Move rw= write && read_only check to ->verify callback
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42
43unsigned long page_mask;
44unsigned long page_size;
45
46#define PAGE_ALIGN(buf) \
47 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
48
49int groupid = 0;
50int thread_number = 0;
51int nr_process = 0;
52int nr_thread = 0;
53int shm_id = 0;
54int temp_stall_ts;
55unsigned long done_secs = 0;
56
57static struct fio_mutex *startup_mutex;
58static struct fio_mutex *writeout_mutex;
59static volatile int fio_abort;
60static int exit_value;
61static struct itimerval itimer;
62static pthread_t gtod_thread;
63
64struct io_log *agg_io_log[2];
65
66#define TERMINATE_ALL (-1)
67#define JOB_START_TIMEOUT (5 * 1000)
68
69void td_set_runstate(struct thread_data *td, int runstate)
70{
71 if (td->runstate == runstate)
72 return;
73
74 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
75 td->runstate, runstate);
76 td->runstate = runstate;
77}
78
79static void terminate_threads(int group_id)
80{
81 struct thread_data *td;
82 int i;
83
84 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
85
86 for_each_td(td, i) {
87 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
88 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
89 td->o.name, (int) td->pid);
90 td->terminate = 1;
91 td->o.start_delay = 0;
92
93 /*
94 * if the thread is running, just let it exit
95 */
96 if (td->runstate < TD_RUNNING)
97 kill(td->pid, SIGQUIT);
98 else {
99 struct ioengine_ops *ops = td->io_ops;
100
101 if (ops && (ops->flags & FIO_SIGQUIT))
102 kill(td->pid, SIGQUIT);
103 }
104 }
105 }
106}
107
108static void status_timer_arm(void)
109{
110 itimer.it_value.tv_sec = 0;
111 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
112 setitimer(ITIMER_REAL, &itimer, NULL);
113}
114
115static void sig_alrm(int fio_unused sig)
116{
117 if (threads) {
118 update_io_ticks();
119 print_thread_status();
120 status_timer_arm();
121 }
122}
123
124/*
125 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
126 */
127static void sig_quit(int sig)
128{
129}
130
131static void sig_int(int sig)
132{
133 if (threads) {
134 printf("\nfio: terminating on signal %d\n", sig);
135 fflush(stdout);
136 terminate_threads(TERMINATE_ALL);
137 }
138}
139
140static void sig_ill(int fio_unused sig)
141{
142 if (!threads)
143 return;
144
145 log_err("fio: illegal instruction. your cpu does not support "
146 "the sse4.2 instruction for crc32c\n");
147 terminate_threads(TERMINATE_ALL);
148 exit(4);
149}
150
151static void set_sig_handlers(void)
152{
153 struct sigaction act;
154
155 memset(&act, 0, sizeof(act));
156 act.sa_handler = sig_alrm;
157 act.sa_flags = SA_RESTART;
158 sigaction(SIGALRM, &act, NULL);
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_int;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGINT, &act, NULL);
164
165 memset(&act, 0, sizeof(act));
166 act.sa_handler = sig_ill;
167 act.sa_flags = SA_RESTART;
168 sigaction(SIGILL, &act, NULL);
169
170 memset(&act, 0, sizeof(act));
171 act.sa_handler = sig_quit;
172 act.sa_flags = SA_RESTART;
173 sigaction(SIGQUIT, &act, NULL);
174}
175
176/*
177 * Check if we are above the minimum rate given.
178 */
179static int __check_min_rate(struct thread_data *td, struct timeval *now,
180 enum td_ddir ddir)
181{
182 unsigned long long bytes = 0;
183 unsigned long iops = 0;
184 unsigned long spent;
185 unsigned long rate;
186 unsigned int ratemin = 0;
187 unsigned int rate_iops = 0;
188 unsigned int rate_iops_min = 0;
189
190 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
191 return 0;
192
193 /*
194 * allow a 2 second settle period in the beginning
195 */
196 if (mtime_since(&td->start, now) < 2000)
197 return 0;
198
199 iops += td->io_blocks[ddir];
200 bytes += td->this_io_bytes[ddir];
201 ratemin += td->o.ratemin[ddir];
202 rate_iops += td->o.rate_iops[ddir];
203 rate_iops_min += td->o.rate_iops_min[ddir];
204
205 /*
206 * if rate blocks is set, sample is running
207 */
208 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
209 spent = mtime_since(&td->lastrate[ddir], now);
210 if (spent < td->o.ratecycle)
211 return 0;
212
213 if (td->o.rate[ddir]) {
214 /*
215 * check bandwidth specified rate
216 */
217 if (bytes < td->rate_bytes[ddir]) {
218 log_err("%s: min rate %u not met\n", td->o.name,
219 ratemin);
220 return 1;
221 } else {
222 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
223 if (rate < ratemin ||
224 bytes < td->rate_bytes[ddir]) {
225 log_err("%s: min rate %u not met, got"
226 " %luKiB/sec\n", td->o.name,
227 ratemin, rate);
228 return 1;
229 }
230 }
231 } else {
232 /*
233 * checks iops specified rate
234 */
235 if (iops < rate_iops) {
236 log_err("%s: min iops rate %u not met\n",
237 td->o.name, rate_iops);
238 return 1;
239 } else {
240 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
241 if (rate < rate_iops_min ||
242 iops < td->rate_blocks[ddir]) {
243 log_err("%s: min iops rate %u not met,"
244 " got %lu\n", td->o.name,
245 rate_iops_min, rate);
246 }
247 }
248 }
249 }
250
251 td->rate_bytes[ddir] = bytes;
252 td->rate_blocks[ddir] = iops;
253 memcpy(&td->lastrate[ddir], now, sizeof(*now));
254 return 0;
255}
256
257static int check_min_rate(struct thread_data *td, struct timeval *now,
258 unsigned long *bytes_done)
259{
260 int ret = 0;
261
262 if (bytes_done[0])
263 ret |= __check_min_rate(td, now, 0);
264 if (bytes_done[1])
265 ret |= __check_min_rate(td, now, 1);
266
267 return ret;
268}
269
270static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
271{
272 if (!td->o.timeout)
273 return 0;
274 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
275 return 1;
276
277 return 0;
278}
279
280/*
281 * When job exits, we can cancel the in-flight IO if we are using async
282 * io. Attempt to do so.
