Fio 1.27
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42
43unsigned long page_mask;
44unsigned long page_size;
45#define ALIGN(buf) \
46 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
47
48int groupid = 0;
49int thread_number = 0;
50int nr_process = 0;
51int nr_thread = 0;
52int shm_id = 0;
53int temp_stall_ts;
54unsigned long done_secs = 0;
55
56static struct fio_mutex *startup_mutex;
57static struct fio_mutex *writeout_mutex;
58static volatile int fio_abort;
59static int exit_value;
60static struct itimerval itimer;
61static pthread_t gtod_thread;
62
63struct io_log *agg_io_log[2];
64
65#define TERMINATE_ALL (-1)
66#define JOB_START_TIMEOUT (5 * 1000)
67
68void td_set_runstate(struct thread_data *td, int runstate)
69{
70 if (td->runstate == runstate)
71 return;
72
73 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
74 td->runstate, runstate);
75 td->runstate = runstate;
76}
77
78static void terminate_threads(int group_id)
79{
80 struct thread_data *td;
81 int i;
82
83 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
84
85 for_each_td(td, i) {
86 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
87 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
88 td->o.name, (int) td->pid);
89 td->terminate = 1;
90 td->o.start_delay = 0;
91
92 /*
93 * if the thread is running, just let it exit
94 */
95 if (td->runstate < TD_RUNNING)
96 kill(td->pid, SIGQUIT);
97 else {
98 struct ioengine_ops *ops = td->io_ops;
99
100 if (ops && (ops->flags & FIO_SIGQUIT))
101 kill(td->pid, SIGQUIT);
102 }
103 }
104 }
105}
106
107static void status_timer_arm(void)
108{
109 itimer.it_value.tv_sec = 0;
110 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
111 setitimer(ITIMER_REAL, &itimer, NULL);
112}
113
114static void sig_alrm(int fio_unused sig)
115{
116 if (threads) {
117 update_io_ticks();
118 print_thread_status();
119 status_timer_arm();
120 }
121}
122
123/*
124 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
125 */
126static void sig_quit(int sig)
127{
128}
129
130static void sig_int(int sig)
131{
132 if (threads) {
133 printf("\nfio: terminating on signal %d\n", sig);
134 fflush(stdout);
135 terminate_threads(TERMINATE_ALL);
136 }
137}
138
139static void sig_ill(int fio_unused sig)
140{
141 if (!threads)
142 return;
143
144 log_err("fio: illegal instruction. your cpu does not support "
145 "the sse4.2 instruction for crc32c\n");
146 terminate_threads(TERMINATE_ALL);
147 exit(4);
148}
149
150static void set_sig_handlers(void)
151{
152 struct sigaction act;
153
154 memset(&act, 0, sizeof(act));
155 act.sa_handler = sig_alrm;
156 act.sa_flags = SA_RESTART;
157 sigaction(SIGALRM, &act, NULL);
158
159 memset(&act, 0, sizeof(act));
160 act.sa_handler = sig_int;
161 act.sa_flags = SA_RESTART;
162 sigaction(SIGINT, &act, NULL);
163
164 memset(&act, 0, sizeof(act));
165 act.sa_handler = sig_ill;
166 act.sa_flags = SA_RESTART;
167 sigaction(SIGILL, &act, NULL);
168
169 memset(&act, 0, sizeof(act));
170 act.sa_handler = sig_quit;
171 act.sa_flags = SA_RESTART;
172 sigaction(SIGQUIT, &act, NULL);
173}
174
175static inline int should_check_rate(struct thread_data *td)
176{
177 struct thread_options *o = &td->o;
178
179 /*
180 * If some rate setting was given, we need to check it
181 */
182 if (o->rate || o->ratemin || o->rate_iops || o->rate_iops_min)
183 return 1;
184
185 return 0;
186}
187
188/*
189 * Check if we are above the minimum rate given.
190 */
191static int check_min_rate(struct thread_data *td, struct timeval *now)
192{
193 unsigned long long bytes = 0;
194 unsigned long iops = 0;
195 unsigned long spent;
196 unsigned long rate;
197
198 /*
199 * allow a 2 second settle period in the beginning
200 */
201 if (mtime_since(&td->start, now) < 2000)
202 return 0;
203
204 if (td_read(td)) {
205 iops += td->io_blocks[DDIR_READ];
206 bytes += td->this_io_bytes[DDIR_READ];
207 }
208 if (td_write(td)) {
209 iops += td->io_blocks[DDIR_WRITE];
210 bytes += td->this_io_bytes[DDIR_WRITE];
211 }
212
213 /*
214 * if rate blocks is set, sample is running
215 */
216 if (td->rate_bytes || td->rate_blocks) {
217 spent = mtime_since(&td->lastrate, now);
218 if (spent < td->o.ratecycle)
219 return 0;
220
221 if (td->o.rate) {
222 /*
223 * check bandwidth specified rate
224 */
225 if (bytes < td->rate_bytes) {
226 log_err("%s: min rate %u not met\n", td->o.name,
227 td->o.ratemin);
228 return 1;
229 } else {
230 rate = (bytes - td->rate_bytes) / spent;
231 if (rate < td->o.ratemin ||
232 bytes < td->rate_bytes) {
233 log_err("%s: min rate %u not met, got"
234 " %luKiB/sec\n", td->o.name,
235 td->o.ratemin, rate);
236 return 1;
237 }
238 }
239 } else {
240 /*
241 * checks iops specified rate
242 */
243 if (iops < td->o.rate_iops) {
244 log_err("%s: min iops rate %u not met\n",
245 td->o.name, td->o.rate_iops);
246 return 1;
247 } else {
248 rate = (iops - td->rate_blocks) / spent;
249 if (rate < td->o.rate_iops_min ||
250 iops < td->rate_blocks) {
251 log_err("%s: min iops rate %u not met,"
252 " got %lu\n", td->o.name,
253 td->o.rate_iops_min,
254 rate);
255 }
256 }
257 }
258 }
259
260 td->rate_bytes = bytes;
261 td->rate_blocks = iops;
262 memcpy(&td->lastrate, now, sizeof(*now));
263 return 0;
264}
265
266static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
267{
268 if (!td->o.timeout)
269 return 0;
270 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
271 return 1;
272
273 return 0;
274}
275
276/*
277 * When job exits, we can cancel the in-flight IO if we are using async
278 * io. Attempt to do so.
