->io_ops->flags & FIO_NOIO)) {
770 io_u->buf = p + max_bs * i;
771
772 if (td_write(td) && !td->o.refill_buffers)
773 io_u_fill_buffer(td, io_u, max_bs);
774 }
775
776 io_u->index = i;
777 io_u->flags = IO_U_F_FREE;
778 flist_add(&io_u->list, &td->io_u_freelist);
779 }
780
781 return 0;
782}
783
784static int switch_ioscheduler(struct thread_data *td)
785{
786 char tmp[256], tmp2[128];
787 FILE *f;
788 int ret;
789
790 if (td->io_ops->flags & FIO_DISKLESSIO)
791 return 0;
792
793 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
794
795 f = fopen(tmp, "r+");
796 if (!f) {
797 if (errno == ENOENT) {
798 log_err("fio: os or kernel doesn't support IO scheduler"
799 " switching\n");
800 return 0;
801 }
802 td_verror(td, errno, "fopen iosched");
803 return 1;
804 }
805
806 /*
807 * Set io scheduler.
808 */
809 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
810 if (ferror(f) || ret != 1) {
811 td_verror(td, errno, "fwrite");
812 fclose(f);
813 return 1;
814 }
815
816 rewind(f);
817
818 /*
819 * Read back and check that the selected scheduler is now the default.
820 */
821 ret = fread(tmp, 1, sizeof(tmp), f);
822 if (ferror(f) || ret < 0) {
823 td_verror(td, errno, "fread");
824 fclose(f);
825 return 1;
826 }
827
828 sprintf(tmp2, "[%s]", td->o.ioscheduler);
829 if (!strstr(tmp, tmp2)) {
830 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
831 td_verror(td, EINVAL, "iosched_switch");
832 fclose(f);
833 return 1;
834 }
835
836 fclose(f);
837 return 0;
838}
839
840static int keep_running(struct thread_data *td)
841{
842 unsigned long long io_done;
843
844 if (td->done)
845 return 0;
846 if (td->o.time_based)
847 return 1;
848 if (td->o.loops) {
849 td->o.loops--;
850 return 1;
851 }
852
853 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
854 + td->io_skip_bytes;
855 if (io_done < td->o.size)
856 return 1;
857
858 return 0;
859}
860
861static void reset_io_counters(struct thread_data *td)
862{
863 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
864 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
865 td->zone_bytes = 0;
866 td->rate_bytes = 0;
867 td->rate_blocks = 0;
868 td->rw_end_set[0] = td->rw_end_set[1] = 0;
869
870 td->last_was_sync = 0;
871
872 /*
873 * reset file done count if we are to start over
874 */
875 if (td->o.time_based || td->o.loops)
876 td->nr_done_files = 0;
877}
878
879void reset_all_stats(struct thread_data *td)
880{
881 struct timeval tv;
882 int i;
883
884 reset_io_counters(td);
885
886 for (i = 0; i < 2; i++) {
887 td->io_bytes[i] = 0;
888 td->io_blocks[i] = 0;
889 td->io_issues[i] = 0;
890 td->ts.total_io_u[i] = 0;
891 }
892
893 fio_gettime(&tv, NULL);
894 memcpy(&td->epoch, &tv, sizeof(tv));
895 memcpy(&td->start, &tv, sizeof(tv));
896}
897
898static int clear_io_state(struct thread_data *td)
899{
900 struct fio_file *f;
901 unsigned int i;
902 int ret;
903
904 reset_io_counters(td);
905
906 close_files(td);
907
908 ret = 0;
909 for_each_file(td, f, i) {
910 f->flags &= ~FIO_FILE_DONE;
911 ret = td_io_open_file(td, f);
912 if (ret)
913 break;
914 }
915
916 return ret;
917}
918
919/*
920 * Entry point for the thread based jobs. The process based jobs end up
921 * here as well, after a little setup.
