Don't allow FIO_SYNCIO io engine flag to override queue depth
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39
40unsigned long page_mask;
41unsigned long page_size;
42#define ALIGN(buf) \
43 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
44
45int groupid = 0;
46int thread_number = 0;
47int nr_process = 0;
48int nr_thread = 0;
49int shm_id = 0;
50int temp_stall_ts;
51
52static struct fio_sem *startup_sem;
53static volatile int fio_abort;
54static int exit_value;
55
56struct io_log *agg_io_log[2];
57
58#define TERMINATE_ALL (-1)
59#define JOB_START_TIMEOUT (5 * 1000)
60
61static inline void td_set_runstate(struct thread_data *td, int runstate)
62{
63 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", td->pid, td->runstate,
64 runstate);
65 td->runstate = runstate;
66}
67
68static void terminate_threads(int group_id)
69{
70 struct thread_data *td;
71 int i;
72
73 for_each_td(td, i) {
74 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
75 dprint(FD_PROCESS, "setting terminate on %d\n",td->pid);
76 /*
77 * if the thread is running, just let it exit
78 */
79 if (td->runstate < TD_RUNNING)
80 kill(td->pid, SIGQUIT);
81 td->terminate = 1;
82 td->o.start_delay = 0;
83 }
84 }
85}
86
87static void sig_handler(int sig)
88{
89 switch (sig) {
90 case SIGALRM:
91 update_io_ticks();
92 disk_util_timer_arm();
93 print_thread_status();
94 break;
95 default:
96 printf("\nfio: terminating on signal %d\n", sig);
97 fflush(stdout);
98 terminate_threads(TERMINATE_ALL);
99 break;
100 }
101}
102
103/*
104 * Check if we are above the minimum rate given.
105 */
106static int check_min_rate(struct thread_data *td, struct timeval *now)
107{
108 unsigned long long bytes = 0;
109 unsigned long iops = 0;
110 unsigned long spent;
111 unsigned long rate;
112
113 /*
114 * No minimum rate set, always ok
115 */
116 if (!td->o.ratemin && !td->o.rate_iops_min)
117 return 0;
118
119 /*
120 * allow a 2 second settle period in the beginning
121 */
122 if (mtime_since(&td->start, now) < 2000)
123 return 0;
124
125 if (td_read(td)) {
126 iops += td->io_blocks[DDIR_READ];
127 bytes += td->this_io_bytes[DDIR_READ];
128 }
129 if (td_write(td)) {
130 iops += td->io_blocks[DDIR_WRITE];
131 bytes += td->this_io_bytes[DDIR_WRITE];
132 }
133
134 /*
135 * if rate blocks is set, sample is running
136 */
137 if (td->rate_bytes || td->rate_blocks) {
138 spent = mtime_since(&td->lastrate, now);
139 if (spent < td->o.ratecycle)
140 return 0;
141
142 if (td->o.rate) {
143 /*
144 * check bandwidth specified rate
145 */
146 if (bytes < td->rate_bytes) {
147 log_err("%s: min rate %u not met\n", td->o.name, td->o.ratemin);
148 return 1;
149 } else {
150 rate = (bytes - td->rate_bytes) / spent;
151 if (rate < td->o.ratemin || bytes < td->rate_bytes) {
152 log_err("%s: min rate %u not met, got %luKiB/sec\n", td->o.name, td->o.ratemin, rate);
153 return 1;
154 }
155 }
156 } else {
157 /*
158 * checks iops specified rate
159 */
160 if (iops < td->o.rate_iops) {
161 log_err("%s: min iops rate %u not met\n", td->o.name, td->o.rate_iops);
162 return 1;
163 } else {
164 rate = (iops - td->rate_blocks) / spent;
165 if (rate < td->o.rate_iops_min || iops < td->rate_blocks) {
166 log_err("%s: min iops rate %u not met, got %lu\n", td->o.name, td->o.rate_iops_min, rate);
167 }
168 }
169 }
170 }
171
172 td->rate_bytes = bytes;
173 td->rate_blocks = iops;
174 memcpy(&td->lastrate, now, sizeof(*now));
175 return 0;
176}
177
178static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
179{
180 if (!td->o.timeout)
181 return 0;
182 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
183 return 1;
184
185 return 0;
186}
187
188/*
189 * When job exits, we can cancel the in-flight IO if we are using async
190 * io. Attempt to do so.
