Fio 1.52
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49
50unsigned long page_mask;
51unsigned long page_size;
52
53#define PAGE_ALIGN(buf) \
54 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
55
56int groupid = 0;
57int thread_number = 0;
58int nr_process = 0;
59int nr_thread = 0;
60int shm_id = 0;
61int temp_stall_ts;
62unsigned long done_secs = 0;
63
64static struct fio_mutex *startup_mutex;
65static struct fio_mutex *writeout_mutex;
66static volatile int fio_abort;
67static int exit_value;
68static pthread_t gtod_thread;
69static pthread_t disk_util_thread;
70static struct flist_head *cgroup_list;
71static char *cgroup_mnt;
72
73struct io_log *agg_io_log[2];
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78void td_set_runstate(struct thread_data *td, int runstate)
79{
80 if (td->runstate == runstate)
81 return;
82
83 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
84 td->runstate, runstate);
85 td->runstate = runstate;
86}
87
88static void terminate_threads(int group_id)
89{
90 struct thread_data *td;
91 int i;
92
93 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
94
95 for_each_td(td, i) {
96 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
97 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
98 td->o.name, (int) td->pid);
99 td->terminate = 1;
100 td->o.start_delay = 0;
101
102 /*
103 * if the thread is running, just let it exit
104 */
105 if (td->runstate < TD_RUNNING)
106 kill(td->pid, SIGTERM);
107 else {
108 struct ioengine_ops *ops = td->io_ops;
109
110 if (ops && (ops->flags & FIO_SIGTERM))
111 kill(td->pid, SIGTERM);
112 }
113 }
114 }
115}
116
117/*
118 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
119 */
120static void sig_quit(int sig)
121{
122}
123
124static void sig_int(int sig)
125{
126 if (threads) {
127 log_info("\nfio: terminating on signal %d\n", sig);
128 fflush(stdout);
129 terminate_threads(TERMINATE_ALL);
130 }
131}
132
133static void *disk_thread_main(void *data)
134{
135 fio_mutex_up(startup_mutex);
136
137 while (threads) {
138 usleep(DISK_UTIL_MSEC * 1000);
139 if (!threads)
140 break;
141 update_io_ticks();
142 print_thread_status();
143 }
144
145 return NULL;
146}
147
148static int create_disk_util_thread(void)
149{
150 int ret;
151
152 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
153 if (ret) {
154 log_err("Can't create disk util thread: %s\n", strerror(ret));
155 return 1;
156 }
157
158 ret = pthread_detach(disk_util_thread);
159 if (ret) {
160 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
161 return 1;
162 }
163
164 dprint(FD_MUTEX, "wait on startup_mutex\n");
165 fio_mutex_down(startup_mutex);
166 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
167 return 0;
168}
169
170static void set_sig_handlers(void)
171{
172 struct sigaction act;
173
174 memset(&act, 0, sizeof(act));
175 act.sa_handler = sig_int;
176 act.sa_flags = SA_RESTART;
177 sigaction(SIGINT, &act, NULL);
178
179 memset(&act, 0, sizeof(act));
180 act.sa_handler = sig_quit;
181 act.sa_flags = SA_RESTART;
182 sigaction(SIGTERM, &act, NULL);
183}
184
185/*
186 * Check if we are above the minimum rate given.
187 */
188static int __check_min_rate(struct thread_data *td, struct timeval *now,
189 enum td_ddir ddir)
190{
191 unsigned long long bytes = 0;
192 unsigned long iops = 0;
193 unsigned long spent;
194 unsigned long rate;
195 unsigned int ratemin = 0;
196 unsigned int rate_iops = 0;
197 unsigned int rate_iops_min = 0;
198
199 assert(ddir_rw(ddir));
200
201 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
202 return 0;
203
204 /*
205 * allow a 2 second settle period in the beginning
206 */
207 if (mtime_since(&td->start, now) < 2000)
208 return 0;
209
210 iops += td->io_blocks[ddir];
211 bytes += td->this_io_bytes[ddir];
212 ratemin += td->o.ratemin[ddir];
213 rate_iops += td->o.rate_iops[ddir];
214 rate_iops_min += td->o.rate_iops_min[ddir];
215
216 /*
217 * if rate blocks is set, sample is running
218 */
219 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
220 spent = mtime_since(&td->lastrate[ddir], now);
221 if (spent < td->o.ratecycle)
222 return 0;
223
224 if (td->o.rate[ddir]) {
225 /*
226 * check bandwidth specified rate
227 */
228 if (bytes < td->rate_bytes[ddir]) {
229 log_err("%s: min rate %u not met\n", td->o.name,
230 ratemin);
231 return 1;
232 } else {
233 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
234 if (rate < ratemin ||
235 bytes < td->rate_bytes[ddir]) {
236 log_err("%s: min rate %u not met, got"
237 " %luKB/sec\n", td->o.name,
238 ratemin, rate);
239 return 1;
240 }
241 }
242 } else {
243 /*
244 * checks iops specified rate
245 */
246 if (iops < rate_iops) {
247 log_err("%s: min iops rate %u not met\n",
248 td->o.name, rate_iops);
249 return 1;
250 } else {
251 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
252 if (rate < rate_iops_min ||
253 iops < td->rate_blocks[ddir]) {
254 log_err("%s: min iops rate %u not met,"
255 " got %lu\n", td->o.name,
256 rate_iops_min, rate);
257 }
258 }
259 }
260 }
261
262 td->rate_bytes[ddir] = bytes;
263 td->rate_blocks[ddir] = iops;
264 memcpy(&td->lastrate[ddir], now, sizeof(*now));
265 return 0;
266}
267
268static int check_min_rate(struct thread_data *td, struct timeval *now,
269 unsigned long *bytes_done)
270{
271 int ret = 0;
272
273 if (bytes_done[0])
274 ret |= __check_min_rate(td, now, 0);
275 if (bytes_done[1])
276 ret |= __check_min_rate(td, now, 1);
277
278 return ret;
279}
280
281static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
282{
283 if (!td->o.timeout)
284 return 0;
285 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
286 return 1;
287
288 return 0;
289}
290
291/*
292 * When job exits, we can cancel the in-flight IO if we are using async
293 * io. Attempt to do so.