922 */
923static void *thread_main(void *data)
924{
925 unsigned long long runtime[2], elapsed;
926 struct thread_data *td = data;
927 int clear_state;
928
929 if (!td->o.use_thread)
930 setsid();
931
932 td->pid = getpid();
933
934 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
935
936 INIT_FLIST_HEAD(&td->io_u_freelist);
937 INIT_FLIST_HEAD(&td->io_u_busylist);
938 INIT_FLIST_HEAD(&td->io_u_requeues);
939 INIT_FLIST_HEAD(&td->io_log_list);
940 INIT_FLIST_HEAD(&td->io_hist_list);
941 td->io_hist_tree = RB_ROOT;
942
943 td_set_runstate(td, TD_INITIALIZED);
944 dprint(FD_MUTEX, "up startup_mutex\n");
945 fio_mutex_up(startup_mutex);
946 dprint(FD_MUTEX, "wait on td->mutex\n");
947 fio_mutex_down(td->mutex);
948 dprint(FD_MUTEX, "done waiting on td->mutex\n");
949
950 /*
951 * the ->mutex mutex is now no longer used, close it to avoid
952 * eating a file descriptor
953 */
954 fio_mutex_remove(td->mutex);
955
956 /*
957 * May alter parameters that init_io_u() will use, so we need to
958 * do this first.
959 */
960 if (init_iolog(td))
961 goto err;
962
963 if (init_io_u(td))
964 goto err;
965
966 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
967 td_verror(td, errno, "cpu_set_affinity");
968 goto err;
969 }
970
971 /*
972 * If we have a gettimeofday() thread, make sure we exclude that
973 * thread from this job
974 */
975 if (td->o.gtod_cpu) {
976 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
977 if (fio_setaffinity(td) == -1) {
978 td_verror(td, errno, "cpu_set_affinity");
979 goto err;
980 }
981 }
982
983 if (td->ioprio_set) {
984 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
985 td_verror(td, errno, "ioprio_set");
986 goto err;
987 }
988 }
989
990 if (nice(td->o.nice) == -1) {
991 td_verror(td, errno, "nice");
992 goto err;
993 }
994
995 if (td->o.ioscheduler && switch_ioscheduler(td))
996 goto err;
997
998 if (!td->o.create_serialize && setup_files(td))
999 goto err;
1000
1001 if (td_io_init(td))
1002 goto err;
1003
1004 if (open_files(td))
1005 goto err;
1006
1007 if (init_random_map(td))
1008 goto err;
1009
1010 if (td->o.exec_prerun) {
1011 if (system(td->o.exec_prerun) < 0)
1012 goto err;
1013 }
1014
1015 fio_gettime(&td->epoch, NULL);
1016 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1017
1018 runtime[0] = runtime[1] = 0;
1019 clear_state = 0;
1020 while (keep_running(td)) {
1021 fio_gettime(&td->start, NULL);
1022 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1023 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1024
1025 if (td->o.ratemin)
1026 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1027 sizeof(td->lastrate));
1028
1029 if (clear_state && clear_io_state(td))
1030 break;
1031
1032 prune_io_piece_log(td);
1033
1034 do_io(td);
1035
1036 clear_state = 1;
1037
1038 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1039 if (td->rw_end_set[DDIR_READ])
1040 elapsed = utime_since(&td->start,
1041 &td->rw_end[DDIR_READ]);
1042 else
1043 elapsed = utime_since_now(&td->start);
1044
1045 runtime[DDIR_READ] += elapsed;
1046 }
1047 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1048 if (td->rw_end_set[DDIR_WRITE])
1049 elapsed = utime_since(&td->start,
1050 &td->rw_end[DDIR_WRITE]);
1051 else
1052 elapsed = utime_since_now(&td->start);
1053
1054 runtime[DDIR_WRITE] += elapsed;
1055 }
1056
1057 if (td->error || td->terminate)
1058 break;
1059
1060 if (!td->o.do_verify ||
1061 td->o.verify == VERIFY_NONE ||
1062 (td->io_ops->flags & FIO_UNIDIR))
1063 continue;
1064
1065 if (clear_io_state(td))
1066 break;
1067
1068 fio_gettime(&td->start, NULL);
1069
1070 do_verify(td);
1071
1072 runtime[DDIR_READ] += utime_since_now(&td->start);
1073
1074 if (td->error || td->terminate)
1075 break;
1076 }
1077
1078 update_rusage_stat(td);
1079 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1080 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1081 td->ts.total_run_time = mtime_since_now(&td->epoch);
1082 td->ts.io_bytes[0] = td->io_bytes[0];
1083 td->ts.io_bytes[1] = td->io_bytes[1];
1084
1085 if (td->ts.bw_log) {
1086 if (td->o.bw_log_file) {
1087 finish_log_named(td, td->ts.bw_log,
1088 td->o.bw_log_file, "bw");
1089 } else
1090 finish_log(td, td->ts.bw_log, "bw");
1091 }
1092 if (td->ts.slat_log) {
1093 if (td->o.lat_log_file) {
