Call path below SIGALRM isn't safe
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <time.h>
32#include <sys/stat.h>
33#include <sys/wait.h>
34#include <sys/ipc.h>
35#include <sys/shm.h>
36#include <sys/mman.h>
37
38#include "fio.h"
39#include "hash.h"
40#include "smalloc.h"
41#include "verify.h"
42#include "trim.h"
43#include "diskutil.h"
44#include "cgroup.h"
45#include "profile.h"
46#include "lib/rand.h"
47
48unsigned long page_mask;
49unsigned long page_size;
50
51#define PAGE_ALIGN(buf) \
52 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
53
54int groupid = 0;
55int thread_number = 0;
56int nr_process = 0;
57int nr_thread = 0;
58int shm_id = 0;
59int temp_stall_ts;
60unsigned long done_secs = 0;
61
62static struct fio_mutex *startup_mutex;
63static struct fio_mutex *writeout_mutex;
64static volatile int fio_abort;
65static int exit_value;
66static timer_t ival_timer;
67static pthread_t gtod_thread;
68static struct flist_head *cgroup_list;
69static char *cgroup_mnt;
70
71struct io_log *agg_io_log[2];
72
73#define TERMINATE_ALL (-1)
74#define JOB_START_TIMEOUT (5 * 1000)
75
76void td_set_runstate(struct thread_data *td, int runstate)
77{
78 if (td->runstate == runstate)
79 return;
80
81 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
82 td->runstate, runstate);
83 td->runstate = runstate;
84}
85
86static void terminate_threads(int group_id)
87{
88 struct thread_data *td;
89 int i;
90
91 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
92
93 for_each_td(td, i) {
94 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
95 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
96 td->o.name, (int) td->pid);
97 td->terminate = 1;
98 td->o.start_delay = 0;
99
100 /*
101 * if the thread is running, just let it exit
102 */
103 if (td->runstate < TD_RUNNING)
104 kill(td->pid, SIGQUIT);
105 else {
106 struct ioengine_ops *ops = td->io_ops;
107
108 if (ops && (ops->flags & FIO_SIGQUIT))
109 kill(td->pid, SIGQUIT);
110 }
111 }
112 }
113}
114
115static void status_timer_arm(void)
116{
117 struct itimerspec value;
118
119 value.it_value.tv_sec = 0;
120 value.it_value.tv_nsec = DISK_UTIL_MSEC * 1000000;
121 value.it_interval.tv_sec = 0;
122 value.it_interval.tv_nsec = DISK_UTIL_MSEC * 1000000;
123
124 timer_settime(ival_timer, 0, &value, NULL);
125}
126
127static void ival_fn(union sigval sig)
128{
129 if (threads) {
130 update_io_ticks();
131 print_thread_status();
132 }
133}
134
135/*
136 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
137 */
138static void sig_quit(int sig)
139{
140}
141
142static void sig_int(int sig)
143{
144 if (threads) {
145 log_info("\nfio: terminating on signal %d\n", sig);
146 fflush(stdout);
147 terminate_threads(TERMINATE_ALL);
148 }
149}
150
151static void posix_timer_teardown(void)
152{
153 timer_delete(ival_timer);
154}
155
156static void posix_timer_setup(void)
157{
158 struct sigevent evt;
159
160 memset(&evt, 0, sizeof(evt));
161 evt.sigev_notify = SIGEV_THREAD;
162 evt.sigev_notify_function = ival_fn;
163
164 if (timer_create(CLOCK_MONOTONIC, &evt, &ival_timer) < 0)
165 perror("timer_create");
166}
167
168static void set_sig_handlers(void)
169{
170 struct sigaction act;
171
172 memset(&act, 0, sizeof(act));
173 act.sa_handler = sig_int;
174 act.sa_flags = SA_RESTART;
175 sigaction(SIGINT, &act, NULL);
176
177 memset(&act, 0, sizeof(act));
178 act.sa_handler = sig_quit;
179 act.sa_flags = SA_RESTART;
180 sigaction(SIGQUIT, &act, NULL);
181}
182
183/*
184 * Check if we are above the minimum rate given.
185 */
186static int __check_min_rate(struct thread_data *td, struct timeval *now,
187 enum td_ddir ddir)
188{
189 unsigned long long bytes = 0;
190 unsigned long iops = 0;
191 unsigned long spent;
192 unsigned long rate;
193 unsigned int ratemin = 0;
194 unsigned int rate_iops = 0;
195 unsigned int rate_iops_min = 0;
196
197 assert(ddir_rw(ddir));
198
199 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
200 return 0;
201
202 /*
203 * allow a 2 second settle period in the beginning
204 */
205 if (mtime_since(&td->start, now) < 2000)
206 return 0;
207
208 iops += td->io_blocks[ddir];
209 bytes += td->this_io_bytes[ddir];
210 ratemin += td->o.ratemin[ddir];
211 rate_iops += td->o.rate_iops[ddir];
212 rate_iops_min += td->o.rate_iops_min[ddir];
213
214 /*
215 * if rate blocks is set, sample is running
216 */
217 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
218 spent = mtime_since(&td->lastrate[ddir], now);
219 if (spent < td->o.ratecycle)
220 return 0;
221
222 if (td->o.rate[ddir]) {
223 /*
224 * check bandwidth specified rate
225 */
226 if (bytes < td->rate_bytes[ddir]) {
227 log_err("%s: min rate %u not met\n", td->o.name,
228 ratemin);
229 return 1;
230 } else {
231 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
232 if (rate < ratemin ||
233 bytes < td->rate_bytes[ddir]) {
234 log_err("%s: min rate %u not met, got"
235 " %luKB/sec\n", td->o.name,
236 ratemin, rate);
237 return 1;
238 }
239 }
240 } else {
241 /*
242 * checks iops specified rate
243 */
244 if (iops < rate_iops) {
245 log_err("%s: min iops rate %u not met\n",
246 td->o.name, rate_iops);
247 return 1;
248 } else {
249 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
250 if (rate < rate_iops_min ||
251 iops < td->rate_blocks[ddir]) {
252 log_err("%s: min iops rate %u not met,"
253 " got %lu\n", td->o.name,
254 rate_iops_min, rate);
255 }
256 }
257 }
258 }
259
260 td->rate_bytes[ddir] = bytes;
261 td->rate_blocks[ddir] = iops;
262 memcpy(&td->lastrate[ddir], now, sizeof(*now));
263 return 0;
264}
265
266static int check_min_rate(struct thread_data *td, struct timeval *now,
267 unsigned long *bytes_done)
268{
269 int ret = 0;
270
271 if (bytes_done[0])
272 ret |= __check_min_rate(td, now, 0);
273 if (bytes_done[1])
274 ret |= __check_min_rate(td, now, 1);
275
276 return ret;
277}
278
279static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
280{
281 if (!td->o.timeout)
282 return 0;
283 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
284 return 1;
285
286 return 0;
287}
288
289/*
290 * When job exits, we can cancel the in-flight IO if we are using async
291 * io. Attempt to do so.
