Update documentation wrt comment
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long spent;
100 unsigned long rate;
101 int ddir = td->ddir;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 /*
110 * if rate blocks is set, sample is running
111 */
112 if (td->rate_bytes) {
113 spent = mtime_since(&td->lastrate, now);
114 if (spent < td->ratecycle)
115 return 0;
116
117 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118 if (rate < td->ratemin) {
119 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120 return 1;
121 }
122 }
123
124 td->rate_bytes = td->this_io_bytes[ddir];
125 memcpy(&td->lastrate, now, sizeof(*now));
126 return 0;
127}
128
129static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130{
131 if (!td->timeout)
132 return 0;
133 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134 return 1;
135
136 return 0;
137}
138
139/*
140 * When job exits, we can cancel the in-flight IO if we are using async
141 * io. Attempt to do so.
142 */
143static void cleanup_pending_aio(struct thread_data *td)
144{
145 struct list_head *entry, *n;
146 struct io_u *io_u;
147 int r;
148
149 /*
150 * get immediately available events, if any
151 */
152 io_u_queued_complete(td, 0, NULL);
153
154 /*
155 * now cancel remaining active events
156 */
157 if (td->io_ops->cancel) {
158 list_for_each_safe(entry, n, &td->io_u_busylist) {
159 io_u = list_entry(entry, struct io_u, list);
160
161 r = td->io_ops->cancel(td, io_u);
162 if (!r)
163 put_io_u(td, io_u);
164 }
165 }
166
167 if (td->cur_depth)
168 io_u_queued_complete(td, td->cur_depth, NULL);
169}
170
171/*
172 * Helper to handle the final sync of a file. Works just like the normal
173 * io path, just does everything sync.
174 */
175static int fio_io_sync(struct thread_data *td, struct fio_file *f)
176{
177 struct io_u *io_u = __get_io_u(td);
178 int ret;
179
180 if (!io_u)
181 return 1;
182
183 io_u->ddir = DDIR_SYNC;
184 io_u->file = f;
185
186 if (td_io_prep(td, io_u)) {
187 put_io_u(td, io_u);
188 return 1;
189 }
190
191requeue:
192 ret = td_io_queue(td, io_u);
193 if (ret < 0) {
194 td_verror(td, io_u->error);
195 put_io_u(td, io_u);
196 return 1;
197 } else if (ret == FIO_Q_QUEUED) {
198 if (io_u_queued_complete(td, 1, NULL))
199 return 1;
200 } else if (ret == FIO_Q_COMPLETED) {
201 if (io_u->error) {
202 td_verror(td, io_u->error);
203 return 1;
204 }
205
206 io_u_sync_complete(td, io_u, NULL);
207 } else if (ret == FIO_Q_BUSY) {
208 if (td_io_commit(td))
209 return 1;
210 goto requeue;
211 }
212
213 return 0;
214}
215
216/*
217 * The main verify engine. Runs over the writes we previusly submitted,
218 * reads the blocks back in, and checks the crc/md5 of the data.
219 */
220static void do_verify(struct thread_data *td)
221{
222 struct fio_file *f;
223 struct io_u *io_u;
224 int ret, i, min_events;
225
226 /*
227 * sync io first and invalidate cache, to make sure we really
228 * read from disk.
229 */
230 for_each_file(td, f, i) {
231 fio_io_sync(td, f);
232 file_invalidate_cache(td, f);
233 }
234
235 td_set_runstate(td, TD_VERIFYING);
236
237 io_u = NULL;
238 while (!td->terminate) {
239 io_u = __get_io_u(td);
240 if (!io_u)
241 break;
242
243 if (runtime_exceeded(td, &io_u->start_time))
244 break;
245
246 if (get_next_verify(td, io_u))
247 break;
248
249 if (td_io_prep(td, io_u))
250 break;
251
252requeue:
253 ret = td_io_queue(td, io_u);
254
255 switch (ret) {
256 case FIO_Q_COMPLETED:
257 if (io_u->error)
258 ret = -io_u->error;
259 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
260 int bytes = io_u->xfer_buflen - io_u->resid;
261
262 io_u->xfer_buflen = io_u->resid;
263 io_u->xfer_buf += bytes;
264 goto requeue;
265 }
266 ret = io_u_sync_complete(td, io_u, verify_io_u);
267 if (ret)
268 break;
269 continue;
270 case FIO_Q_QUEUED:
271 break;
272 case FIO_Q_BUSY:
273 requeue_io_u(td, &io_u);
274 ret = td_io_commit(td);
275 break;
276 default:
277 assert(ret < 0);
278 td_verror(td, -ret);
279 break;
280 }
281
282 if (ret < 0 || td->error)
283 break;
284
285 /*
286 * if we can queue more, do so. but check if there are
287 * completed io_u's first.