294 */
295static void cleanup_pending_aio(struct thread_data *td)
296{
297 struct flist_head *entry, *n;
298 struct io_u *io_u;
299 int r;
300
301 /*
302 * get immediately available events, if any
303 */
304 r = io_u_queued_complete(td, 0, NULL);
305 if (r < 0)
306 return;
307
308 /*
309 * now cancel remaining active events
310 */
311 if (td->io_ops->cancel) {
312 flist_for_each_safe(entry, n, &td->io_u_busylist) {
313 io_u = flist_entry(entry, struct io_u, list);
314
315 /*
316 * if the io_u isn't in flight, then that generally
317 * means someone leaked an io_u. complain but fix
318 * it up, so we don't stall here.
319 */
320 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
321 log_err("fio: non-busy IO on busy list\n");
322 put_io_u(td, io_u);
323 } else {
324 r = td->io_ops->cancel(td, io_u);
325 if (!r)
326 put_io_u(td, io_u);
327 }
328 }
329 }
330
331 if (td->cur_depth)
332 r = io_u_queued_complete(td, td->cur_depth, NULL);
333}
334
335/*
336 * Helper to handle the final sync of a file. Works just like the normal
337 * io path, just does everything sync.
338 */
339static int fio_io_sync(struct thread_data *td, struct fio_file *f)
340{
341 struct io_u *io_u = __get_io_u(td);
342 int ret;
343
344 if (!io_u)
345 return 1;
346
347 io_u->ddir = DDIR_SYNC;
348 io_u->file = f;
349
350 if (td_io_prep(td, io_u)) {
351 put_io_u(td, io_u);
352 return 1;
353 }
354
355requeue:
356 ret = td_io_queue(td, io_u);
357 if (ret < 0) {
358 td_verror(td, io_u->error, "td_io_queue");
359 put_io_u(td, io_u);
360 return 1;
361 } else if (ret == FIO_Q_QUEUED) {
362 if (io_u_queued_complete(td, 1, NULL) < 0)
363 return 1;
364 } else if (ret == FIO_Q_COMPLETED) {
365 if (io_u->error) {
366 td_verror(td, io_u->error, "td_io_queue");
367 return 1;
368 }
369
370 if (io_u_sync_complete(td, io_u, NULL) < 0)
371 return 1;
372 } else if (ret == FIO_Q_BUSY) {
373 if (td_io_commit(td))
374 return 1;
375 goto requeue;
376 }
377
378 return 0;
379}
380
381static inline void update_tv_cache(struct thread_data *td)
382{
383 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
384 fio_gettime(&td->tv_cache, NULL);
385}
386
387static int break_on_this_error(struct thread_data *td, int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err;
393
394 if (!td->o.continue_on_error)
395 return 1;
396
397 if (ret < 0)
398 err = -ret;
399 else
400 err = td->error;
401
402 if (td_non_fatal_error(err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return 0;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 td->terminate = 1;
418 return 1;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return 1;
426 }
427 }
428
429 return 0;
430}
431
432/*
433 * The main verify engine. Runs over the writes we previously submitted,
434 * reads the blocks back in, and checks the crc/md5 of the data.
435 */
436static void do_verify(struct thread_data *td)
437{
438 struct fio_file *f;
439 struct io_u *io_u;
440 int ret, min_events;
441 unsigned int i;
442
443 dprint(FD_VERIFY, "starting loop\n");
444
445 /*
446 * sync io first and invalidate cache, to make sure we really
447 * read from disk.
448 */
449 for_each_file(td, f, i) {
450 if (!fio_file_open(f))
451 continue;
452 if (fio_io_sync(td, f))
453 break;
454 if (file_invalidate_cache(td, f))
455 break;
456 }
457
458 if (td->error)
459 return;
460
461 td_set_runstate(td, TD_VERIFYING);
462
463 io_u = NULL;
464 while (!td->terminate) {
465 int ret2, full;
466
467 update_tv_cache(td);
468
469 if (runtime_exceeded(td, &td->tv_cache)) {
470 td->terminate = 1;
471 break;
472 }
473
474 io_u = __get_io_u(td);
475 if (!io_u)
476 break;
477
478 if (get_next_verify(td, io_u)) {
479 put_io_u(td, io_u);
480 break;
481 }
482
483 if (td_io_prep(td, io_u)) {
484 put_io_u(td, io_u);
485 break;
486 }
487
488 if (td->o.verify_async)
489 io_u->end_io = verify_io_u_async;
490 else
491 io_u->end_io = verify_io_u;
492
493 ret = td_io_queue(td, io_u);
494 switch (ret) {
495 case FIO_Q_COMPLETED:
496 if (io_u->error) {
497 ret = -io_u->error;
498 clear_io_u(td, io_u);
499 } else if (io_u->resid) {
500 int bytes = io_u->xfer_buflen - io_u->resid;
501
502 /*
503 * zero read, fail
504 */
505 if (!bytes) {
506 td_verror(td, EIO, "full resid");
507 put_io_u(td, io_u);
508 break;
509 }
510
511 io_u->xfer_buflen = io_u->resid;
512 io_u->xfer_buf += bytes;
513 io_u->offset += bytes;
514
515 if (ddir_rw(io_u->ddir))
516 td->ts.short_io_u[io_u->ddir]++;
517
518 f = io_u->file;
519 if (io_u->offset == f->real_file_size)
520 goto sync_done;
521
522 requeue_io_u(td, &io_u);
523 } else {
524sync_done:
525 ret = io_u_sync_complete(td, io_u, NULL);
526 if (ret < 0)
527 break;
528 }
529 continue;
530 case FIO_Q_QUEUED:
531 break;
532 case FIO_Q_BUSY:
533 requeue_io_u(td, &io_u);
534 ret2 = td_io_commit(td);
535 if (ret2 < 0)
536 ret = ret2;
537 break;
538 default:
539 assert(ret < 0);
540 td_verror(td, -ret, "td_io_queue");
541 break;
542 }
543
544 if (break_on_this_error(td, &ret))
545 break;
546
547 /*
548 * if we can queue more, do so. but check if there are
549 * completed io_u's first.