283 */
284static void cleanup_pending_aio(struct thread_data *td)
285{
286 struct flist_head *entry, *n;
287 struct io_u *io_u;
288 int r;
289
290 /*
291 * get immediately available events, if any
292 */
293 r = io_u_queued_complete(td, 0, NULL);
294 if (r < 0)
295 return;
296
297 /*
298 * now cancel remaining active events
299 */
300 if (td->io_ops->cancel) {
301 flist_for_each_safe(entry, n, &td->io_u_busylist) {
302 io_u = flist_entry(entry, struct io_u, list);
303
304 /*
305 * if the io_u isn't in flight, then that generally
306 * means someone leaked an io_u. complain but fix
307 * it up, so we don't stall here.
308 */
309 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
310 log_err("fio: non-busy IO on busy list\n");
311 put_io_u(td, io_u);
312 } else {
313 r = td->io_ops->cancel(td, io_u);
314 if (!r)
315 put_io_u(td, io_u);
316 }
317 }
318 }
319
320 if (td->cur_depth)
321 r = io_u_queued_complete(td, td->cur_depth, NULL);
322}
323
324/*
325 * Helper to handle the final sync of a file. Works just like the normal
326 * io path, just does everything sync.
327 */
328static int fio_io_sync(struct thread_data *td, struct fio_file *f)
329{
330 struct io_u *io_u = __get_io_u(td);
331 int ret;
332
333 if (!io_u)
334 return 1;
335
336 io_u->ddir = DDIR_SYNC;
337 io_u->file = f;
338
339 if (td_io_prep(td, io_u)) {
340 put_io_u(td, io_u);
341 return 1;
342 }
343
344requeue:
345 ret = td_io_queue(td, io_u);
346 if (ret < 0) {
347 td_verror(td, io_u->error, "td_io_queue");
348 put_io_u(td, io_u);
349 return 1;
350 } else if (ret == FIO_Q_QUEUED) {
351 if (io_u_queued_complete(td, 1, NULL) < 0)
352 return 1;
353 } else if (ret == FIO_Q_COMPLETED) {
354 if (io_u->error) {
355 td_verror(td, io_u->error, "td_io_queue");
356 return 1;
357 }
358
359 if (io_u_sync_complete(td, io_u, NULL) < 0)
360 return 1;
361 } else if (ret == FIO_Q_BUSY) {
362 if (td_io_commit(td))
363 return 1;
364 goto requeue;
365 }
366
367 return 0;
368}
369
370static inline void update_tv_cache(struct thread_data *td)
371{
372 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
373 fio_gettime(&td->tv_cache, NULL);
374}
375
376static int break_on_this_error(struct thread_data *td, int *retptr)
377{
378 int ret = *retptr;
379
380 if (ret < 0 || td->error) {
381 int err;
382
383 if (!td->o.continue_on_error)
384 return 1;
385
386 if (ret < 0)
387 err = -ret;
388 else
389 err = td->error;
390
391 update_error_count(td, err);
392
393 if (td_non_fatal_error(err)) {
394 /*
395 * Continue with the I/Os in case of
396 * a non fatal error.
397 */
398 td_clear_error(td);
399 *retptr = 0;
400 return 0;
401 } else {
402 /*
403 * Stop the I/O in case of a fatal
404 * error.
405 */
406 return 1;
407 }
408 }
409
410 return 0;
411}
412
413/*
414 * The main verify engine. Runs over the writes we previously submitted,
415 * reads the blocks back in, and checks the crc/md5 of the data.
416 */
417static void do_verify(struct thread_data *td)
418{
419 struct fio_file *f;
420 struct io_u *io_u;
421 int ret, min_events;
422 unsigned int i;
423
424 /*
425 * sync io first and invalidate cache, to make sure we really
426 * read from disk.