288 */
289 min_events = 0;
290 if (queue_full(td) || ret == FIO_Q_BUSY)
291 min_events = 1;
292
293 /*
294 * Reap required number of io units, if any, and do the
295 * verification on them through the callback handler
296 */
297 if (io_u_queued_complete(td, min_events, verify_io_u))
298 break;
299 }
300
301 if (io_u)
302 put_io_u(td, io_u);
303
304 if (td->cur_depth)
305 cleanup_pending_aio(td);
306
307 td_set_runstate(td, TD_RUNNING);
308}
309
310/*
311 * Not really an io thread, all it does is burn CPU cycles in the specified
312 * manner.
313 */
314static void do_cpuio(struct thread_data *td)
315{
316 struct timeval e;
317 int split = 100 / td->cpuload;
318 int i = 0;
319
320 while (!td->terminate) {
321 fio_gettime(&e, NULL);
322
323 if (runtime_exceeded(td, &e))
324 break;
325
326 if (!(i % split))
327 __usec_sleep(10000);
328 else
329 usec_sleep(td, 10000);
330
331 i++;
332 }
333}
334
335/*
336 * Main IO worker function. It retrieves io_u's to process and queues
337 * and reaps them, checking for rate and errors along the way.
338 */
339static void do_io(struct thread_data *td)
340{
341 struct timeval s;
342 unsigned long usec;
343 int i, ret = 0;
344
345 td_set_runstate(td, TD_RUNNING);
346
347 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
348 struct timeval comp_time;
349 long bytes_done = 0;
350 int min_evts = 0;
351 struct io_u *io_u;
352
353 if (td->terminate)
354 break;
355
356 io_u = get_io_u(td);
357 if (!io_u)
358 break;
359
360 memcpy(&s, &io_u->start_time, sizeof(s));
361
362 if (runtime_exceeded(td, &s)) {
363 put_io_u(td, io_u);
364 break;
365 }
366requeue:
367 ret = td_io_queue(td, io_u);
368
369 switch (ret) {
370 case FIO_Q_COMPLETED:
371 if (io_u->error) {
372 ret = io_u->error;
373 break;
374 }
375 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
376 int bytes = io_u->xfer_buflen - io_u->resid;
377
378 io_u->xfer_buflen = io_u->resid;
379 io_u->xfer_buf += bytes;
380 goto requeue;
381 }
382 fio_gettime(&comp_time, NULL);
383 bytes_done = io_u_sync_complete(td, io_u, NULL);
384 if (bytes_done < 0)
385 ret = bytes_done;
386 break;
387 case FIO_Q_QUEUED:
388 break;
389 case FIO_Q_BUSY:
390 requeue_io_u(td, &io_u);
391 ret = td_io_commit(td);
392 break;
393 default:
394 assert(ret < 0);
395 put_io_u(td, io_u);
396 break;
397 }
398
399 if (ret < 0 || td->error)
400 break;
401
402 if (io_u)
403 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
404
405 /*
406 * See if we need to complete some commands
407 */
408 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
409 min_evts = 0;
410 if (queue_full(td) || ret == FIO_Q_BUSY)
411 min_evts = 1;
412
413 fio_gettime(&comp_time, NULL);
414 bytes_done = io_u_queued_complete(td, min_evts, NULL);
415 if (bytes_done < 0)
416 break;
417 }
418
419 if (!bytes_done)
420 continue;
421
422 /*
423 * the rate is batched for now, it should work for batches
424 * of completions except the very first one which may look
425 * a little bursty
426 */
427 usec = utime_since(&s, &comp_time);
