Enable completion latency stat collection on verify
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49#include "server.h"
50
51unsigned long page_mask;
52unsigned long page_size;
53
54#define PAGE_ALIGN(buf) \
55 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
56
57int groupid = 0;
58unsigned int thread_number = 0;
59unsigned int nr_process = 0;
60unsigned int nr_thread = 0;
61int shm_id = 0;
62int temp_stall_ts;
63unsigned long done_secs = 0;
64
65/*
66 * Just expose an empty list, if the OS does not support disk util stats
67 */
68#ifndef FIO_HAVE_DISK_UTIL
69FLIST_HEAD(disk_list);
70#endif
71
72static struct fio_mutex *startup_mutex;
73static struct fio_mutex *writeout_mutex;
74static volatile int fio_abort;
75static int exit_value;
76static pthread_t gtod_thread;
77static pthread_t disk_util_thread;
78static struct flist_head *cgroup_list;
79static char *cgroup_mnt;
80
81unsigned long arch_flags = 0;
82
83struct io_log *agg_io_log[2];
84
85#define JOB_START_TIMEOUT (5 * 1000)
86
87static const char *fio_os_strings[os_nr] = {
88 "Invalid",
89 "Linux",
90 "AIX",
91 "FreeBSD",
92 "HP-UX",
93 "OSX",
94 "NetBSD",
95 "Solaris",
96 "Windows"
97};
98
99static const char *fio_arch_strings[arch_nr] = {
100 "Invalid",
101 "x86-64",
102 "x86",
103 "ppc",
104 "ia64",
105 "s390",
106 "alpha",
107 "sparc",
108 "sparc64",
109 "arm",
110 "sh",
111 "hppa",
112 "generic"
113};
114
115const char *fio_get_os_string(int nr)
116{
117 if (nr < os_nr)
118 return fio_os_strings[nr];
119
120 return NULL;
121}
122
123const char *fio_get_arch_string(int nr)
124{
125 if (nr < arch_nr)
126 return fio_arch_strings[nr];
127
128 return NULL;
129}
130
131void td_set_runstate(struct thread_data *td, int runstate)
132{
133 if (td->runstate == runstate)
134 return;
135
136 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
137 td->runstate, runstate);
138 td->runstate = runstate;
139}
140
141void fio_terminate_threads(int group_id)
142{
143 struct thread_data *td;
144 int i;
145
146 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
147
148 for_each_td(td, i) {
149 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
150 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
151 td->o.name, (int) td->pid);
152 td->terminate = 1;
153 td->o.start_delay = 0;
154
155 /*
156 * if the thread is running, just let it exit
157 */
158 if (!td->pid)
159 continue;
160 else if (td->runstate < TD_RAMP)
161 kill(td->pid, SIGTERM);
162 else {
163 struct ioengine_ops *ops = td->io_ops;
164
165 if (ops && (ops->flags & FIO_SIGTERM))
166 kill(td->pid, SIGTERM);
167 }
168 }
169 }
170}
171
172static void sig_int(int sig)
173{
174 if (threads) {
175 if (is_backend)
176 fio_server_got_signal(sig);
177 else {
178 log_info("\nfio: terminating on signal %d\n", sig);
179 fflush(stdout);
180 exit_value = 128;
181 }
182
183 fio_terminate_threads(TERMINATE_ALL);
184 }
185}
186
187static void *disk_thread_main(void *data)
188{
189 fio_mutex_up(startup_mutex);
190
191 while (threads) {
192 usleep(DISK_UTIL_MSEC * 1000);
193 if (!threads)
194 break;
195 update_io_ticks();
196
197 if (!is_backend)
198 print_thread_status();
199 }
200
201 return NULL;
202}
203
204static int create_disk_util_thread(void)
205{
206 int ret;
207
208 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
209 if (ret) {
210 log_err("Can't create disk util thread: %s\n", strerror(ret));
211 return 1;
212 }
213
214 ret = pthread_detach(disk_util_thread);
215 if (ret) {
216 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
217 return 1;
218 }
219
220 dprint(FD_MUTEX, "wait on startup_mutex\n");
221 fio_mutex_down(startup_mutex);
222 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
223 return 0;
224}
225
226static void set_sig_handlers(void)
227{
228 struct sigaction act;
229
230 memset(&act, 0, sizeof(act));
231 act.sa_handler = sig_int;
232 act.sa_flags = SA_RESTART;
233 sigaction(SIGINT, &act, NULL);
234
235 memset(&act, 0, sizeof(act));
236 act.sa_handler = sig_int;
237 act.sa_flags = SA_RESTART;
238 sigaction(SIGTERM, &act, NULL);
239
240 if (is_backend) {
241 memset(&act, 0, sizeof(act));
242 act.sa_handler = sig_int;
243 act.sa_flags = SA_RESTART;
244 sigaction(SIGPIPE, &act, NULL);
245 }
246}
247
248/*
249 * Check if we are above the minimum rate given.
250 */
251static int __check_min_rate(struct thread_data *td, struct timeval *now,
252 enum fio_ddir ddir)
253{
254 unsigned long long bytes = 0;
255 unsigned long iops = 0;
256 unsigned long spent;
257 unsigned long rate;
258 unsigned int ratemin = 0;
259 unsigned int rate_iops = 0;
260 unsigned int rate_iops_min = 0;
261
262 assert(ddir_rw(ddir));
263
264 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
265 return 0;
266
267 /*
268 * allow a 2 second settle period in the beginning
269 */
270 if (mtime_since(&td->start, now) < 2000)
271 return 0;
272
273 iops += td->this_io_blocks[ddir];
274 bytes += td->this_io_bytes[ddir];
275 ratemin += td->o.ratemin[ddir];
276 rate_iops += td->o.rate_iops[ddir];
277 rate_iops_min += td->o.rate_iops_min[ddir];
278
279 /*
280 * if rate blocks is set, sample is running
281 */
282 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
283 spent = mtime_since(&td->lastrate[ddir], now);
284 if (spent < td->o.ratecycle)
285 return 0;
286
287 if (td->o.rate[ddir]) {
288 /*
289 * check bandwidth specified rate
290 */
291 if (bytes < td->rate_bytes[ddir]) {
292 log_err("%s: min rate %u not met\n", td->o.name,
293 ratemin);
294 return 1;
295 } else {
296 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
297 if (rate < ratemin ||
298 bytes < td->rate_bytes[ddir]) {
299 log_err("%s: min rate %u not met, got"
300 " %luKB/sec\n", td->o.name,
301 ratemin, rate);
302 return 1;
303 }
304 }
305 } else {
306 /*
307 * checks iops specified rate
308 */
309 if (iops < rate_iops) {
310 log_err("%s: min iops rate %u not met\n",
311 td->o.name, rate_iops);
312 return 1;
313 } else {
314 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
315 if (rate < rate_iops_min ||
316 iops < td->rate_blocks[ddir]) {
317 log_err("%s: min iops rate %u not met,"
318 " got %lu\n", td->o.name,
319 rate_iops_min, rate);
320 }
321 }
322 }
323 }
324
325 td->rate_bytes[ddir] = bytes;
326 td->rate_blocks[ddir] = iops;
327 memcpy(&td->lastrate[ddir], now, sizeof(*now));
328 return 0;
329}
330
331static int check_min_rate(struct thread_data *td, struct timeval *now,
332 unsigned long *bytes_done)
333{
334 int ret = 0;
335
336 if (bytes_done[0])
337 ret |= __check_min_rate(td, now, 0);
338 if (bytes_done[1])
339 ret |= __check_min_rate(td, now, 1);
340
341 return ret;
342}
343
344static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
345{
346 if (in_ramp_time(td))
347 return 0;
348 if (!td->o.timeout)
349 return 0;
350 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
351 return 1;
352
353 return 0;
354}
355
356/*
357 * When job exits, we can cancel the in-flight IO if we are using async
358 * io. Attempt to do so.