427 */
428 for_each_file(td, f, i) {
429 if (!fio_file_open(f))
430 continue;
431 if (fio_io_sync(td, f))
432 break;
433 if (file_invalidate_cache(td, f))
434 break;
435 }
436
437 if (td->error)
438 return;
439
440 td_set_runstate(td, TD_VERIFYING);
441
442 io_u = NULL;
443 while (!td->terminate) {
444 int ret2, full;
445
446 update_tv_cache(td);
447
448 if (runtime_exceeded(td, &td->tv_cache)) {
449 td->terminate = 1;
450 break;
451 }
452
453 io_u = __get_io_u(td);
454 if (!io_u)
455 break;
456
457 if (get_next_verify(td, io_u)) {
458 put_io_u(td, io_u);
459 break;
460 }
461
462 if (td_io_prep(td, io_u)) {
463 put_io_u(td, io_u);
464 break;
465 }
466
467 io_u->end_io = verify_io_u;
468
469 ret = td_io_queue(td, io_u);
470 switch (ret) {
471 case FIO_Q_COMPLETED:
472 if (io_u->error) {
473 ret = -io_u->error;
474 clear_io_u(td, io_u);
475 } else if (io_u->resid) {
476 int bytes = io_u->xfer_buflen - io_u->resid;
477 struct fio_file *f = io_u->file;
478
479 /*
480 * zero read, fail
481 */
482 if (!bytes) {
483 td_verror(td, EIO, "full resid");
484 put_io_u(td, io_u);
485 break;
486 }
487
488 io_u->xfer_buflen = io_u->resid;
489 io_u->xfer_buf += bytes;
490 io_u->offset += bytes;
491
492 td->ts.short_io_u[io_u->ddir]++;
493
494 if (io_u->offset == f->real_file_size)
495 goto sync_done;
496
497 requeue_io_u(td, &io_u);
498 } else {
499sync_done:
500 ret = io_u_sync_complete(td, io_u, NULL);
501 if (ret < 0)
502 break;
503 }
504 continue;
505 case FIO_Q_QUEUED:
506 break;
507 case FIO_Q_BUSY:
508 requeue_io_u(td, &io_u);
509 ret2 = td_io_commit(td);
510 if (ret2 < 0)
511 ret = ret2;
512 break;
513 default:
514 assert(ret < 0);
515 td_verror(td, -ret, "td_io_queue");
516 break;
517 }
518
519 if (break_on_this_error(td, &ret))
520 break;
521
522 /*
523 * if we can queue more, do so. but check if there are
524 * completed io_u's first.
525 */
526 full = queue_full(td) || ret == FIO_Q_BUSY;
527 if (full || !td->o.iodepth_batch_complete) {
528 min_events = td->o.iodepth_batch_complete;
529 if (full && !min_events)
530 min_events = 1;
531
532 do {
533 /*
534 * Reap required number of io units, if any,
535 * and do the verification on them through
536 * the callback handler
537 */
538 if (io_u_queued_complete(td, min_events, NULL) < 0) {
539 ret = -1;
540 break;
541 }
542 } while (full && (td->cur_depth > td->o.iodepth_low));
543 }
544 if (ret < 0)
545 break;
546 }
547
548 if (!td->error) {
549 min_events = td->cur_depth;
550
551 if (min_events)
552 ret = io_u_queued_complete(td, min_events, NULL);
553 } else
554 cleanup_pending_aio(td);
555
556 td_set_runstate(td, TD_RUNNING);
557}
558
559/*
560 * Main IO worker function. It retrieves io_u's to process and queues
561 * and reaps them, checking for rate and errors along the way.
562 */
563static void do_io(struct thread_data *td)
564{
565 unsigned int i;
566 int ret = 0;
567
568 if (in_ramp_time(td))
569 td_set_runstate(td, TD_RAMP);
570 else
571 td_set_runstate(td, TD_RUNNING);
572
573 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) {
574 struct timeval comp_time;
575 unsigned long bytes_done[2] = { 0, 0 };
576 int min_evts = 0;
577 struct io_u *io_u;
578 int ret2, full;
579
580 if (td->terminate)
581 break;
582
583 update_tv_cache(td);
584
585 if (runtime_exceeded(td, &td->tv_cache)) {
586 td->terminate = 1;
587 break;
588 }
589
590 io_u = get_io_u(td);
591 if (!io_u)
592 break;
593
594 /*
595 * Add verification end_io handler, if asked to verify
596 * a previously written file.
597 */
598 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ) {
599 io_u->end_io = verify_io_u;
600 td_set_runstate(td, TD_VERIFYING);
601 } else if (in_ramp_time(td))
602 td_set_runstate(td, TD_RAMP);
603 else
604 td_set_runstate(td, TD_RUNNING);
605
606 ret = td_io_queue(td, io_u);
607 switch (ret) {
608 case FIO_Q_COMPLETED:
609 if (io_u->error) {
610 ret = -io_u->error;
611 clear_io_u(td, io_u);
612 } else if (io_u->resid) {
613 int bytes = io_u->xfer_buflen - io_u->resid;
614 struct fio_file *f = io_u->file;
615
616 /*
617 * zero read, fail
618 */
619 if (!bytes) {
620 td_verror(td, EIO, "full resid");
621 put_io_u(td, io_u);
622 break;
623 }
624
625 io_u->xfer_buflen = io_u->resid;
626 io_u->xfer_buf += bytes;
627 io_u->offset += bytes;
628
629 td->ts.short_io_u[io_u->ddir]++;
630
631 if (io_u->offset == f->real_file_size)
632 goto sync_done;
633
634 requeue_io_u(td, &io_u);
635 } else {
636sync_done:
637 if (__should_check_rate(td, 0) ||
638 __should_check_rate(td, 1))
639 fio_gettime(&comp_time, NULL);
640
641 ret = io_u_sync_complete(td, io_u, bytes_done);
642 if (ret < 0)
643 break;
644 }
645 break;
646 case FIO_Q_QUEUED:
647 /*
648 * if the engine doesn't have a commit hook,
649 * the io_u is really queued. if it does have such
650 * a hook, it has to call io_u_queued() itself.
