Add crc32c checksum
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40
41unsigned long page_mask;
42unsigned long page_size;
43#define ALIGN(buf) \
44 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
45
46int groupid = 0;
47int thread_number = 0;
48int nr_process = 0;
49int nr_thread = 0;
50int shm_id = 0;
51int temp_stall_ts;
52unsigned long done_secs = 0;
53
54static struct fio_mutex *startup_mutex;
55static volatile int fio_abort;
56static int exit_value;
57static struct itimerval itimer;
58
59struct io_log *agg_io_log[2];
60
61#define TERMINATE_ALL (-1)
62#define JOB_START_TIMEOUT (5 * 1000)
63
64static inline void td_set_runstate(struct thread_data *td, int runstate)
65{
66 if (td->runstate == runstate)
67 return;
68
69 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
70 td->runstate, runstate);
71 td->runstate = runstate;
72}
73
74static void terminate_threads(int group_id)
75{
76 struct thread_data *td;
77 int i;
78
79 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
80
81 for_each_td(td, i) {
82 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
83 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
84 td->o.name, (int) td->pid);
85 td->terminate = 1;
86 td->o.start_delay = 0;
87
88 /*
89 * if the thread is running, just let it exit
90 */
91 if (td->runstate < TD_RUNNING)
92 kill(td->pid, SIGQUIT);
93 else {
94 struct ioengine_ops *ops = td->io_ops;
95
96 if (ops && (ops->flags & FIO_SIGQUIT))
97 kill(td->pid, SIGQUIT);
98 }
99 }
100 }
101}
102
103static void status_timer_arm(void)
104{
105 itimer.it_value.tv_sec = 0;
106 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
107 setitimer(ITIMER_REAL, &itimer, NULL);
108}
109
110static void sig_alrm(int sig)
111{
112 if (threads) {
113 update_io_ticks();
114 print_thread_status();
115 status_timer_arm();
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 printf("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 terminate_threads(TERMINATE_ALL);
125 }
126}
127
128static void set_sig_handlers(void)
129{
130 struct sigaction act;
131
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_alrm;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGALRM, &act, NULL);
136
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGINT, &act, NULL);
141}
142
143/*
144 * Check if we are above the minimum rate given.
145 */
146static int check_min_rate(struct thread_data *td, struct timeval *now)
147{
148 unsigned long long bytes = 0;
149 unsigned long iops = 0;
150 unsigned long spent;
151 unsigned long rate;
152
153 /*
154 * No minimum rate set, always ok
155 */
156 if (!td->o.ratemin && !td->o.rate_iops_min)
157 return 0;
158
159 /*
160 * allow a 2 second settle period in the beginning
161 */
162 if (mtime_since(&td->start, now) < 2000)
163 return 0;
164
165 if (td_read(td)) {
166 iops += td->io_blocks[DDIR_READ];
167 bytes += td->this_io_bytes[DDIR_READ];
168 }
169 if (td_write(td)) {
170 iops += td->io_blocks[DDIR_WRITE];
171 bytes += td->this_io_bytes[DDIR_WRITE];
172 }
173
174 /*
175 * if rate blocks is set, sample is running
176 */
177 if (td->rate_bytes || td->rate_blocks) {
178 spent = mtime_since(&td->lastrate, now);
179 if (spent < td->o.ratecycle)
180 return 0;
181
182 if (td->o.rate) {
183 /*
184 * check bandwidth specified rate
185 */
186 if (bytes < td->rate_bytes) {
187 log_err("%s: min rate %u not met\n", td->o.name,
188 td->o.ratemin);
189 return 1;
190 } else {
191 rate = (bytes - td->rate_bytes) / spent;
192 if (rate < td->o.ratemin ||
193 bytes < td->rate_bytes) {
194 log_err("%s: min rate %u not met, got"
195 " %luKiB/sec\n", td->o.name,
196 td->o.ratemin, rate);
197 return 1;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < td->o.rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, td->o.rate_iops);
207 return 1;
208 } else {
209 rate = (iops - td->rate_blocks) / spent;
210 if (rate < td->o.rate_iops_min ||
211 iops < td->rate_blocks) {
212 log_err("%s: min iops rate %u not met,"
213 " got %lu\n", td->o.name,
214 td->o.rate_iops_min,
215 rate);
216 }
217 }
218 }
219 }
220
221 td->rate_bytes = bytes;
222 td->rate_blocks = iops;
223 memcpy(&td->lastrate, now, sizeof(*now));
224 return 0;
225}
226
227static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
228{
229 if (!td->o.timeout)
230 return 0;
231 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
232 return 1;
233
234 return 0;
235}
236
237/*
238 * When job exits, we can cancel the in-flight IO if we are using async
239 * io. Attempt to do so.