359 */
360static void cleanup_pending_aio(struct thread_data *td)
361{
362 struct flist_head *entry, *n;
363 struct io_u *io_u;
364 int r;
365
366 /*
367 * get immediately available events, if any
368 */
369 r = io_u_queued_complete(td, 0, NULL);
370 if (r < 0)
371 return;
372
373 /*
374 * now cancel remaining active events
375 */
376 if (td->io_ops->cancel) {
377 flist_for_each_safe(entry, n, &td->io_u_busylist) {
378 io_u = flist_entry(entry, struct io_u, list);
379
380 /*
381 * if the io_u isn't in flight, then that generally
382 * means someone leaked an io_u. complain but fix
383 * it up, so we don't stall here.
384 */
385 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
386 log_err("fio: non-busy IO on busy list\n");
387 put_io_u(td, io_u);
388 } else {
389 r = td->io_ops->cancel(td, io_u);
390 if (!r)
391 put_io_u(td, io_u);
392 }
393 }
394 }
395
396 if (td->cur_depth)
397 r = io_u_queued_complete(td, td->cur_depth, NULL);
398}
399
400/*
401 * Helper to handle the final sync of a file. Works just like the normal
402 * io path, just does everything sync.
403 */
404static int fio_io_sync(struct thread_data *td, struct fio_file *f)
405{
406 struct io_u *io_u = __get_io_u(td);
407 int ret;
408
409 if (!io_u)
410 return 1;
411
412 io_u->ddir = DDIR_SYNC;
413 io_u->file = f;
414
415 if (td_io_prep(td, io_u)) {
416 put_io_u(td, io_u);
417 return 1;
418 }
419
420requeue:
421 ret = td_io_queue(td, io_u);
422 if (ret < 0) {
423 td_verror(td, io_u->error, "td_io_queue");
424 put_io_u(td, io_u);
425 return 1;
426 } else if (ret == FIO_Q_QUEUED) {
427 if (io_u_queued_complete(td, 1, NULL) < 0)
428 return 1;
429 } else if (ret == FIO_Q_COMPLETED) {
430 if (io_u->error) {
431 td_verror(td, io_u->error, "td_io_queue");
432 return 1;
433 }
434
435 if (io_u_sync_complete(td, io_u, NULL) < 0)
436 return 1;
437 } else if (ret == FIO_Q_BUSY) {
438 if (td_io_commit(td))
439 return 1;
440 goto requeue;
441 }
442
443 return 0;
444}
445
446static inline void __update_tv_cache(struct thread_data *td)
447{
448 fio_gettime(&td->tv_cache, NULL);
449}
450
451static inline void update_tv_cache(struct thread_data *td)
452{
453 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
454 __update_tv_cache(td);
455}
456
457static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
458 int *retptr)
459{
460 int ret = *retptr;
461
462 if (ret < 0 || td->error) {
463 int err;
464
465 if (ret < 0)
466 err = -ret;
467 else
468 err = td->error;
469
470 if (!(td->o.continue_on_error & td_error_type(ddir, err)))
471 return 1;
472
473 if (td_non_fatal_error(err)) {
474 /*
475 * Continue with the I/Os in case of
476 * a non fatal error.
477 */
478 update_error_count(td, err);
479 td_clear_error(td);
480 *retptr = 0;
481 return 0;
482 } else if (td->o.fill_device && err == ENOSPC) {
483 /*
484 * We expect to hit this error if
485 * fill_device option is set.
486 */
487 td_clear_error(td);
488 td->terminate = 1;
489 return 1;
490 } else {
491 /*
492 * Stop the I/O in case of a fatal
493 * error.
494 */
495 update_error_count(td, err);
496 return 1;
497 }
498 }
499
500 return 0;
501}
502
503/*
504 * The main verify engine. Runs over the writes we previously submitted,
505 * reads the blocks back in, and checks the crc/md5 of the data.
506 */
507static void do_verify(struct thread_data *td)
508{
509 struct fio_file *f;
510 struct io_u *io_u;
511 int ret, min_events;
512 unsigned int i;
513
514 dprint(FD_VERIFY, "starting loop\n");
515
516 /*
517 * sync io first and invalidate cache, to make sure we really
518 * read from disk.