191 */
192static void cleanup_pending_aio(struct thread_data *td)
193{
194 struct list_head *entry, *n;
195 struct io_u *io_u;
196 int r;
197
198 /*
199 * get immediately available events, if any
200 */
201 r = io_u_queued_complete(td, 0);
202 if (r < 0)
203 return;
204
205 /*
206 * now cancel remaining active events
207 */
208 if (td->io_ops->cancel) {
209 list_for_each_safe(entry, n, &td->io_u_busylist) {
210 io_u = list_entry(entry, struct io_u, list);
211
212 /*
213 * if the io_u isn't in flight, then that generally
214 * means someone leaked an io_u. complain but fix
215 * it up, so we don't stall here.
216 */
217 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
218 log_err("fio: non-busy IO on busy list\n");
219 put_io_u(td, io_u);
220 } else {
221 r = td->io_ops->cancel(td, io_u);
222 if (!r)
223 put_io_u(td, io_u);
224 }
225 }
226 }
227
228 if (td->cur_depth)
229 r = io_u_queued_complete(td, td->cur_depth);
230}
231
232/*
233 * Helper to handle the final sync of a file. Works just like the normal
234 * io path, just does everything sync.
235 */
236static int fio_io_sync(struct thread_data *td, struct fio_file *f)
237{
238 struct io_u *io_u = __get_io_u(td);
239 int ret;
240
241 if (!io_u)
242 return 1;
243
244 io_u->ddir = DDIR_SYNC;
245 io_u->file = f;
246
247 if (td_io_prep(td, io_u)) {
248 put_io_u(td, io_u);
249 return 1;
250 }
251
252requeue:
253 ret = td_io_queue(td, io_u);
254 if (ret < 0) {
255 td_verror(td, io_u->error, "td_io_queue");
256 put_io_u(td, io_u);
257 return 1;
258 } else if (ret == FIO_Q_QUEUED) {
259 if (io_u_queued_complete(td, 1) < 0)
260 return 1;
261 } else if (ret == FIO_Q_COMPLETED) {
262 if (io_u->error) {
263 td_verror(td, io_u->error, "td_io_queue");
264 return 1;
265 }
266
267 if (io_u_sync_complete(td, io_u) < 0)
268 return 1;
269 } else if (ret == FIO_Q_BUSY) {
270 if (td_io_commit(td))
271 return 1;
272 goto requeue;
273 }
274
275 return 0;
276}
277
278/*
279 * The main verify engine. Runs over the writes we previously submitted,
280 * reads the blocks back in, and checks the crc/md5 of the data.
281 */
282static void do_verify(struct thread_data *td)
283{
284 struct fio_file *f;
285 struct io_u *io_u;
286 int ret, min_events;
287 unsigned int i;
288
289 /*
290 * sync io first and invalidate cache, to make sure we really
291 * read from disk.
292 */
293 for_each_file(td, f, i) {
294 if (!(f->flags & FIO_FILE_OPEN))
295 continue;
296 if (fio_io_sync(td, f))
297 break;
298 if (file_invalidate_cache(td, f))
299 break;
300 }
301
302 if (td->error)
303 return;
304
305 td_set_runstate(td, TD_VERIFYING);
306
307 io_u = NULL;
308 while (!td->terminate) {
309 int ret2;
310
311 io_u = __get_io_u(td);
312 if (!io_u)
313 break;
314
315 if (runtime_exceeded(td, &io_u->start_time)) {
316 put_io_u(td, io_u);
317 td->terminate = 1;
318 break;
319 }
320
321 if (get_next_verify(td, io_u)) {
322 put_io_u(td, io_u);
323 break;
324 }
325
326 if (td_io_prep(td, io_u)) {
327 put_io_u(td, io_u);
328 break;
329 }
330
331 io_u->end_io = verify_io_u;
332
333 ret = td_io_queue(td, io_u);
334 switch (ret) {
335 case FIO_Q_COMPLETED:
336 if (io_u->error)
337 ret = -io_u->error;
338 else if (io_u->resid) {
339 int bytes = io_u->xfer_buflen - io_u->resid;
340 struct fio_file *f = io_u->file;
341
342 /*
343 * zero read, fail
344 */
345 if (!bytes) {
346 td_verror(td, ENODATA, "full resid");
347 put_io_u(td, io_u);
348 break;
349 }
350
351 io_u->xfer_buflen = io_u->resid;
352 io_u->xfer_buf += bytes;
353 io_u->offset += bytes;
354 f->last_completed_pos = io_u->offset;
355
356 td->ts.short_io_u[io_u->ddir]++;
357
358 if (io_u->offset == f->real_file_size)
359 goto sync_done;
360
361 requeue_io_u(td, &io_u);
362 } else {
363sync_done:
364 ret = io_u_sync_complete(td, io_u);
365 if (ret < 0)
366 break;
367 }
368 continue;
369 case FIO_Q_QUEUED:
370 break;
371 case FIO_Q_BUSY:
372 requeue_io_u(td, &io_u);
373 ret2 = td_io_commit(td);
374 if (ret2 < 0)
375 ret = ret2;
376 break;
377 default:
378 assert(ret < 0);
379 td_verror(td, -ret, "td_io_queue");
380 break;
381 }
382
383 if (ret < 0 || td->error)
384 break;
385
386 /*
387 * if we can queue more, do so. but check if there are
388 * completed io_u's first.