550 */
551 full = queue_full(td) || ret == FIO_Q_BUSY;
552 if (full || !td->o.iodepth_batch_complete) {
553 min_events = min(td->o.iodepth_batch_complete,
554 td->cur_depth);
555 if (full && !min_events)
556 min_events = 1;
557
558 do {
559 /*
560 * Reap required number of io units, if any,
561 * and do the verification on them through
562 * the callback handler
563 */
564 if (io_u_queued_complete(td, min_events, NULL) < 0) {
565 ret = -1;
566 break;
567 }
568 } while (full && (td->cur_depth > td->o.iodepth_low));
569 }
570 if (ret < 0)
571 break;
572 }
573
574 if (!td->error) {
575 min_events = td->cur_depth;
576
577 if (min_events)
578 ret = io_u_queued_complete(td, min_events, NULL);
579 } else
580 cleanup_pending_aio(td);
581
582 td_set_runstate(td, TD_RUNNING);
583
584 dprint(FD_VERIFY, "exiting loop\n");
585}
586
587/*
588 * Main IO worker function. It retrieves io_u's to process and queues
589 * and reaps them, checking for rate and errors along the way.
590 */
591static void do_io(struct thread_data *td)
592{
593 unsigned int i;
594 int ret = 0;
595
596 if (in_ramp_time(td))
597 td_set_runstate(td, TD_RAMP);
598 else
599 td_set_runstate(td, TD_RUNNING);
600
601 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
602 (!flist_empty(&td->trim_list)) ||
603 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
604 struct timeval comp_time;
605 unsigned long bytes_done[2] = { 0, 0 };
606 int min_evts = 0;
607 struct io_u *io_u;
608 int ret2, full;
609
610 if (td->terminate)
611 break;
612
613 update_tv_cache(td);
614
615 if (runtime_exceeded(td, &td->tv_cache)) {
616 td->terminate = 1;
617 break;
618 }
619
620 io_u = get_io_u(td);
621 if (!io_u)
622 break;
623
624 /*
625 * Add verification end_io handler, if asked to verify
626 * a previously written file.
627 */
628 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
629 !td_rw(td)) {
630 if (td->o.verify_async)
631 io_u->end_io = verify_io_u_async;
632 else
633 io_u->end_io = verify_io_u;
634 td_set_runstate(td, TD_VERIFYING);
635 } else if (in_ramp_time(td))
636 td_set_runstate(td, TD_RAMP);
637 else
638 td_set_runstate(td, TD_RUNNING);
639
640 ret = td_io_queue(td, io_u);
641 switch (ret) {
642 case FIO_Q_COMPLETED:
643 if (io_u->error) {
644 ret = -io_u->error;
645 clear_io_u(td, io_u);
646 } else if (io_u->resid) {
647 int bytes = io_u->xfer_buflen - io_u->resid;
648 struct fio_file *f = io_u->file;
649
650 /*
651 * zero read, fail
652 */
653 if (!bytes) {
654 td_verror(td, EIO, "full resid");
655 put_io_u(td, io_u);
656 break;
657 }
658
659 io_u->xfer_buflen = io_u->resid;
660 io_u->xfer_buf += bytes;
661 io_u->offset += bytes;
662
663 if (ddir_rw(io_u->ddir))
664 td->ts.short_io_u[io_u->ddir]++;
665
666 if (io_u->offset == f->real_file_size)
667 goto sync_done;
668
669 requeue_io_u(td, &io_u);
670 } else {
671sync_done:
672 if (__should_check_rate(td, 0) ||
673 __should_check_rate(td, 1))
674 fio_gettime(&comp_time, NULL);
675
676 ret = io_u_sync_complete(td, io_u, bytes_done);
677 if (ret < 0)
678 break;
679 }
680 break;
681 case FIO_Q_QUEUED:
682 /*
683 * if the engine doesn't have a commit hook,
684 * the io_u is really queued. if it does have such
685 * a hook, it has to call io_u_queued() itself.