292 */
293static void cleanup_pending_aio(struct thread_data *td)
294{
295 struct flist_head *entry, *n;
296 struct io_u *io_u;
297 int r;
298
299 /*
300 * get immediately available events, if any
301 */
302 r = io_u_queued_complete(td, 0, NULL);
303 if (r < 0)
304 return;
305
306 /*
307 * now cancel remaining active events
308 */
309 if (td->io_ops->cancel) {
310 flist_for_each_safe(entry, n, &td->io_u_busylist) {
311 io_u = flist_entry(entry, struct io_u, list);
312
313 /*
314 * if the io_u isn't in flight, then that generally
315 * means someone leaked an io_u. complain but fix
316 * it up, so we don't stall here.
317 */
318 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
319 log_err("fio: non-busy IO on busy list\n");
320 put_io_u(td, io_u);
321 } else {
322 r = td->io_ops->cancel(td, io_u);
323 if (!r)
324 put_io_u(td, io_u);
325 }
326 }
327 }
328
329 if (td->cur_depth)
330 r = io_u_queued_complete(td, td->cur_depth, NULL);
331}
332
333/*
334 * Helper to handle the final sync of a file. Works just like the normal
335 * io path, just does everything sync.
336 */
337static int fio_io_sync(struct thread_data *td, struct fio_file *f)
338{
339 struct io_u *io_u = __get_io_u(td);
340 int ret;
341
342 if (!io_u)
343 return 1;
344
345 io_u->ddir = DDIR_SYNC;
346 io_u->file = f;
347
348 if (td_io_prep(td, io_u)) {
349 put_io_u(td, io_u);
350 return 1;
351 }
352
353requeue:
354 ret = td_io_queue(td, io_u);
355 if (ret < 0) {
356 td_verror(td, io_u->error, "td_io_queue");
357 put_io_u(td, io_u);
358 return 1;
359 } else if (ret == FIO_Q_QUEUED) {
360 if (io_u_queued_complete(td, 1, NULL) < 0)
361 return 1;
362 } else if (ret == FIO_Q_COMPLETED) {
363 if (io_u->error) {
364 td_verror(td, io_u->error, "td_io_queue");
365 return 1;
366 }
367
368 if (io_u_sync_complete(td, io_u, NULL) < 0)
369 return 1;
370 } else if (ret == FIO_Q_BUSY) {
371 if (td_io_commit(td))
372 return 1;
373 goto requeue;
374 }
375
376 return 0;
377}
378
379static inline void update_tv_cache(struct thread_data *td)
380{
381 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
382 fio_gettime(&td->tv_cache, NULL);
383}
384
385static int break_on_this_error(struct thread_data *td, int *retptr)
386{
387 int ret = *retptr;
388
389 if (ret < 0 || td->error) {
390 int err;
391
392 if (!td->o.continue_on_error)
393 return 1;
394
395 if (ret < 0)
396 err = -ret;
397 else
398 err = td->error;
399
400 if (td_non_fatal_error(err)) {
401 /*
402 * Continue with the I/Os in case of
403 * a non fatal error.
404 */
405 update_error_count(td, err);
406 td_clear_error(td);
407 *retptr = 0;
408 return 0;
409 } else if (td->o.fill_device && err == ENOSPC) {
410 /*
411 * We expect to hit this error if
412 * fill_device option is set.
413 */
414 td_clear_error(td);
415 td->terminate = 1;
416 return 1;
417 } else {
418 /*
419 * Stop the I/O in case of a fatal
420 * error.
421 */
422 update_error_count(td, err);
423 return 1;
424 }
425 }
426
427 return 0;
428}
429
430/*
431 * The main verify engine. Runs over the writes we previously submitted,
432 * reads the blocks back in, and checks the crc/md5 of the data.
433 */
434static void do_verify(struct thread_data *td)
435{
436 struct fio_file *f;
437 struct io_u *io_u;
438 int ret, min_events;
439 unsigned int i;
440
441 dprint(FD_VERIFY, "starting loop\n");
442
443 /*
444 * sync io first and invalidate cache, to make sure we really
445 * read from disk.