279 */
280static void cleanup_pending_aio(struct thread_data *td)
281{
282 struct flist_head *entry, *n;
283 struct io_u *io_u;
284 int r;
285
286 /*
287 * get immediately available events, if any
288 */
289 r = io_u_queued_complete(td, 0);
290 if (r < 0)
291 return;
292
293 /*
294 * now cancel remaining active events
295 */
296 if (td->io_ops->cancel) {
297 flist_for_each_safe(entry, n, &td->io_u_busylist) {
298 io_u = flist_entry(entry, struct io_u, list);
299
300 /*
301 * if the io_u isn't in flight, then that generally
302 * means someone leaked an io_u. complain but fix
303 * it up, so we don't stall here.
304 */
305 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
306 log_err("fio: non-busy IO on busy list\n");
307 put_io_u(td, io_u);
308 } else {
309 r = td->io_ops->cancel(td, io_u);
310 if (!r)
311 put_io_u(td, io_u);
312 }
313 }
314 }
315
316 if (td->cur_depth)
317 r = io_u_queued_complete(td, td->cur_depth);
318}
319
320/*
321 * Helper to handle the final sync of a file. Works just like the normal
322 * io path, just does everything sync.
323 */
324static int fio_io_sync(struct thread_data *td, struct fio_file *f)
325{
326 struct io_u *io_u = __get_io_u(td);
327 int ret;
328
329 if (!io_u)
330 return 1;
331
332 io_u->ddir = DDIR_SYNC;
333 io_u->file = f;
334
335 if (td_io_prep(td, io_u)) {
336 put_io_u(td, io_u);
337 return 1;
338 }
339
340requeue:
341 ret = td_io_queue(td, io_u);
342 if (ret < 0) {
343 td_verror(td, io_u->error, "td_io_queue");
344 put_io_u(td, io_u);
345 return 1;
346 } else if (ret == FIO_Q_QUEUED) {
347 if (io_u_queued_complete(td, 1) < 0)
348 return 1;
349 } else if (ret == FIO_Q_COMPLETED) {
350 if (io_u->error) {
351 td_verror(td, io_u->error, "td_io_queue");
352 return 1;
353 }
354
355 if (io_u_sync_complete(td, io_u) < 0)
356 return 1;
357 } else if (ret == FIO_Q_BUSY) {
358 if (td_io_commit(td))
359 return 1;
360 goto requeue;
361 }
362
363 return 0;
364}
365
366static inline void update_tv_cache(struct thread_data *td)
367{
368 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
369 fio_gettime(&td->tv_cache, NULL);
370}
371
372/*
373 * The main verify engine. Runs over the writes we previously submitted,
374 * reads the blocks back in, and checks the crc/md5 of the data.
375 */
376static void do_verify(struct thread_data *td)
377{
378 struct fio_file *f;
379 struct io_u *io_u;
380 int ret, min_events;
381 unsigned int i;
382
383 /*
384 * sync io first and invalidate cache, to make sure we really
385 * read from disk.
386 */
387 for_each_file(td, f, i) {
388 if (!fio_file_open(f))
389 continue;
390 if (fio_io_sync(td, f))
391 break;
392 if (file_invalidate_cache(td, f))
393 break;
394 }
395
396 if (td->error)
397 return;
398
399 td_set_runstate(td, TD_VERIFYING);
400
401 io_u = NULL;
402 while (!td->terminate) {
403 int ret2, full;
404
405 io_u = __get_io_u(td);
406 if (!io_u)
407 break;
408
409 update_tv_cache(td);
410
411 if (runtime_exceeded(td, &td->tv_cache)) {
412 put_io_u(td, io_u);
413 td->terminate = 1;
414 break;
415 }
416
417 if (get_next_verify(td, io_u)) {
418 put_io_u(td, io_u);
419 break;
420 }
421
422 if (td_io_prep(td, io_u)) {
423 put_io_u(td, io_u);
424 break;
425 }
426
427 io_u->end_io = verify_io_u;
428
429 ret = td_io_queue(td, io_u);
430 switch (ret) {
431 case FIO_Q_COMPLETED:
432 if (io_u->error)
433 ret = -io_u->error;
434 else if (io_u->resid) {
435 int bytes = io_u->xfer_buflen - io_u->resid;
436 struct fio_file *f = io_u->file;
437
438 /*
439 * zero read, fail
440 */
441 if (!bytes) {
442 td_verror(td, EIO, "full resid");
443 put_io_u(td, io_u);
444 break;
445 }
446
447 io_u->xfer_buflen = io_u->resid;
448 io_u->xfer_buf += bytes;
449 io_u->offset += bytes;
450
451 td->ts.short_io_u[io_u->ddir]++;
452
453 if (io_u->offset == f->real_file_size)
454 goto sync_done;
455
456 requeue_io_u(td, &io_u);
457 } else {
458sync_done:
459 ret = io_u_sync_complete(td, io_u);
460 if (ret < 0)
461 break;
462 }
463 continue;
464 case FIO_Q_QUEUED:
465 break;
466 case FIO_Q_BUSY:
467 requeue_io_u(td, &io_u);
468 ret2 = td_io_commit(td);
469 if (ret2 < 0)
470 ret = ret2;
471 break;
472 default:
473 assert(ret < 0);
474 td_verror(td, -ret, "td_io_queue");
475 break;
476 }
477
478 if (ret < 0 || td->error)
479 break;
480
481 /*
482 * if we can queue more, do so. but check if there are
483 * completed io_u's first.