1094 finish_log_named(td, td->ts.slat_log,
1095 td->o.lat_log_file, "clat");
1096 } else
1097 finish_log(td, td->ts.slat_log, "slat");
1098 }
1099 if (td->ts.clat_log) {
1100 if (td->o.lat_log_file) {
1101 finish_log_named(td, td->ts.clat_log,
1102 td->o.lat_log_file, "clat");
1103 } else
1104 finish_log(td, td->ts.clat_log, "clat");
1105 }
1106 if (td->o.exec_postrun) {
1107 if (system(td->o.exec_postrun) < 0)
1108 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1109 }
1110
1111 if (exitall_on_terminate)
1112 terminate_threads(td->groupid);
1113
1114err:
1115 if (td->error)
1116 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1117 td->verror);
1118 close_and_free_files(td);
1119 close_ioengine(td);
1120 cleanup_io_u(td);
1121
1122 if (td->o.cpumask_set) {
1123 int ret = fio_cpuset_exit(&td->o.cpumask);
1124
1125 td_verror(td, ret, "fio_cpuset_exit");
1126 }
1127
1128 /*
1129 * do this very late, it will log file closing as well
1130 */
1131 if (td->o.write_iolog_file)
1132 write_iolog_close(td);
1133
1134 options_mem_free(td);
1135 td_set_runstate(td, TD_EXITED);
1136 return (void *) (unsigned long) td->error;
1137}
1138
1139/*
1140 * We cannot pass the td data into a forked process, so attach the td and
1141 * pass it to the thread worker.
1142 */
1143static int fork_main(int shmid, int offset)
1144{
1145 struct thread_data *td;
1146 void *data, *ret;
1147
1148 data = shmat(shmid, NULL, 0);
1149 if (data == (void *) -1) {
1150 int __err = errno;
1151
1152 perror("shmat");
1153 return __err;
1154 }
1155
1156 td = data + offset * sizeof(struct thread_data);
1157 ret = thread_main(td);
1158 shmdt(data);
1159 return (int) (unsigned long) ret;
1160}
1161
1162/*
1163 * Run over the job map and reap the threads that have exited, if any.
1164 */
1165static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1166{
1167 struct thread_data *td;
1168 int i, cputhreads, realthreads, pending, status, ret;
1169
1170 /*
1171 * reap exited threads (TD_EXITED -> TD_REAPED)
1172 */
1173 realthreads = pending = cputhreads = 0;
1174 for_each_td(td, i) {
1175 int flags = 0;
1176
1177 /*
1178 * ->io_ops is NULL for a thread that has closed its
1179 * io engine
1180 */
1181 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1182 cputhreads++;
1183 else
1184 realthreads++;
1185
1186 if (!td->pid) {
1187 pending++;
1188 continue;
1189 }
1190 if (td->runstate == TD_REAPED)
1191 continue;
1192 if (td->o.use_thread) {
1193 if (td->runstate == TD_EXITED) {
1194 td_set_runstate(td, TD_REAPED);
1195 goto reaped;
1196 }
1197 continue;
1198 }
1199
1200 flags = WNOHANG;
1201 if (td->runstate == TD_EXITED)
1202 flags = 0;
1203
1204 /*
1205 * check if someone quit or got killed in an unusual way
1206 */
1207 ret = waitpid(td->pid, &status, flags);
1208 if (ret < 0) {
1209 if (errno == ECHILD) {
1210 log_err("fio: pid=%d disappeared %d\n",
1211 (int) td->pid, td->runstate);
1212 td_set_runstate(td, TD_REAPED);
1213 goto reaped;
1214 }
1215 perror("waitpid");
1216 } else if (ret == td->pid) {
1217 if (WIFSIGNALED(status)) {
1218 int sig = WTERMSIG(status);
1219
1220 if (sig != SIGQUIT)
1221 log_err("fio: pid=%d, got signal=%d\n",
1222 (int) td->pid, sig);
1223 td_set_runstate(td, TD_REAPED);
1224 goto reaped;
1225 }
1226 if (WIFEXITED(status)) {
1227 if (WEXITSTATUS(status) && !td->error)
1228 td->error = WEXITSTATUS(status);
1229
1230 td_set_runstate(td, TD_REAPED);
1231 goto reaped;
1232 }
1233 }
1234
1235 /*
1236 * thread is not dead, continue
1237 */
1238 pending++;
1239 continue;
1240reaped:
1241 (*nr_running)--;
1242 (*m_rate) -= td->o.ratemin;
1243 (*t_rate) -= td->o.rate;
1244 if (!td->pid)
1245 pending--;
1246
1247 if (td->error)
1248 exit_value++;
1249
1250 done_secs += mtime_since_now(&td->epoch) / 1000;
1251 }
1252
1253 if (*nr_running == cputhreads && !pending && realthreads)
1254 terminate_threads(TERMINATE_ALL);
1255}
1256
1257static void *gtod_thread_main(void *data)
1258{
1259 fio_mutex_up(startup_mutex);
1260
1261 /*
1262 * As long as we have jobs around, update the clock. It would be nice
1263 * to have some way of NOT hammering that CPU with gettimeofday(),
1264 * but I'm not sure what to use outside of a simple CPU nop to relax
1265 * it - we don't want to lose precision.