446 */
447 for_each_file(td, f, i) {
448 if (!fio_file_open(f))
449 continue;
450 if (fio_io_sync(td, f))
451 break;
452 if (file_invalidate_cache(td, f))
453 break;
454 }
455
456 if (td->error)
457 return;
458
459 td_set_runstate(td, TD_VERIFYING);
460
461 io_u = NULL;
462 while (!td->terminate) {
463 int ret2, full;
464
465 update_tv_cache(td);
466
467 if (runtime_exceeded(td, &td->tv_cache)) {
468 td->terminate = 1;
469 break;
470 }
471
472 io_u = __get_io_u(td);
473 if (!io_u)
474 break;
475
476 if (get_next_verify(td, io_u)) {
477 put_io_u(td, io_u);
478 break;
479 }
480
481 if (td_io_prep(td, io_u)) {
482 put_io_u(td, io_u);
483 break;
484 }
485
486 if (td->o.verify_async)
487 io_u->end_io = verify_io_u_async;
488 else
489 io_u->end_io = verify_io_u;
490
491 ret = td_io_queue(td, io_u);
492 switch (ret) {
493 case FIO_Q_COMPLETED:
494 if (io_u->error) {
495 ret = -io_u->error;
496 clear_io_u(td, io_u);
497 } else if (io_u->resid) {
498 int bytes = io_u->xfer_buflen - io_u->resid;
499 struct fio_file *f = io_u->file;
500
501 /*
502 * zero read, fail
503 */
504 if (!bytes) {
505 td_verror(td, EIO, "full resid");
506 put_io_u(td, io_u);
507 break;
508 }
509
510 io_u->xfer_buflen = io_u->resid;
511 io_u->xfer_buf += bytes;
512 io_u->offset += bytes;
513
514 if (ddir_rw(io_u->ddir))
515 td->ts.short_io_u[io_u->ddir]++;
516
517 if (io_u->offset == f->real_file_size)
518 goto sync_done;
519
520 requeue_io_u(td, &io_u);
521 } else {
522sync_done:
523 ret = io_u_sync_complete(td, io_u, NULL);
524 if (ret < 0)
525 break;
526 }
527 continue;
528 case FIO_Q_QUEUED:
529 break;
530 case FIO_Q_BUSY:
531 requeue_io_u(td, &io_u);
532 ret2 = td_io_commit(td);
533 if (ret2 < 0)
534 ret = ret2;
535 break;
536 default:
537 assert(ret < 0);
538 td_verror(td, -ret, "td_io_queue");
539 break;
540 }
541
542 if (break_on_this_error(td, &ret))
543 break;
544
545 /*
546 * if we can queue more, do so. but check if there are
547 * completed io_u's first.
548 */
549 full = queue_full(td) || ret == FIO_Q_BUSY;
550 if (full || !td->o.iodepth_batch_complete) {
551 min_events = min(td->o.iodepth_batch_complete,
552 td->cur_depth);
553 if (full && !min_events)
554 min_events = 1;
555
556 do {
557 /*
558 * Reap required number of io units, if any,
559 * and do the verification on them through
560 * the callback handler
561 */
562 if (io_u_queued_complete(td, min_events, NULL) < 0) {
563 ret = -1;
564 break;
565 }
566 } while (full && (td->cur_depth > td->o.iodepth_low));
567 }
568 if (ret < 0)
569 break;
570 }
571
572 if (!td->error) {
573 min_events = td->cur_depth;
574
575 if (min_events)
576 ret = io_u_queued_complete(td, min_events, NULL);
577 } else
578 cleanup_pending_aio(td);
579
580 td_set_runstate(td, TD_RUNNING);
581
582 dprint(FD_VERIFY, "exiting loop\n");
583}
584
585/*
586 * Main IO worker function. It retrieves io_u's to process and queues
587 * and reaps them, checking for rate and errors along the way.
588 */
589static void do_io(struct thread_data *td)
590{
591 unsigned int i;
592 int ret = 0;
593
594 if (in_ramp_time(td))
595 td_set_runstate(td, TD_RAMP);
596 else
597 td_set_runstate(td, TD_RUNNING);
598
599 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
600 (!flist_empty(&td->trim_list)) ||
601 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
602 struct timeval comp_time;
603 unsigned long bytes_done[2] = { 0, 0 };
604 int min_evts = 0;
605 struct io_u *io_u;
606 int ret2, full;
607
608 if (td->terminate)
609 break;
610
611 update_tv_cache(td);
612
613 if (runtime_exceeded(td, &td->tv_cache)) {
614 td->terminate = 1;
615 break;
616 }
617
618 io_u = get_io_u(td);
619 if (!io_u)
620 break;
621
622 /*
623 * Add verification end_io handler, if asked to verify
624 * a previously written file.
625 */
626 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
627 !td_rw(td)) {
628 if (td->o.verify_async)
629 io_u->end_io = verify_io_u_async;
630 else
631 io_u->end_io = verify_io_u;
632 td_set_runstate(td, TD_VERIFYING);
633 } else if (in_ramp_time(td))
634 td_set_runstate(td, TD_RAMP);
635 else
636 td_set_runstate(td, TD_RUNNING);
637
638 ret = td_io_queue(td, io_u);
639 switch (ret) {
640 case FIO_Q_COMPLETED:
641 if (io_u->error) {
642 ret = -io_u->error;
643 clear_io_u(td, io_u);
644 } else if (io_u->resid) {
645 int bytes = io_u->xfer_buflen - io_u->resid;
646 struct fio_file *f = io_u->file;
647
648 /*
649 * zero read, fail
650 */
651 if (!bytes) {
652 td_verror(td, EIO, "full resid");
653 put_io_u(td, io_u);
654 break;
655 }
656
657 io_u->xfer_buflen = io_u->resid;
658 io_u->xfer_buf += bytes;
659 io_u->offset += bytes;
660
661 if (ddir_rw(io_u->ddir))
662 td->ts.short_io_u[io_u->ddir]++;
663
664 if (io_u->offset == f->real_file_size)
665 goto sync_done;
666
667 requeue_io_u(td, &io_u);
668 } else {
669sync_done:
670 if (__should_check_rate(td, 0) ||
671 __should_check_rate(td, 1))
672 fio_gettime(&comp_time, NULL);
673
674 ret = io_u_sync_complete(td, io_u, bytes_done);
675 if (ret < 0)
676 break;
677 }
678 break;
679 case FIO_Q_QUEUED:
680 /*
681 * if the engine doesn't have a commit hook,
682 * the io_u is really queued. if it does have such
683 * a hook, it has to call io_u_queued() itself.