651 */
652 if (td->io_ops->commit == NULL)
653 io_u_queued(td, io_u);
654 break;
655 case FIO_Q_BUSY:
656 requeue_io_u(td, &io_u);
657 ret2 = td_io_commit(td);
658 if (ret2 < 0)
659 ret = ret2;
660 break;
661 default:
662 assert(ret < 0);
663 put_io_u(td, io_u);
664 break;
665 }
666
667 if (break_on_this_error(td, &ret))
668 break;
669
670 /*
671 * See if we need to complete some commands
672 */
673 full = queue_full(td) || ret == FIO_Q_BUSY;
674 if (full || !td->o.iodepth_batch_complete) {
675 min_evts = td->o.iodepth_batch_complete;
676 if (full && !min_evts)
677 min_evts = 1;
678
679 if (__should_check_rate(td, 0) ||
680 __should_check_rate(td, 1))
681 fio_gettime(&comp_time, NULL);
682
683 do {
684 ret = io_u_queued_complete(td, min_evts, bytes_done);
685 if (ret < 0)
686 break;
687
688 } while (full && (td->cur_depth > td->o.iodepth_low));
689 }
690
691 if (ret < 0)
692 break;
693 if (!(bytes_done[0] + bytes_done[1]))
694 continue;
695
696 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
697 if (check_min_rate(td, &comp_time, bytes_done)) {
698 if (exitall_on_terminate)
699 terminate_threads(td->groupid);
700 td_verror(td, EIO, "check_min_rate");
701 break;
702 }
703 }
704
705 if (td->o.thinktime) {
706 unsigned long long b;
707
708 b = td->io_blocks[0] + td->io_blocks[1];
709 if (!(b % td->o.thinktime_blocks)) {
710 int left;
711
712 if (td->o.thinktime_spin)
713 usec_spin(td->o.thinktime_spin);
714
715 left = td->o.thinktime - td->o.thinktime_spin;
716 if (left)
717 usec_sleep(td, left);
718 }
719 }
720 }
721
722 if (td->o.fill_device && td->error == ENOSPC) {
723 td->error = 0;
724 td->terminate = 1;
725 }
726 if (!td->error) {
727 struct fio_file *f;
728
729 i = td->cur_depth;
730 if (i)
731 ret = io_u_queued_complete(td, i, NULL);
732
733 if (should_fsync(td) && td->o.end_fsync) {
734 td_set_runstate(td, TD_FSYNCING);
735
736 for_each_file(td, f, i) {
737 if (!fio_file_open(f))
738 continue;
739 fio_io_sync(td, f);
740 }
741 }
742 } else
743 cleanup_pending_aio(td);
744
745 /*
746 * stop job if we failed doing any IO
747 */
748 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
749 td->done = 1;
750}
751
752static void cleanup_io_u(struct thread_data *td)
753{
754 struct flist_head *entry, *n;
755 struct io_u *io_u;
756
757 flist_for_each_safe(entry, n, &td->io_u_freelist) {
758 io_u = flist_entry(entry, struct io_u, list);
759
760 flist_del(&io_u->list);
761 free(io_u);
762 }
763
764 free_io_mem(td);
765}
766
767static int init_io_u(struct thread_data *td)
768{
769 struct io_u *io_u;
770 unsigned int max_bs;
771 int cl_align, i, max_units;
772 char *p;
773
774 max_units = td->o.iodepth;
775 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
776 td->orig_buffer_size = (unsigned long long) max_bs
777 * (unsigned long long) max_units;
778
779 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
780 unsigned long bs;
781
782 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
783 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
784 }
785
786 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
787 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
788 return 1;
789 }
790
791 if (allocate_io_mem(td))
792 return 1;
793
794 if (td->o.mem_align)
795 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
796 else
797 p = td->orig_buffer;
798
799 cl_align = os_cache_line_size();
800
801 for (i = 0; i < max_units; i++) {
802 void *ptr;
803
804 if (td->terminate)
805 return 1;
806
807 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
808 log_err("fio: posix_memalign=%s\n", strerror(errno));
809 break;
810 }
811
812 io_u = ptr;
813 memset(io_u, 0, sizeof(*io_u));
814 INIT_FLIST_HEAD(&io_u->list);
815 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
816
817 if (!(td->io_ops->flags & FIO_NOIO)) {
818 io_u->buf = p + max_bs * i;
819 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
820
821 if (td_write(td) && !td->o.refill_buffers)
822 io_u_fill_buffer(td, io_u, max_bs);
823 }
824
825 io_u->index = i;
826 io_u->flags = IO_U_F_FREE;
827 flist_add(&io_u->list, &td->io_u_freelist);
828 }
829
830 return 0;
831}
832
833static int switch_ioscheduler(struct thread_data *td)
834{
835 char tmp[256], tmp2[128];
836 FILE *f;
837 int ret;
838
839 if (td->io_ops->flags & FIO_DISKLESSIO)
840 return 0;
841
842 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
843
844 f = fopen(tmp, "r+");
845 if (!f) {
846 if (errno == ENOENT) {
847 log_err("fio: os or kernel doesn't support IO scheduler"
848 " switching\n");
849 return 0;
850 }
851 td_verror(td, errno, "fopen iosched");
852 return 1;
853 }
854
855 /*
856 * Set io scheduler.
857 */
858 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
859 if (ferror(f) || ret != 1) {
860 td_verror(td, errno, "fwrite");
861 fclose(f);
862 return 1;
863 }
864
865 rewind(f);
866
867 /*
868 * Read back and check that the selected scheduler is now the default.