686 */
687 if (td->io_ops->commit == NULL)
688 io_u_queued(td, io_u);
689 break;
690 case FIO_Q_BUSY:
691 requeue_io_u(td, &io_u);
692 ret2 = td_io_commit(td);
693 if (ret2 < 0)
694 ret = ret2;
695 break;
696 default:
697 assert(ret < 0);
698 put_io_u(td, io_u);
699 break;
700 }
701
702 if (break_on_this_error(td, &ret))
703 break;
704
705 /*
706 * See if we need to complete some commands
707 */
708 full = queue_full(td) || ret == FIO_Q_BUSY;
709 if (full || !td->o.iodepth_batch_complete) {
710 min_evts = min(td->o.iodepth_batch_complete,
711 td->cur_depth);
712 if (full && !min_evts)
713 min_evts = 1;
714
715 if (__should_check_rate(td, 0) ||
716 __should_check_rate(td, 1))
717 fio_gettime(&comp_time, NULL);
718
719 do {
720 ret = io_u_queued_complete(td, min_evts, bytes_done);
721 if (ret < 0)
722 break;
723
724 } while (full && (td->cur_depth > td->o.iodepth_low));
725 }
726
727 if (ret < 0)
728 break;
729 if (!(bytes_done[0] + bytes_done[1]))
730 continue;
731
732 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
733 if (check_min_rate(td, &comp_time, bytes_done)) {
734 if (exitall_on_terminate)
735 terminate_threads(td->groupid);
736 td_verror(td, EIO, "check_min_rate");
737 break;
738 }
739 }
740
741 if (td->o.thinktime) {
742 unsigned long long b;
743
744 b = td->io_blocks[0] + td->io_blocks[1];
745 if (!(b % td->o.thinktime_blocks)) {
746 int left;
747
748 if (td->o.thinktime_spin)
749 usec_spin(td->o.thinktime_spin);
750
751 left = td->o.thinktime - td->o.thinktime_spin;
752 if (left)
753 usec_sleep(td, left);
754 }
755 }
756 }
757
758 if (td->trim_entries)
759 printf("trim entries %ld\n", td->trim_entries);
760
761 if (td->o.fill_device && td->error == ENOSPC) {
762 td->error = 0;
763 td->terminate = 1;
764 }
765 if (!td->error) {
766 struct fio_file *f;
767
768 i = td->cur_depth;
769 if (i)
770 ret = io_u_queued_complete(td, i, NULL);
771
772 if (should_fsync(td) && td->o.end_fsync) {
773 td_set_runstate(td, TD_FSYNCING);
774
775 for_each_file(td, f, i) {
776 if (!fio_file_open(f))
777 continue;
778 fio_io_sync(td, f);
779 }
780 }
781 } else
782 cleanup_pending_aio(td);
783
784 /*
785 * stop job if we failed doing any IO
786 */
787 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
788 td->done = 1;
789}
790
791static void cleanup_io_u(struct thread_data *td)
792{
793 struct flist_head *entry, *n;
794 struct io_u *io_u;
795
796 flist_for_each_safe(entry, n, &td->io_u_freelist) {
797 io_u = flist_entry(entry, struct io_u, list);
798
799 flist_del(&io_u->list);
800 fio_memfree(io_u, sizeof(*io_u));
801 }
802
803 free_io_mem(td);
804}
805
806static int init_io_u(struct thread_data *td)
807{
808 struct io_u *io_u;
809 unsigned int max_bs;
810 int cl_align, i, max_units;
811 char *p;
812
813 max_units = td->o.iodepth;
814 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
815 td->orig_buffer_size = (unsigned long long) max_bs
816 * (unsigned long long) max_units;
817
818 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
819 unsigned long bs;
820
821 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
822 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
823 }
824
825 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
826 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
827 return 1;
828 }
829
830 if (allocate_io_mem(td))
831 return 1;
832
833 if (td->o.odirect || td->o.mem_align ||
834 (td->io_ops->flags & FIO_RAWIO))
835 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
836 else
837 p = td->orig_buffer;
838
839 cl_align = os_cache_line_size();
840
841 for (i = 0; i < max_units; i++) {
842 void *ptr;
843
844 if (td->terminate)
845 return 1;
846
847 ptr = fio_memalign(cl_align, sizeof(*io_u));
848 if (!ptr) {
849 log_err("fio: unable to allocate aligned memory\n");
850 break;
851 }
852
853 io_u = ptr;
854 memset(io_u, 0, sizeof(*io_u));
855 INIT_FLIST_HEAD(&io_u->list);
856 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
857
858 if (!(td->io_ops->flags & FIO_NOIO)) {
859 io_u->buf = p + max_bs * i;
860 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
861
862 if (td_write(td) && !td->o.refill_buffers)
863 io_u_fill_buffer(td, io_u, max_bs);
864 else if (td_write(td) && td->o.verify_pattern_bytes) {
865 /*
866 * Fill the buffer with the pattern if we are
867 * going to be doing writes.
868 */
869 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
870 }
871 }
872
873 io_u->index = i;
874 io_u->flags = IO_U_F_FREE;
875 flist_add(&io_u->list, &td->io_u_freelist);
876 }
877
878 return 0;
879}
880
881static int switch_ioscheduler(struct thread_data *td)
882{
883 char tmp[256], tmp2[128];
884 FILE *f;
885 int ret;
886
887 if (td->io_ops->flags & FIO_DISKLESSIO)
888 return 0;
889
890 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
891
892 f = fopen(tmp, "r+");
893 if (!f) {
894 if (errno == ENOENT) {
895 log_err("fio: os or kernel doesn't support IO scheduler"
896 " switching\n");
897 return 0;
898 }
899 td_verror(td, errno, "fopen iosched");
900 return 1;
901 }
902
903 /*
904 * Set io scheduler.
905 */
906 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
907 if (ferror(f) || ret != 1) {
908 td_verror(td, errno, "fwrite");
909 fclose(f);
910 return 1;
911 }
912
913 rewind(f);
914
915 /*
916 * Read back and check that the selected scheduler is now the default.