1266 */
1267 while (threads) {
1268 fio_gtod_update();
1269 nop;
1270 }
1271
1272 return NULL;
1273}
1274
1275static int fio_start_gtod_thread(void)
1276{
1277 if (pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL)) {
1278 perror("Can't create gtod thread");
1279 return 1;
1280 }
1281 if (pthread_detach(gtod_thread) < 0) {
1282 perror("Can't detatch gtod thread");
1283 return 1;
1284 }
1285
1286 dprint(FD_MUTEX, "wait on startup_mutex\n");
1287 fio_mutex_down(startup_mutex);
1288 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1289 return 0;
1290}
1291
1292/*
1293 * Main function for kicking off and reaping jobs, as needed.
1294 */
1295static void run_threads(void)
1296{
1297 struct thread_data *td;
1298 unsigned long spent;
1299 int i, todo, nr_running, m_rate, t_rate, nr_started;
1300
1301 if (fio_pin_memory())
1302 return;
1303
1304 if (fio_gtod_offload && fio_start_gtod_thread())
1305 return;
1306
1307 if (!terse_output) {
1308 printf("Starting ");
1309 if (nr_thread)
1310 printf("%d thread%s", nr_thread,
1311 nr_thread > 1 ? "s" : "");
1312 if (nr_process) {
1313 if (nr_thread)
1314 printf(" and ");
1315 printf("%d process%s", nr_process,
1316 nr_process > 1 ? "es" : "");
1317 }
1318 printf("\n");
1319 fflush(stdout);
1320 }
1321
1322 set_sig_handlers();
1323
1324 todo = thread_number;
1325 nr_running = 0;
1326 nr_started = 0;
1327 m_rate = t_rate = 0;
1328
1329 for_each_td(td, i) {
1330 print_status_init(td->thread_number - 1);
1331
1332 if (!td->o.create_serialize) {
1333 init_disk_util(td);
1334 continue;
1335 }
1336
1337 /*
1338 * do file setup here so it happens sequentially,
1339 * we don't want X number of threads getting their
1340 * client data interspersed on disk
1341 */
1342 if (setup_files(td)) {
1343 exit_value++;
1344 if (td->error)
1345 log_err("fio: pid=%d, err=%d/%s\n",
1346 (int) td->pid, td->error, td->verror);
1347 td_set_runstate(td, TD_REAPED);
1348 todo--;
1349 } else {
1350 struct fio_file *f;
1351 unsigned int i;
1352
1353 /*
1354 * for sharing to work, each job must always open
1355 * its own files. so close them, if we opened them
1356 * for creation
1357 */
1358 for_each_file(td, f, i)
1359 td_io_close_file(td, f);
1360 }
1361
1362 init_disk_util(td);
1363 }
1364
1365 set_genesis_time();
1366
1367 while (todo) {
1368 struct thread_data *map[MAX_JOBS];
1369 struct timeval this_start;
1370 int this_jobs = 0, left;
1371
1372 /*
1373 * create threads (TD_NOT_CREATED -> TD_CREATED)
1374 */
1375 for_each_td(td, i) {
1376 if (td->runstate != TD_NOT_CREATED)
1377 continue;
1378
1379 /*
1380 * never got a chance to start, killed by other
1381 * thread for some reason
1382 */
1383 if (td->terminate) {
1384 todo--;
1385 continue;
1386 }
1387
1388 if (td->o.start_delay) {
1389 spent = mtime_since_genesis();
1390
1391 if (td->o.start_delay * 1000 > spent)
1392 continue;
1393 }
1394
1395 if (td->o.stonewall && (nr_started || nr_running)) {
1396 dprint(FD_PROCESS, "%s: stonewall wait\n",
1397 td->o.name);
1398 break;
1399 }
1400
1401 /*
1402 * Set state to created. Thread will transition
1403 * to TD_INITIALIZED when it's done setting up.