519 */
520 for_each_file(td, f, i) {
521 if (!fio_file_open(f))
522 continue;
523 if (fio_io_sync(td, f))
524 break;
525 if (file_invalidate_cache(td, f))
526 break;
527 }
528
529 if (td->error)
530 return;
531
532 td_set_runstate(td, TD_VERIFYING);
533
534 io_u = NULL;
535 while (!td->terminate) {
536 int ret2, full;
537
538 update_tv_cache(td);
539
540 if (runtime_exceeded(td, &td->tv_cache)) {
541 __update_tv_cache(td);
542 if (runtime_exceeded(td, &td->tv_cache)) {
543 td->terminate = 1;
544 break;
545 }
546 }
547
548 io_u = __get_io_u(td);
549 if (!io_u)
550 break;
551
552 if (get_next_verify(td, io_u)) {
553 put_io_u(td, io_u);
554 break;
555 }
556
557 if (td_io_prep(td, io_u)) {
558 put_io_u(td, io_u);
559 break;
560 }
561
562 if (td->o.verify_async)
563 io_u->end_io = verify_io_u_async;
564 else
565 io_u->end_io = verify_io_u;
566
567 ret = td_io_queue(td, io_u);
568 switch (ret) {
569 case FIO_Q_COMPLETED:
570 if (io_u->error) {
571 ret = -io_u->error;
572 clear_io_u(td, io_u);
573 } else if (io_u->resid) {
574 int bytes = io_u->xfer_buflen - io_u->resid;
575
576 /*
577 * zero read, fail
578 */
579 if (!bytes) {
580 td_verror(td, EIO, "full resid");
581 put_io_u(td, io_u);
582 break;
583 }
584
585 io_u->xfer_buflen = io_u->resid;
586 io_u->xfer_buf += bytes;
587 io_u->offset += bytes;
588
589 if (ddir_rw(io_u->ddir))
590 td->ts.short_io_u[io_u->ddir]++;
591
592 f = io_u->file;
593 if (io_u->offset == f->real_file_size)
594 goto sync_done;
595
596 requeue_io_u(td, &io_u);
597 } else {
598sync_done:
599 ret = io_u_sync_complete(td, io_u, NULL);
600 if (ret < 0)
601 break;
602 }
603 continue;
604 case FIO_Q_QUEUED:
605 break;
606 case FIO_Q_BUSY:
607 requeue_io_u(td, &io_u);
608 ret2 = td_io_commit(td);
609 if (ret2 < 0)
610 ret = ret2;
611 break;
612 default:
613 assert(ret < 0);
614 td_verror(td, -ret, "td_io_queue");
615 break;
616 }
617
618 if (break_on_this_error(td, io_u->ddir, &ret))
619 break;
620
621 /*
622 * if we can queue more, do so. but check if there are
623 * completed io_u's first. Note that we can get BUSY even
624 * without IO queued, if the system is resource starved.
625 */
626 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
627 if (full || !td->o.iodepth_batch_complete) {
628 min_events = min(td->o.iodepth_batch_complete,
629 td->cur_depth);
630 if (full && !min_events && td->o.iodepth_batch_complete != 0)
631 min_events = 1;
632
633 do {
634 /*
635 * Reap required number of io units, if any,
636 * and do the verification on them through
637 * the callback handler
638 */
639 if (io_u_queued_complete(td, min_events, NULL) < 0) {
640 ret = -1;
641 break;
642 }
643 } while (full && (td->cur_depth > td->o.iodepth_low));
644 }
645 if (ret < 0)
646 break;
647 }
648
649 if (!td->error) {
650 min_events = td->cur_depth;
651
652 if (min_events)
653 ret = io_u_queued_complete(td, min_events, NULL);
654 } else
655 cleanup_pending_aio(td);
656
657 td_set_runstate(td, TD_RUNNING);
658
659 dprint(FD_VERIFY, "exiting loop\n");
660}
661
662/*
663 * Main IO worker function. It retrieves io_u's to process and queues
664 * and reaps them, checking for rate and errors along the way.
665 */
666static void do_io(struct thread_data *td)
667{
668 unsigned int i;
669 int ret = 0;
670
671 if (in_ramp_time(td))
672 td_set_runstate(td, TD_RAMP);
673 else
674 td_set_runstate(td, TD_RUNNING);
675
676 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
677 (!flist_empty(&td->trim_list)) ||
678 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
679 struct timeval comp_time;
680 unsigned long bytes_done[2] = { 0, 0 };
681 int min_evts = 0;
682 struct io_u *io_u;
683 int ret2, full;
684 enum fio_ddir ddir;
685
686 if (td->terminate)
687 break;
688
689 update_tv_cache(td);
690
691 if (runtime_exceeded(td, &td->tv_cache)) {
692 __update_tv_cache(td);
693 if (runtime_exceeded(td, &td->tv_cache)) {
694 td->terminate = 1;
695 break;
696 }
697 }
698
699 io_u = get_io_u(td);
700 if (!io_u)
701 break;
702
703 ddir = io_u->ddir;
704
705 /*
706 * Add verification end_io handler, if asked to verify
707 * a previously written file.
708 */
709 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
710 !td_rw(td)) {
711 if (td->o.verify_async)
712 io_u->end_io = verify_io_u_async;
713 else
714 io_u->end_io = verify_io_u;
715 td_set_runstate(td, TD_VERIFYING);
716 } else if (in_ramp_time(td))
717 td_set_runstate(td, TD_RAMP);
718 else
719 td_set_runstate(td, TD_RUNNING);
720
721 ret = td_io_queue(td, io_u);
722 switch (ret) {
723 case FIO_Q_COMPLETED:
724 if (io_u->error) {
725 ret = -io_u->error;
726 clear_io_u(td, io_u);
727 } else if (io_u->resid) {
728 int bytes = io_u->xfer_buflen - io_u->resid;
729 struct fio_file *f = io_u->file;
730
731 /*
732 * zero read, fail
733 */
734 if (!bytes) {
735 td_verror(td, EIO, "full resid");
736 put_io_u(td, io_u);
737 break;
738 }
739
740 io_u->xfer_buflen = io_u->resid;
741 io_u->xfer_buf += bytes;
742 io_u->offset += bytes;
743
744 if (ddir_rw(io_u->ddir))
745 td->ts.short_io_u[io_u->ddir]++;
746
747 if (io_u->offset == f->real_file_size)
748 goto sync_done;
749
750 requeue_io_u(td, &io_u);
751 } else {
752sync_done:
753 if (__should_check_rate(td, 0) ||
754 __should_check_rate(td, 1))
755 fio_gettime(&comp_time, NULL);
756
757 ret = io_u_sync_complete(td, io_u, bytes_done);
758 if (ret < 0)
759 break;
760 }
761 break;
762 case FIO_Q_QUEUED:
763 /*
764 * if the engine doesn't have a commit hook,
765 * the io_u is really queued. if it does have such
766 * a hook, it has to call io_u_queued() itself.