428
429 rate_throttle(td, usec, bytes_done, td->ddir);
430
431 if (check_min_rate(td, &comp_time)) {
432 if (exitall_on_terminate)
433 terminate_threads(td->groupid, 0);
434 td_verror(td, ENODATA);
435 break;
436 }
437
438 if (td->thinktime) {
439 unsigned long long b;
440
441 b = td->io_blocks[0] + td->io_blocks[1];
442 if (!(b % td->thinktime_blocks)) {
443 int left;
444
445 if (td->thinktime_spin)
446 __usec_sleep(td->thinktime_spin);
447
448 left = td->thinktime - td->thinktime_spin;
449 if (left)
450 usec_sleep(td, left);
451 }
452 }
453 }
454
455 if (!td->error) {
456 struct fio_file *f;
457
458 if (td->cur_depth)
459 cleanup_pending_aio(td);
460
461 if (should_fsync(td) && td->end_fsync) {
462 td_set_runstate(td, TD_FSYNCING);
463 for_each_file(td, f, i)
464 fio_io_sync(td, f);
465 }
466 }
467}
468
469static void cleanup_io_u(struct thread_data *td)
470{
471 struct list_head *entry, *n;
472 struct io_u *io_u;
473
474 list_for_each_safe(entry, n, &td->io_u_freelist) {
475 io_u = list_entry(entry, struct io_u, list);
476
477 list_del(&io_u->list);
478 free(io_u);
479 }
480
481 free_io_mem(td);
482}
483
484/*
485 * "randomly" fill the buffer contents
486 */
487static void fill_rand_buf(struct io_u *io_u, int max_bs)
488{
489 int *ptr = io_u->buf;
490
491 while ((void *) ptr - io_u->buf < max_bs) {
492 *ptr = rand() * 0x9e370001;
493 ptr++;
494 }
495}
496
497static int init_io_u(struct thread_data *td)
498{
499 struct io_u *io_u;
500 unsigned int max_bs;
501 int i, max_units;
502 char *p;
503
504 if (td->io_ops->flags & FIO_CPUIO)
505 return 0;
506
507 if (td->io_ops->flags & FIO_SYNCIO)
508 max_units = 1;
509 else
510 max_units = td->iodepth;
511
512 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
513 td->orig_buffer_size = max_bs * max_units;
514
515 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
516 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
517 else
518 td->orig_buffer_size += page_mask;
519
520 if (allocate_io_mem(td))
521 return 1;
522
523 p = ALIGN(td->orig_buffer);
524 for (i = 0; i < max_units; i++) {
525 io_u = malloc(sizeof(*io_u));
526 memset(io_u, 0, sizeof(*io_u));
527 INIT_LIST_HEAD(&io_u->list);
528
529 io_u->buf = p + max_bs * i;
530 if (td_write(td) || td_rw(td))
531 fill_rand_buf(io_u, max_bs);
532
533 io_u->index = i;
534 list_add(&io_u->list, &td->io_u_freelist);
535 }
536
537 return 0;
538}
539
540static int switch_ioscheduler(struct thread_data *td)
541{
542 char tmp[256], tmp2[128];
543 FILE *f;
544 int ret;
545
546 if (td->io_ops->flags & FIO_CPUIO)
547 return 0;
548
549 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
550
551 f = fopen(tmp, "r+");
552 if (!f) {
553 td_verror(td, errno);
554 return 1;
555 }
556
557 /*
558 * Set io scheduler.
559 */
560 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
561 if (ferror(f) || ret != 1) {
562 td_verror(td, errno);
563 fclose(f);
564 return 1;
565 }
566
567 rewind(f);
568
569 /*
570 * Read back and check that the selected scheduler is now the default.