684 */
685 if (td->io_ops->commit == NULL)
686 io_u_queued(td, io_u);
687 break;
688 case FIO_Q_BUSY:
689 requeue_io_u(td, &io_u);
690 ret2 = td_io_commit(td);
691 if (ret2 < 0)
692 ret = ret2;
693 break;
694 default:
695 assert(ret < 0);
696 put_io_u(td, io_u);
697 break;
698 }
699
700 if (break_on_this_error(td, &ret))
701 break;
702
703 /*
704 * See if we need to complete some commands
705 */
706 full = queue_full(td) || ret == FIO_Q_BUSY;
707 if (full || !td->o.iodepth_batch_complete) {
708 min_evts = min(td->o.iodepth_batch_complete,
709 td->cur_depth);
710 if (full && !min_evts)
711 min_evts = 1;
712
713 if (__should_check_rate(td, 0) ||
714 __should_check_rate(td, 1))
715 fio_gettime(&comp_time, NULL);
716
717 do {
718 ret = io_u_queued_complete(td, min_evts, bytes_done);
719 if (ret < 0)
720 break;
721
722 } while (full && (td->cur_depth > td->o.iodepth_low));
723 }
724
725 if (ret < 0)
726 break;
727 if (!(bytes_done[0] + bytes_done[1]))
728 continue;
729
730 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
731 if (check_min_rate(td, &comp_time, bytes_done)) {
732 if (exitall_on_terminate)
733 terminate_threads(td->groupid);
734 td_verror(td, EIO, "check_min_rate");
735 break;
736 }
737 }
738
739 if (td->o.thinktime) {
740 unsigned long long b;
741
742 b = td->io_blocks[0] + td->io_blocks[1];
743 if (!(b % td->o.thinktime_blocks)) {
744 int left;
745
746 if (td->o.thinktime_spin)
747 usec_spin(td->o.thinktime_spin);
748
749 left = td->o.thinktime - td->o.thinktime_spin;
750 if (left)
751 usec_sleep(td, left);
752 }
753 }
754 }
755
756 if (td->trim_entries)
757 printf("trim entries %ld\n", td->trim_entries);
758
759 if (td->o.fill_device && td->error == ENOSPC) {
760 td->error = 0;
761 td->terminate = 1;
762 }
763 if (!td->error) {
764 struct fio_file *f;
765
766 i = td->cur_depth;
767 if (i)
768 ret = io_u_queued_complete(td, i, NULL);
769
770 if (should_fsync(td) && td->o.end_fsync) {
771 td_set_runstate(td, TD_FSYNCING);
772
773 for_each_file(td, f, i) {
774 if (!fio_file_open(f))
775 continue;
776 fio_io_sync(td, f);
777 }
778 }
779 } else
780 cleanup_pending_aio(td);
781
782 /*
783 * stop job if we failed doing any IO
784 */
785 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
786 td->done = 1;
787}
788
789static void cleanup_io_u(struct thread_data *td)
790{
791 struct flist_head *entry, *n;
792 struct io_u *io_u;
793
794 flist_for_each_safe(entry, n, &td->io_u_freelist) {
795 io_u = flist_entry(entry, struct io_u, list);
796
797 flist_del(&io_u->list);
798 free(io_u);
799 }
800
801 free_io_mem(td);
802}
803
804static int init_io_u(struct thread_data *td)
805{
806 struct io_u *io_u;
807 unsigned int max_bs;
808 int cl_align, i, max_units;
809 char *p;
810
811 max_units = td->o.iodepth;
812 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
813 td->orig_buffer_size = (unsigned long long) max_bs
814 * (unsigned long long) max_units;
815
816 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
817 unsigned long bs;
818
819 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
820 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
821 }
822
823 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
824 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
825 return 1;
826 }
827
828 if (allocate_io_mem(td))
829 return 1;
830
831 if (td->o.odirect || td->o.mem_align ||
832 (td->io_ops->flags & FIO_RAWIO))
833 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
834 else
835 p = td->orig_buffer;
836
837 cl_align = os_cache_line_size();
838
839 for (i = 0; i < max_units; i++) {
840 void *ptr;
841
842 if (td->terminate)
843 return 1;
844
845 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
846 log_err("fio: posix_memalign=%s\n", strerror(errno));
847 break;
848 }
849
850 io_u = ptr;
851 memset(io_u, 0, sizeof(*io_u));
852 INIT_FLIST_HEAD(&io_u->list);
853 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
854
855 if (!(td->io_ops->flags & FIO_NOIO)) {
856 io_u->buf = p + max_bs * i;
857 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
858
859 if (td_write(td) && !td->o.refill_buffers)
860 io_u_fill_buffer(td, io_u, max_bs);
861 else if (td_write(td) && td->o.verify_pattern_bytes) {
862 /*
863 * Fill the buffer with the pattern if we are
864 * going to be doing writes.
865 */
866 fill_pattern(td, io_u->buf, max_bs, io_u);
867 }
868 }
869
870 io_u->index = i;
871 io_u->flags = IO_U_F_FREE;
872 flist_add(&io_u->list, &td->io_u_freelist);
873 }
874
875 return 0;
876}
877
878static int switch_ioscheduler(struct thread_data *td)
879{
880 char tmp[256], tmp2[128];
881 FILE *f;
882 int ret;
883
884 if (td->io_ops->flags & FIO_DISKLESSIO)
885 return 0;
886
887 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
888
889 f = fopen(tmp, "r+");
890 if (!f) {
891 if (errno == ENOENT) {
892 log_err("fio: os or kernel doesn't support IO scheduler"
893 " switching\n");
894 return 0;
895 }
896 td_verror(td, errno, "fopen iosched");
897 return 1;
898 }
899
900 /*
901 * Set io scheduler.
902 */
903 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
904 if (ferror(f) || ret != 1) {
905 td_verror(td, errno, "fwrite");
906 fclose(f);
907 return 1;
908 }
909
910 rewind(f);
911
912 /*
913 * Read back and check that the selected scheduler is now the default.