484 */
485 full = queue_full(td) || ret == FIO_Q_BUSY;
486 if (full || !td->o.iodepth_batch_complete) {
487 min_events = td->o.iodepth_batch_complete;
488 if (full && !min_events)
489 min_events = 1;
490
491 do {
492 /*
493 * Reap required number of io units, if any,
494 * and do the verification on them through
495 * the callback handler
496 */
497 if (io_u_queued_complete(td, min_events) < 0) {
498 ret = -1;
499 break;
500 }
501 } while (full && (td->cur_depth > td->o.iodepth_low));
502 }
503 if (ret < 0)
504 break;
505 }
506
507 if (!td->error) {
508 min_events = td->cur_depth;
509
510 if (min_events)
511 ret = io_u_queued_complete(td, min_events);
512 } else
513 cleanup_pending_aio(td);
514
515 td_set_runstate(td, TD_RUNNING);
516}
517
518/*
519 * Main IO worker function. It retrieves io_u's to process and queues
520 * and reaps them, checking for rate and errors along the way.
521 */
522static void do_io(struct thread_data *td)
523{
524 unsigned long usec;
525 unsigned int i;
526 int ret = 0;
527
528 if (in_ramp_time(td))
529 td_set_runstate(td, TD_RAMP);
530 else
531 td_set_runstate(td, TD_RUNNING);
532
533 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
534 struct timeval comp_time;
535 long bytes_done = 0;
536 int min_evts = 0;
537 struct io_u *io_u;
538 int ret2, full;
539
540 if (td->terminate)
541 break;
542
543 io_u = get_io_u(td);
544 if (!io_u)
545 break;
546
547 update_tv_cache(td);
548
549 if (runtime_exceeded(td, &td->tv_cache)) {
550 put_io_u(td, io_u);
551 td->terminate = 1;
552 break;
553 }
554
555 /*
556 * Add verification end_io handler, if asked to verify
557 * a previously written file.
558 */
559 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
560 io_u->end_io = verify_io_u;
561 td_set_runstate(td, TD_VERIFYING);
562 } else if (in_ramp_time(td))
563 td_set_runstate(td, TD_RAMP);
564 else
565 td_set_runstate(td, TD_RUNNING);
566
567 ret = td_io_queue(td, io_u);
568 switch (ret) {
569 case FIO_Q_COMPLETED:
570 if (io_u->error)
571 ret = -io_u->error;
572 else if (io_u->resid) {
573 int bytes = io_u->xfer_buflen - io_u->resid;
574 struct fio_file *f = io_u->file;
575
576 /*
577 * zero read, fail
578 */
579 if (!bytes) {
580 td_verror(td, EIO, "full resid");
581 put_io_u(td, io_u);
582 break;
583 }
584
585 io_u->xfer_buflen = io_u->resid;
586 io_u->xfer_buf += bytes;
587 io_u->offset += bytes;
588
589 td->ts.short_io_u[io_u->ddir]++;
590
591 if (io_u->offset == f->real_file_size)
592 goto sync_done;
593
594 requeue_io_u(td, &io_u);
595 } else {
596sync_done:
597 if (should_check_rate(td))
598 fio_gettime(&comp_time, NULL);
599
600 bytes_done = io_u_sync_complete(td, io_u);
601 if (bytes_done < 0)
602 ret = bytes_done;
603 }
604 break;
605 case FIO_Q_QUEUED:
606 /*
607 * if the engine doesn't have a commit hook,
608 * the io_u is really queued. if it does have such
609 * a hook, it has to call io_u_queued() itself.