869 */
870 ret = fread(tmp, 1, sizeof(tmp), f);
871 if (ferror(f) || ret < 0) {
872 td_verror(td, errno, "fread");
873 fclose(f);
874 return 1;
875 }
876
877 sprintf(tmp2, "[%s]", td->o.ioscheduler);
878 if (!strstr(tmp, tmp2)) {
879 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
880 td_verror(td, EINVAL, "iosched_switch");
881 fclose(f);
882 return 1;
883 }
884
885 fclose(f);
886 return 0;
887}
888
889static int keep_running(struct thread_data *td)
890{
891 unsigned long long io_done;
892
893 if (td->done)
894 return 0;
895 if (td->o.time_based)
896 return 1;
897 if (td->o.loops) {
898 td->o.loops--;
899 return 1;
900 }
901
902 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
903 + td->io_skip_bytes;
904 if (io_done < td->o.size)
905 return 1;
906
907 return 0;
908}
909
910static void reset_io_counters(struct thread_data *td)
911{
912 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
913 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
914 td->zone_bytes = 0;
915 td->rate_bytes[0] = td->rate_bytes[1] = 0;
916 td->rate_blocks[0] = td->rate_blocks[1] = 0;
917
918 td->last_was_sync = 0;
919
920 /*
921 * reset file done count if we are to start over
922 */
923 if (td->o.time_based || td->o.loops)
924 td->nr_done_files = 0;
925
926 /*
927 * Set the same seed to get repeatable runs
928 */
929 td_fill_rand_seeds(td);
930}
931
932void reset_all_stats(struct thread_data *td)
933{
934 struct timeval tv;
935 int i;
936
937 reset_io_counters(td);
938
939 for (i = 0; i < 2; i++) {
940 td->io_bytes[i] = 0;
941 td->io_blocks[i] = 0;
942 td->io_issues[i] = 0;
943 td->ts.total_io_u[i] = 0;
944 }
945
946 fio_gettime(&tv, NULL);
947 memcpy(&td->epoch, &tv, sizeof(tv));
948 memcpy(&td->start, &tv, sizeof(tv));
949}
950
951static void clear_io_state(struct thread_data *td)
952{
953 struct fio_file *f;
954 unsigned int i;
955
956 reset_io_counters(td);
957
958 close_files(td);
959 for_each_file(td, f, i)
960 fio_file_clear_done(f);
961}
962
963static int exec_string(const char *string)
964{
965 int ret, newlen = strlen(string) + 1 + 8;
966 char *str;
967
968 str = malloc(newlen);
969 sprintf(str, "sh -c %s", string);
970
971 ret = system(str);
972 if (ret == -1)
973 log_err("fio: exec of cmd <%s> failed\n", str);
974
975 free(str);
976 return ret;
977}
978
979/*
980 * Entry point for the thread based jobs. The process based jobs end up
981 * here as well, after a little setup.
982 */
983static void *thread_main(void *data)
984{
985 unsigned long long runtime[2], elapsed;
986 struct thread_data *td = data;
987 int clear_state;
988
989 if (!td->o.use_thread)
990 setsid();
991
992 td->pid = getpid();
993
994 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
995
996 INIT_FLIST_HEAD(&td->io_u_freelist);
997 INIT_FLIST_HEAD(&td->io_u_busylist);
998 INIT_FLIST_HEAD(&td->io_u_requeues);
999 INIT_FLIST_HEAD(&td->io_log_list);
1000 INIT_FLIST_HEAD(&td->io_hist_list);
1001 td->io_hist_tree = RB_ROOT;
1002
1003 td_set_runstate(td, TD_INITIALIZED);
1004 dprint(FD_MUTEX, "up startup_mutex\n");
1005 fio_mutex_up(startup_mutex);
1006 dprint(FD_MUTEX, "wait on td->mutex\n");
1007 fio_mutex_down(td->mutex);
1008 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1009
1010 /*
1011 * the ->mutex mutex is now no longer used, close it to avoid
1012 * eating a file descriptor
1013 */
1014 fio_mutex_remove(td->mutex);
1015
1016 /*
1017 * May alter parameters that init_io_u() will use, so we need to
1018 * do this first.