914 */
915 ret = fread(tmp, 1, sizeof(tmp), f);
916 if (ferror(f) || ret < 0) {
917 td_verror(td, errno, "fread");
918 fclose(f);
919 return 1;
920 }
921
922 sprintf(tmp2, "[%s]", td->o.ioscheduler);
923 if (!strstr(tmp, tmp2)) {
924 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
925 td_verror(td, EINVAL, "iosched_switch");
926 fclose(f);
927 return 1;
928 }
929
930 fclose(f);
931 return 0;
932}
933
934static int keep_running(struct thread_data *td)
935{
936 unsigned long long io_done;
937
938 if (td->done)
939 return 0;
940 if (td->o.time_based)
941 return 1;
942 if (td->o.loops) {
943 td->o.loops--;
944 return 1;
945 }
946
947 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
948 + td->io_skip_bytes;
949 if (io_done < td->o.size)
950 return 1;
951
952 return 0;
953}
954
955static void reset_io_counters(struct thread_data *td)
956{
957 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
958 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
959 td->zone_bytes = 0;
960 td->rate_bytes[0] = td->rate_bytes[1] = 0;
961 td->rate_blocks[0] = td->rate_blocks[1] = 0;
962
963 td->last_was_sync = 0;
964
965 /*
966 * reset file done count if we are to start over
967 */
968 if (td->o.time_based || td->o.loops)
969 td->nr_done_files = 0;
970
971 /*
972 * Set the same seed to get repeatable runs
973 */
974 td_fill_rand_seeds(td);
975}
976
977void reset_all_stats(struct thread_data *td)
978{
979 struct timeval tv;
980 int i;
981
982 reset_io_counters(td);
983
984 for (i = 0; i < 2; i++) {
985 td->io_bytes[i] = 0;
986 td->io_blocks[i] = 0;
987 td->io_issues[i] = 0;
988 td->ts.total_io_u[i] = 0;
989 }
990
991 fio_gettime(&tv, NULL);
992 memcpy(&td->epoch, &tv, sizeof(tv));
993 memcpy(&td->start, &tv, sizeof(tv));
994}
995
996static void clear_io_state(struct thread_data *td)
997{
998 struct fio_file *f;
999 unsigned int i;
1000
1001 reset_io_counters(td);
1002
1003 close_files(td);
1004 for_each_file(td, f, i)
1005 fio_file_clear_done(f);
1006}
1007
1008static int exec_string(const char *string)
1009{
1010 int ret, newlen = strlen(string) + 1 + 8;
1011 char *str;
1012
1013 str = malloc(newlen);
1014 sprintf(str, "sh -c %s", string);
1015
1016 ret = system(str);
1017 if (ret == -1)
1018 log_err("fio: exec of cmd <%s> failed\n", str);
1019
1020 free(str);
1021 return ret;
1022}
1023
1024/*
1025 * Entry point for the thread based jobs. The process based jobs end up
1026 * here as well, after a little setup.
1027 */
1028static void *thread_main(void *data)
1029{
1030 unsigned long long runtime[2], elapsed;
1031 struct thread_data *td = data;
1032 pthread_condattr_t attr;
1033 int clear_state;
1034
1035 if (!td->o.use_thread)
1036 setsid();
1037
1038 td->pid = getpid();
1039
1040 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1041
1042 INIT_FLIST_HEAD(&td->io_u_freelist);
1043 INIT_FLIST_HEAD(&td->io_u_busylist);
1044 INIT_FLIST_HEAD(&td->io_u_requeues);
1045 INIT_FLIST_HEAD(&td->io_log_list);
1046 INIT_FLIST_HEAD(&td->io_hist_list);
1047 INIT_FLIST_HEAD(&td->verify_list);
1048 INIT_FLIST_HEAD(&td->trim_list);
1049 pthread_mutex_init(&td->io_u_lock, NULL);
1050 td->io_hist_tree = RB_ROOT;
1051
1052 pthread_condattr_init(&attr);
1053 pthread_cond_init(&td->verify_cond, &attr);
1054 pthread_cond_init(&td->free_cond, &attr);
1055
1056 td_set_runstate(td, TD_INITIALIZED);
1057 dprint(FD_MUTEX, "up startup_mutex\n");
1058 fio_mutex_up(startup_mutex);
1059 dprint(FD_MUTEX, "wait on td->mutex\n");
1060 fio_mutex_down(td->mutex);
1061 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1062
1063 /*
1064 * the ->mutex mutex is now no longer used, close it to avoid
1065 * eating a file descriptor
1066 */
1067 fio_mutex_remove(td->mutex);
1068
1069 if (td->o.uid != -1U && setuid(td->o.uid)) {
1070 td_verror(td, errno, "setuid");
1071 goto err;
1072 }
1073 if (td->o.gid != -1U && setgid(td->o.gid)) {
1074 td_verror(td, errno, "setgid");
1075 goto err;
1076 }
1077
1078 /*
1079 * May alter parameters that init_io_u() will use, so we need to
1080 * do this first.