917 */
918 ret = fread(tmp, 1, sizeof(tmp), f);
919 if (ferror(f) || ret < 0) {
920 td_verror(td, errno, "fread");
921 fclose(f);
922 return 1;
923 }
924
925 sprintf(tmp2, "[%s]", td->o.ioscheduler);
926 if (!strstr(tmp, tmp2)) {
927 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
928 td_verror(td, EINVAL, "iosched_switch");
929 fclose(f);
930 return 1;
931 }
932
933 fclose(f);
934 return 0;
935}
936
937static int keep_running(struct thread_data *td)
938{
939 unsigned long long io_done;
940
941 if (td->done)
942 return 0;
943 if (td->o.time_based)
944 return 1;
945 if (td->o.loops) {
946 td->o.loops--;
947 return 1;
948 }
949
950 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
951 + td->io_skip_bytes;
952 if (io_done < td->o.size)
953 return 1;
954
955 return 0;
956}
957
958static void reset_io_counters(struct thread_data *td)
959{
960 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
961 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
962 td->zone_bytes = 0;
963 td->rate_bytes[0] = td->rate_bytes[1] = 0;
964 td->rate_blocks[0] = td->rate_blocks[1] = 0;
965
966 td->last_was_sync = 0;
967
968 /*
969 * reset file done count if we are to start over
970 */
971 if (td->o.time_based || td->o.loops)
972 td->nr_done_files = 0;
973
974 /*
975 * Set the same seed to get repeatable runs
976 */
977 td_fill_rand_seeds(td);
978}
979
980void reset_all_stats(struct thread_data *td)
981{
982 struct timeval tv;
983 int i;
984
985 reset_io_counters(td);
986
987 for (i = 0; i < 2; i++) {
988 td->io_bytes[i] = 0;
989 td->io_blocks[i] = 0;
990 td->io_issues[i] = 0;
991 td->ts.total_io_u[i] = 0;
992 }
993
994 fio_gettime(&tv, NULL);
995 td->ts.runtime[0] = 0;
996 td->ts.runtime[1] = 0;
997 memcpy(&td->epoch, &tv, sizeof(tv));
998 memcpy(&td->start, &tv, sizeof(tv));
999}
1000
1001static void clear_io_state(struct thread_data *td)
1002{
1003 struct fio_file *f;
1004 unsigned int i;
1005
1006 reset_io_counters(td);
1007
1008 close_files(td);
1009 for_each_file(td, f, i)
1010 fio_file_clear_done(f);
1011}
1012
1013static int exec_string(const char *string)
1014{
1015 int ret, newlen = strlen(string) + 1 + 8;
1016 char *str;
1017
1018 str = malloc(newlen);
1019 sprintf(str, "sh -c %s", string);
1020
1021 ret = system(str);
1022 if (ret == -1)
1023 log_err("fio: exec of cmd <%s> failed\n", str);
1024
1025 free(str);
1026 return ret;
1027}
1028
1029/*
1030 * Entry point for the thread based jobs. The process based jobs end up
1031 * here as well, after a little setup.
1032 */
1033static void *thread_main(void *data)
1034{
1035 unsigned long long elapsed;
1036 struct thread_data *td = data;
1037 pthread_condattr_t attr;
1038 int clear_state;
1039
1040 if (!td->o.use_thread)
1041 setsid();
1042
1043 td->pid = getpid();
1044
1045 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1046
1047 INIT_FLIST_HEAD(&td->io_u_freelist);
1048 INIT_FLIST_HEAD(&td->io_u_busylist);
1049 INIT_FLIST_HEAD(&td->io_u_requeues);
1050 INIT_FLIST_HEAD(&td->io_log_list);
1051 INIT_FLIST_HEAD(&td->io_hist_list);
1052 INIT_FLIST_HEAD(&td->verify_list);
1053 INIT_FLIST_HEAD(&td->trim_list);
1054 pthread_mutex_init(&td->io_u_lock, NULL);
1055 td->io_hist_tree = RB_ROOT;
1056
1057 pthread_condattr_init(&attr);
1058 pthread_cond_init(&td->verify_cond, &attr);
1059 pthread_cond_init(&td->free_cond, &attr);
1060
1061 td_set_runstate(td, TD_INITIALIZED);
1062 dprint(FD_MUTEX, "up startup_mutex\n");
1063 fio_mutex_up(startup_mutex);
1064 dprint(FD_MUTEX, "wait on td->mutex\n");
1065 fio_mutex_down(td->mutex);
1066 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1067
1068 /*
1069 * the ->mutex mutex is now no longer used, close it to avoid
1070 * eating a file descriptor
1071 */
1072 fio_mutex_remove(td->mutex);
1073
1074 /*
1075 * A new gid requires privilege, so we need to do this before setting
1076 * the uid.
1077 */
1078 if (td->o.gid != -1U && setgid(td->o.gid)) {
1079 td_verror(td, errno, "setgid");
1080 goto err;
1081 }
1082 if (td->o.uid != -1U && setuid(td->o.uid)) {
1083 td_verror(td, errno, "setuid");
1084 goto err;
1085 }
1086
1087 /*
1088 * May alter parameters that init_io_u() will use, so we need to
1089 * do this first.