240 */
241static void cleanup_pending_aio(struct thread_data *td)
242{
243 struct flist_head *entry, *n;
244 struct io_u *io_u;
245 int r;
246
247 /*
248 * get immediately available events, if any
249 */
250 r = io_u_queued_complete(td, 0);
251 if (r < 0)
252 return;
253
254 /*
255 * now cancel remaining active events
256 */
257 if (td->io_ops->cancel) {
258 flist_for_each_safe(entry, n, &td->io_u_busylist) {
259 io_u = flist_entry(entry, struct io_u, list);
260
261 /*
262 * if the io_u isn't in flight, then that generally
263 * means someone leaked an io_u. complain but fix
264 * it up, so we don't stall here.
265 */
266 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
267 log_err("fio: non-busy IO on busy list\n");
268 put_io_u(td, io_u);
269 } else {
270 r = td->io_ops->cancel(td, io_u);
271 if (!r)
272 put_io_u(td, io_u);
273 }
274 }
275 }
276
277 if (td->cur_depth)
278 r = io_u_queued_complete(td, td->cur_depth);
279}
280
281/*
282 * Helper to handle the final sync of a file. Works just like the normal
283 * io path, just does everything sync.
284 */
285static int fio_io_sync(struct thread_data *td, struct fio_file *f)
286{
287 struct io_u *io_u = __get_io_u(td);
288 int ret;
289
290 if (!io_u)
291 return 1;
292
293 io_u->ddir = DDIR_SYNC;
294 io_u->file = f;
295
296 if (td_io_prep(td, io_u)) {
297 put_io_u(td, io_u);
298 return 1;
299 }
300
301requeue:
302 ret = td_io_queue(td, io_u);
303 if (ret < 0) {
304 td_verror(td, io_u->error, "td_io_queue");
305 put_io_u(td, io_u);
306 return 1;
307 } else if (ret == FIO_Q_QUEUED) {
308 if (io_u_queued_complete(td, 1) < 0)
309 return 1;
310 } else if (ret == FIO_Q_COMPLETED) {
311 if (io_u->error) {
312 td_verror(td, io_u->error, "td_io_queue");
313 return 1;
314 }
315
316 if (io_u_sync_complete(td, io_u) < 0)
317 return 1;
318 } else if (ret == FIO_Q_BUSY) {
319 if (td_io_commit(td))
320 return 1;
321 goto requeue;
322 }
323
324 return 0;
325}
326
327/*
328 * The main verify engine. Runs over the writes we previously submitted,
329 * reads the blocks back in, and checks the crc/md5 of the data.
330 */
331static void do_verify(struct thread_data *td)
332{
333 struct fio_file *f;
334 struct io_u *io_u;
335 int ret, min_events;
336 unsigned int i;
337
338 /*
339 * sync io first and invalidate cache, to make sure we really
340 * read from disk.
341 */
342 for_each_file(td, f, i) {
343 if (!(f->flags & FIO_FILE_OPEN))
344 continue;
345 if (fio_io_sync(td, f))
346 break;
347 if (file_invalidate_cache(td, f))
348 break;
349 }
350
351 if (td->error)
352 return;
353
354 td_set_runstate(td, TD_VERIFYING);
355
356 io_u = NULL;
357 while (!td->terminate) {
358 int ret2, full;
359
360 io_u = __get_io_u(td);
361 if (!io_u)
362 break;
363
364 if (runtime_exceeded(td, &io_u->start_time)) {
365 put_io_u(td, io_u);
366 td->terminate = 1;
367 break;
368 }
369
370 if (get_next_verify(td, io_u)) {
371 put_io_u(td, io_u);
372 break;
373 }
374
375 if (td_io_prep(td, io_u)) {
376 put_io_u(td, io_u);
377 break;
378 }
379
380 io_u->end_io = verify_io_u;
381
382 ret = td_io_queue(td, io_u);
383 switch (ret) {
384 case FIO_Q_COMPLETED:
385 if (io_u->error)
386 ret = -io_u->error;
387 else if (io_u->resid) {
388 int bytes = io_u->xfer_buflen - io_u->resid;
389 struct fio_file *f = io_u->file;
390
391 /*
392 * zero read, fail
393 */
394 if (!bytes) {
395 td_verror(td, EIO, "full resid");
396 put_io_u(td, io_u);
397 break;
398 }
399
400 io_u->xfer_buflen = io_u->resid;
401 io_u->xfer_buf += bytes;
402 io_u->offset += bytes;
403
404 td->ts.short_io_u[io_u->ddir]++;
405
406 if (io_u->offset == f->real_file_size)
407 goto sync_done;
408
409 requeue_io_u(td, &io_u);
410 } else {
411sync_done:
412 ret = io_u_sync_complete(td, io_u);
413 if (ret < 0)
414 break;
415 }
416 continue;
417 case FIO_Q_QUEUED:
418 break;
419 case FIO_Q_BUSY:
420 requeue_io_u(td, &io_u);
421 ret2 = td_io_commit(td);
422 if (ret2 < 0)
423 ret = ret2;
424 break;
425 default:
426 assert(ret < 0);
427 td_verror(td, -ret, "td_io_queue");
428 break;
429 }
430
431 if (ret < 0 || td->error)
432 break;
433
434 /*
435 * if we can queue more, do so. but check if there are
436 * completed io_u's first.