1081 */
1082 if (init_iolog(td))
1083 goto err;
1084
1085 if (init_io_u(td))
1086 goto err;
1087
1088 if (td->o.verify_async && verify_async_init(td))
1089 goto err;
1090
1091 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1092 td_verror(td, errno, "cpu_set_affinity");
1093 goto err;
1094 }
1095
1096 /*
1097 * If we have a gettimeofday() thread, make sure we exclude that
1098 * thread from this job
1099 */
1100 if (td->o.gtod_cpu) {
1101 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1102 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1103 td_verror(td, errno, "cpu_set_affinity");
1104 goto err;
1105 }
1106 }
1107
1108 if (td->ioprio_set) {
1109 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1110 td_verror(td, errno, "ioprio_set");
1111 goto err;
1112 }
1113 }
1114
1115 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1116 goto err;
1117
1118 if (nice(td->o.nice) == -1) {
1119 td_verror(td, errno, "nice");
1120 goto err;
1121 }
1122
1123 if (td->o.ioscheduler && switch_ioscheduler(td))
1124 goto err;
1125
1126 if (!td->o.create_serialize && setup_files(td))
1127 goto err;
1128
1129 if (td_io_init(td))
1130 goto err;
1131
1132 if (init_random_map(td))
1133 goto err;
1134
1135 if (td->o.exec_prerun) {
1136 if (exec_string(td->o.exec_prerun))
1137 goto err;
1138 }
1139
1140 if (td->o.pre_read) {
1141 if (pre_read_files(td) < 0)
1142 goto err;
1143 }
1144
1145 fio_gettime(&td->epoch, NULL);
1146 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1147
1148 runtime[0] = runtime[1] = 0;
1149 clear_state = 0;
1150 while (keep_running(td)) {
1151 fio_gettime(&td->start, NULL);
1152 memcpy(&td->ts.stat_sample_time[0], &td->start,
1153 sizeof(td->start));
1154 memcpy(&td->ts.stat_sample_time[1], &td->start,
1155 sizeof(td->start));
1156 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1157
1158 if (td->o.ratemin[0] || td->o.ratemin[1])
1159 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1160 sizeof(td->lastrate));
1161
1162 if (clear_state)
1163 clear_io_state(td);
1164
1165 prune_io_piece_log(td);
1166
1167 do_io(td);
1168
1169 clear_state = 1;
1170
1171 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1172 elapsed = utime_since_now(&td->start);
1173 runtime[DDIR_READ] += elapsed;
1174 }
1175 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1176 elapsed = utime_since_now(&td->start);
1177 runtime[DDIR_WRITE] += elapsed;
1178 }
1179
1180 if (td->error || td->terminate)
1181 break;
1182
1183 if (!td->o.do_verify ||
1184 td->o.verify == VERIFY_NONE ||
1185 (td->io_ops->flags & FIO_UNIDIR))
1186 continue;
1187
1188 clear_io_state(td);
1189
1190 fio_gettime(&td->start, NULL);
1191
1192 do_verify(td);
1193
1194 runtime[DDIR_READ] += utime_since_now(&td->start);
1195
1196 if (td->error || td->terminate)
1197 break;
1198 }
1199
1200 update_rusage_stat(td);
1201 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1202 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1203 td->ts.total_run_time = mtime_since_now(&td->epoch);
1204 td->ts.io_bytes[0] = td->io_bytes[0];
1205 td->ts.io_bytes[1] = td->io_bytes[1];
1206
1207 fio_mutex_down(writeout_mutex);
1208 if (td->ts.bw_log) {
1209 if (td->o.bw_log_file) {
1210 finish_log_named(td, td->ts.bw_log,
1211 td->o.bw_log_file, "bw");
1212 } else
1213 finish_log(td, td->ts.bw_log, "bw");
1214 }
1215 if (td->ts.lat_log) {
1216 if (td->o.lat_log_file) {
1217 finish_log_named(td, td->ts.lat_log,
1218 td->o.lat_log_file, "lat");
1219 } else
1220 finish_log(td, td->ts.lat_log, "lat");
1221 }
1222 if (td->ts.slat_log) {
1223 if (td->o.lat_log_file) {
1224 finish_log_named(td, td->ts.slat_log,
1225 td->o.lat_log_file, "slat");
1226 } else
1227 finish_log(td, td->ts.slat_log, "slat");
1228 }
1229 if (td->ts.clat_log) {
1230 if (td->o.lat_log_file) {
1231 finish_log_named(td, td->ts.clat_log,
1232 td->o.lat_log_file, "clat");
1233 } else
1234 finish_log(td, td->ts.clat_log, "clat");
1235 }
1236 fio_mutex_up(writeout_mutex);
1237 if (td->o.exec_postrun)
1238 exec_string(td->o.exec_postrun);
1239
1240 if (exitall_on_terminate)
1241 terminate_threads(td->groupid);
1242
1243err:
1244 if (td->error)
1245 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1246 td->verror);
1247
1248 if (td->o.verify_async)
1249 verify_async_exit(td);
1250
1251 close_and_free_files(td);
1252 close_ioengine(td);
1253 cleanup_io_u(td);
1254 cgroup_shutdown(td, &cgroup_mnt);
1255
1256 if (td->o.cpumask_set) {
1257 int ret = fio_cpuset_exit(&td->o.cpumask);
1258
1259 td_verror(td, ret, "fio_cpuset_exit");
1260 }
1261
1262 /*
1263 * do this very late, it will log file closing as well
1264 */
1265 if (td->o.write_iolog_file)
1266 write_iolog_close(td);
1267
1268 options_mem_free(td);
1269 td_set_runstate(td, TD_EXITED);
1270 return (void *) (unsigned long) td->error;
1271}
1272
1273/*
1274 * We cannot pass the td data into a forked process, so attach the td and
1275 * pass it to the thread worker.
1276 */
1277static int fork_main(int shmid, int offset)
1278{
1279 struct thread_data *td;
1280 void *data, *ret;
1281
1282 data = shmat(shmid, NULL, 0);
1283 if (data == (void *) -1) {
1284 int __err = errno;
1285
1286 perror("shmat");
1287 return __err;
1288 }
1289
1290 td = data + offset * sizeof(struct thread_data);
1291 ret = thread_main(td);
1292 shmdt(data);
1293 return (int) (unsigned long) ret;
1294}
1295
1296/*
1297 * Run over the job map and reap the threads that have exited, if any.