1019 */
1020 if (init_iolog(td))
1021 goto err;
1022
1023 if (init_io_u(td))
1024 goto err;
1025
1026 if (td->o.cpumask_set && fio_setaffinity(td) == -1) {
1027 td_verror(td, errno, "cpu_set_affinity");
1028 goto err;
1029 }
1030
1031 /*
1032 * If we have a gettimeofday() thread, make sure we exclude that
1033 * thread from this job
1034 */
1035 if (td->o.gtod_cpu) {
1036 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1037 if (fio_setaffinity(td) == -1) {
1038 td_verror(td, errno, "cpu_set_affinity");
1039 goto err;
1040 }
1041 }
1042
1043 if (td->ioprio_set) {
1044 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1045 td_verror(td, errno, "ioprio_set");
1046 goto err;
1047 }
1048 }
1049
1050 if (nice(td->o.nice) == -1) {
1051 td_verror(td, errno, "nice");
1052 goto err;
1053 }
1054
1055 if (td->o.ioscheduler && switch_ioscheduler(td))
1056 goto err;
1057
1058 if (!td->o.create_serialize && setup_files(td))
1059 goto err;
1060
1061 if (td_io_init(td))
1062 goto err;
1063
1064 if (init_random_map(td))
1065 goto err;
1066
1067 if (td->o.exec_prerun) {
1068 if (exec_string(td->o.exec_prerun))
1069 goto err;
1070 }
1071
1072 if (td->o.pre_read) {
1073 if (pre_read_files(td) < 0)
1074 goto err;
1075 }
1076
1077 fio_gettime(&td->epoch, NULL);
1078 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1079
1080 runtime[0] = runtime[1] = 0;
1081 clear_state = 0;
1082 while (keep_running(td)) {
1083 fio_gettime(&td->start, NULL);
1084 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
1085 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1086
1087 if (td->o.ratemin[0] || td->o.ratemin[1])
1088 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1089 sizeof(td->lastrate));
1090
1091 if (clear_state)
1092 clear_io_state(td);
1093
1094 prune_io_piece_log(td);
1095
1096 do_io(td);
1097
1098 clear_state = 1;
1099
1100 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1101 elapsed = utime_since_now(&td->start);
1102 runtime[DDIR_READ] += elapsed;
1103 }
1104 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1105 elapsed = utime_since_now(&td->start);
1106 runtime[DDIR_WRITE] += elapsed;
1107 }
1108
1109 if (td->error || td->terminate)
1110 break;
1111
1112 if (!td->o.do_verify ||
1113 td->o.verify == VERIFY_NONE ||
1114 (td->io_ops->flags & FIO_UNIDIR))
1115 continue;
1116
1117 clear_io_state(td);
1118
1119 fio_gettime(&td->start, NULL);
1120
1121 do_verify(td);
1122
1123 runtime[DDIR_READ] += utime_since_now(&td->start);
1124
1125 if (td->error || td->terminate)
1126 break;
1127 }
1128
1129 update_rusage_stat(td);
1130 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1131 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1132 td->ts.total_run_time = mtime_since_now(&td->epoch);
1133 td->ts.io_bytes[0] = td->io_bytes[0];
1134 td->ts.io_bytes[1] = td->io_bytes[1];
1135
1136 fio_mutex_down(writeout_mutex);
1137 if (td->ts.bw_log) {
1138 if (td->o.bw_log_file) {
1139 finish_log_named(td, td->ts.bw_log,
1140 td->o.bw_log_file, "bw");
1141 } else
1142 finish_log(td, td->ts.bw_log, "bw");
1143 }
1144 if (td->ts.slat_log) {
1145 if (td->o.lat_log_file) {
1146 finish_log_named(td, td->ts.slat_log,
1147 td->o.lat_log_file, "slat");
1148 } else
1149 finish_log(td, td->ts.slat_log, "slat");
1150 }
1151 if (td->ts.clat_log) {
1152 if (td->o.lat_log_file) {
1153 finish_log_named(td, td->ts.clat_log,
1154 td->o.lat_log_file, "clat");
1155 } else
1156 finish_log(td, td->ts.clat_log, "clat");
1157 }
1158 fio_mutex_up(writeout_mutex);
1159 if (td->o.exec_postrun)
1160 exec_string(td->o.exec_postrun);
1161
1162 if (exitall_on_terminate)
1163 terminate_threads(td->groupid);
1164
1165err:
1166 if (td->error)
1167 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1168 td->verror);
1169 close_and_free_files(td);
1170 close_ioengine(td);
1171 cleanup_io_u(td);
1172
1173 if (td->o.cpumask_set) {
1174 int ret = fio_cpuset_exit(&td->o.cpumask);
1175
1176 td_verror(td, ret, "fio_cpuset_exit");
1177 }
1178
1179 /*
1180 * do this very late, it will log file closing as well
1181 */
1182 if (td->o.write_iolog_file)
1183 write_iolog_close(td);
1184
1185 options_mem_free(td);
1186 td_set_runstate(td, TD_EXITED);
1187 return (void *) (unsigned long) td->error;
1188}
1189
1190/*
1191 * We cannot pass the td data into a forked process, so attach the td and
1192 * pass it to the thread worker.
1193 */
1194static int fork_main(int shmid, int offset)
1195{
1196 struct thread_data *td;
1197 void *data, *ret;
1198
1199 data = shmat(shmid, NULL, 0);
1200 if (data == (void *) -1) {
1201 int __err = errno;
1202
1203 perror("shmat");
1204 return __err;
1205 }
1206
1207 td = data + offset * sizeof(struct thread_data);
1208 ret = thread_main(td);
1209 shmdt(data);
1210 return (int) (unsigned long) ret;
1211}
1212
1213/*
1214 * Run over the job map and reap the threads that have exited, if any.