1090 */
1091 if (init_iolog(td))
1092 goto err;
1093
1094 if (init_io_u(td))
1095 goto err;
1096
1097 if (td->o.verify_async && verify_async_init(td))
1098 goto err;
1099
1100 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1101 td_verror(td, errno, "cpu_set_affinity");
1102 goto err;
1103 }
1104
1105 /*
1106 * If we have a gettimeofday() thread, make sure we exclude that
1107 * thread from this job
1108 */
1109 if (td->o.gtod_cpu) {
1110 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1111 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1112 td_verror(td, errno, "cpu_set_affinity");
1113 goto err;
1114 }
1115 }
1116
1117 if (td->ioprio_set) {
1118 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1119 td_verror(td, errno, "ioprio_set");
1120 goto err;
1121 }
1122 }
1123
1124 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1125 goto err;
1126
1127 if (nice(td->o.nice) == -1) {
1128 td_verror(td, errno, "nice");
1129 goto err;
1130 }
1131
1132 if (td->o.ioscheduler && switch_ioscheduler(td))
1133 goto err;
1134
1135 if (!td->o.create_serialize && setup_files(td))
1136 goto err;
1137
1138 if (td_io_init(td))
1139 goto err;
1140
1141 if (init_random_map(td))
1142 goto err;
1143
1144 if (td->o.exec_prerun) {
1145 if (exec_string(td->o.exec_prerun))
1146 goto err;
1147 }
1148
1149 if (td->o.pre_read) {
1150 if (pre_read_files(td) < 0)
1151 goto err;
1152 }
1153
1154 fio_gettime(&td->epoch, NULL);
1155 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1156
1157 clear_state = 0;
1158 while (keep_running(td)) {
1159 fio_gettime(&td->start, NULL);
1160 memcpy(&td->ts.stat_sample_time[0], &td->start,
1161 sizeof(td->start));
1162 memcpy(&td->ts.stat_sample_time[1], &td->start,
1163 sizeof(td->start));
1164 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1165
1166 if (td->o.ratemin[0] || td->o.ratemin[1])
1167 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1168 sizeof(td->lastrate));
1169
1170 if (clear_state)
1171 clear_io_state(td);
1172
1173 prune_io_piece_log(td);
1174
1175 do_io(td);
1176
1177 clear_state = 1;
1178
1179 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1180 elapsed = utime_since_now(&td->start);
1181 td->ts.runtime[DDIR_READ] += elapsed;
1182 }
1183 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1184 elapsed = utime_since_now(&td->start);
1185 td->ts.runtime[DDIR_WRITE] += elapsed;
1186 }
1187
1188 if (td->error || td->terminate)
1189 break;
1190
1191 if (!td->o.do_verify ||
1192 td->o.verify == VERIFY_NONE ||
1193 (td->io_ops->flags & FIO_UNIDIR))
1194 continue;
1195
1196 clear_io_state(td);
1197
1198 fio_gettime(&td->start, NULL);
1199
1200 do_verify(td);
1201
1202 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1203
1204 if (td->error || td->terminate)
1205 break;
1206 }
1207
1208 update_rusage_stat(td);
1209 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1210 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1211 td->ts.total_run_time = mtime_since_now(&td->epoch);
1212 td->ts.io_bytes[0] = td->io_bytes[0];
1213 td->ts.io_bytes[1] = td->io_bytes[1];
1214
1215 fio_mutex_down(writeout_mutex);
1216 if (td->ts.bw_log) {
1217 if (td->o.bw_log_file) {
1218 finish_log_named(td, td->ts.bw_log,
1219 td->o.bw_log_file, "bw");
1220 } else
1221 finish_log(td, td->ts.bw_log, "bw");
1222 }
1223 if (td->ts.lat_log) {
1224 if (td->o.lat_log_file) {
1225 finish_log_named(td, td->ts.lat_log,
1226 td->o.lat_log_file, "lat");
1227 } else
1228 finish_log(td, td->ts.lat_log, "lat");
1229 }
1230 if (td->ts.slat_log) {
1231 if (td->o.lat_log_file) {
1232 finish_log_named(td, td->ts.slat_log,
1233 td->o.lat_log_file, "slat");
1234 } else
1235 finish_log(td, td->ts.slat_log, "slat");
1236 }
1237 if (td->ts.clat_log) {
1238 if (td->o.lat_log_file) {
1239 finish_log_named(td, td->ts.clat_log,
1240 td->o.lat_log_file, "clat");
1241 } else
1242 finish_log(td, td->ts.clat_log, "clat");
1243 }
1244 fio_mutex_up(writeout_mutex);
1245 if (td->o.exec_postrun)
1246 exec_string(td->o.exec_postrun);
1247
1248 if (exitall_on_terminate)
1249 terminate_threads(td->groupid);
1250
1251err:
1252 if (td->error)
1253 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1254 td->verror);
1255
1256 if (td->o.verify_async)
1257 verify_async_exit(td);
1258
1259 close_and_free_files(td);
1260 close_ioengine(td);
1261 cleanup_io_u(td);
1262 cgroup_shutdown(td, &cgroup_mnt);
1263
1264 if (td->o.cpumask_set) {
1265 int ret = fio_cpuset_exit(&td->o.cpumask);
1266
1267 td_verror(td, ret, "fio_cpuset_exit");
1268 }
1269
1270 /*
1271 * do this very late, it will log file closing as well
1272 */
1273 if (td->o.write_iolog_file)
1274 write_iolog_close(td);
1275
1276 options_mem_free(td);
1277 td_set_runstate(td, TD_EXITED);
1278 return (void *) (unsigned long) td->error;
1279}
1280
1281/*
1282 * We cannot pass the td data into a forked process, so attach the td and
1283 * pass it to the thread worker.
1284 */
1285static int fork_main(int shmid, int offset)
1286{
1287 struct thread_data *td;
1288 void *data, *ret;
1289
1290 data = shmat(shmid, NULL, 0);
1291 if (data == (void *) -1) {
1292 int __err = errno;
1293
1294 perror("shmat");
1295 return __err;
1296 }
1297
1298 td = data + offset * sizeof(struct thread_data);
1299 ret = thread_main(td);
1300 shmdt(data);
1301 return (int) (unsigned long) ret;
1302}
1303
1304/*
1305 * Run over the job map and reap the threads that have exited, if any.