1298 */
1299static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1300{
1301 struct thread_data *td;
1302 int i, cputhreads, realthreads, pending, status, ret;
1303
1304 /*
1305 * reap exited threads (TD_EXITED -> TD_REAPED)
1306 */
1307 realthreads = pending = cputhreads = 0;
1308 for_each_td(td, i) {
1309 int flags = 0;
1310
1311 /*
1312 * ->io_ops is NULL for a thread that has closed its
1313 * io engine
1314 */
1315 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1316 cputhreads++;
1317 else
1318 realthreads++;
1319
1320 if (!td->pid) {
1321 pending++;
1322 continue;
1323 }
1324 if (td->runstate == TD_REAPED)
1325 continue;
1326 if (td->o.use_thread) {
1327 if (td->runstate == TD_EXITED) {
1328 td_set_runstate(td, TD_REAPED);
1329 goto reaped;
1330 }
1331 continue;
1332 }
1333
1334 flags = WNOHANG;
1335 if (td->runstate == TD_EXITED)
1336 flags = 0;
1337
1338 /*
1339 * check if someone quit or got killed in an unusual way
1340 */
1341 ret = waitpid(td->pid, &status, flags);
1342 if (ret < 0) {
1343 if (errno == ECHILD) {
1344 log_err("fio: pid=%d disappeared %d\n",
1345 (int) td->pid, td->runstate);
1346 td_set_runstate(td, TD_REAPED);
1347 goto reaped;
1348 }
1349 perror("waitpid");
1350 } else if (ret == td->pid) {
1351 if (WIFSIGNALED(status)) {
1352 int sig = WTERMSIG(status);
1353
1354 if (sig != SIGQUIT)
1355 log_err("fio: pid=%d, got signal=%d\n",
1356 (int) td->pid, sig);
1357 td_set_runstate(td, TD_REAPED);
1358 goto reaped;
1359 }
1360 if (WIFEXITED(status)) {
1361 if (WEXITSTATUS(status) && !td->error)
1362 td->error = WEXITSTATUS(status);
1363
1364 td_set_runstate(td, TD_REAPED);
1365 goto reaped;
1366 }
1367 }
1368
1369 /*
1370 * thread is not dead, continue
1371 */
1372 pending++;
1373 continue;
1374reaped:
1375 (*nr_running)--;
1376 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1377 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1378 if (!td->pid)
1379 pending--;
1380
1381 if (td->error)
1382 exit_value++;
1383
1384 done_secs += mtime_since_now(&td->epoch) / 1000;
1385 }
1386
1387 if (*nr_running == cputhreads && !pending && realthreads)
1388 terminate_threads(TERMINATE_ALL);
1389}
1390
1391static void *gtod_thread_main(void *data)
1392{
1393 fio_mutex_up(startup_mutex);
1394
1395 /*
1396 * As long as we have jobs around, update the clock. It would be nice
1397 * to have some way of NOT hammering that CPU with gettimeofday(),
1398 * but I'm not sure what to use outside of a simple CPU nop to relax
1399 * it - we don't want to lose precision.
1400 */
1401 while (threads) {
1402 fio_gtod_update();
1403 nop;
1404 }
1405
1406 return NULL;
1407}
1408
1409static int fio_start_gtod_thread(void)
1410{
1411 pthread_attr_t attr;
1412 int ret;
1413
1414 pthread_attr_init(&attr);
1415 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1416 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1417 pthread_attr_destroy(&attr);
1418 if (ret) {
1419 log_err("Can't create gtod thread: %s\n", strerror(ret));
1420 return 1;
1421 }
1422
1423 ret = pthread_detach(gtod_thread);
1424 if (ret) {
1425 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1426 return 1;
1427 }
1428
1429 dprint(FD_MUTEX, "wait on startup_mutex\n");
1430 fio_mutex_down(startup_mutex);
1431 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1432 return 0;
1433}
1434
1435/*
1436 * Main function for kicking off and reaping jobs, as needed.
1437 */
1438static void run_threads(void)
1439{
1440 struct thread_data *td;
1441 unsigned long spent;
1442 int i, todo, nr_running, m_rate, t_rate, nr_started;
1443
1444 if (fio_pin_memory())
1445 return;
1446
1447 if (fio_gtod_offload && fio_start_gtod_thread())
1448 return;
1449
1450 if (!terse_output) {
1451 log_info("Starting ");
1452 if (nr_thread)
1453 log_info("%d thread%s", nr_thread,
1454 nr_thread > 1 ? "s" : "");
1455 if (nr_process) {
1456 if (nr_thread)
1457 printf(" and ");
1458 log_info("%d process%s", nr_process,
1459 nr_process > 1 ? "es" : "");
1460 }
1461 log_info("\n");
1462 fflush(stdout);
1463 }
1464
1465 set_sig_handlers();
1466
1467 todo = thread_number;
1468 nr_running = 0;
1469 nr_started = 0;
1470 m_rate = t_rate = 0;
1471
1472 for_each_td(td, i) {
1473 print_status_init(td->thread_number - 1);
1474
1475 if (!td->o.create_serialize) {
1476 init_disk_util(td);
1477 continue;
1478 }
1479
1480 /*
1481 * do file setup here so it happens sequentially,
1482 * we don't want X number of threads getting their
1483 * client data interspersed on disk
1484 */
1485 if (setup_files(td)) {
1486 exit_value++;
1487 if (td->error)
1488 log_err("fio: pid=%d, err=%d/%s\n",
1489 (int) td->pid, td->error, td->verror);
1490 td_set_runstate(td, TD_REAPED);
1491 todo--;
1492 } else {
1493 struct fio_file *f;
1494 unsigned int i;
1495
1496 /*
1497 * for sharing to work, each job must always open
1498 * its own files. so close them, if we opened them
1499 * for creation
1500 */
1501 for_each_file(td, f, i) {
1502 if (fio_file_open(f))
1503 td_io_close_file(td, f);
1504 }
1505 }
1506
1507 init_disk_util(td);
1508 }
1509
1510 set_genesis_time();
1511
1512 while (todo) {
1513 struct thread_data *map[MAX_JOBS];
1514 struct timeval this_start;
1515 int this_jobs = 0, left;
1516
1517 /*
1518 * create threads (TD_NOT_CREATED -> TD_CREATED)
1519 */
1520 for_each_td(td, i) {
1521 if (td->runstate != TD_NOT_CREATED)
1522 continue;
1523
1524 /*
1525 * never got a chance to start, killed by other
1526 * thread for some reason
1527 */
1528 if (td->terminate) {
1529 todo--;
1530 continue;
1531 }
1532
1533 if (td->o.start_delay) {
1534 spent = mtime_since_genesis();
1535
1536 if (td->o.start_delay * 1000 > spent)
1537 continue;
1538 }
1539
1540 if (td->o.stonewall && (nr_started || nr_running)) {
1541 dprint(FD_PROCESS, "%s: stonewall wait\n",
1542 td->o.name);
1543 break;
1544 }
1545
1546 /*
1547 * Set state to created. Thread will transition
1548 * to TD_INITIALIZED when it's done setting up.