389 */
390 min_events = 0;
391 if (queue_full(td) || ret == FIO_Q_BUSY) {
392 min_events = 1;
393
394 if (td->cur_depth > td->o.iodepth_low)
395 min_events = td->cur_depth - td->o.iodepth_low;
396 }
397
398 /*
399 * Reap required number of io units, if any, and do the
400 * verification on them through the callback handler
401 */
402 if (io_u_queued_complete(td, min_events) < 0)
403 break;
404 }
405
406 if (!td->error) {
407 min_events = td->cur_depth;
408
409 if (min_events)
410 ret = io_u_queued_complete(td, min_events);
411 } else
412 cleanup_pending_aio(td);
413
414 td_set_runstate(td, TD_RUNNING);
415}
416
417/*
418 * Main IO worker function. It retrieves io_u's to process and queues
419 * and reaps them, checking for rate and errors along the way.
420 */
421static void do_io(struct thread_data *td)
422{
423 struct timeval s;
424 unsigned long usec;
425 unsigned int i;
426 int ret = 0;
427
428 td_set_runstate(td, TD_RUNNING);
429
430 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
431 struct timeval comp_time;
432 long bytes_done = 0;
433 int min_evts = 0;
434 struct io_u *io_u;
435 int ret2;
436
437 if (td->terminate)
438 break;
439
440 io_u = get_io_u(td);
441 if (!io_u)
442 break;
443
444 memcpy(&s, &io_u->start_time, sizeof(s));
445
446 if (runtime_exceeded(td, &s)) {
447 put_io_u(td, io_u);
448 td->terminate = 1;
449 break;
450 }
451
452 /*
453 * Add verification end_io handler, if asked to verify
454 * a previously written file.
455 */
456 if (td->o.verify != VERIFY_NONE)
457 io_u->end_io = verify_io_u;
458
459 ret = td_io_queue(td, io_u);
460 switch (ret) {
461 case FIO_Q_COMPLETED:
462 if (io_u->error)
463 ret = -io_u->error;
464 else if (io_u->resid) {
465 int bytes = io_u->xfer_buflen - io_u->resid;
466 struct fio_file *f = io_u->file;
467
468 /*
469 * zero read, fail
470 */
471 if (!bytes) {
472 td_verror(td, ENODATA, "full resid");
473 put_io_u(td, io_u);
474 break;
475 }
476
477 io_u->xfer_buflen = io_u->resid;
478 io_u->xfer_buf += bytes;
479 io_u->offset += bytes;
480 f->last_completed_pos = io_u->offset;
481
482 td->ts.short_io_u[io_u->ddir]++;
483
484 if (io_u->offset == f->real_file_size)
485 goto sync_done;
486
487 requeue_io_u(td, &io_u);
488 } else {
489sync_done:
490 fio_gettime(&comp_time, NULL);
491 bytes_done = io_u_sync_complete(td, io_u);
492 if (bytes_done < 0)
493 ret = bytes_done;
494 }
495 break;
496 case FIO_Q_QUEUED:
497 /*
498 * if the engine doesn't have a commit hook,
499 * the io_u is really queued. if it does have such
500 * a hook, it has to call io_u_queued() itself.