610 */
611 if (td->io_ops->commit == NULL)
612 io_u_queued(td, io_u);
613 break;
614 case FIO_Q_BUSY:
615 requeue_io_u(td, &io_u);
616 ret2 = td_io_commit(td);
617 if (ret2 < 0)
618 ret = ret2;
619 break;
620 default:
621 assert(ret < 0);
622 put_io_u(td, io_u);
623 break;
624 }
625
626 if (ret < 0 || td->error)
627 break;
628
629 /*
630 * See if we need to complete some commands
631 */
632 full = queue_full(td) || ret == FIO_Q_BUSY;
633 if (full || !td->o.iodepth_batch_complete) {
634 min_evts = td->o.iodepth_batch_complete;
635 if (full && !min_evts)
636 min_evts = 1;
637
638 if (should_check_rate(td))
639 fio_gettime(&comp_time, NULL);
640
641 do {
642 ret = io_u_queued_complete(td, min_evts);
643 if (ret <= 0)
644 break;
645
646 bytes_done += ret;
647 } while (full && (td->cur_depth > td->o.iodepth_low));
648 }
649
650 if (ret < 0)
651 break;
652 if (!bytes_done)
653 continue;
654
655 /*
656 * the rate is batched for now, it should work for batches
657 * of completions except the very first one which may look
658 * a little bursty
659 */
660 if (!in_ramp_time(td) && should_check_rate(td)) {
661 usec = utime_since(&td->tv_cache, &comp_time);
662
663 rate_throttle(td, usec, bytes_done);
664
665 if (check_min_rate(td, &comp_time)) {
666 if (exitall_on_terminate)
667 terminate_threads(td->groupid);
668 td_verror(td, EIO, "check_min_rate");
669 break;
670 }
671 }
672
673 if (td->o.thinktime) {
674 unsigned long long b;
675
676 b = td->io_blocks[0] + td->io_blocks[1];
677 if (!(b % td->o.thinktime_blocks)) {
678 int left;
679
680 if (td->o.thinktime_spin)
681 usec_spin(td->o.thinktime_spin);
682
683 left = td->o.thinktime - td->o.thinktime_spin;
684 if (left)
685 usec_sleep(td, left);
686 }
687 }
688 }
689
690 if (td->o.fill_device && td->error == ENOSPC) {
691 td->error = 0;
692 td->terminate = 1;
693 }
694 if (!td->error) {
695 struct fio_file *f;
696
697 i = td->cur_depth;
698 if (i)
699 ret = io_u_queued_complete(td, i);
700
701 if (should_fsync(td) && td->o.end_fsync) {
702 td_set_runstate(td, TD_FSYNCING);
703
704 for_each_file(td, f, i) {
705 if (!fio_file_open(f))
706 continue;
707 fio_io_sync(td, f);
708 }
709 }
710 } else
711 cleanup_pending_aio(td);
712
713 /*
714 * stop job if we failed doing any IO
715 */
716 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
717 td->done = 1;
718}
719
720static void cleanup_io_u(struct thread_data *td)
721{
722 struct flist_head *entry, *n;
723 struct io_u *io_u;
724
725 flist_for_each_safe(entry, n, &td->io_u_freelist) {
726 io_u = flist_entry(entry, struct io_u, list);
727
728 flist_del(&io_u->list);
729 free(io_u);
730 }
731
732 free_io_mem(td);
733}
734
735static int init_io_u(struct thread_data *td)
736{
737 struct io_u *io_u;
738 unsigned int max_bs;
739 int cl_align, i, max_units;
740 char *p;
741
742 max_units = td->o.iodepth;
743 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
744 td->orig_buffer_size = (unsigned long long) max_bs
745 * (unsigned long long) max_units;
746
747 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
748 unsigned long bs;
749
750 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
751 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
752 }
753
754 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
755 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
756 return 1;
757 }
758
759 if (allocate_io_mem(td))
760 return 1;
761
762 if (td->o.odirect)
763 p = ALIGN(td->orig_buffer);
764 else
765 p = td->orig_buffer;
766
767 cl_align = os_cache_line_size();
768
769 for (i = 0; i < max_units; i++) {
770 void *ptr;
771
772 if (td->terminate)
773 return 1;
774
775 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
776 log_err("fio: posix_memalign=%s\n", strerror(errno));
777 break;
778 }
779
780 io_u = ptr;
781 memset(io_u, 0, sizeof(*io_u));
782 INIT_FLIST_HEAD(&io_u->list);
783
784 if (!(td->io_ops->flags & FIO_NOIO)) {
785 io_u->buf = p + max_bs * i;
786
787 if (td_write(td) && !td->o.refill_buffers)
788 io_u_fill_buffer(td, io_u, max_bs);
789 }
790
791 io_u->index = i;
792 io_u->flags = IO_U_F_FREE;
793 flist_add(&io_u->list, &td->io_u_freelist);
794 }
795
796 return 0;
797}
798
799static int switch_ioscheduler(struct thread_data *td)
800{
801 char tmp[256], tmp2[128];
802 FILE *f;
803 int ret;
804
805 if (td->io_ops->flags & FIO_DISKLESSIO)
806 return 0;
807
808 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
809
810 f = fopen(tmp, "r+");
811 if (!f) {
812 if (errno == ENOENT) {
813 log_err("fio: os or kernel doesn't support IO scheduler"
814 " switching\n");
815 return 0;
816 }
817 td_verror(td, errno, "fopen iosched");
818 return 1;
819 }
820
821 /*
822 * Set io scheduler.
823 */
824 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
825 if (ferror(f) || ret != 1) {
826 td_verror(td, errno, "fwrite");
827 fclose(f);
828 return 1;
829 }
830
831 rewind(f);
832
833 /*
834 * Read back and check that the selected scheduler is now the default.