1549 */
1550 td_set_runstate(td, TD_CREATED);
1551 map[this_jobs++] = td;
1552 nr_started++;
1553
1554 if (td->o.use_thread) {
1555 int ret;
1556
1557 dprint(FD_PROCESS, "will pthread_create\n");
1558 ret = pthread_create(&td->thread, NULL,
1559 thread_main, td);
1560 if (ret) {
1561 log_err("pthread_create: %s\n",
1562 strerror(ret));
1563 nr_started--;
1564 break;
1565 }
1566 ret = pthread_detach(td->thread);
1567 if (ret)
1568 log_err("pthread_detach: %s",
1569 strerror(ret));
1570 } else {
1571 pid_t pid;
1572 dprint(FD_PROCESS, "will fork\n");
1573 pid = fork();
1574 if (!pid) {
1575 int ret = fork_main(shm_id, i);
1576
1577 _exit(ret);
1578 } else if (i == fio_debug_jobno)
1579 *fio_debug_jobp = pid;
1580 }
1581 dprint(FD_MUTEX, "wait on startup_mutex\n");
1582 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1583 log_err("fio: job startup hung? exiting.\n");
1584 terminate_threads(TERMINATE_ALL);
1585 fio_abort = 1;
1586 nr_started--;
1587 break;
1588 }
1589 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1590 }
1591
1592 /*
1593 * Wait for the started threads to transition to
1594 * TD_INITIALIZED.
1595 */
1596 fio_gettime(&this_start, NULL);
1597 left = this_jobs;
1598 while (left && !fio_abort) {
1599 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1600 break;
1601
1602 usleep(100000);
1603
1604 for (i = 0; i < this_jobs; i++) {
1605 td = map[i];
1606 if (!td)
1607 continue;
1608 if (td->runstate == TD_INITIALIZED) {
1609 map[i] = NULL;
1610 left--;
1611 } else if (td->runstate >= TD_EXITED) {
1612 map[i] = NULL;
1613 left--;
1614 todo--;
1615 nr_running++; /* work-around... */
1616 }
1617 }
1618 }
1619
1620 if (left) {
1621 log_err("fio: %d jobs failed to start\n", left);
1622 for (i = 0; i < this_jobs; i++) {
1623 td = map[i];
1624 if (!td)
1625 continue;
1626 kill(td->pid, SIGTERM);
1627 }
1628 break;
1629 }
1630
1631 /*
1632 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1633 */
1634 for_each_td(td, i) {
1635 if (td->runstate != TD_INITIALIZED)
1636 continue;
1637
1638 if (in_ramp_time(td))
1639 td_set_runstate(td, TD_RAMP);
1640 else
1641 td_set_runstate(td, TD_RUNNING);
1642 nr_running++;
1643 nr_started--;
1644 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1645 t_rate += td->o.rate[0] + td->o.rate[1];
1646 todo--;
1647 fio_mutex_up(td->mutex);
1648 }
1649
1650 reap_threads(&nr_running, &t_rate, &m_rate);
1651
1652 if (todo)
1653 usleep(100000);
1654 }
1655
1656 while (nr_running) {
1657 reap_threads(&nr_running, &t_rate, &m_rate);
1658 usleep(10000);
1659 }
1660
1661 update_io_ticks();
1662 fio_unpin_memory();
1663}
1664
1665int main(int argc, char *argv[])
1666{
1667 long ps;
1668
1669 sinit();
1670 init_rand(&__fio_rand_state);
1671
1672 /*
1673 * We need locale for number printing, if it isn't set then just
1674 * go with the US format.
1675 */
1676 if (!getenv("LC_NUMERIC"))
1677 setlocale(LC_NUMERIC, "en_US");
1678
1679 ps = sysconf(_SC_PAGESIZE);
1680 if (ps < 0) {
1681 log_err("Failed to get page size\n");
1682 return 1;
1683 }
1684
1685 page_size = ps;
1686 page_mask = ps - 1;
1687
1688 fio_keywords_init();
1689
1690 if (parse_options(argc, argv))
1691 return 1;
1692
1693 if (exec_profile && load_profile(exec_profile))
1694 return 1;
1695
1696 if (!thread_number)
1697 return 0;
1698
1699 if (write_bw_log) {
1700 setup_log(&agg_io_log[DDIR_READ]);
1701 setup_log(&agg_io_log[DDIR_WRITE]);
1702 }
1703
1704 startup_mutex = fio_mutex_init(0);
1705 writeout_mutex = fio_mutex_init(1);
1706
1707 set_genesis_time();
1708
1709 posix_timer_setup();
1710 status_timer_arm();
1711
1712 cgroup_list = smalloc(sizeof(*cgroup_list));
1713 INIT_FLIST_HEAD(cgroup_list);
1714
1715 run_threads();
1716
1717 if (!fio_abort) {
1718 show_run_stats();
1719 if (write_bw_log) {
1720 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1721 __finish_log(agg_io_log[DDIR_WRITE],
1722 "agg-write_bw.log");
1723 }
1724 }
1725
1726 cgroup_kill(cgroup_list);
1727 sfree(cgroup_list);
1728 sfree(cgroup_mnt);
1729
1730 posix_timer_teardown();
1731 fio_mutex_remove(startup_mutex);
1732 fio_mutex_remove(writeout_mutex);
1733 return exit_value;
1734}