501 */
502 if (td->io_ops->commit == NULL)
503 io_u_queued(td, io_u);
504 break;
505 case FIO_Q_BUSY:
506 requeue_io_u(td, &io_u);
507 ret2 = td_io_commit(td);
508 if (ret2 < 0)
509 ret = ret2;
510 break;
511 default:
512 assert(ret < 0);
513 put_io_u(td, io_u);
514 break;
515 }
516
517 if (ret < 0 || td->error)
518 break;
519
520 /*
521 * See if we need to complete some commands
522 */
523 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
524 min_evts = 0;
525 if (queue_full(td) || ret == FIO_Q_BUSY) {
526 min_evts = 1;
527
528 if (td->cur_depth > td->o.iodepth_low)
529 min_evts = td->cur_depth - td->o.iodepth_low;
530 }
531
532 fio_gettime(&comp_time, NULL);
533 bytes_done = io_u_queued_complete(td, min_evts);
534 if (bytes_done < 0)
535 break;
536 }
537
538 if (!bytes_done)
539 continue;
540
541 /*
542 * the rate is batched for now, it should work for batches
543 * of completions except the very first one which may look
544 * a little bursty
545 */
546 usec = utime_since(&s, &comp_time);
547
548 rate_throttle(td, usec, bytes_done);
549
550 if (check_min_rate(td, &comp_time)) {
551 if (exitall_on_terminate)
552 terminate_threads(td->groupid);
553 td_verror(td, ENODATA, "check_min_rate");
554 break;
555 }
556
557 if (td->o.thinktime) {
558 unsigned long long b;
559
560 b = td->io_blocks[0] + td->io_blocks[1];
561 if (!(b % td->o.thinktime_blocks)) {
562 int left;
563
564 if (td->o.thinktime_spin)
565 __usec_sleep(td->o.thinktime_spin);
566
567 left = td->o.thinktime - td->o.thinktime_spin;
568 if (left)
569 usec_sleep(td, left);
570 }
571 }
572 }
573
574 if (td->o.fill_device && td->error == ENOSPC) {
575 td->error = 0;
576 td->terminate = 1;
577 }
578 if (!td->error) {
579 struct fio_file *f;
580
581 i = td->cur_depth;
582 if (i)
583 ret = io_u_queued_complete(td, i);
584
585 if (should_fsync(td) && td->o.end_fsync) {
586 td_set_runstate(td, TD_FSYNCING);
587
588 for_each_file(td, f, i) {
589 if (!(f->flags & FIO_FILE_OPEN))
590 continue;
591 fio_io_sync(td, f);
592 }
593 }
594 } else
595 cleanup_pending_aio(td);
596
597 /*
598 * stop job if we failed doing any IO
599 */
600 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
601 td->done = 1;
602}
603
604static void cleanup_io_u(struct thread_data *td)
605{
606 struct list_head *entry, *n;
607 struct io_u *io_u;
608
609 list_for_each_safe(entry, n, &td->io_u_freelist) {
610 io_u = list_entry(entry, struct io_u, list);
611
612 list_del(&io_u->list);
613 free(io_u);
614 }
615
616 free_io_mem(td);
617}
618
619/*
620 * "randomly" fill the buffer contents
621 */
622static void fill_io_buf(struct thread_data *td, struct io_u *io_u, int max_bs)
623{
624 long *ptr = io_u->buf;
625
626 if (!td->o.zero_buffers) {
627 while ((void *) ptr - io_u->buf < max_bs) {
628 *ptr = rand() * GOLDEN_RATIO_PRIME;
629 ptr++;
630 }
631 } else
632 memset(ptr, 0, max_bs);
633}
634
635static int init_io_u(struct thread_data *td)
636{
637 struct io_u *io_u;
638 unsigned int max_bs;
639 int i, max_units;
640 char *p;
641
642 max_units = td->o.iodepth;
643 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
644 td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units;
645
646 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE)
647 td->orig_buffer_size = (td->orig_buffer_size + td->o.hugepage_size - 1) & ~(td->o.hugepage_size - 1);
648
649 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
650 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
651 return 1;
652 }
653
654 if (allocate_io_mem(td))
655 return 1;
656
657 if (td->o.odirect)
658 p = ALIGN(td->orig_buffer);
659 else
660 p = td->orig_buffer;
661
662 for (i = 0; i < max_units; i++) {
663 if (td->terminate)
664 return 1;
665 io_u = malloc(sizeof(*io_u));
666 memset(io_u, 0, sizeof(*io_u));
667 INIT_LIST_HEAD(&io_u->list);
668
669 if (!(td->io_ops->flags & FIO_NOIO)) {
670 io_u->buf = p + max_bs * i;
671
672 if (td_write(td))
673 fill_io_buf(td, io_u, max_bs);
674 }
675
676 io_u->index = i;
677 io_u->flags = IO_U_F_FREE;
678 list_add(&io_u->list, &td->io_u_freelist);
679 }
680
681 io_u_init_timeout();
682
683 return 0;
684}
685
686static int switch_ioscheduler(struct thread_data *td)
687{
688 char tmp[256], tmp2[128];
689 FILE *f;
690 int ret;
691
692 if (td->io_ops->flags & FIO_DISKLESSIO)
693 return 0;
694
695 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
696
697 f = fopen(tmp, "r+");
698 if (!f) {
699 if (errno == ENOENT) {
700 log_err("fio: os or kernel doesn't support IO scheduler switching\n");
701 return 0;
702 }
703 td_verror(td, errno, "fopen iosched");
704 return 1;
705 }
706
707 /*
708 * Set io scheduler.