767 */
768 if (td->io_ops->commit == NULL)
769 io_u_queued(td, io_u);
770 break;
771 case FIO_Q_BUSY:
772 requeue_io_u(td, &io_u);
773 ret2 = td_io_commit(td);
774 if (ret2 < 0)
775 ret = ret2;
776 break;
777 default:
778 assert(ret < 0);
779 put_io_u(td, io_u);
780 break;
781 }
782
783 if (break_on_this_error(td, ddir, &ret))
784 break;
785
786 /*
787 * See if we need to complete some commands. Note that we
788 * can get BUSY even without IO queued, if the system is
789 * resource starved.
790 */
791 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
792 if (full || !td->o.iodepth_batch_complete) {
793 min_evts = min(td->o.iodepth_batch_complete,
794 td->cur_depth);
795 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
796 min_evts = 1;
797
798 if (__should_check_rate(td, 0) ||
799 __should_check_rate(td, 1))
800 fio_gettime(&comp_time, NULL);
801
802 do {
803 ret = io_u_queued_complete(td, min_evts, bytes_done);
804 if (ret < 0)
805 break;
806
807 } while (full && (td->cur_depth > td->o.iodepth_low));
808 }
809
810 if (ret < 0)
811 break;
812 if (!(bytes_done[0] + bytes_done[1]))
813 continue;
814
815 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
816 if (check_min_rate(td, &comp_time, bytes_done)) {
817 if (exitall_on_terminate)
818 fio_terminate_threads(td->groupid);
819 td_verror(td, EIO, "check_min_rate");
820 break;
821 }
822 }
823
824 if (td->o.thinktime) {
825 unsigned long long b;
826
827 b = td->io_blocks[0] + td->io_blocks[1];
828 if (!(b % td->o.thinktime_blocks)) {
829 int left;
830
831 if (td->o.thinktime_spin)
832 usec_spin(td->o.thinktime_spin);
833
834 left = td->o.thinktime - td->o.thinktime_spin;
835 if (left)
836 usec_sleep(td, left);
837 }
838 }
839 }
840
841 if (td->trim_entries)
842 log_err("fio: %d trim entries leaked?\n", td->trim_entries);
843
844 if (td->o.fill_device && td->error == ENOSPC) {
845 td->error = 0;
846 td->terminate = 1;
847 }
848 if (!td->error) {
849 struct fio_file *f;
850
851 i = td->cur_depth;
852 if (i) {
853 ret = io_u_queued_complete(td, i, NULL);
854 if (td->o.fill_device && td->error == ENOSPC)
855 td->error = 0;
856 }
857
858 if (should_fsync(td) && td->o.end_fsync) {
859 td_set_runstate(td, TD_FSYNCING);
860
861 for_each_file(td, f, i) {
862 if (!fio_file_open(f))
863 continue;
864 fio_io_sync(td, f);
865 }
866 }
867 } else
868 cleanup_pending_aio(td);
869
870 /*
871 * stop job if we failed doing any IO
872 */
873 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
874 td->done = 1;
875}
876
877static void cleanup_io_u(struct thread_data *td)
878{
879 struct flist_head *entry, *n;
880 struct io_u *io_u;
881
882 flist_for_each_safe(entry, n, &td->io_u_freelist) {
883 io_u = flist_entry(entry, struct io_u, list);
884
885 flist_del(&io_u->list);
886 fio_memfree(io_u, sizeof(*io_u));
887 }
888
889 free_io_mem(td);
890}
891
892static int init_io_u(struct thread_data *td)
893{
894 struct io_u *io_u;
895 unsigned int max_bs;
896 int cl_align, i, max_units;
897 char *p;
898
899 max_units = td->o.iodepth;
900 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
901 td->orig_buffer_size = (unsigned long long) max_bs
902 * (unsigned long long) max_units;
903
904 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
905 unsigned long bs;
906
907 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
908 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
909 }
910
911 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
912 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
913 return 1;
914 }
915
916 if (allocate_io_mem(td))
917 return 1;
918
919 if (td->o.odirect || td->o.mem_align ||
920 (td->io_ops->flags & FIO_RAWIO))
921 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
922 else
923 p = td->orig_buffer;
924
925 cl_align = os_cache_line_size();
926
927 for (i = 0; i < max_units; i++) {
928 void *ptr;
929
930 if (td->terminate)
931 return 1;
932
933 ptr = fio_memalign(cl_align, sizeof(*io_u));
934 if (!ptr) {
935 log_err("fio: unable to allocate aligned memory\n");
936 break;
937 }
938
939 io_u = ptr;
940 memset(io_u, 0, sizeof(*io_u));
941 INIT_FLIST_HEAD(&io_u->list);
942 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
943
944 if (!(td->io_ops->flags & FIO_NOIO)) {
945 io_u->buf = p;
946 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
947
948 if (td_write(td))
949 io_u_fill_buffer(td, io_u, max_bs);
950 if (td_write(td) && td->o.verify_pattern_bytes) {
951 /*
952 * Fill the buffer with the pattern if we are
953 * going to be doing writes.
954 */
955 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
956 }
957 }
958
959 io_u->index = i;
960 io_u->flags = IO_U_F_FREE;
961 flist_add(&io_u->list, &td->io_u_freelist);
962 p += max_bs;
963 }
964
965 return 0;
966}
967
968static int switch_ioscheduler(struct thread_data *td)
969{
970 char tmp[256], tmp2[128];
971 FILE *f;
972 int ret;
973
974 if (td->io_ops->flags & FIO_DISKLESSIO)
975 return 0;
976
977 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
978
979 f = fopen(tmp, "r+");
980 if (!f) {
981 if (errno == ENOENT) {
982 log_err("fio: os or kernel doesn't support IO scheduler"
983 " switching\n");
984 return 0;
985 }
986 td_verror(td, errno, "fopen iosched");
987 return 1;
988 }
989
990 /*
991 * Set io scheduler.
992 */
993 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
994 if (ferror(f) || ret != 1) {
995 td_verror(td, errno, "fwrite");
996 fclose(f);
997 return 1;
998 }
999
1000 rewind(f);
1001
1002 /*
1003 * Read back and check that the selected scheduler is now the default.