437 */
438 full = queue_full(td) || ret == FIO_Q_BUSY;
439 if (full || !td->o.iodepth_batch_complete) {
440 min_events = td->o.iodepth_batch_complete;
441 if (full && !min_events)
442 min_events = 1;
443
444 do {
445 /*
446 * Reap required number of io units, if any,
447 * and do the verification on them through
448 * the callback handler
449 */
450 if (io_u_queued_complete(td, min_events) < 0) {
451 ret = -1;
452 break;
453 }
454 } while (full && (td->cur_depth > td->o.iodepth_low));
455 }
456 if (ret < 0)
457 break;
458 }
459
460 if (!td->error) {
461 min_events = td->cur_depth;
462
463 if (min_events)
464 ret = io_u_queued_complete(td, min_events);
465 } else
466 cleanup_pending_aio(td);
467
468 td_set_runstate(td, TD_RUNNING);
469}
470
471/*
472 * Main IO worker function. It retrieves io_u's to process and queues
473 * and reaps them, checking for rate and errors along the way.
474 */
475static void do_io(struct thread_data *td)
476{
477 struct timeval s;
478 unsigned long usec;
479 unsigned int i;
480 int ret = 0;
481
482 td_set_runstate(td, TD_RUNNING);
483
484 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
485 struct timeval comp_time;
486 long bytes_done = 0;
487 int min_evts = 0;
488 struct io_u *io_u;
489 int ret2, full;
490
491 if (td->terminate)
492 break;
493
494 io_u = get_io_u(td);
495 if (!io_u)
496 break;
497
498 memcpy(&s, &io_u->start_time, sizeof(s));
499
500 if (runtime_exceeded(td, &s)) {
501 put_io_u(td, io_u);
502 td->terminate = 1;
503 break;
504 }
505
506 /*
507 * Add verification end_io handler, if asked to verify
508 * a previously written file.
509 */
510 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
511 io_u->end_io = verify_io_u;
512 td_set_runstate(td, TD_VERIFYING);
513 } else
514 td_set_runstate(td, TD_RUNNING);
515
516 ret = td_io_queue(td, io_u);
517 switch (ret) {
518 case FIO_Q_COMPLETED:
519 if (io_u->error)
520 ret = -io_u->error;
521 else if (io_u->resid) {
522 int bytes = io_u->xfer_buflen - io_u->resid;
523 struct fio_file *f = io_u->file;
524
525 /*
526 * zero read, fail
527 */
528 if (!bytes) {
529 td_verror(td, EIO, "full resid");
530 put_io_u(td, io_u);
531 break;
532 }
533
534 io_u->xfer_buflen = io_u->resid;
535 io_u->xfer_buf += bytes;
536 io_u->offset += bytes;
537
538 td->ts.short_io_u[io_u->ddir]++;
539
540 if (io_u->offset == f->real_file_size)
541 goto sync_done;
542
543 requeue_io_u(td, &io_u);
544 } else {
545sync_done:
546 fio_gettime(&comp_time, NULL);
547 bytes_done = io_u_sync_complete(td, io_u);
548 if (bytes_done < 0)
549 ret = bytes_done;
550 }
551 break;
552 case FIO_Q_QUEUED:
553 /*
554 * if the engine doesn't have a commit hook,
555 * the io_u is really queued. if it does have such
556 * a hook, it has to call io_u_queued() itself.