709 */
710 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
711 if (ferror(f) || ret != 1) {
712 td_verror(td, errno, "fwrite");
713 fclose(f);
714 return 1;
715 }
716
717 rewind(f);
718
719 /*
720 * Read back and check that the selected scheduler is now the default.
721 */
722 ret = fread(tmp, 1, sizeof(tmp), f);
723 if (ferror(f) || ret < 0) {
724 td_verror(td, errno, "fread");
725 fclose(f);
726 return 1;
727 }
728
729 sprintf(tmp2, "[%s]", td->o.ioscheduler);
730 if (!strstr(tmp, tmp2)) {
731 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
732 td_verror(td, EINVAL, "iosched_switch");
733 fclose(f);
734 return 1;
735 }
736
737 fclose(f);
738 return 0;
739}
740
741static int keep_running(struct thread_data *td)
742{
743 unsigned long long io_done;
744
745 if (td->done)
746 return 0;
747 if (td->o.time_based)
748 return 1;
749 if (td->o.loops) {
750 td->o.loops--;
751 return 1;
752 }
753
754 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE] + td->io_skip_bytes;
755 if (io_done < td->o.size)
756 return 1;
757
758 return 0;
759}
760
761static int clear_io_state(struct thread_data *td)
762{
763 struct fio_file *f;
764 unsigned int i;
765 int ret;
766
767 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
768 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
769 td->zone_bytes = 0;
770 td->rate_bytes = 0;
771 td->rate_blocks = 0;
772 td->rw_end_set[0] = td->rw_end_set[1] = 0;
773
774 td->last_was_sync = 0;
775
776 /*
777 * reset file done count if we are to start over
778 */
779 if (td->o.time_based || td->o.loops)
780 td->nr_done_files = 0;
781
782 for_each_file(td, f, i)
783 td_io_close_file(td, f);
784
785 ret = 0;
786 for_each_file(td, f, i) {
787 f->flags &= ~FIO_FILE_DONE;
788 ret = td_io_open_file(td, f);
789 if (ret)
790 break;
791 }
792
793 return ret;
794}
795
796/*
797 * Entry point for the thread based jobs. The process based jobs end up
798 * here as well, after a little setup.
799 */
800static void *thread_main(void *data)
801{
802 unsigned long long runtime[2], elapsed;
803 struct thread_data *td = data;
804 int clear_state;
805
806 if (!td->o.use_thread)
807 setsid();
808
809 td->pid = getpid();
810
811 dprint(FD_PROCESS, "jobs pid=%d started\n", td->pid);
812
813 INIT_LIST_HEAD(&td->io_u_freelist);
814 INIT_LIST_HEAD(&td->io_u_busylist);
815 INIT_LIST_HEAD(&td->io_u_requeues);
816 INIT_LIST_HEAD(&td->io_log_list);
817 INIT_LIST_HEAD(&td->io_hist_list);
818 td->io_hist_tree = RB_ROOT;
819
820 td_set_runstate(td, TD_INITIALIZED);
821 fio_sem_up(startup_sem);
822 fio_sem_down(td->mutex);
823
824 /*
825 * the ->mutex semaphore is now no longer used, close it to avoid
826 * eating a file descriptor
827 */
828 fio_sem_remove(td->mutex);
829
830 /*
831 * May alter parameters that init_io_u() will use, so we need to
832 * do this first.