1004 */
1005 ret = fread(tmp, 1, sizeof(tmp), f);
1006 if (ferror(f) || ret < 0) {
1007 td_verror(td, errno, "fread");
1008 fclose(f);
1009 return 1;
1010 }
1011
1012 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1013 if (!strstr(tmp, tmp2)) {
1014 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1015 td_verror(td, EINVAL, "iosched_switch");
1016 fclose(f);
1017 return 1;
1018 }
1019
1020 fclose(f);
1021 return 0;
1022}
1023
1024static int keep_running(struct thread_data *td)
1025{
1026 unsigned long long io_done;
1027
1028 if (td->done)
1029 return 0;
1030 if (td->o.time_based)
1031 return 1;
1032 if (td->o.loops) {
1033 td->o.loops--;
1034 return 1;
1035 }
1036
1037 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
1038 + td->io_skip_bytes;
1039 if (io_done < td->o.size)
1040 return 1;
1041
1042 return 0;
1043}
1044
1045static void reset_io_counters(struct thread_data *td)
1046{
1047 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
1048 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
1049 td->stat_io_blocks[0] = td->stat_io_blocks[1] = 0;
1050 td->this_io_blocks[0] = td->this_io_blocks[1] = 0;
1051 td->zone_bytes = 0;
1052 td->rate_bytes[0] = td->rate_bytes[1] = 0;
1053 td->rate_blocks[0] = td->rate_blocks[1] = 0;
1054
1055 td->last_was_sync = 0;
1056
1057 /*
1058 * reset file done count if we are to start over
1059 */
1060 if (td->o.time_based || td->o.loops)
1061 td->nr_done_files = 0;
1062}
1063
1064void reset_all_stats(struct thread_data *td)
1065{
1066 struct timeval tv;
1067 int i;
1068
1069 reset_io_counters(td);
1070
1071 for (i = 0; i < 2; i++) {
1072 td->io_bytes[i] = 0;
1073 td->io_blocks[i] = 0;
1074 td->io_issues[i] = 0;
1075 td->ts.total_io_u[i] = 0;
1076 }
1077
1078 fio_gettime(&tv, NULL);
1079 td->ts.runtime[0] = 0;
1080 td->ts.runtime[1] = 0;
1081 memcpy(&td->epoch, &tv, sizeof(tv));
1082 memcpy(&td->start, &tv, sizeof(tv));
1083}
1084
1085static void clear_io_state(struct thread_data *td)
1086{
1087 struct fio_file *f;
1088 unsigned int i;
1089
1090 reset_io_counters(td);
1091
1092 close_files(td);
1093 for_each_file(td, f, i)
1094 fio_file_clear_done(f);
1095
1096 /*
1097 * Set the same seed to get repeatable runs
1098 */
1099 td_fill_rand_seeds(td);
1100}
1101
1102static int exec_string(const char *string)
1103{
1104 int ret, newlen = strlen(string) + 1 + 8;
1105 char *str;
1106
1107 str = malloc(newlen);
1108 sprintf(str, "sh -c %s", string);
1109
1110 ret = system(str);
1111 if (ret == -1)
1112 log_err("fio: exec of cmd <%s> failed\n", str);
1113
1114 free(str);
1115 return ret;
1116}
1117
1118/*
1119 * Entry point for the thread based jobs. The process based jobs end up
1120 * here as well, after a little setup.
1121 */
1122static void *thread_main(void *data)
1123{
1124 unsigned long long elapsed;
1125 struct thread_data *td = data;
1126 pthread_condattr_t attr;
1127 int clear_state;
1128
1129 if (!td->o.use_thread) {
1130 setsid();
1131 td->pid = getpid();
1132 } else
1133 td->pid = gettid();
1134
1135 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1136
1137 INIT_FLIST_HEAD(&td->io_u_freelist);
1138 INIT_FLIST_HEAD(&td->io_u_busylist);
1139 INIT_FLIST_HEAD(&td->io_u_requeues);
1140 INIT_FLIST_HEAD(&td->io_log_list);
1141 INIT_FLIST_HEAD(&td->io_hist_list);
1142 INIT_FLIST_HEAD(&td->verify_list);
1143 INIT_FLIST_HEAD(&td->trim_list);
1144 pthread_mutex_init(&td->io_u_lock, NULL);
1145 td->io_hist_tree = RB_ROOT;
1146
1147 pthread_condattr_init(&attr);
1148 pthread_cond_init(&td->verify_cond, &attr);
1149 pthread_cond_init(&td->free_cond, &attr);
1150
1151 td_set_runstate(td, TD_INITIALIZED);
1152 dprint(FD_MUTEX, "up startup_mutex\n");
1153 fio_mutex_up(startup_mutex);
1154 dprint(FD_MUTEX, "wait on td->mutex\n");
1155 fio_mutex_down(td->mutex);
1156 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1157
1158 /*
1159 * the ->mutex mutex is now no longer used, close it to avoid
1160 * eating a file descriptor
1161 */
1162 fio_mutex_remove(td->mutex);
1163
1164 /*
1165 * A new gid requires privilege, so we need to do this before setting
1166 * the uid.
1167 */
1168 if (td->o.gid != -1U && setgid(td->o.gid)) {
1169 td_verror(td, errno, "setgid");
1170 goto err;
1171 }
1172 if (td->o.uid != -1U && setuid(td->o.uid)) {
1173 td_verror(td, errno, "setuid");
1174 goto err;
1175 }
1176
1177 /*
1178 * If we have a gettimeofday() thread, make sure we exclude that
1179 * thread from this job
1180 */
1181 if (td->o.gtod_cpu)
1182 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1183
1184 /*
1185 * Set affinity first, in case it has an impact on the memory
1186 * allocations.
1187 */
1188 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1189 td_verror(td, errno, "cpu_set_affinity");
1190 goto err;
1191 }
1192
1193 /*
1194 * May alter parameters that init_io_u() will use, so we need to
1195 * do this first.