1215 */
1216static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1217{
1218 struct thread_data *td;
1219 int i, cputhreads, realthreads, pending, status, ret;
1220
1221 /*
1222 * reap exited threads (TD_EXITED -> TD_REAPED)
1223 */
1224 realthreads = pending = cputhreads = 0;
1225 for_each_td(td, i) {
1226 int flags = 0;
1227
1228 /*
1229 * ->io_ops is NULL for a thread that has closed its
1230 * io engine
1231 */
1232 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1233 cputhreads++;
1234 else
1235 realthreads++;
1236
1237 if (!td->pid) {
1238 pending++;
1239 continue;
1240 }
1241 if (td->runstate == TD_REAPED)
1242 continue;
1243 if (td->o.use_thread) {
1244 if (td->runstate == TD_EXITED) {
1245 td_set_runstate(td, TD_REAPED);
1246 goto reaped;
1247 }
1248 continue;
1249 }
1250
1251 flags = WNOHANG;
1252 if (td->runstate == TD_EXITED)
1253 flags = 0;
1254
1255 /*
1256 * check if someone quit or got killed in an unusual way
1257 */
1258 ret = waitpid(td->pid, &status, flags);
1259 if (ret < 0) {
1260 if (errno == ECHILD) {
1261 log_err("fio: pid=%d disappeared %d\n",
1262 (int) td->pid, td->runstate);
1263 td_set_runstate(td, TD_REAPED);
1264 goto reaped;
1265 }
1266 perror("waitpid");
1267 } else if (ret == td->pid) {
1268 if (WIFSIGNALED(status)) {
1269 int sig = WTERMSIG(status);
1270
1271 if (sig != SIGQUIT)
1272 log_err("fio: pid=%d, got signal=%d\n",
1273 (int) td->pid, sig);
1274 td_set_runstate(td, TD_REAPED);
1275 goto reaped;
1276 }
1277 if (WIFEXITED(status)) {
1278 if (WEXITSTATUS(status) && !td->error)
1279 td->error = WEXITSTATUS(status);
1280
1281 td_set_runstate(td, TD_REAPED);
1282 goto reaped;
1283 }
1284 }
1285
1286 /*
1287 * thread is not dead, continue
1288 */
1289 pending++;
1290 continue;
1291reaped:
1292 (*nr_running)--;
1293 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1294 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1295 if (!td->pid)
1296 pending--;
1297
1298 if (td->error)
1299 exit_value++;
1300
1301 done_secs += mtime_since_now(&td->epoch) / 1000;
1302 }
1303
1304 if (*nr_running == cputhreads && !pending && realthreads)
1305 terminate_threads(TERMINATE_ALL);
1306}
1307
1308static void *gtod_thread_main(void *data)
1309{
1310 fio_mutex_up(startup_mutex);
1311
1312 /*
1313 * As long as we have jobs around, update the clock. It would be nice
1314 * to have some way of NOT hammering that CPU with gettimeofday(),
1315 * but I'm not sure what to use outside of a simple CPU nop to relax
1316 * it - we don't want to lose precision.
1317 */
1318 while (threads) {
1319 fio_gtod_update();
1320 nop;
1321 }
1322
1323 return NULL;
1324}
1325
1326static int fio_start_gtod_thread(void)
1327{
1328 int ret;
1329
1330 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1331 if (ret) {
1332 log_err("Can't create gtod thread: %s\n", strerror(ret));
1333 return 1;
1334 }
1335
1336 ret = pthread_detach(gtod_thread);
1337 if (ret) {
1338 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1339 return 1;
1340 }
1341
1342 dprint(FD_MUTEX, "wait on startup_mutex\n");
1343 fio_mutex_down(startup_mutex);
1344 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1345 return 0;
1346}
1347
1348/*
1349 * Main function for kicking off and reaping jobs, as needed.
1350 */
1351static void run_threads(void)
1352{
1353 struct thread_data *td;
1354 unsigned long spent;
1355 int i, todo, nr_running, m_rate, t_rate, nr_started;
1356
1357 if (fio_pin_memory())
1358 return;
1359
1360 if (fio_gtod_offload && fio_start_gtod_thread())
1361 return;
1362
1363 if (!terse_output) {
1364 printf("Starting ");
1365 if (nr_thread)
1366 printf("%d thread%s", nr_thread,
1367 nr_thread > 1 ? "s" : "");
1368 if (nr_process) {
1369 if (nr_thread)
1370 printf(" and ");
1371 printf("%d process%s", nr_process,
1372 nr_process > 1 ? "es" : "");
1373 }
1374 printf("\n");
1375 fflush(stdout);
1376 }
1377
1378 set_sig_handlers();
1379
1380 todo = thread_number;
1381 nr_running = 0;
1382 nr_started = 0;
1383 m_rate = t_rate = 0;
1384
1385 for_each_td(td, i) {
1386 print_status_init(td->thread_number - 1);
1387
1388 if (!td->o.create_serialize) {
1389 init_disk_util(td);
1390 continue;
1391 }
1392
1393 /*
1394 * do file setup here so it happens sequentially,
1395 * we don't want X number of threads getting their
1396 * client data interspersed on disk
1397 */
1398 if (setup_files(td)) {
1399 exit_value++;
1400 if (td->error)
1401 log_err("fio: pid=%d, err=%d/%s\n",
1402 (int) td->pid, td->error, td->verror);
1403 td_set_runstate(td, TD_REAPED);
1404 todo--;
1405 } else {
1406 struct fio_file *f;
1407 unsigned int i;
1408
1409 /*
1410 * for sharing to work, each job must always open
1411 * its own files. so close them, if we opened them
1412 * for creation
1413 */
1414 for_each_file(td, f, i) {
1415 if (fio_file_open(f))
1416 td_io_close_file(td, f);
1417 }
1418 }
1419
1420 init_disk_util(td);
1421 }
1422
1423 set_genesis_time();
1424
1425 while (todo) {
1426 struct thread_data *map[MAX_JOBS];
1427 struct timeval this_start;
1428 int this_jobs = 0, left;
1429
1430 /*
1431 * create threads (TD_NOT_CREATED -> TD_CREATED)
1432 */
1433 for_each_td(td, i) {
1434 if (td->runstate != TD_NOT_CREATED)
1435 continue;
1436
1437 /*
1438 * never got a chance to start, killed by other
1439 * thread for some reason
1440 */
1441 if (td->terminate) {
1442 todo--;
1443 continue;
1444 }
1445
1446 if (td->o.start_delay) {
1447 spent = mtime_since_genesis();
1448
1449 if (td->o.start_delay * 1000 > spent)
1450 continue;
1451 }
1452
1453 if (td->o.stonewall && (nr_started || nr_running)) {
1454 dprint(FD_PROCESS, "%s: stonewall wait\n",
1455 td->o.name);
1456 break;
1457 }
1458
1459 /*
1460 * Set state to created. Thread will transition
1461 * to TD_INITIALIZED when it's done setting up.