833 */
834 if (init_iolog(td))
835 goto err;
836
837 if (init_io_u(td))
838 goto err;
839
840 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
841 td_verror(td, errno, "cpu_set_affinity");
842 goto err;
843 }
844
845 if (td->ioprio_set) {
846 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
847 td_verror(td, errno, "ioprio_set");
848 goto err;
849 }
850 }
851
852 if (nice(td->o.nice) == -1) {
853 td_verror(td, errno, "nice");
854 goto err;
855 }
856
857 if (td->o.ioscheduler && switch_ioscheduler(td))
858 goto err;
859
860 if (!td->o.create_serialize && setup_files(td))
861 goto err;
862
863 if (td_io_init(td))
864 goto err;
865
866 if (open_files(td))
867 goto err;
868
869 if (init_random_map(td))
870 goto err;
871
872 if (td->o.exec_prerun) {
873 if (system(td->o.exec_prerun) < 0)
874 goto err;
875 }
876
877 fio_gettime(&td->epoch, NULL);
878 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
879 getrusage(RUSAGE_SELF, &td->ts.ru_start);
880
881 runtime[0] = runtime[1] = 0;
882 clear_state = 0;
883 while (keep_running(td)) {
884 fio_gettime(&td->start, NULL);
885 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
886
887 if (td->o.ratemin)
888 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
889
890 if (clear_state && clear_io_state(td))
891 break;
892
893 prune_io_piece_log(td);
894
895 do_io(td);
896
897 clear_state = 1;
898
899 if (td_read(td) && td->io_bytes[DDIR_READ]) {
900 if (td->rw_end_set[DDIR_READ])
901 elapsed = utime_since(&td->start, &td->rw_end[DDIR_READ]);
902 else
903 elapsed = utime_since_now(&td->start);
904
905 runtime[DDIR_READ] += elapsed;
906 }
907 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
908 if (td->rw_end_set[DDIR_WRITE])
909 elapsed = utime_since(&td->start, &td->rw_end[DDIR_WRITE]);
910 else
911 elapsed = utime_since_now(&td->start);
912
913 runtime[DDIR_WRITE] += elapsed;
914 }
915
916 if (td->error || td->terminate)
917 break;
918
919 if (!td->o.do_verify ||
920 td->o.verify == VERIFY_NONE ||
921 (td->io_ops->flags & FIO_UNIDIR))
922 continue;
923
924 if (clear_io_state(td))
925 break;
926
927 fio_gettime(&td->start, NULL);
928
929 do_verify(td);
930
931 runtime[DDIR_READ] += utime_since_now(&td->start);
932
933 if (td->error || td->terminate)
934 break;
935 }
936
937 update_rusage_stat(td);
938 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
939 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
940 td->ts.total_run_time = mtime_since_now(&td->epoch);
941 td->ts.io_bytes[0] = td->io_bytes[0];
942 td->ts.io_bytes[1] = td->io_bytes[1];
943
944 if (td->ts.bw_log)
945 finish_log(td, td->ts.bw_log, "bw");
946 if (td->ts.slat_log)
947 finish_log(td, td->ts.slat_log, "slat");
948 if (td->ts.clat_log)
949 finish_log(td, td->ts.clat_log, "clat");
950 if (td->o.exec_postrun) {
951 if (system(td->o.exec_postrun) < 0)
952 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
953 }
954
955 if (exitall_on_terminate)
956 terminate_threads(td->groupid);
957
958err:
959 if (td->error)
960 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
961 close_files(td);
962 close_ioengine(td);
963 cleanup_io_u(td);
964
965 /*
966 * do this very late, it will log file closing as well
967 */
968 if (td->o.write_iolog_file)
969 write_iolog_close(td);
970
971 options_mem_free(td);
972 td_set_runstate(td, TD_EXITED);
973 return (void *) (unsigned long) td->error;
974}
975
976/*
977 * We cannot pass the td data into a forked process, so attach the td and
978 * pass it to the thread worker.
979 */
980static int fork_main(int shmid, int offset)
981{
982 struct thread_data *td;
983 void *data, *ret;
984
985 data = shmat(shmid, NULL, 0);
986 if (data == (void *) -1) {
987 int __err = errno;
988
989 perror("shmat");
990 return __err;
991 }
992
993 td = data + offset * sizeof(struct thread_data);
994 ret = thread_main(td);
995 shmdt(data);
996 return (int) (unsigned long) ret;
997}
998
999/*
1000 * Run over the job map and reap the threads that have exited, if any.