1404 */
1405 td_set_runstate(td, TD_CREATED);
1406 map[this_jobs++] = td;
1407 nr_started++;
1408
1409 if (td->o.use_thread) {
1410 dprint(FD_PROCESS, "will pthread_create\n");
1411 if (pthread_create(&td->thread, NULL,
1412 thread_main, td)) {
1413 perror("pthread_create");
1414 nr_started--;
1415 break;
1416 }
1417 if (pthread_detach(td->thread) < 0)
1418 perror("pthread_detach");
1419 } else {
1420 pid_t pid;
1421 dprint(FD_PROCESS, "will fork\n");
1422 pid = fork();
1423 if (!pid) {
1424 int ret = fork_main(shm_id, i);
1425
1426 _exit(ret);
1427 } else if (i == fio_debug_jobno)
1428 *fio_debug_jobp = pid;
1429 }
1430 dprint(FD_MUTEX, "wait on startup_mutex\n");
1431 fio_mutex_down(startup_mutex);
1432 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1433 }
1434
1435 /*
1436 * Wait for the started threads to transition to
1437 * TD_INITIALIZED.
1438 */
1439 fio_gettime(&this_start, NULL);
1440 left = this_jobs;
1441 while (left && !fio_abort) {
1442 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1443 break;
1444
1445 usleep(100000);
1446
1447 for (i = 0; i < this_jobs; i++) {
1448 td = map[i];
1449 if (!td)
1450 continue;
1451 if (td->runstate == TD_INITIALIZED) {
1452 map[i] = NULL;
1453 left--;
1454 } else if (td->runstate >= TD_EXITED) {
1455 map[i] = NULL;
1456 left--;
1457 todo--;
1458 nr_running++; /* work-around... */
1459 }
1460 }
1461 }
1462
1463 if (left) {
1464 log_err("fio: %d jobs failed to start\n", left);
1465 for (i = 0; i < this_jobs; i++) {
1466 td = map[i];
1467 if (!td)
1468 continue;
1469 kill(td->pid, SIGTERM);
1470 }
1471 break;
1472 }
1473
1474 /*
1475 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1476 */
1477 for_each_td(td, i) {
1478 if (td->runstate != TD_INITIALIZED)
1479 continue;
1480
1481 if (in_ramp_time(td))
1482 td_set_runstate(td, TD_RAMP);
1483 else
1484 td_set_runstate(td, TD_RUNNING);
1485 nr_running++;
1486 nr_started--;
1487 m_rate += td->o.ratemin;
1488 t_rate += td->o.rate;
1489 todo--;
1490 fio_mutex_up(td->mutex);
1491 }
1492
1493 reap_threads(&nr_running, &t_rate, &m_rate);
1494
1495 if (todo)
1496 usleep(100000);
1497 }
1498
1499 while (nr_running) {
1500 reap_threads(&nr_running, &t_rate, &m_rate);
1501 usleep(10000);
1502 }
1503
1504 update_io_ticks();
1505 fio_unpin_memory();
1506}
1507
1508int main(int argc, char *argv[])
1509{
1510 long ps;
1511
1512 sinit();
1513
1514 /*
1515 * We need locale for number printing, if it isn't set then just
1516 * go with the US format.
1517 */
1518 if (!getenv("LC_NUMERIC"))
1519 setlocale(LC_NUMERIC, "en_US");
1520
1521 if (parse_options(argc, argv))
1522 return 1;
1523
1524 if (!thread_number)
1525 return 0;
1526
1527 ps = sysconf(_SC_PAGESIZE);
1528 if (ps < 0) {
1529 log_err("Failed to get page size\n");
1530 return 1;
1531 }
1532
1533 page_size = ps;
1534 page_mask = ps - 1;
1535
1536 if (write_bw_log) {
1537 setup_log(&agg_io_log[DDIR_READ]);
1538 setup_log(&agg_io_log[DDIR_WRITE]);
1539 }
1540
1541 startup_mutex = fio_mutex_init(0);
1542
1543 set_genesis_time();
1544
1545 status_timer_arm();
1546
1547 run_threads();
1548
1549 if (!fio_abort) {
1550 show_run_stats();
1551 if (write_bw_log) {
1552 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1553 __finish_log(agg_io_log[DDIR_WRITE],
1554 "agg-write_bw.log");
1555 }
1556 }
1557
1558 fio_mutex_remove(startup_mutex);
1559 return exit_value;
1560}