571 */
572 ret = fread(tmp, 1, sizeof(tmp), f);
573 if (ferror(f) || ret < 0) {
574 td_verror(td, errno);
575 fclose(f);
576 return 1;
577 }
578
579 sprintf(tmp2, "[%s]", td->ioscheduler);
580 if (!strstr(tmp, tmp2)) {
581 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
582 td_verror(td, EINVAL);
583 fclose(f);
584 return 1;
585 }
586
587 fclose(f);
588 return 0;
589}
590
591static void clear_io_state(struct thread_data *td)
592{
593 struct fio_file *f;
594 int i;
595
596 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
597 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
598 td->zone_bytes = 0;
599
600 td->last_was_sync = 0;
601
602 for_each_file(td, f, i) {
603 f->last_completed_pos = 0;
604
605 f->last_pos = 0;
606 if (td->io_ops->flags & FIO_SYNCIO)
607 lseek(f->fd, SEEK_SET, 0);
608
609 if (f->file_map)
610 memset(f->file_map, 0, f->num_maps * sizeof(long));
611 }
612}
613
614/*
615 * Entry point for the thread based jobs. The process based jobs end up
616 * here as well, after a little setup.
617 */
618static void *thread_main(void *data)
619{
620 unsigned long long runtime[2];
621 struct thread_data *td = data;
622
623 if (!td->use_thread)
624 setsid();
625
626 td->pid = getpid();
627
628 INIT_LIST_HEAD(&td->io_u_freelist);
629 INIT_LIST_HEAD(&td->io_u_busylist);
630 INIT_LIST_HEAD(&td->io_u_requeues);
631 INIT_LIST_HEAD(&td->io_hist_list);
632 INIT_LIST_HEAD(&td->io_log_list);
633
634 if (init_io_u(td))
635 goto err;
636
637 if (fio_setaffinity(td) == -1) {
638 td_verror(td, errno);
639 goto err;
640 }
641
642 if (init_iolog(td))
643 goto err;
644
645 if (td->ioprio) {
646 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
647 td_verror(td, errno);
648 goto err;
649 }
650 }
651
652 if (nice(td->nice) == -1) {
653 td_verror(td, errno);
654 goto err;
655 }
656
657 if (init_random_state(td))
658 goto err;
659
660 if (td->ioscheduler && switch_ioscheduler(td))
661 goto err;
662
663 td_set_runstate(td, TD_INITIALIZED);
664 fio_sem_up(&startup_sem);
665 fio_sem_down(&td->mutex);
666
667 if (!td->create_serialize && setup_files(td))
668 goto err;
669 if (open_files(td))
670 goto err;
671
672 /*
673 * Do this late, as some IO engines would like to have the
674 * files setup prior to initializing structures.
675 */
676 if (td_io_init(td))
677 goto err;
678
679 if (td->exec_prerun) {
680 if (system(td->exec_prerun) < 0)
681 goto err;
682 }
683
684 fio_gettime(&td->epoch, NULL);
685 getrusage(RUSAGE_SELF, &td->ru_start);
686
687 runtime[0] = runtime[1] = 0;
688 while (td->loops--) {
689 fio_gettime(&td->start, NULL);
690 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
691
692 if (td->ratemin)
693 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
694
695 clear_io_state(td);
696 prune_io_piece_log(td);
697
698 if (td->io_ops->flags & FIO_CPUIO)
699 do_cpuio(td);
700 else
701 do_io(td);
702
703 runtime[td->ddir] += utime_since_now(&td->start);
704 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
705 runtime[td->ddir ^ 1] = runtime[td->ddir];
706
707 if (td->error || td->terminate)
708 break;
709
710 if (td->verify == VERIFY_NONE)
711 continue;
712
713 clear_io_state(td);
714 fio_gettime(&td->start, NULL);
715
716 do_verify(td);
717
718 runtime[DDIR_READ] += utime_since_now(&td->start);
719
720 if (td->error || td->terminate)
721 break;
722 }
723
724 update_rusage_stat(td);
725 fio_gettime(&td->end_time, NULL);
726 td->runtime[0] = runtime[0] / 1000;
727 td->runtime[1] = runtime[1] / 1000;
728
729 if (td->bw_log)
730 finish_log(td, td->bw_log, "bw");
731 if (td->slat_log)
732 finish_log(td, td->slat_log, "slat");
733 if (td->clat_log)
734 finish_log(td, td->clat_log, "clat");
735 if (td->write_iolog_file)
736 write_iolog_close(td);
737 if (td->exec_postrun) {
738 if (system(td->exec_postrun) < 0)
739 log_err("fio: postrun %s failed\n", td->exec_postrun);
740 }
741
742 if (exitall_on_terminate)
743 terminate_threads(td->groupid, 0);
744
745err:
746 if (td->error)
747 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
748 close_files(td);
749 close_ioengine(td);
750 cleanup_io_u(td);
751 td_set_runstate(td, TD_EXITED);
752 return (void *) td->error;
753}
754
755/*
756 * We cannot pass the td data into a forked process, so attach the td and
757 * pass it to the thread worker.