1001 */
1002static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1003{
1004 struct thread_data *td;
1005 int i, cputhreads, realthreads, pending, status, ret;
1006
1007 /*
1008 * reap exited threads (TD_EXITED -> TD_REAPED)
1009 */
1010 realthreads = pending = cputhreads = 0;
1011 for_each_td(td, i) {
1012 int flags = 0;
1013
1014 /*
1015 * ->io_ops is NULL for a thread that has closed its
1016 * io engine
1017 */
1018 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1019 cputhreads++;
1020 else
1021 realthreads++;
1022
1023 if (!td->pid || td->runstate == TD_REAPED)
1024 continue;
1025 if (td->o.use_thread) {
1026 if (td->runstate == TD_EXITED) {
1027 td_set_runstate(td, TD_REAPED);
1028 goto reaped;
1029 }
1030 continue;
1031 }
1032
1033 flags = WNOHANG;
1034 if (td->runstate == TD_EXITED)
1035 flags = 0;
1036
1037 /*
1038 * check if someone quit or got killed in an unusual way
1039 */
1040 ret = waitpid(td->pid, &status, flags);
1041 if (ret < 0) {
1042 if (errno == ECHILD) {
1043 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
1044 td_set_runstate(td, TD_REAPED);
1045 goto reaped;
1046 }
1047 perror("waitpid");
1048 } else if (ret == td->pid) {
1049 if (WIFSIGNALED(status)) {
1050 int sig = WTERMSIG(status);
1051
1052 if (sig != SIGQUIT)
1053 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
1054 td_set_runstate(td, TD_REAPED);
1055 goto reaped;
1056 }
1057 if (WIFEXITED(status)) {
1058 if (WEXITSTATUS(status) && !td->error)
1059 td->error = WEXITSTATUS(status);
1060
1061 td_set_runstate(td, TD_REAPED);
1062 goto reaped;
1063 }
1064 }
1065
1066 /*
1067 * thread is not dead, continue
1068 */
1069 pending++;
1070 continue;
1071reaped:
1072 if (td->o.use_thread) {
1073 long ret;
1074
1075 dprint(FD_PROCESS, "joining tread %d\n", td->pid);
1076 if (pthread_join(td->thread, (void *) &ret)) {
1077 dprint(FD_PROCESS, "join failed %ld\n", ret);
1078 perror("pthread_join");
1079 }
1080 }
1081
1082 (*nr_running)--;
1083 (*m_rate) -= td->o.ratemin;
1084 (*t_rate) -= td->o.rate;
1085 pending--;
1086
1087 if (td->error)
1088 exit_value++;
1089 }
1090
1091 if (*nr_running == cputhreads && !pending && realthreads)
1092 terminate_threads(TERMINATE_ALL);
1093}
1094
1095/*
1096 * Main function for kicking off and reaping jobs, as needed.
1097 */
1098static void run_threads(void)
1099{
1100 struct thread_data *td;
1101 unsigned long spent;
1102 int i, todo, nr_running, m_rate, t_rate, nr_started;
1103
1104 if (fio_pin_memory())
1105 return;
1106
1107 if (!terse_output) {
1108 printf("Starting ");
1109 if (nr_thread)
1110 printf("%d thread%s", nr_thread, nr_thread > 1 ? "s" : "");
1111 if (nr_process) {
1112 if (nr_thread)
1113 printf(" and ");
1114 printf("%d process%s", nr_process, nr_process > 1 ? "es" : "");
1115 }
1116 printf("\n");
1117 fflush(stdout);
1118 }
1119
1120 signal(SIGINT, sig_handler);
1121 signal(SIGALRM, sig_handler);
1122
1123 todo = thread_number;
1124 nr_running = 0;
1125 nr_started = 0;
1126 m_rate = t_rate = 0;
1127
1128 for_each_td(td, i) {
1129 print_status_init(td->thread_number - 1);
1130
1131 if (!td->o.create_serialize) {
1132 init_disk_util(td);
1133 continue;
1134 }
1135
1136 /*
1137 * do file setup here so it happens sequentially,
1138 * we don't want X number of threads getting their
1139 * client data interspersed on disk
1140 */
1141 if (setup_files(td)) {
1142 exit_value++;
1143 if (td->error)
1144 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
1145 td_set_runstate(td, TD_REAPED);
1146 todo--;
1147 }
1148
1149 init_disk_util(td);
1150 }
1151
1152 set_genesis_time();
1153
1154 while (todo) {
1155 struct thread_data *map[MAX_JOBS];
1156 struct timeval this_start;
1157 int this_jobs = 0, left;
1158
1159 /*
1160 * create threads (TD_NOT_CREATED -> TD_CREATED)
1161 */
1162 for_each_td(td, i) {
1163 if (td->runstate != TD_NOT_CREATED)
1164 continue;
1165
1166 /*
1167 * never got a chance to start, killed by other
1168 * thread for some reason
1169 */
1170 if (td->terminate) {
1171 todo--;
1172 continue;
1173 }
1174
1175 if (td->o.start_delay) {
1176 spent = mtime_since_genesis();
1177
1178 if (td->o.start_delay * 1000 > spent)
1179 continue;
1180 }
1181
1182 if (td->o.stonewall && (nr_started || nr_running))
1183 break;
1184
1185 /*
1186 * Set state to created. Thread will transition
1187 * to TD_INITIALIZED when it's done setting up.