835 */
836 ret = fread(tmp, 1, sizeof(tmp), f);
837 if (ferror(f) || ret < 0) {
838 td_verror(td, errno, "fread");
839 fclose(f);
840 return 1;
841 }
842
843 sprintf(tmp2, "[%s]", td->o.ioscheduler);
844 if (!strstr(tmp, tmp2)) {
845 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
846 td_verror(td, EINVAL, "iosched_switch");
847 fclose(f);
848 return 1;
849 }
850
851 fclose(f);
852 return 0;
853}
854
855static int keep_running(struct thread_data *td)
856{
857 unsigned long long io_done;
858
859 if (td->done)
860 return 0;
861 if (td->o.time_based)
862 return 1;
863 if (td->o.loops) {
864 td->o.loops--;
865 return 1;
866 }
867
868 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
869 + td->io_skip_bytes;
870 if (io_done < td->o.size)
871 return 1;
872
873 return 0;
874}
875
876static void reset_io_counters(struct thread_data *td)
877{
878 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
879 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
880 td->zone_bytes = 0;
881 td->rate_bytes = 0;
882 td->rate_blocks = 0;
883
884 td->last_was_sync = 0;
885
886 /*
887 * reset file done count if we are to start over
888 */
889 if (td->o.time_based || td->o.loops)
890 td->nr_done_files = 0;
891
892 /*
893 * Set the same seed to get repeatable runs
894 */
895 td_fill_rand_seeds(td);
896}
897
898void reset_all_stats(struct thread_data *td)
899{
900 struct timeval tv;
901 int i;
902
903 reset_io_counters(td);
904
905 for (i = 0; i < 2; i++) {
906 td->io_bytes[i] = 0;
907 td->io_blocks[i] = 0;
908 td->io_issues[i] = 0;
909 td->ts.total_io_u[i] = 0;
910 }
911
912 fio_gettime(&tv, NULL);
913 memcpy(&td->epoch, &tv, sizeof(tv));
914 memcpy(&td->start, &tv, sizeof(tv));
915}
916
917static void clear_io_state(struct thread_data *td)
918{
919 struct fio_file *f;
920 unsigned int i;
921
922 reset_io_counters(td);
923
924 close_files(td);
925 for_each_file(td, f, i)
926 fio_file_clear_done(f);
927}
928
929static int exec_string(const char *string)
930{
931 int ret, newlen = strlen(string) + 1 + 8;
932 char *str;
933
934 str = malloc(newlen);
935 sprintf(str, "sh -c %s", string);
936
937 ret = system(str);
938 if (ret == -1)
939 log_err("fio: exec of cmd <%s> failed\n", str);
940
941 free(str);
942 return ret;
943}
944
945/*
946 * Entry point for the thread based jobs. The process based jobs end up
947 * here as well, after a little setup.
948 */
949static void *thread_main(void *data)
950{
951 unsigned long long runtime[2], elapsed;
952 struct thread_data *td = data;
953 int clear_state;
954
955 if (!td->o.use_thread)
956 setsid();
957
958 td->pid = getpid();
959
960 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
961
962 INIT_FLIST_HEAD(&td->io_u_freelist);
963 INIT_FLIST_HEAD(&td->io_u_busylist);
964 INIT_FLIST_HEAD(&td->io_u_requeues);
965 INIT_FLIST_HEAD(&td->io_log_list);
966 INIT_FLIST_HEAD(&td->io_hist_list);
967 td->io_hist_tree = RB_ROOT;
968
969 td_set_runstate(td, TD_INITIALIZED);
970 dprint(FD_MUTEX, "up startup_mutex\n");
971 fio_mutex_up(startup_mutex);
972 dprint(FD_MUTEX, "wait on td->mutex\n");
973 fio_mutex_down(td->mutex);
974 dprint(FD_MUTEX, "done waiting on td->mutex\n");
975
976 /*
977 * the ->mutex mutex is now no longer used, close it to avoid
978 * eating a file descriptor
979 */
980 fio_mutex_remove(td->mutex);
981
982 /*
983 * May alter parameters that init_io_u() will use, so we need to
984 * do this first.