1196 */
1197 if (init_iolog(td))
1198 goto err;
1199
1200 if (init_io_u(td))
1201 goto err;
1202
1203 if (td->o.verify_async && verify_async_init(td))
1204 goto err;
1205
1206 if (td->ioprio_set) {
1207 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1208 td_verror(td, errno, "ioprio_set");
1209 goto err;
1210 }
1211 }
1212
1213 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1214 goto err;
1215
1216 if (nice(td->o.nice) == -1) {
1217 td_verror(td, errno, "nice");
1218 goto err;
1219 }
1220
1221 if (td->o.ioscheduler && switch_ioscheduler(td))
1222 goto err;
1223
1224 if (!td->o.create_serialize && setup_files(td))
1225 goto err;
1226
1227 if (td_io_init(td))
1228 goto err;
1229
1230 if (init_random_map(td))
1231 goto err;
1232
1233 if (td->o.exec_prerun) {
1234 if (exec_string(td->o.exec_prerun))
1235 goto err;
1236 }
1237
1238 if (td->o.pre_read) {
1239 if (pre_read_files(td) < 0)
1240 goto err;
1241 }
1242
1243 fio_gettime(&td->epoch, NULL);
1244 getrusage(RUSAGE_SELF, &td->ru_start);
1245
1246 clear_state = 0;
1247 while (keep_running(td)) {
1248 fio_gettime(&td->start, NULL);
1249 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1250 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1251 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1252
1253 if (td->o.ratemin[0] || td->o.ratemin[1]) {
1254 memcpy(&td->lastrate[0], &td->bw_sample_time,
1255 sizeof(td->bw_sample_time));
1256 memcpy(&td->lastrate[1], &td->bw_sample_time,
1257 sizeof(td->bw_sample_time));
1258 }
1259
1260 if (clear_state)
1261 clear_io_state(td);
1262
1263 prune_io_piece_log(td);
1264
1265 do_io(td);
1266
1267 clear_state = 1;
1268
1269 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1270 elapsed = utime_since_now(&td->start);
1271 td->ts.runtime[DDIR_READ] += elapsed;
1272 }
1273 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1274 elapsed = utime_since_now(&td->start);
1275 td->ts.runtime[DDIR_WRITE] += elapsed;
1276 }
1277
1278 if (td->error || td->terminate)
1279 break;
1280
1281 if (!td->o.do_verify ||
1282 td->o.verify == VERIFY_NONE ||
1283 (td->io_ops->flags & FIO_UNIDIR))
1284 continue;
1285
1286 clear_io_state(td);
1287
1288 fio_gettime(&td->start, NULL);
1289
1290 do_verify(td);
1291
1292 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1293
1294 if (td->error || td->terminate)
1295 break;
1296 }
1297
1298 update_rusage_stat(td);
1299 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1300 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1301 td->ts.total_run_time = mtime_since_now(&td->epoch);
1302 td->ts.io_bytes[0] = td->io_bytes[0];
1303 td->ts.io_bytes[1] = td->io_bytes[1];
1304
1305 fio_mutex_down(writeout_mutex);
1306 if (td->bw_log) {
1307 if (td->o.bw_log_file) {
1308 finish_log_named(td, td->bw_log,
1309 td->o.bw_log_file, "bw");
1310 } else
1311 finish_log(td, td->bw_log, "bw");
1312 }
1313 if (td->lat_log) {
1314 if (td->o.lat_log_file) {
1315 finish_log_named(td, td->lat_log,
1316 td->o.lat_log_file, "lat");
1317 } else
1318 finish_log(td, td->lat_log, "lat");
1319 }
1320 if (td->slat_log) {
1321 if (td->o.lat_log_file) {
1322 finish_log_named(td, td->slat_log,
1323 td->o.lat_log_file, "slat");
1324 } else
1325 finish_log(td, td->slat_log, "slat");
1326 }
1327 if (td->clat_log) {
1328 if (td->o.lat_log_file) {
1329 finish_log_named(td, td->clat_log,
1330 td->o.lat_log_file, "clat");
1331 } else
1332 finish_log(td, td->clat_log, "clat");
1333 }
1334 if (td->iops_log) {
1335 if (td->o.iops_log_file) {
1336 finish_log_named(td, td->iops_log,
1337 td->o.iops_log_file, "iops");
1338 } else
1339 finish_log(td, td->iops_log, "iops");
1340 }
1341
1342 fio_mutex_up(writeout_mutex);
1343 if (td->o.exec_postrun)
1344 exec_string(td->o.exec_postrun);
1345
1346 if (exitall_on_terminate)
1347 fio_terminate_threads(td->groupid);
1348
1349err:
1350 if (td->error)
1351 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1352 td->verror);
1353
1354 if (td->o.verify_async)
1355 verify_async_exit(td);
1356
1357 close_and_free_files(td);
1358 close_ioengine(td);
1359 cleanup_io_u(td);
1360 cgroup_shutdown(td, &cgroup_mnt);
1361
1362 if (td->o.cpumask_set) {
1363 int ret = fio_cpuset_exit(&td->o.cpumask);
1364
1365 td_verror(td, ret, "fio_cpuset_exit");
1366 }
1367
1368 /*
1369 * do this very late, it will log file closing as well
1370 */
1371 if (td->o.write_iolog_file)
1372 write_iolog_close(td);
1373
1374 td_set_runstate(td, TD_EXITED);
1375 return (void *) (unsigned long) td->error;
1376}
1377
1378/*
1379 * We cannot pass the td data into a forked process, so attach the td and
1380 * pass it to the thread worker.
1381 */
1382static int fork_main(int shmid, int offset)
1383{
1384 struct thread_data *td;
1385 void *data, *ret;
1386
1387#ifndef __hpux
1388 data = shmat(shmid, NULL, 0);
1389 if (data == (void *) -1) {
1390 int __err = errno;
1391
1392 perror("shmat");
1393 return __err;
1394 }
1395#else
1396 /*
1397 * HP-UX inherits shm mappings?
1398 */
1399 data = threads;
1400#endif
1401
1402 td = data + offset * sizeof(struct thread_data);
1403 ret = thread_main(td);
1404 shmdt(data);
1405 return (int) (unsigned long) ret;
1406}
1407
1408/*
1409 * Run over the job map and reap the threads that have exited, if any.