1306 */
1307static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1308{
1309 struct thread_data *td;
1310 int i, cputhreads, realthreads, pending, status, ret;
1311
1312 /*
1313 * reap exited threads (TD_EXITED -> TD_REAPED)
1314 */
1315 realthreads = pending = cputhreads = 0;
1316 for_each_td(td, i) {
1317 int flags = 0;
1318
1319 /*
1320 * ->io_ops is NULL for a thread that has closed its
1321 * io engine
1322 */
1323 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1324 cputhreads++;
1325 else
1326 realthreads++;
1327
1328 if (!td->pid) {
1329 pending++;
1330 continue;
1331 }
1332 if (td->runstate == TD_REAPED)
1333 continue;
1334 if (td->o.use_thread) {
1335 if (td->runstate == TD_EXITED) {
1336 td_set_runstate(td, TD_REAPED);
1337 goto reaped;
1338 }
1339 continue;
1340 }
1341
1342 flags = WNOHANG;
1343 if (td->runstate == TD_EXITED)
1344 flags = 0;
1345
1346 /*
1347 * check if someone quit or got killed in an unusual way
1348 */
1349 ret = waitpid(td->pid, &status, flags);
1350 if (ret < 0) {
1351 if (errno == ECHILD) {
1352 log_err("fio: pid=%d disappeared %d\n",
1353 (int) td->pid, td->runstate);
1354 td_set_runstate(td, TD_REAPED);
1355 goto reaped;
1356 }
1357 perror("waitpid");
1358 } else if (ret == td->pid) {
1359 if (WIFSIGNALED(status)) {
1360 int sig = WTERMSIG(status);
1361
1362 if (sig != SIGTERM)
1363 log_err("fio: pid=%d, got signal=%d\n",
1364 (int) td->pid, sig);
1365 td_set_runstate(td, TD_REAPED);
1366 goto reaped;
1367 }
1368 if (WIFEXITED(status)) {
1369 if (WEXITSTATUS(status) && !td->error)
1370 td->error = WEXITSTATUS(status);
1371
1372 td_set_runstate(td, TD_REAPED);
1373 goto reaped;
1374 }
1375 }
1376
1377 /*
1378 * thread is not dead, continue
1379 */
1380 pending++;
1381 continue;
1382reaped:
1383 (*nr_running)--;
1384 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1385 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1386 if (!td->pid)
1387 pending--;
1388
1389 if (td->error)
1390 exit_value++;
1391
1392 done_secs += mtime_since_now(&td->epoch) / 1000;
1393 }
1394
1395 if (*nr_running == cputhreads && !pending && realthreads)
1396 terminate_threads(TERMINATE_ALL);
1397}
1398
1399static void *gtod_thread_main(void *data)
1400{
1401 fio_mutex_up(startup_mutex);
1402
1403 /*
1404 * As long as we have jobs around, update the clock. It would be nice
1405 * to have some way of NOT hammering that CPU with gettimeofday(),
1406 * but I'm not sure what to use outside of a simple CPU nop to relax
1407 * it - we don't want to lose precision.
1408 */
1409 while (threads) {
1410 fio_gtod_update();
1411 nop;
1412 }
1413
1414 return NULL;
1415}
1416
1417static int fio_start_gtod_thread(void)
1418{
1419 pthread_attr_t attr;
1420 int ret;
1421
1422 pthread_attr_init(&attr);
1423 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1424 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1425 pthread_attr_destroy(&attr);
1426 if (ret) {
1427 log_err("Can't create gtod thread: %s\n", strerror(ret));
1428 return 1;
1429 }
1430
1431 ret = pthread_detach(gtod_thread);
1432 if (ret) {
1433 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1434 return 1;
1435 }
1436
1437 dprint(FD_MUTEX, "wait on startup_mutex\n");
1438 fio_mutex_down(startup_mutex);
1439 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1440 return 0;
1441}
1442
1443/*
1444 * Main function for kicking off and reaping jobs, as needed.
1445 */
1446static void run_threads(void)
1447{
1448 struct thread_data *td;
1449 unsigned long spent;
1450 int i, todo, nr_running, m_rate, t_rate, nr_started;
1451
1452 if (fio_pin_memory())
1453 return;
1454
1455 if (fio_gtod_offload && fio_start_gtod_thread())
1456 return;
1457
1458 if (!terse_output) {
1459 log_info("Starting ");
1460 if (nr_thread)
1461 log_info("%d thread%s", nr_thread,
1462 nr_thread > 1 ? "s" : "");
1463 if (nr_process) {
1464 if (nr_thread)
1465 printf(" and ");
1466 log_info("%d process%s", nr_process,
1467 nr_process > 1 ? "es" : "");
1468 }
1469 log_info("\n");
1470 fflush(stdout);
1471 }
1472
1473 set_sig_handlers();
1474
1475 todo = thread_number;
1476 nr_running = 0;
1477 nr_started = 0;
1478 m_rate = t_rate = 0;
1479
1480 for_each_td(td, i) {
1481 print_status_init(td->thread_number - 1);
1482
1483 if (!td->o.create_serialize) {
1484 init_disk_util(td);
1485 continue;
1486 }
1487
1488 /*
1489 * do file setup here so it happens sequentially,
1490 * we don't want X number of threads getting their
1491 * client data interspersed on disk
1492 */
1493 if (setup_files(td)) {
1494 exit_value++;
1495 if (td->error)
1496 log_err("fio: pid=%d, err=%d/%s\n",
1497 (int) td->pid, td->error, td->verror);
1498 td_set_runstate(td, TD_REAPED);
1499 todo--;
1500 } else {
1501 struct fio_file *f;
1502 unsigned int j;
1503
1504 /*
1505 * for sharing to work, each job must always open
1506 * its own files. so close them, if we opened them
1507 * for creation
1508 */
1509 for_each_file(td, f, j) {
1510 if (fio_file_open(f))
1511 td_io_close_file(td, f);
1512 }
1513 }
1514
1515 init_disk_util(td);
1516 }
1517
1518 set_genesis_time();
1519
1520 while (todo) {
1521 struct thread_data *map[MAX_JOBS];
1522 struct timeval this_start;
1523 int this_jobs = 0, left;
1524
1525 /*
1526 * create threads (TD_NOT_CREATED -> TD_CREATED)
1527 */
1528 for_each_td(td, i) {
1529 if (td->runstate != TD_NOT_CREATED)
1530 continue;
1531
1532 /*
1533 * never got a chance to start, killed by other
1534 * thread for some reason
1535 */
1536 if (td->terminate) {
1537 todo--;
1538 continue;
1539 }
1540
1541 if (td->o.start_delay) {
1542 spent = mtime_since_genesis();
1543
1544 if (td->o.start_delay * 1000 > spent)
1545 continue;
1546 }
1547
1548 if (td->o.stonewall && (nr_started || nr_running)) {
1549 dprint(FD_PROCESS, "%s: stonewall wait\n",
1550 td->o.name);
1551 break;
1552 }
1553
1554 /*
1555 * Set state to created. Thread will transition
1556 * to TD_INITIALIZED when it's done setting up.