985 */
986 if (init_iolog(td))
987 goto err;
988
989 if (init_io_u(td))
990 goto err;
991
992 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
993 td_verror(td, errno, "cpu_set_affinity");
994 goto err;
995 }
996
997 /*
998 * If we have a gettimeofday() thread, make sure we exclude that
999 * thread from this job
1000 */
1001 if (td->o.gtod_cpu) {
1002 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1003 if (fio_setaffinity(td) == -1) {
1004 td_verror(td, errno, "cpu_set_affinity");
1005 goto err;
1006 }
1007 }
1008
1009 if (td->ioprio_set) {
1010 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1011 td_verror(td, errno, "ioprio_set");
1012 goto err;
1013 }
1014 }
1015
1016 if (nice(td->o.nice) == -1) {
1017 td_verror(td, errno, "nice");
1018 goto err;
1019 }
1020
1021 if (td->o.ioscheduler && switch_ioscheduler(td))
1022 goto err;
1023
1024 if (!td->o.create_serialize && setup_files(td))
1025 goto err;
1026
1027 if (td_io_init(td))
1028 goto err;
1029
1030 if (init_random_map(td))
1031 goto err;
1032
1033 if (td->o.exec_prerun) {
1034 if (exec_string(td->o.exec_prerun))
1035 goto err;
1036 }
1037
1038 if (td->o.pre_read) {
1039 if (pre_read_files(td) < 0)
1040 goto err;
1041 }
1042
1043 fio_gettime(&td->epoch, NULL);
1044 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1045
1046 runtime[0] = runtime[1] = 0;
1047 clear_state = 0;
1048 while (keep_running(td)) {
1049 fio_gettime(&td->start, NULL);
1050 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1051 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1052
1053 if (td->o.ratemin)
1054 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1055 sizeof(td->lastrate));
1056
1057 if (clear_state)
1058 clear_io_state(td);
1059
1060 prune_io_piece_log(td);
1061
1062 do_io(td);
1063
1064 clear_state = 1;
1065
1066 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1067 elapsed = utime_since_now(&td->start);
1068 runtime[DDIR_READ] += elapsed;
1069 }
1070 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1071 elapsed = utime_since_now(&td->start);
1072 runtime[DDIR_WRITE] += elapsed;
1073 }
1074
1075 if (td->error || td->terminate)
1076 break;
1077
1078 if (!td->o.do_verify ||
1079 td->o.verify == VERIFY_NONE ||
1080 (td->io_ops->flags & FIO_UNIDIR))
1081 continue;
1082
1083 clear_io_state(td);
1084
1085 fio_gettime(&td->start, NULL);
1086
1087 do_verify(td);
1088
1089 runtime[DDIR_READ] += utime_since_now(&td->start);
1090
1091 if (td->error || td->terminate)
1092 break;
1093 }
1094
1095 update_rusage_stat(td);
1096 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1097 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1098 td->ts.total_run_time = mtime_since_now(&td->epoch);
1099 td->ts.io_bytes[0] = td->io_bytes[0];
1100 td->ts.io_bytes[1] = td->io_bytes[1];
1101
1102 fio_mutex_down(writeout_mutex);
1103 if (td->ts.bw_log) {
1104 if (td->o.bw_log_file) {
1105 finish_log_named(td, td->ts.bw_log,
1106 td->o.bw_log_file, "bw");
1107 } else
1108 finish_log(td, td->ts.bw_log, "bw");
1109 }
1110 if (td->ts.slat_log) {
1111 if (td->o.lat_log_file) {
1112 finish_log_named(td, td->ts.slat_log,
1113 td->o.lat_log_file, "slat");
1114 } else
1115 finish_log(td, td->ts.slat_log, "slat");
1116 }
1117 if (td->ts.clat_log) {
1118 if (td->o.lat_log_file) {
1119 finish_log_named(td, td->ts.clat_log,
1120 td->o.lat_log_file, "clat");
1121 } else
1122 finish_log(td, td->ts.clat_log, "clat");
1123 }
1124 fio_mutex_up(writeout_mutex);
1125 if (td->o.exec_postrun)
1126 exec_string(td->o.exec_postrun);
1127
1128 if (exitall_on_terminate)
1129 terminate_threads(td->groupid);
1130
1131err:
1132 if (td->error)
1133 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1134 td->verror);
1135 close_and_free_files(td);
1136 close_ioengine(td);
1137 cleanup_io_u(td);
1138
1139 if (td->o.cpumask_set) {
1140 int ret = fio_cpuset_exit(&td->o.cpumask);
1141
1142 td_verror(td, ret, "fio_cpuset_exit");
1143 }
1144
1145 /*
1146 * do this very late, it will log file closing as well
1147 */
1148 if (td->o.write_iolog_file)
1149 write_iolog_close(td);
1150
1151 options_mem_free(td);
1152 td_set_runstate(td, TD_EXITED);
1153 return (void *) (unsigned long) td->error;
1154}
1155
1156/*
1157 * We cannot pass the td data into a forked process, so attach the td and
1158 * pass it to the thread worker.
1159 */
1160static int fork_main(int shmid, int offset)
1161{
1162 struct thread_data *td;
1163 void *data, *ret;
1164
1165 data = shmat(shmid, NULL, 0);
1166 if (data == (void *) -1) {
1167 int __err = errno;
1168
1169 perror("shmat");
1170 return __err;
1171 }
1172
1173 td = data + offset * sizeof(struct thread_data);
1174 ret = thread_main(td);
1175 shmdt(data);
1176 return (int) (unsigned long) ret;
1177}
1178
1179/*
1180 * Run over the job map and reap the threads that have exited, if any.