1410 */
1411static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1412 unsigned int *m_rate)
1413{
1414 struct thread_data *td;
1415 unsigned int cputhreads, realthreads, pending;
1416 int i, status, ret;
1417
1418 /*
1419 * reap exited threads (TD_EXITED -> TD_REAPED)
1420 */
1421 realthreads = pending = cputhreads = 0;
1422 for_each_td(td, i) {
1423 int flags = 0;
1424
1425 /*
1426 * ->io_ops is NULL for a thread that has closed its
1427 * io engine
1428 */
1429 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1430 cputhreads++;
1431 else
1432 realthreads++;
1433
1434 if (!td->pid) {
1435 pending++;
1436 continue;
1437 }
1438 if (td->runstate == TD_REAPED)
1439 continue;
1440 if (td->o.use_thread) {
1441 if (td->runstate == TD_EXITED) {
1442 td_set_runstate(td, TD_REAPED);
1443 goto reaped;
1444 }
1445 continue;
1446 }
1447
1448 flags = WNOHANG;
1449 if (td->runstate == TD_EXITED)
1450 flags = 0;
1451
1452 /*
1453 * check if someone quit or got killed in an unusual way
1454 */
1455 ret = waitpid(td->pid, &status, flags);
1456 if (ret < 0) {
1457 if (errno == ECHILD) {
1458 log_err("fio: pid=%d disappeared %d\n",
1459 (int) td->pid, td->runstate);
1460 td_set_runstate(td, TD_REAPED);
1461 goto reaped;
1462 }
1463 perror("waitpid");
1464 } else if (ret == td->pid) {
1465 if (WIFSIGNALED(status)) {
1466 int sig = WTERMSIG(status);
1467
1468 if (sig != SIGTERM)
1469 log_err("fio: pid=%d, got signal=%d\n",
1470 (int) td->pid, sig);
1471 td_set_runstate(td, TD_REAPED);
1472 goto reaped;
1473 }
1474 if (WIFEXITED(status)) {
1475 if (WEXITSTATUS(status) && !td->error)
1476 td->error = WEXITSTATUS(status);
1477
1478 td_set_runstate(td, TD_REAPED);
1479 goto reaped;
1480 }
1481 }
1482
1483 /*
1484 * thread is not dead, continue
1485 */
1486 pending++;
1487 continue;
1488reaped:
1489 (*nr_running)--;
1490 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1491 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1492 if (!td->pid)
1493 pending--;
1494
1495 if (td->error)
1496 exit_value++;
1497
1498 done_secs += mtime_since_now(&td->epoch) / 1000;
1499 }
1500
1501 if (*nr_running == cputhreads && !pending && realthreads)
1502 fio_terminate_threads(TERMINATE_ALL);
1503}
1504
1505static void *gtod_thread_main(void *data)
1506{
1507 fio_mutex_up(startup_mutex);
1508
1509 /*
1510 * As long as we have jobs around, update the clock. It would be nice
1511 * to have some way of NOT hammering that CPU with gettimeofday(),
1512 * but I'm not sure what to use outside of a simple CPU nop to relax
1513 * it - we don't want to lose precision.
1514 */
1515 while (threads) {
1516 fio_gtod_update();
1517 nop;
1518 }
1519
1520 return NULL;
1521}
1522
1523static int fio_start_gtod_thread(void)
1524{
1525 pthread_attr_t attr;
1526 int ret;
1527
1528 pthread_attr_init(&attr);
1529 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1530 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1531 pthread_attr_destroy(&attr);
1532 if (ret) {
1533 log_err("Can't create gtod thread: %s\n", strerror(ret));
1534 return 1;
1535 }
1536
1537 ret = pthread_detach(gtod_thread);
1538 if (ret) {
1539 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1540 return 1;
1541 }
1542
1543 dprint(FD_MUTEX, "wait on startup_mutex\n");
1544 fio_mutex_down(startup_mutex);
1545 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1546 return 0;
1547}
1548
1549/*
1550 * Main function for kicking off and reaping jobs, as needed.
1551 */
1552static void run_threads(void)
1553{
1554 struct thread_data *td;
1555 unsigned long spent;
1556 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1557
1558 if (fio_pin_memory())
1559 return;
1560
1561 if (fio_gtod_offload && fio_start_gtod_thread())
1562 return;
1563
1564 set_sig_handlers();
1565
1566 if (!terse_output) {
1567 log_info("Starting ");
1568 if (nr_thread)
1569 log_info("%d thread%s", nr_thread,
1570 nr_thread > 1 ? "s" : "");
1571 if (nr_process) {
1572 if (nr_thread)
1573 log_info(" and ");
1574 log_info("%d process%s", nr_process,
1575 nr_process > 1 ? "es" : "");
1576 }
1577 log_info("\n");
1578 fflush(stdout);
1579 }
1580
1581 todo = thread_number;
1582 nr_running = 0;
1583 nr_started = 0;
1584 m_rate = t_rate = 0;
1585
1586 for_each_td(td, i) {
1587 print_status_init(td->thread_number - 1);
1588
1589 if (!td->o.create_serialize)
1590 continue;
1591
1592 /*
1593 * do file setup here so it happens sequentially,
1594 * we don't want X number of threads getting their
1595 * client data interspersed on disk
1596 */
1597 if (setup_files(td)) {
1598 exit_value++;
1599 if (td->error)
1600 log_err("fio: pid=%d, err=%d/%s\n",
1601 (int) td->pid, td->error, td->verror);
1602 td_set_runstate(td, TD_REAPED);
1603 todo--;
1604 } else {
1605 struct fio_file *f;
1606 unsigned int j;
1607
1608 /*
1609 * for sharing to work, each job must always open
1610 * its own files. so close them, if we opened them
1611 * for creation
1612 */
1613 for_each_file(td, f, j) {
1614 if (fio_file_open(f))
1615 td_io_close_file(td, f);
1616 }
1617 }
1618 }
1619
1620 set_genesis_time();
1621
1622 while (todo) {
1623 struct thread_data *map[REAL_MAX_JOBS];
1624 struct timeval this_start;
1625 int this_jobs = 0, left;
1626
1627 /*
1628 * create threads (TD_NOT_CREATED -> TD_CREATED)
1629 */
1630 for_each_td(td, i) {
1631 if (td->runstate != TD_NOT_CREATED)
1632 continue;
1633
1634 /*
1635 * never got a chance to start, killed by other
1636 * thread for some reason
1637 */
1638 if (td->terminate) {
1639 todo--;
1640 continue;
1641 }
1642
1643 if (td->o.start_delay) {
1644 spent = mtime_since_genesis();
1645
1646 if (td->o.start_delay * 1000 > spent)
1647 continue;
1648 }
1649
1650 if (td->o.stonewall && (nr_started || nr_running)) {
1651 dprint(FD_PROCESS, "%s: stonewall wait\n",
1652 td->o.name);
1653 break;
1654 }
1655
1656 init_disk_util(td);
1657
1658 /*
1659 * Set state to created. Thread will transition
1660 * to TD_INITIALIZED when it's done setting up.