758 */
759static int fork_main(int shmid, int offset)
760{
761 struct thread_data *td;
762 void *data, *ret;
763
764 data = shmat(shmid, NULL, 0);
765 if (data == (void *) -1) {
766 int __err = errno;
767
768 perror("shmat");
769 return __err;
770 }
771
772 td = data + offset * sizeof(struct thread_data);
773 ret = thread_main(td);
774 shmdt(data);
775 return (int) ret;
776}
777
778/*
779 * Run over the job map and reap the threads that have exited, if any.
780 */
781static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
782{
783 struct thread_data *td;
784 int i, cputhreads, pending, status, ret;
785
786 /*
787 * reap exited threads (TD_EXITED -> TD_REAPED)
788 */
789 pending = cputhreads = 0;
790 for_each_td(td, i) {
791 /*
792 * ->io_ops is NULL for a thread that has closed its
793 * io engine
794 */
795 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
796 cputhreads++;
797
798 if (td->runstate < TD_EXITED) {
799 /*
800 * check if someone quit or got killed in an unusual way
801 */
802 ret = waitpid(td->pid, &status, WNOHANG);
803 if (ret < 0)
804 perror("waitpid");
805 else if ((ret == td->pid) && WIFSIGNALED(status)) {
806 int sig = WTERMSIG(status);
807
808 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
809 td_set_runstate(td, TD_REAPED);
810 goto reaped;
811 }
812 }
813
814 if (td->runstate != TD_EXITED) {
815 if (td->runstate < TD_RUNNING)
816 pending++;
817
818 continue;
819 }
820
821 if (td->error)
822 exit_value++;
823
824 td_set_runstate(td, TD_REAPED);
825
826 if (td->use_thread) {
827 long ret;
828
829 if (pthread_join(td->thread, (void *) &ret))
830 perror("thread_join");
831 } else {
832 int status;
833
834 ret = waitpid(td->pid, &status, 0);
835 if (ret < 0)
836 perror("waitpid");
837 else if (WIFEXITED(status) && WEXITSTATUS(status)) {
838 if (!exit_value)
839 exit_value++;
840 }
841 }
842
843reaped:
844 (*nr_running)--;
845 (*m_rate) -= td->ratemin;
846 (*t_rate) -= td->rate;
847 }
848
849 if (*nr_running == cputhreads && !pending)
850 terminate_threads(TERMINATE_ALL, 0);
851}
852
853/*
854 * Main function for kicking off and reaping jobs, as needed.
855 */
856static void run_threads(void)
857{
858 struct thread_data *td;
859 unsigned long spent;
860 int i, todo, nr_running, m_rate, t_rate, nr_started;
861
862 if (fio_pin_memory())
863 return;
864
865 if (!terse_output) {
866 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
867 fflush(stdout);
868 }
869
870 signal(SIGINT, sig_handler);
871 signal(SIGALRM, sig_handler);
872
873 todo = thread_number;
874 nr_running = 0;
875 nr_started = 0;
876 m_rate = t_rate = 0;
877
878 for_each_td(td, i) {
879 print_status_init(td->thread_number - 1);
880
881 if (!td->create_serialize) {
882 init_disk_util(td);
883 continue;
884 }
885
886 /*
887 * do file setup here so it happens sequentially,
888 * we don't want X number of threads getting their
889 * client data interspersed on disk
890 */
891 if (setup_files(td)) {
892 exit_value++;
893 if (td->error)
894 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
895 td_set_runstate(td, TD_REAPED);
896 todo--;
897 }
898
899 init_disk_util(td);
900 }
901
902 while (todo) {
903 struct thread_data *map[MAX_JOBS];
904 struct timeval this_start;
905 int this_jobs = 0, left;
906
907 /*
908 * create threads (TD_NOT_CREATED -> TD_CREATED)
909 */
910 for_each_td(td, i) {
911 if (td->runstate != TD_NOT_CREATED)
912 continue;
913
914 /*
915 * never got a chance to start, killed by other
916 * thread for some reason
917 */
918 if (td->terminate) {
919 todo--;
920 continue;
921 }
922
923 if (td->start_delay) {
924 spent = mtime_since_genesis();
925
926 if (td->start_delay * 1000 > spent)
927 continue;
928 }
929
930 if (td->stonewall && (nr_started || nr_running))
931 break;
932
933 /*
934 * Set state to created. Thread will transition
935 * to TD_INITIALIZED when it's done setting up.