557 */
558 if (td->io_ops->commit == NULL)
559 io_u_queued(td, io_u);
560 break;
561 case FIO_Q_BUSY:
562 requeue_io_u(td, &io_u);
563 ret2 = td_io_commit(td);
564 if (ret2 < 0)
565 ret = ret2;
566 break;
567 default:
568 assert(ret < 0);
569 put_io_u(td, io_u);
570 break;
571 }
572
573 if (ret < 0 || td->error)
574 break;
575
576 /*
577 * See if we need to complete some commands
578 */
579 full = queue_full(td) || ret == FIO_Q_BUSY;
580 if (full || !td->o.iodepth_batch_complete) {
581 min_evts = td->o.iodepth_batch_complete;
582 if (full && !min_evts)
583 min_evts = 1;
584
585 fio_gettime(&comp_time, NULL);
586
587 do {
588 ret = io_u_queued_complete(td, min_evts);
589 if (ret <= 0)
590 break;
591
592 bytes_done += ret;
593 } while (full && (td->cur_depth > td->o.iodepth_low));
594 }
595
596 if (ret < 0)
597 break;
598 if (!bytes_done)
599 continue;
600
601 /*
602 * the rate is batched for now, it should work for batches
603 * of completions except the very first one which may look
604 * a little bursty
605 */
606 usec = utime_since(&s, &comp_time);
607
608 rate_throttle(td, usec, bytes_done);
609
610 if (check_min_rate(td, &comp_time)) {
611 if (exitall_on_terminate)
612 terminate_threads(td->groupid);
613 td_verror(td, EIO, "check_min_rate");
614 break;
615 }
616
617 if (td->o.thinktime) {
618 unsigned long long b;
619
620 b = td->io_blocks[0] + td->io_blocks[1];
621 if (!(b % td->o.thinktime_blocks)) {
622 int left;
623
624 if (td->o.thinktime_spin)
625 __usec_sleep(td->o.thinktime_spin);
626
627 left = td->o.thinktime - td->o.thinktime_spin;
628 if (left)
629 usec_sleep(td, left);
630 }
631 }
632 }
633
634 if (td->o.fill_device && td->error == ENOSPC) {
635 td->error = 0;
636 td->terminate = 1;
637 }
638 if (!td->error) {
639 struct fio_file *f;
640
641 i = td->cur_depth;
642 if (i)
643 ret = io_u_queued_complete(td, i);
644
645 if (should_fsync(td) && td->o.end_fsync) {
646 td_set_runstate(td, TD_FSYNCING);
647
648 for_each_file(td, f, i) {
649 if (!(f->flags & FIO_FILE_OPEN))
650 continue;
651 fio_io_sync(td, f);
652 }
653 }
654 } else
655 cleanup_pending_aio(td);
656
657 /*
658 * stop job if we failed doing any IO
659 */
660 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
661 td->done = 1;
662}
663
664static void cleanup_io_u(struct thread_data *td)
665{
666 struct flist_head *entry, *n;
667 struct io_u *io_u;
668
669 flist_for_each_safe(entry, n, &td->io_u_freelist) {
670 io_u = flist_entry(entry, struct io_u, list);
671
672 flist_del(&io_u->list);
673 free(io_u);
674 }
675
676 free_io_mem(td);
677}
678
679static int init_io_u(struct thread_data *td)
680{
681 struct io_u *io_u;
682 unsigned int max_bs;
683 int i, max_units;
684 char *p;
685
686 max_units = td->o.iodepth;
687 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
688 td->orig_buffer_size = (unsigned long long) max_bs
689 * (unsigned long long) max_units;
690
691 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
692 unsigned long bs;
693
694 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
695 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
696 }
697
698 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
699 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
700 return 1;
701 }
702
703 if (allocate_io_mem(td))
704 return 1;
705
706 if (td->o.odirect)
707 p = ALIGN(td->orig_buffer);
708 else
709 p = td->orig_buffer;
710
711 for (i = 0; i < max_units; i++) {
712 if (td->terminate)
713 return 1;
714 io_u = malloc(sizeof(*io_u));
715 memset(io_u, 0, sizeof(*io_u));
716 INIT_FLIST_HEAD(&io_u->list);
717
718 if (!(td->io_ops->flags & FIO_NOIO)) {
719 io_u->buf = p + max_bs * i;
720
721 if (td_write(td) && !td->o.refill_buffers)
722 io_u_fill_buffer(td, io_u, max_bs);
723 }
724
725 io_u->index = i;
726 io_u->flags = IO_U_F_FREE;
727 flist_add(&io_u->list, &td->io_u_freelist);
728 }
729
730 io_u_init_timeout();
731
732 return 0;
733}
734
735static int switch_ioscheduler(struct thread_data *td)
736{
737 char tmp[256], tmp2[128];
738 FILE *f;
739 int ret;
740
741 if (td->io_ops->flags & FIO_DISKLESSIO)
742 return 0;
743
744 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
745
746 f = fopen(tmp, "r+");
747 if (!f) {
748 if (errno == ENOENT) {
749 log_err("fio: os or kernel doesn't support IO scheduler"
750 " switching\n");
751 return 0;
752 }
753 td_verror(td, errno, "fopen iosched");
754 return 1;
755 }
756
757 /*
758 * Set io scheduler.