1181 */
1182static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1183{
1184 struct thread_data *td;
1185 int i, cputhreads, realthreads, pending, status, ret;
1186
1187 /*
1188 * reap exited threads (TD_EXITED -> TD_REAPED)
1189 */
1190 realthreads = pending = cputhreads = 0;
1191 for_each_td(td, i) {
1192 int flags = 0;
1193
1194 /*
1195 * ->io_ops is NULL for a thread that has closed its
1196 * io engine
1197 */
1198 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1199 cputhreads++;
1200 else
1201 realthreads++;
1202
1203 if (!td->pid) {
1204 pending++;
1205 continue;
1206 }
1207 if (td->runstate == TD_REAPED)
1208 continue;
1209 if (td->o.use_thread) {
1210 if (td->runstate == TD_EXITED) {
1211 td_set_runstate(td, TD_REAPED);
1212 goto reaped;
1213 }
1214 continue;
1215 }
1216
1217 flags = WNOHANG;
1218 if (td->runstate == TD_EXITED)
1219 flags = 0;
1220
1221 /*
1222 * check if someone quit or got killed in an unusual way
1223 */
1224 ret = waitpid(td->pid, &status, flags);
1225 if (ret < 0) {
1226 if (errno == ECHILD) {
1227 log_err("fio: pid=%d disappeared %d\n",
1228 (int) td->pid, td->runstate);
1229 td_set_runstate(td, TD_REAPED);
1230 goto reaped;
1231 }
1232 perror("waitpid");
1233 } else if (ret == td->pid) {
1234 if (WIFSIGNALED(status)) {
1235 int sig = WTERMSIG(status);
1236
1237 if (sig != SIGQUIT)
1238 log_err("fio: pid=%d, got signal=%d\n",
1239 (int) td->pid, sig);
1240 td_set_runstate(td, TD_REAPED);
1241 goto reaped;
1242 }
1243 if (WIFEXITED(status)) {
1244 if (WEXITSTATUS(status) && !td->error)
1245 td->error = WEXITSTATUS(status);
1246
1247 td_set_runstate(td, TD_REAPED);
1248 goto reaped;
1249 }
1250 }
1251
1252 /*
1253 * thread is not dead, continue
1254 */
1255 pending++;
1256 continue;
1257reaped:
1258 (*nr_running)--;
1259 (*m_rate) -= td->o.ratemin;
1260 (*t_rate) -= td->o.rate;
1261 if (!td->pid)
1262 pending--;
1263
1264 if (td->error)
1265 exit_value++;
1266
1267 done_secs += mtime_since_now(&td->epoch) / 1000;
1268 }
1269
1270 if (*nr_running == cputhreads && !pending && realthreads)
1271 terminate_threads(TERMINATE_ALL);
1272}
1273
1274static void *gtod_thread_main(void *data)
1275{
1276 fio_mutex_up(startup_mutex);
1277
1278 /*
1279 * As long as we have jobs around, update the clock. It would be nice
1280 * to have some way of NOT hammering that CPU with gettimeofday(),
1281 * but I'm not sure what to use outside of a simple CPU nop to relax
1282 * it - we don't want to lose precision.
1283 */
1284 while (threads) {
1285 fio_gtod_update();
1286 nop;
1287 }
1288
1289 return NULL;
1290}
1291
1292static int fio_start_gtod_thread(void)
1293{
1294 int ret;
1295
1296 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1297 if (ret) {
1298 log_err("Can't create gtod thread: %s\n", strerror(ret));
1299 return 1;
1300 }
1301
1302 ret = pthread_detach(gtod_thread);
1303 if (ret) {
1304 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1305 return 1;
1306 }
1307
1308 dprint(FD_MUTEX, "wait on startup_mutex\n");
1309 fio_mutex_down(startup_mutex);
1310 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1311 return 0;
1312}
1313
1314/*
1315 * Main function for kicking off and reaping jobs, as needed.
1316 */
1317static void run_threads(void)
1318{
1319 struct thread_data *td;
1320 unsigned long spent;
1321 int i, todo, nr_running, m_rate, t_rate, nr_started;
1322
1323 if (fio_pin_memory())
1324 return;
1325
1326 if (fio_gtod_offload && fio_start_gtod_thread())
1327 return;
1328
1329 if (!terse_output) {
1330 printf("Starting ");
1331 if (nr_thread)
1332 printf("%d thread%s", nr_thread,
1333 nr_thread > 1 ? "s" : "");
1334 if (nr_process) {
1335 if (nr_thread)
1336 printf(" and ");
1337 printf("%d process%s", nr_process,
1338 nr_process > 1 ? "es" : "");
1339 }
1340 printf("\n");
1341 fflush(stdout);
1342 }
1343
1344 set_sig_handlers();
1345
1346 todo = thread_number;
1347 nr_running = 0;
1348 nr_started = 0;
1349 m_rate = t_rate = 0;
1350
1351 for_each_td(td, i) {
1352 print_status_init(td->thread_number - 1);
1353
1354 if (!td->o.create_serialize) {
1355 init_disk_util(td);
1356 continue;
1357 }
1358
1359 /*
1360 * do file setup here so it happens sequentially,
1361 * we don't want X number of threads getting their
1362 * client data interspersed on disk
1363 */
1364 if (setup_files(td)) {
1365 exit_value++;
1366 if (td->error)
1367 log_err("fio: pid=%d, err=%d/%s\n",
1368 (int) td->pid, td->error, td->verror);
1369 td_set_runstate(td, TD_REAPED);
1370 todo--;
1371 } else {
1372 struct fio_file *f;
1373 unsigned int i;
1374
1375 /*
1376 * for sharing to work, each job must always open
1377 * its own files. so close them, if we opened them
1378 * for creation
1379 */
1380 for_each_file(td, f, i)
1381 td_io_close_file(td, f);
1382 }
1383
1384 init_disk_util(td);
1385 }
1386
1387 set_genesis_time();
1388
1389 while (todo) {
1390 struct thread_data *map[MAX_JOBS];
1391 struct timeval this_start;
1392 int this_jobs = 0, left;
1393
1394 /*
1395 * create threads (TD_NOT_CREATED -> TD_CREATED)
1396 */
1397 for_each_td(td, i) {
1398 if (td->runstate != TD_NOT_CREATED)
1399 continue;
1400
1401 /*
1402 * never got a chance to start, killed by other
1403 * thread for some reason
1404 */
1405 if (td->terminate) {
1406 todo--;
1407 continue;
1408 }
1409
1410 if (td->o.start_delay) {
1411 spent = mtime_since_genesis();
1412
1413 if (td->o.start_delay * 1000 > spent)
1414 continue;
1415 }
1416
1417 if (td->o.stonewall && (nr_started || nr_running)) {
1418 dprint(FD_PROCESS, "%s: stonewall wait\n",
1419 td->o.name);
1420 break;
1421 }
1422
1423 /*
1424 * Set state to created. Thread will transition
1425 * to TD_INITIALIZED when it's done setting up.