1557 */
1558 td_set_runstate(td, TD_CREATED);
1559 map[this_jobs++] = td;
1560 nr_started++;
1561
1562 if (td->o.use_thread) {
1563 int ret;
1564
1565 dprint(FD_PROCESS, "will pthread_create\n");
1566 ret = pthread_create(&td->thread, NULL,
1567 thread_main, td);
1568 if (ret) {
1569 log_err("pthread_create: %s\n",
1570 strerror(ret));
1571 nr_started--;
1572 break;
1573 }
1574 ret = pthread_detach(td->thread);
1575 if (ret)
1576 log_err("pthread_detach: %s",
1577 strerror(ret));
1578 } else {
1579 pid_t pid;
1580 dprint(FD_PROCESS, "will fork\n");
1581 pid = fork();
1582 if (!pid) {
1583 int ret = fork_main(shm_id, i);
1584
1585 _exit(ret);
1586 } else if (i == fio_debug_jobno)
1587 *fio_debug_jobp = pid;
1588 }
1589 dprint(FD_MUTEX, "wait on startup_mutex\n");
1590 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1591 log_err("fio: job startup hung? exiting.\n");
1592 terminate_threads(TERMINATE_ALL);
1593 fio_abort = 1;
1594 nr_started--;
1595 break;
1596 }
1597 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1598 }
1599
1600 /*
1601 * Wait for the started threads to transition to
1602 * TD_INITIALIZED.
1603 */
1604 fio_gettime(&this_start, NULL);
1605 left = this_jobs;
1606 while (left && !fio_abort) {
1607 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1608 break;
1609
1610 usleep(100000);
1611
1612 for (i = 0; i < this_jobs; i++) {
1613 td = map[i];
1614 if (!td)
1615 continue;
1616 if (td->runstate == TD_INITIALIZED) {
1617 map[i] = NULL;
1618 left--;
1619 } else if (td->runstate >= TD_EXITED) {
1620 map[i] = NULL;
1621 left--;
1622 todo--;
1623 nr_running++; /* work-around... */
1624 }
1625 }
1626 }
1627
1628 if (left) {
1629 log_err("fio: %d jobs failed to start\n", left);
1630 for (i = 0; i < this_jobs; i++) {
1631 td = map[i];
1632 if (!td)
1633 continue;
1634 kill(td->pid, SIGTERM);
1635 }
1636 break;
1637 }
1638
1639 /*
1640 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1641 */
1642 for_each_td(td, i) {
1643 if (td->runstate != TD_INITIALIZED)
1644 continue;
1645
1646 if (in_ramp_time(td))
1647 td_set_runstate(td, TD_RAMP);
1648 else
1649 td_set_runstate(td, TD_RUNNING);
1650 nr_running++;
1651 nr_started--;
1652 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1653 t_rate += td->o.rate[0] + td->o.rate[1];
1654 todo--;
1655 fio_mutex_up(td->mutex);
1656 }
1657
1658 reap_threads(&nr_running, &t_rate, &m_rate);
1659
1660 if (todo)
1661 usleep(100000);
1662 }
1663
1664 while (nr_running) {
1665 reap_threads(&nr_running, &t_rate, &m_rate);
1666 usleep(10000);
1667 }
1668
1669 update_io_ticks();
1670 fio_unpin_memory();
1671}
1672
1673int main(int argc, char *argv[])
1674{
1675 long ps;
1676
1677 sinit();
1678 init_rand(&__fio_rand_state);
1679
1680 /*
1681 * We need locale for number printing, if it isn't set then just
1682 * go with the US format.
1683 */
1684 if (!getenv("LC_NUMERIC"))
1685 setlocale(LC_NUMERIC, "en_US");
1686
1687 ps = sysconf(_SC_PAGESIZE);
1688 if (ps < 0) {
1689 log_err("Failed to get page size\n");
1690 return 1;
1691 }
1692
1693 page_size = ps;
1694 page_mask = ps - 1;
1695
1696 fio_keywords_init();
1697
1698 if (parse_options(argc, argv))
1699 return 1;
1700
1701 if (exec_profile && load_profile(exec_profile))
1702 return 1;
1703
1704 if (!thread_number)
1705 return 0;
1706
1707 if (write_bw_log) {
1708 setup_log(&agg_io_log[DDIR_READ]);
1709 setup_log(&agg_io_log[DDIR_WRITE]);
1710 }
1711
1712 startup_mutex = fio_mutex_init(0);
1713 if (startup_mutex == NULL)
1714 return 1;
1715 writeout_mutex = fio_mutex_init(1);
1716 if (writeout_mutex == NULL)
1717 return 1;
1718
1719 set_genesis_time();
1720 create_disk_util_thread();
1721
1722 cgroup_list = smalloc(sizeof(*cgroup_list));
1723 INIT_FLIST_HEAD(cgroup_list);
1724
1725 run_threads();
1726
1727 if (!fio_abort) {
1728 show_run_stats();
1729 if (write_bw_log) {
1730 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1731 __finish_log(agg_io_log[DDIR_WRITE],
1732 "agg-write_bw.log");
1733 }
1734 }
1735
1736 cgroup_kill(cgroup_list);
1737 sfree(cgroup_list);
1738 sfree(cgroup_mnt);
1739
1740 fio_mutex_remove(startup_mutex);
1741 fio_mutex_remove(writeout_mutex);
1742 return exit_value;
1743}