759 */
760 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
761 if (ferror(f) || ret != 1) {
762 td_verror(td, errno, "fwrite");
763 fclose(f);
764 return 1;
765 }
766
767 rewind(f);
768
769 /*
770 * Read back and check that the selected scheduler is now the default.
771 */
772 ret = fread(tmp, 1, sizeof(tmp), f);
773 if (ferror(f) || ret < 0) {
774 td_verror(td, errno, "fread");
775 fclose(f);
776 return 1;
777 }
778
779 sprintf(tmp2, "[%s]", td->o.ioscheduler);
780 if (!strstr(tmp, tmp2)) {
781 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
782 td_verror(td, EINVAL, "iosched_switch");
783 fclose(f);
784 return 1;
785 }
786
787 fclose(f);
788 return 0;
789}
790
791static int keep_running(struct thread_data *td)
792{
793 unsigned long long io_done;
794
795 if (td->done)
796 return 0;
797 if (td->o.time_based)
798 return 1;
799 if (td->o.loops) {
800 td->o.loops--;
801 return 1;
802 }
803
804 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
805 + td->io_skip_bytes;
806 if (io_done < td->o.size)
807 return 1;
808
809 return 0;
810}
811
812static int clear_io_state(struct thread_data *td)
813{
814 struct fio_file *f;
815 unsigned int i;
816 int ret;
817
818 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
819 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
820 td->zone_bytes = 0;
821 td->rate_bytes = 0;
822 td->rate_blocks = 0;
823 td->rw_end_set[0] = td->rw_end_set[1] = 0;
824
825 td->last_was_sync = 0;
826
827 /*
828 * reset file done count if we are to start over
829 */
830 if (td->o.time_based || td->o.loops)
831 td->nr_done_files = 0;
832
833 close_files(td);
834
835 ret = 0;
836 for_each_file(td, f, i) {
837 f->flags &= ~FIO_FILE_DONE;
838 ret = td_io_open_file(td, f);
839 if (ret)
840 break;
841 }
842
843 return ret;
844}
845
846/*
847 * Entry point for the thread based jobs. The process based jobs end up
848 * here as well, after a little setup.
849 */
850static void *thread_main(void *data)
851{
852 unsigned long long runtime[2], elapsed;
853 struct thread_data *td = data;
854 int clear_state;
855
856 if (!td->o.use_thread)
857 setsid();
858
859 td->pid = getpid();
860
861 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
862
863 INIT_FLIST_HEAD(&td->io_u_freelist);
864 INIT_FLIST_HEAD(&td->io_u_busylist);
865 INIT_FLIST_HEAD(&td->io_u_requeues);
866 INIT_FLIST_HEAD(&td->io_log_list);
867 INIT_FLIST_HEAD(&td->io_hist_list);
868 td->io_hist_tree = RB_ROOT;
869
870 td_set_runstate(td, TD_INITIALIZED);
871 fio_mutex_up(startup_mutex);
872 fio_mutex_down(td->mutex);
873
874 /*
875 * the ->mutex mutex is now no longer used, close it to avoid
876 * eating a file descriptor
877 */
878 fio_mutex_remove(td->mutex);
879
880 /*
881 * May alter parameters that init_io_u() will use, so we need to
882 * do this first.