1188 */
1189 td_set_runstate(td, TD_CREATED);
1190 map[this_jobs++] = td;
1191 nr_started++;
1192
1193 if (td->o.use_thread) {
1194 dprint(FD_PROCESS, "will pthread_create\n");
1195 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1196 perror("thread_create");
1197 nr_started--;
1198 break;
1199 }
1200 } else {
1201 dprint(FD_PROCESS, "will fork\n");
1202 if (!fork()) {
1203 int ret = fork_main(shm_id, i);
1204
1205 exit(ret);
1206 }
1207 }
1208 fio_sem_down(startup_sem);
1209 }
1210
1211 /*
1212 * Wait for the started threads to transition to
1213 * TD_INITIALIZED.
1214 */
1215 fio_gettime(&this_start, NULL);
1216 left = this_jobs;
1217 while (left && !fio_abort) {
1218 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1219 break;
1220
1221 usleep(100000);
1222
1223 for (i = 0; i < this_jobs; i++) {
1224 td = map[i];
1225 if (!td)
1226 continue;
1227 if (td->runstate == TD_INITIALIZED) {
1228 map[i] = NULL;
1229 left--;
1230 } else if (td->runstate >= TD_EXITED) {
1231 map[i] = NULL;
1232 left--;
1233 todo--;
1234 nr_running++; /* work-around... */
1235 }
1236 }
1237 }
1238
1239 if (left) {
1240 log_err("fio: %d jobs failed to start\n", left);
1241 for (i = 0; i < this_jobs; i++) {
1242 td = map[i];
1243 if (!td)
1244 continue;
1245 kill(td->pid, SIGTERM);
1246 }
1247 break;
1248 }
1249
1250 /*
1251 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1252 */
1253 for_each_td(td, i) {
1254 if (td->runstate != TD_INITIALIZED)
1255 continue;
1256
1257 td_set_runstate(td, TD_RUNNING);
1258 nr_running++;
1259 nr_started--;
1260 m_rate += td->o.ratemin;
1261 t_rate += td->o.rate;
1262 todo--;
1263 fio_sem_up(td->mutex);
1264 }
1265
1266 reap_threads(&nr_running, &t_rate, &m_rate);
1267
1268 if (todo)
1269 usleep(100000);
1270 }
1271
1272 while (nr_running) {
1273 reap_threads(&nr_running, &t_rate, &m_rate);
1274 usleep(10000);
1275 }
1276
1277 update_io_ticks();
1278 fio_unpin_memory();
1279}
1280
1281int main(int argc, char *argv[])
1282{
1283 long ps;
1284
1285 /*
1286 * We need locale for number printing, if it isn't set then just
1287 * go with the US format.
1288 */
1289 if (!getenv("LC_NUMERIC"))
1290 setlocale(LC_NUMERIC, "en_US");
1291
1292 if (parse_options(argc, argv))
1293 return 1;
1294
1295 if (!thread_number)
1296 return 0;
1297
1298 ps = sysconf(_SC_PAGESIZE);
1299 if (ps < 0) {
1300 log_err("Failed to get page size\n");
1301 return 1;
1302 }
1303
1304 page_size = ps;
1305 page_mask = ps - 1;
1306
1307 if (write_bw_log) {
1308 setup_log(&agg_io_log[DDIR_READ]);
1309 setup_log(&agg_io_log[DDIR_WRITE]);
1310 }
1311
1312 startup_sem = fio_sem_init(0);
1313
1314 set_genesis_time();
1315
1316 disk_util_timer_arm();
1317
1318 run_threads();
1319
1320 if (!fio_abort) {
1321 show_run_stats();
1322 if (write_bw_log) {
1323 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1324 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1325 }
1326 }
1327
1328 fio_sem_remove(startup_sem);
1329 return exit_value;
1330}