1426 */
1427 td_set_runstate(td, TD_CREATED);
1428 map[this_jobs++] = td;
1429 nr_started++;
1430
1431 if (td->o.use_thread) {
1432 int ret;
1433
1434 dprint(FD_PROCESS, "will pthread_create\n");
1435 ret = pthread_create(&td->thread, NULL,
1436 thread_main, td);
1437 if (ret) {
1438 log_err("pthread_create: %s\n",
1439 strerror(ret));
1440 nr_started--;
1441 break;
1442 }
1443 ret = pthread_detach(td->thread);
1444 if (ret)
1445 log_err("pthread_detach: %s",
1446 strerror(ret));
1447 } else {
1448 pid_t pid;
1449 dprint(FD_PROCESS, "will fork\n");
1450 pid = fork();
1451 if (!pid) {
1452 int ret = fork_main(shm_id, i);
1453
1454 _exit(ret);
1455 } else if (i == fio_debug_jobno)
1456 *fio_debug_jobp = pid;
1457 }
1458 dprint(FD_MUTEX, "wait on startup_mutex\n");
1459 fio_mutex_down(startup_mutex);
1460 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1461 }
1462
1463 /*
1464 * Wait for the started threads to transition to
1465 * TD_INITIALIZED.
1466 */
1467 fio_gettime(&this_start, NULL);
1468 left = this_jobs;
1469 while (left && !fio_abort) {
1470 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1471 break;
1472
1473 usleep(100000);
1474
1475 for (i = 0; i < this_jobs; i++) {
1476 td = map[i];
1477 if (!td)
1478 continue;
1479 if (td->runstate == TD_INITIALIZED) {
1480 map[i] = NULL;
1481 left--;
1482 } else if (td->runstate >= TD_EXITED) {
1483 map[i] = NULL;
1484 left--;
1485 todo--;
1486 nr_running++; /* work-around... */
1487 }
1488 }
1489 }
1490
1491 if (left) {
1492 log_err("fio: %d jobs failed to start\n", left);
1493 for (i = 0; i < this_jobs; i++) {
1494 td = map[i];
1495 if (!td)
1496 continue;
1497 kill(td->pid, SIGTERM);
1498 }
1499 break;
1500 }
1501
1502 /*
1503 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1504 */
1505 for_each_td(td, i) {
1506 if (td->runstate != TD_INITIALIZED)
1507 continue;
1508
1509 if (in_ramp_time(td))
1510 td_set_runstate(td, TD_RAMP);
1511 else
1512 td_set_runstate(td, TD_RUNNING);
1513 nr_running++;
1514 nr_started--;
1515 m_rate += td->o.ratemin;
1516 t_rate += td->o.rate;
1517 todo--;
1518 fio_mutex_up(td->mutex);
1519 }
1520
1521 reap_threads(&nr_running, &t_rate, &m_rate);
1522
1523 if (todo)
1524 usleep(100000);
1525 }
1526
1527 while (nr_running) {
1528 reap_threads(&nr_running, &t_rate, &m_rate);
1529 usleep(10000);
1530 }
1531
1532 update_io_ticks();
1533 fio_unpin_memory();
1534}
1535
1536int main(int argc, char *argv[])
1537{
1538 long ps;
1539
1540 sinit();
1541
1542 /*
1543 * We need locale for number printing, if it isn't set then just
1544 * go with the US format.
1545 */
1546 if (!getenv("LC_NUMERIC"))
1547 setlocale(LC_NUMERIC, "en_US");
1548
1549 if (parse_options(argc, argv))
1550 return 1;
1551
1552 if (!thread_number)
1553 return 0;
1554
1555 ps = sysconf(_SC_PAGESIZE);
1556 if (ps < 0) {
1557 log_err("Failed to get page size\n");
1558 return 1;
1559 }
1560
1561 page_size = ps;
1562 page_mask = ps - 1;
1563
1564 if (write_bw_log) {
1565 setup_log(&agg_io_log[DDIR_READ]);
1566 setup_log(&agg_io_log[DDIR_WRITE]);
1567 }
1568
1569 startup_mutex = fio_mutex_init(0);
1570 writeout_mutex = fio_mutex_init(1);
1571
1572 set_genesis_time();
1573
1574 status_timer_arm();
1575
1576 run_threads();
1577
1578 if (!fio_abort) {
1579 show_run_stats();
1580 if (write_bw_log) {
1581 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1582 __finish_log(agg_io_log[DDIR_WRITE],
1583 "agg-write_bw.log");
1584 }
1585 }
1586
1587 fio_mutex_remove(startup_mutex);
1588 fio_mutex_remove(writeout_mutex);
1589 return exit_value;
1590}