883 */
884 if (init_iolog(td))
885 goto err;
886
887 if (init_io_u(td))
888 goto err;
889
890 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
891 td_verror(td, errno, "cpu_set_affinity");
892 goto err;
893 }
894
895 if (td->ioprio_set) {
896 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
897 td_verror(td, errno, "ioprio_set");
898 goto err;
899 }
900 }
901
902 if (nice(td->o.nice) == -1) {
903 td_verror(td, errno, "nice");
904 goto err;
905 }
906
907 if (td->o.ioscheduler && switch_ioscheduler(td))
908 goto err;
909
910 if (!td->o.create_serialize && setup_files(td))
911 goto err;
912
913 if (td_io_init(td))
914 goto err;
915
916 if (open_files(td))
917 goto err;
918
919 if (init_random_map(td))
920 goto err;
921
922 if (td->o.exec_prerun) {
923 if (system(td->o.exec_prerun) < 0)
924 goto err;
925 }
926
927 fio_gettime(&td->epoch, NULL);
928 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
929 getrusage(RUSAGE_SELF, &td->ts.ru_start);
930
931 runtime[0] = runtime[1] = 0;
932 clear_state = 0;
933 while (keep_running(td)) {
934 fio_gettime(&td->start, NULL);
935 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
936
937 if (td->o.ratemin)
938 memcpy(&td->lastrate, &td->ts.stat_sample_time,
939 sizeof(td->lastrate));
940
941 if (clear_state && clear_io_state(td))
942 break;
943
944 prune_io_piece_log(td);
945
946 do_io(td);
947
948 clear_state = 1;
949
950 if (td_read(td) && td->io_bytes[DDIR_READ]) {
951 if (td->rw_end_set[DDIR_READ])
952 elapsed = utime_since(&td->start,
953 &td->rw_end[DDIR_READ]);
954 else
955 elapsed = utime_since_now(&td->start);
956
957 runtime[DDIR_READ] += elapsed;
958 }
959 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
960 if (td->rw_end_set[DDIR_WRITE])
961 elapsed = utime_since(&td->start,
962 &td->rw_end[DDIR_WRITE]);
963 else
964 elapsed = utime_since_now(&td->start);
965
966 runtime[DDIR_WRITE] += elapsed;
967 }
968
969 if (td->error || td->terminate)
970 break;
971
972 if (!td->o.do_verify ||
973 td->o.verify == VERIFY_NONE ||
974 (td->io_ops->flags & FIO_UNIDIR))
975 continue;
976
977 if (clear_io_state(td))
978 break;
979
980 fio_gettime(&td->start, NULL);
981
982 do_verify(td);
983
984 runtime[DDIR_READ] += utime_since_now(&td->start);
985
986 if (td->error || td->terminate)
987 break;
988 }
989
990 update_rusage_stat(td);
991 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
992 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
993 td->ts.total_run_time = mtime_since_now(&td->epoch);
994 td->ts.io_bytes[0] = td->io_bytes[0];
995 td->ts.io_bytes[1] = td->io_bytes[1];
996
997 if (td->ts.bw_log)
998 finish_log(td, td->ts.bw_log, "bw");
999 if (td->ts.slat_log)
1000 finish_log(td, td->ts.slat_log, "slat");
1001 if (td->ts.clat_log)
1002 finish_log(td, td->ts.clat_log, "clat");
1003 if (td->o.exec_postrun) {
1004 if (system(td->o.exec_postrun) < 0)
1005 log_err("fio: postrun %s failed\n", td->o.exec_postrun);
1006 }
1007
1008 if (exitall_on_terminate)
1009 terminate_threads(td->groupid);
1010
1011err:
1012 if (td->error)
1013 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1014 td->verror);
1015 close_and_free_files(td);
1016 close_ioengine(td);
1017 cleanup_io_u(td);
1018
1019 /*
1020 * do this very late, it will log file closing as well
1021 */
1022 if (td->o.write_iolog_file)
1023 write_iolog_close(td);
1024
1025 options_mem_free(td);
1026 td_set_runstate(td, TD_EXITED);
1027 return (void *) (unsigned long) td->error;
1028}
1029
1030/*
1031 * We cannot pass the td data into a forked process, so attach the td and
1032 * pass it to the thread worker.
1033 */
1034static int fork_main(int shmid, int offset)
1035{
1036 struct thread_data *td;
1037 void *data, *ret;
1038
1039 data = shmat(shmid, NULL, 0);
1040 if (data == (void *) -1) {
1041 int __err = errno;
1042
1043 perror("shmat");
1044 return __err;
1045 }
1046
1047 td = data + offset * sizeof(struct thread_data);
1048 ret = thread_main(td);
1049 shmdt(data);
1050 return (int) (unsigned long) ret;
1051}
1052
1053/*
1054 * Run over the job map and reap the threads that have exited, if any.