1462 */
1463 td_set_runstate(td, TD_CREATED);
1464 map[this_jobs++] = td;
1465 nr_started++;
1466
1467 if (td->o.use_thread) {
1468 int ret;
1469
1470 dprint(FD_PROCESS, "will pthread_create\n");
1471 ret = pthread_create(&td->thread, NULL,
1472 thread_main, td);
1473 if (ret) {
1474 log_err("pthread_create: %s\n",
1475 strerror(ret));
1476 nr_started--;
1477 break;
1478 }
1479 ret = pthread_detach(td->thread);
1480 if (ret)
1481 log_err("pthread_detach: %s",
1482 strerror(ret));
1483 } else {
1484 pid_t pid;
1485 dprint(FD_PROCESS, "will fork\n");
1486 pid = fork();
1487 if (!pid) {
1488 int ret = fork_main(shm_id, i);
1489
1490 _exit(ret);
1491 } else if (i == fio_debug_jobno)
1492 *fio_debug_jobp = pid;
1493 }
1494 dprint(FD_MUTEX, "wait on startup_mutex\n");
1495 fio_mutex_down(startup_mutex);
1496 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1497 }
1498
1499 /*
1500 * Wait for the started threads to transition to
1501 * TD_INITIALIZED.
1502 */
1503 fio_gettime(&this_start, NULL);
1504 left = this_jobs;
1505 while (left && !fio_abort) {
1506 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1507 break;
1508
1509 usleep(100000);
1510
1511 for (i = 0; i < this_jobs; i++) {
1512 td = map[i];
1513 if (!td)
1514 continue;
1515 if (td->runstate == TD_INITIALIZED) {
1516 map[i] = NULL;
1517 left--;
1518 } else if (td->runstate >= TD_EXITED) {
1519 map[i] = NULL;
1520 left--;
1521 todo--;
1522 nr_running++; /* work-around... */
1523 }
1524 }
1525 }
1526
1527 if (left) {
1528 log_err("fio: %d jobs failed to start\n", left);
1529 for (i = 0; i < this_jobs; i++) {
1530 td = map[i];
1531 if (!td)
1532 continue;
1533 kill(td->pid, SIGTERM);
1534 }
1535 break;
1536 }
1537
1538 /*
1539 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1540 */
1541 for_each_td(td, i) {
1542 if (td->runstate != TD_INITIALIZED)
1543 continue;
1544
1545 if (in_ramp_time(td))
1546 td_set_runstate(td, TD_RAMP);
1547 else
1548 td_set_runstate(td, TD_RUNNING);
1549 nr_running++;
1550 nr_started--;
1551 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1552 t_rate += td->o.rate[0] + td->o.rate[1];
1553 todo--;
1554 fio_mutex_up(td->mutex);
1555 }
1556
1557 reap_threads(&nr_running, &t_rate, &m_rate);
1558
1559 if (todo)
1560 usleep(100000);
1561 }
1562
1563 while (nr_running) {
1564 reap_threads(&nr_running, &t_rate, &m_rate);
1565 usleep(10000);
1566 }
1567
1568 update_io_ticks();
1569 fio_unpin_memory();
1570}
1571
1572int main(int argc, char *argv[])
1573{
1574 long ps;
1575
1576 sinit();
1577
1578 /*
1579 * We need locale for number printing, if it isn't set then just
1580 * go with the US format.
1581 */
1582 if (!getenv("LC_NUMERIC"))
1583 setlocale(LC_NUMERIC, "en_US");
1584
1585 if (parse_options(argc, argv))
1586 return 1;
1587
1588 if (!thread_number)
1589 return 0;
1590
1591 ps = sysconf(_SC_PAGESIZE);
1592 if (ps < 0) {
1593 log_err("Failed to get page size\n");
1594 return 1;
1595 }
1596
1597 page_size = ps;
1598 page_mask = ps - 1;
1599
1600 if (write_bw_log) {
1601 setup_log(&agg_io_log[DDIR_READ]);
1602 setup_log(&agg_io_log[DDIR_WRITE]);
1603 }
1604
1605 startup_mutex = fio_mutex_init(0);
1606 writeout_mutex = fio_mutex_init(1);
1607
1608 set_genesis_time();
1609
1610 status_timer_arm();
1611
1612 run_threads();
1613
1614 if (!fio_abort) {
1615 show_run_stats();
1616 if (write_bw_log) {
1617 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1618 __finish_log(agg_io_log[DDIR_WRITE],
1619 "agg-write_bw.log");
1620 }
1621 }
1622
1623 fio_mutex_remove(startup_mutex);
1624 fio_mutex_remove(writeout_mutex);
1625 return exit_value;
1626}