1661 */
1662 td_set_runstate(td, TD_CREATED);
1663 map[this_jobs++] = td;
1664 nr_started++;
1665
1666 if (td->o.use_thread) {
1667 int ret;
1668
1669 dprint(FD_PROCESS, "will pthread_create\n");
1670 ret = pthread_create(&td->thread, NULL,
1671 thread_main, td);
1672 if (ret) {
1673 log_err("pthread_create: %s\n",
1674 strerror(ret));
1675 nr_started--;
1676 break;
1677 }
1678 ret = pthread_detach(td->thread);
1679 if (ret)
1680 log_err("pthread_detach: %s",
1681 strerror(ret));
1682 } else {
1683 pid_t pid;
1684 dprint(FD_PROCESS, "will fork\n");
1685 pid = fork();
1686 if (!pid) {
1687 int ret = fork_main(shm_id, i);
1688
1689 _exit(ret);
1690 } else if (i == fio_debug_jobno)
1691 *fio_debug_jobp = pid;
1692 }
1693 dprint(FD_MUTEX, "wait on startup_mutex\n");
1694 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1695 log_err("fio: job startup hung? exiting.\n");
1696 fio_terminate_threads(TERMINATE_ALL);
1697 fio_abort = 1;
1698 nr_started--;
1699 break;
1700 }
1701 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1702 }
1703
1704 /*
1705 * Wait for the started threads to transition to
1706 * TD_INITIALIZED.
1707 */
1708 fio_gettime(&this_start, NULL);
1709 left = this_jobs;
1710 while (left && !fio_abort) {
1711 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1712 break;
1713
1714 usleep(100000);
1715
1716 for (i = 0; i < this_jobs; i++) {
1717 td = map[i];
1718 if (!td)
1719 continue;
1720 if (td->runstate == TD_INITIALIZED) {
1721 map[i] = NULL;
1722 left--;
1723 } else if (td->runstate >= TD_EXITED) {
1724 map[i] = NULL;
1725 left--;
1726 todo--;
1727 nr_running++; /* work-around... */
1728 }
1729 }
1730 }
1731
1732 if (left) {
1733 log_err("fio: %d jobs failed to start\n", left);
1734 for (i = 0; i < this_jobs; i++) {
1735 td = map[i];
1736 if (!td)
1737 continue;
1738 kill(td->pid, SIGTERM);
1739 }
1740 break;
1741 }
1742
1743 /*
1744 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1745 */
1746 for_each_td(td, i) {
1747 if (td->runstate != TD_INITIALIZED)
1748 continue;
1749
1750 if (in_ramp_time(td))
1751 td_set_runstate(td, TD_RAMP);
1752 else
1753 td_set_runstate(td, TD_RUNNING);
1754 nr_running++;
1755 nr_started--;
1756 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1757 t_rate += td->o.rate[0] + td->o.rate[1];
1758 todo--;
1759 fio_mutex_up(td->mutex);
1760 }
1761
1762 reap_threads(&nr_running, &t_rate, &m_rate);
1763
1764 if (todo) {
1765 if (is_backend)
1766 fio_server_idle_loop();
1767 else
1768 usleep(100000);
1769 }
1770 }
1771
1772 while (nr_running) {
1773 reap_threads(&nr_running, &t_rate, &m_rate);
1774
1775 if (is_backend)
1776 fio_server_idle_loop();
1777 else
1778 usleep(10000);
1779 }
1780
1781 update_io_ticks();
1782 fio_unpin_memory();
1783}
1784
1785int exec_run(void)
1786{
1787 struct thread_data *td;
1788 int i;
1789
1790 if (nr_clients)
1791 return fio_handle_clients();
1792 if (exec_profile) {
1793 if (load_profile(exec_profile))
1794 return 1;
1795 free(exec_profile);
1796 exec_profile = NULL;
1797 }
1798 if (!thread_number)
1799 return 0;
1800
1801 if (write_bw_log) {
1802 setup_log(&agg_io_log[DDIR_READ], 0);
1803 setup_log(&agg_io_log[DDIR_WRITE], 0);
1804 }
1805
1806 startup_mutex = fio_mutex_init(0);
1807 if (startup_mutex == NULL)
1808 return 1;
1809 writeout_mutex = fio_mutex_init(1);
1810 if (writeout_mutex == NULL)
1811 return 1;
1812
1813 set_genesis_time();
1814 create_disk_util_thread();
1815
1816 cgroup_list = smalloc(sizeof(*cgroup_list));
1817 INIT_FLIST_HEAD(cgroup_list);
1818
1819 run_threads();
1820
1821 if (!fio_abort) {
1822 show_run_stats();
1823 if (write_bw_log) {
1824 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1825 __finish_log(agg_io_log[DDIR_WRITE],
1826 "agg-write_bw.log");
1827 }
1828 }
1829
1830 for_each_td(td, i)
1831 fio_options_free(td);
1832
1833 cgroup_kill(cgroup_list);
1834 sfree(cgroup_list);
1835 sfree(cgroup_mnt);
1836
1837 fio_mutex_remove(startup_mutex);
1838 fio_mutex_remove(writeout_mutex);
1839 return exit_value;
1840}
1841
1842void reset_fio_state(void)
1843{
1844 groupid = 0;
1845 thread_number = 0;
1846 nr_process = 0;
1847 nr_thread = 0;
1848 done_secs = 0;
1849}
1850
1851static int endian_check(void)
1852{
1853 union {
1854 uint8_t c[8];
1855 uint64_t v;
1856 } u;
1857 int le = 0, be = 0;
1858
1859 u.v = 0x12;
1860 if (u.c[7] == 0x12)
1861 be = 1;
1862 else if (u.c[0] == 0x12)
1863 le = 1;
1864
1865#if defined(FIO_LITTLE_ENDIAN)
1866 if (be)
1867 return 1;
1868#elif defined(FIO_BIG_ENDIAN)
1869 if (le)
1870 return 1;
1871#else
1872 return 1;
1873#endif
1874
1875 if (!le && !be)
1876 return 1;
1877
1878 return 0;
1879}
1880
1881int main(int argc, char *argv[], char *envp[])
1882{
1883 long ps;
1884
1885 if (endian_check()) {
1886 log_err("fio: endianness settings appear wrong.\n");
1887 log_err("fio: please report this to fio@vger.kernel.org\n");
1888 return 1;
1889 }
1890
1891 arch_init(envp);
1892
1893 sinit();
1894
1895 /*
1896 * We need locale for number printing, if it isn't set then just
1897 * go with the US format.
1898 */
1899 if (!getenv("LC_NUMERIC"))
1900 setlocale(LC_NUMERIC, "en_US");
1901
1902 ps = sysconf(_SC_PAGESIZE);
1903 if (ps < 0) {
1904 log_err("Failed to get page size\n");
1905 return 1;
1906 }
1907
1908 page_size = ps;
1909 page_mask = ps - 1;
1910
1911 fio_keywords_init();
1912
1913 if (parse_options(argc, argv))
1914 return 1;
1915
1916 return exec_run();
1917}