1055 */
1056static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1057{
1058 struct thread_data *td;
1059 int i, cputhreads, realthreads, pending, status, ret;
1060
1061 /*
1062 * reap exited threads (TD_EXITED -> TD_REAPED)
1063 */
1064 realthreads = pending = cputhreads = 0;
1065 for_each_td(td, i) {
1066 int flags = 0;
1067
1068 /*
1069 * ->io_ops is NULL for a thread that has closed its
1070 * io engine
1071 */
1072 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1073 cputhreads++;
1074 else
1075 realthreads++;
1076
1077 if (!td->pid) {
1078 pending++;
1079 continue;
1080 }
1081 if (td->runstate == TD_REAPED)
1082 continue;
1083 if (td->o.use_thread) {
1084 if (td->runstate == TD_EXITED) {
1085 td_set_runstate(td, TD_REAPED);
1086 goto reaped;
1087 }
1088 continue;
1089 }
1090
1091 flags = WNOHANG;
1092 if (td->runstate == TD_EXITED)
1093 flags = 0;
1094
1095 /*
1096 * check if someone quit or got killed in an unusual way
1097 */
1098 ret = waitpid(td->pid, &status, flags);
1099 if (ret < 0) {
1100 if (errno == ECHILD) {
1101 log_err("fio: pid=%d disappeared %d\n",
1102 (int) td->pid, td->runstate);
1103 td_set_runstate(td, TD_REAPED);
1104 goto reaped;
1105 }
1106 perror("waitpid");
1107 } else if (ret == td->pid) {
1108 if (WIFSIGNALED(status)) {
1109 int sig = WTERMSIG(status);
1110
1111 if (sig != SIGQUIT)
1112 log_err("fio: pid=%d, got signal=%d\n",
1113 (int) td->pid, sig);
1114 td_set_runstate(td, TD_REAPED);
1115 goto reaped;
1116 }
1117 if (WIFEXITED(status)) {
1118 if (WEXITSTATUS(status) && !td->error)
1119 td->error = WEXITSTATUS(status);
1120
1121 td_set_runstate(td, TD_REAPED);
1122 goto reaped;
1123 }
1124 }
1125
1126 /*
1127 * thread is not dead, continue
1128 */
1129 pending++;
1130 continue;
1131reaped:
1132 (*nr_running)--;
1133 (*m_rate) -= td->o.ratemin;
1134 (*t_rate) -= td->o.rate;
1135 if (!td->pid)
1136 pending--;
1137
1138 if (td->error)
1139 exit_value++;
1140
1141 done_secs += mtime_since_now(&td->epoch) / 1000;
1142 }
1143
1144 if (*nr_running == cputhreads && !pending && realthreads)
1145 terminate_threads(TERMINATE_ALL);
1146}
1147
1148/*
1149 * Main function for kicking off and reaping jobs, as needed.
1150 */
1151static void run_threads(void)
1152{
1153 struct thread_data *td;
1154 unsigned long spent;
1155 int i, todo, nr_running, m_rate, t_rate, nr_started;
1156
1157 if (fio_pin_memory())
1158 return;
1159
1160 if (!terse_output) {
1161 printf("Starting ");
1162 if (nr_thread)
1163 printf("%d thread%s", nr_thread,
1164 nr_thread > 1 ? "s" : "");
1165 if (nr_process) {
1166 if (nr_thread)
1167 printf(" and ");
1168 printf("%d process%s", nr_process,
1169 nr_process > 1 ? "es" : "");
1170 }
1171 printf("\n");
1172 fflush(stdout);
1173 }
1174
1175 set_sig_handlers();
1176
1177 todo = thread_number;
1178 nr_running = 0;
1179 nr_started = 0;
1180 m_rate = t_rate = 0;
1181
1182 for_each_td(td, i) {
1183 print_status_init(td->thread_number - 1);
1184
1185 if (!td->o.create_serialize) {
1186 init_disk_util(td);
1187 continue;
1188 }
1189
1190 /*
1191 * do file setup here so it happens sequentially,
1192 * we don't want X number of threads getting their
1193 * client data interspersed on disk
1194 */
1195 if (setup_files(td)) {
1196 exit_value++;
1197 if (td->error)
1198 log_err("fio: pid=%d, err=%d/%s\n",
1199 (int) td->pid, td->error, td->verror);
1200 td_set_runstate(td, TD_REAPED);
1201 todo--;
1202 } else {
1203 struct fio_file *f;
1204 unsigned int i;
1205
1206 /*
1207 * for sharing to work, each job must always open
1208 * its own files. so close them, if we opened them
1209 * for creation
1210 */
1211 for_each_file(td, f, i)
1212 td_io_close_file(td, f);
1213 }
1214
1215 init_disk_util(td);
1216 }
1217
1218 set_genesis_time();
1219
1220 while (todo) {
1221 struct thread_data *map[MAX_JOBS];
1222 struct timeval this_start;
1223 int this_jobs = 0, left;
1224
1225 /*
1226 * create threads (TD_NOT_CREATED -> TD_CREATED)
1227 */
1228 for_each_td(td, i) {
1229 if (td->runstate != TD_NOT_CREATED)
1230 continue;
1231
1232 /*
1233 * never got a chance to start, killed by other
1234 * thread for some reason
1235 */
1236 if (td->terminate) {
1237 todo--;
1238 continue;
1239 }
1240
1241 if (td->o.start_delay) {
1242 spent = mtime_since_genesis();
1243
1244 if (td->o.start_delay * 1000 > spent)
1245 continue;
1246 }
1247
1248 if (td->o.stonewall && (nr_started || nr_running)) {
1249 dprint(FD_PROCESS, "%s: stonewall wait\n",
1250 td->o.name);
1251 break;
1252 }
1253
1254 /*
1255 * Set state to created. Thread will transition
1256 * to TD_INITIALIZED when it's done setting up.