936 */
937 td_set_runstate(td, TD_CREATED);
938 map[this_jobs++] = td;
939 fio_sem_init(&startup_sem, 1);
940 nr_started++;
941
942 if (td->use_thread) {
943 if (pthread_create(&td->thread, NULL, thread_main, td)) {
944 perror("thread_create");
945 nr_started--;
946 }
947 } else {
948 if (fork())
949 fio_sem_down(&startup_sem);
950 else {
951 int ret = fork_main(shm_id, i);
952
953 exit(ret);
954 }
955 }
956 }
957
958 /*
959 * Wait for the started threads to transition to
960 * TD_INITIALIZED.
961 */
962 fio_gettime(&this_start, NULL);
963 left = this_jobs;
964 while (left && !fio_abort) {
965 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
966 break;
967
968 usleep(100000);
969
970 for (i = 0; i < this_jobs; i++) {
971 td = map[i];
972 if (!td)
973 continue;
974 if (td->runstate == TD_INITIALIZED) {
975 map[i] = NULL;
976 left--;
977 } else if (td->runstate >= TD_EXITED) {
978 map[i] = NULL;
979 left--;
980 todo--;
981 nr_running++; /* work-around... */
982 }
983 }
984 }
985
986 if (left) {
987 log_err("fio: %d jobs failed to start\n", left);
988 for (i = 0; i < this_jobs; i++) {
989 td = map[i];
990 if (!td)
991 continue;
992 kill(td->pid, SIGTERM);
993 }
994 break;
995 }
996
997 /*
998 * start created threads (TD_INITIALIZED -> TD_RUNNING).
999 */
1000 for_each_td(td, i) {
1001 if (td->runstate != TD_INITIALIZED)
1002 continue;
1003
1004 td_set_runstate(td, TD_RUNNING);
1005 nr_running++;
1006 nr_started--;
1007 m_rate += td->ratemin;
1008 t_rate += td->rate;
1009 todo--;
1010 fio_sem_up(&td->mutex);
1011 }
1012
1013 reap_threads(&nr_running, &t_rate, &m_rate);
1014
1015 if (todo)
1016 usleep(100000);
1017 }
1018
1019 while (nr_running) {
1020 reap_threads(&nr_running, &t_rate, &m_rate);
1021 usleep(10000);
1022 }
1023
1024 update_io_ticks();
1025 fio_unpin_memory();
1026}
1027
1028int main(int argc, char *argv[])
1029{
1030 long ps;
1031
1032 /*
1033 * We need locale for number printing, if it isn't set then just
1034 * go with the US format.
1035 */
1036 if (!getenv("LC_NUMERIC"))
1037 setlocale(LC_NUMERIC, "en_US");
1038
1039 if (parse_options(argc, argv))
1040 return 1;
1041
1042 if (!thread_number) {
1043 log_err("Nothing to do\n");
1044 return 1;
1045 }
1046
1047 ps = sysconf(_SC_PAGESIZE);
1048 if (ps < 0) {
1049 log_err("Failed to get page size\n");
1050 return 1;
1051 }
1052
1053 page_mask = ps - 1;
1054
1055 if (write_bw_log) {
1056 setup_log(&agg_io_log[DDIR_READ]);
1057 setup_log(&agg_io_log[DDIR_WRITE]);
1058 }
1059
1060 disk_util_timer_arm();
1061
1062 run_threads();
1063
1064 if (!fio_abort) {
1065 show_run_stats();
1066 if (write_bw_log) {
1067 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1068 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1069 }
1070 }
1071
1072 return exit_value;
1073}