1257 */
1258 td_set_runstate(td, TD_CREATED);
1259 map[this_jobs++] = td;
1260 nr_started++;
1261
1262 if (td->o.use_thread) {
1263 dprint(FD_PROCESS, "will pthread_create\n");
1264 if (pthread_create(&td->thread, NULL,
1265 thread_main, td)) {
1266 perror("pthread_create");
1267 nr_started--;
1268 break;
1269 }
1270 if (pthread_detach(td->thread) < 0)
1271 perror("pthread_detach");
1272 } else {
1273 pid_t pid;
1274 dprint(FD_PROCESS, "will fork\n");
1275 pid = fork();
1276 if (!pid) {
1277 int ret = fork_main(shm_id, i);
1278
1279 _exit(ret);
1280 } else if (i == fio_debug_jobno)
1281 *fio_debug_jobp = pid;
1282 }
1283 fio_mutex_down(startup_mutex);
1284 }
1285
1286 /*
1287 * Wait for the started threads to transition to
1288 * TD_INITIALIZED.
1289 */
1290 fio_gettime(&this_start, NULL);
1291 left = this_jobs;
1292 while (left && !fio_abort) {
1293 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1294 break;
1295
1296 usleep(100000);
1297
1298 for (i = 0; i < this_jobs; i++) {
1299 td = map[i];
1300 if (!td)
1301 continue;
1302 if (td->runstate == TD_INITIALIZED) {
1303 map[i] = NULL;
1304 left--;
1305 } else if (td->runstate >= TD_EXITED) {
1306 map[i] = NULL;
1307 left--;
1308 todo--;
1309 nr_running++; /* work-around... */
1310 }
1311 }
1312 }
1313
1314 if (left) {
1315 log_err("fio: %d jobs failed to start\n", left);
1316 for (i = 0; i < this_jobs; i++) {
1317 td = map[i];
1318 if (!td)
1319 continue;
1320 kill(td->pid, SIGTERM);
1321 }
1322 break;
1323 }
1324
1325 /*
1326 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1327 */
1328 for_each_td(td, i) {
1329 if (td->runstate != TD_INITIALIZED)
1330 continue;
1331
1332 td_set_runstate(td, TD_RUNNING);
1333 nr_running++;
1334 nr_started--;
1335 m_rate += td->o.ratemin;
1336 t_rate += td->o.rate;
1337 todo--;
1338 fio_mutex_up(td->mutex);
1339 }
1340
1341 reap_threads(&nr_running, &t_rate, &m_rate);
1342
1343 if (todo)
1344 usleep(100000);
1345 }
1346
1347 while (nr_running) {
1348 reap_threads(&nr_running, &t_rate, &m_rate);
1349 usleep(10000);
1350 }
1351
1352 update_io_ticks();
1353 fio_unpin_memory();
1354}
1355
1356int main(int argc, char *argv[])
1357{
1358 long ps;
1359
1360 sinit();
1361
1362 /*
1363 * We need locale for number printing, if it isn't set then just
1364 * go with the US format.
1365 */
1366 if (!getenv("LC_NUMERIC"))
1367 setlocale(LC_NUMERIC, "en_US");
1368
1369 if (parse_options(argc, argv))
1370 return 1;
1371
1372 if (!thread_number)
1373 return 0;
1374
1375 ps = sysconf(_SC_PAGESIZE);
1376 if (ps < 0) {
1377 log_err("Failed to get page size\n");
1378 return 1;
1379 }
1380
1381 page_size = ps;
1382 page_mask = ps - 1;
1383
1384 if (write_bw_log) {
1385 setup_log(&agg_io_log[DDIR_READ]);
1386 setup_log(&agg_io_log[DDIR_WRITE]);
1387 }
1388
1389 startup_mutex = fio_mutex_init(0);
1390
1391 set_genesis_time();
1392
1393 status_timer_arm();
1394
1395 run_threads();
1396
1397 if (!fio_abort) {
1398 show_run_stats();
1399 if (write_bw_log) {
1400 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1401 __finish_log(agg_io_log[DDIR_WRITE],
1402 "agg-write_bw.log");
1403 }
1404 }
1405
1406 fio_mutex_remove(startup_mutex);
1407 return exit_value;
1408}